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Abstract

Cichoń’s diagram describes the connections between combinatorial notions re-
lated to measure, category, and compactness of sets of irrational numbers. In the
second part of the 2010’s decade, Goldstern, Kellner and Shelah constructed a forc-
ing model of Cichoń’s Maximum (meaning that all non-dependent cardinal char-
acteristics are pairwise different) by using large cardinals. Some years later, we
eliminated this large cardinal assumption. In this mini-course, we explore the forc-
ing techniques to construct the Cichoń’s Maximum model and much more.

1 Tukey connections and cardinal characteristics of

the continuum

Great part of the contents of this section are taken almost verbatim from: Section 1, up
to Figure 3, of [CM22]; and Section 1, up to Fact 1.2, of [GKMS21b].

Many cardinal characteristics of the continuum and their relations can be represented by
relational systems as follows. This presentation is based on [Voj93, Bar10, Bla10].

Definition 1.1. We say that R = ⟨X, Y,⊏⟩ is a relational system if it consists of two
non-empty sets X and Y and a relation ⊏.

(1) A set F ⊆ X is R-bounded if ∃ y ∈ Y ∀x ∈ F : x ⊏ y.

(2) A set E ⊆ Y is R-dominating if ∀x ∈ X ∃ y ∈ E : x ⊏ y.

We associate two cardinal characteristics with this relational system R:

b(R) := min{|F | : F ⊆ X is R-unbounded} the unbounding number of R, and

d(R) := min{|D| : D ⊆ Y is R-dominating} the dominating number of R.
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Note that d(R) = 1 iff b(R) is undefined (i.e. there are no R-unbounded sets, which is the
same as saying that X is R-bounded). Dually, b(R) = 1 iff d(R) is undefined (i.e. there
are no R-dominating families).

A very representative general example of relational systems is given by directed preorders.

Definition 1.2. We say that ⟨S,≤S⟩ is a directed preorder if it is a preorder (i.e. ≤S is
a reflexive and transitive relation on S) such that

∀x, y ∈ S ∃ z ∈ S : x ≤S z and y ≤S z.

A directed preorder ⟨S,≤S⟩ is seen as the relational system S = ⟨S, S,≤S⟩, and their
associated cardinal characteristics are denoted by b(S) and d(S). The cardinal d(S) is
actually the cofinality of S, typically denoted by cof(S) or cf(S).

Fact 1.3. If a directed preorder S has no maximum element then b(S) is infinite and
regular, and b(S) ≤ cf(d(S)) ≤ d(S) ≤ |S|. Even more, if L is a linear order without
maximum then b(L) = d(L) = cof(L).

Proof. First notice that d(S) is infinite, otherwise, by directedness, d(S) = 1 and S would
have a top element.

We prove the less obvious b(S) ≤ cf(d(S)). Assume that λ < b(S) is a cardinal and
⟨Aα : α < λ⟩ is a sequence of subsets of S of size <d(S). It is enough to show that
A :=

⋃
α<λAα is not cofinal in S. For each α < λ, since |Aα| < d(S), Aα is not cofinal in S,

so there is some xα ∈ S such that xα ≰S y for all y ∈ Aα. Now, |{xα : α < λ}| ≤ λ < b(S),
so there is some x∗ ∈ S such that xα ≤S x

∗ for all α < λ. Then, x∗ ≰S y for all y ∈ A,
i.e. A is not cofinal in S.

A similar argument shows that b(S) is regular.

Example 1.4. Consider ωω = ⟨ωω,≤∗⟩, which is a directed preorder. The cardinal
characteristics b := b(ωω) and d := d(ωω) are the well-known bounding number and
dominating number, respectively.

Example 1.5. For any ideal I on X, we consider the following relational systems.

(1) I := ⟨I,⊆⟩ is a directed partial order. Note that

b(I) = add(I) := min
{
|F| : F ⊆ I,

⋃
F /∈ I

}
the additivity of I,

d(I) = cof(I).

(2) CI := ⟨X, I,∈⟩. When
⋃ I = X,

b(CI) = non(I) = min{|F | : F ⊆ X, F /∈ I} the uniformity of I,
d(CI) = cov(I) = min

{
|C| : C ⊆ I,

⋃
C = X

}
the covering of I.

Definition 1.6. Let Ξ: B → [0,∞] be a fam (finitely additive measure) on a Boolean
algebra B. We define the Ξ-null ideal by

N (Ξ) := {a ∈ B : Ξ(a) = 0}.
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When B is a field of sets over X, we extend the definition to

N (Ξ) := {a ⊆ X : ∃ b ∈ B : a ⊆ b and Ξ(b) = 0}.

This is clearly an ideal on X. When
⋃N (Ξ) = X, i.e. every singleton has measure zero,

we say that the fam Ξ is free.

Denote by Lb the Lebesgue measure on R, and let N := N (Lb).

Definition 1.7. Let X be a topological space. We say that F ⊆ X is nowhere dense
(nwd) if, for any non-empty open U ⊆ X, there is some non-empty open U ′ ⊆ U disjoint
from F . We say that A ⊆ X is meager (or of first category) if A =

⋃
n<ω Fn for some

nwd Fn (n < ω).

Denote by M(X) the collection of all meager subsets of X, and let M := M(R).

Definition 1.8. Define by E the ideal generated by the Fσ measure zero subsets of R.

It is clear that E ⊆ M∩N , even more, E ⊊ M∩N ([BJ95, Lem. 2.6.1], see also [GM23,
Thm. 3.7]).

Example 1.9. Define the relational system Spl := ⟨[ω]ℵ0 , [ω]ℵ0 ,⊏nsp⟩ by

a ⊏nsp b iff either a ⊇∗ b or ω ∖ a ⊇∗ b.

Note that a ̸⊏nsp b iff a splits b, so b(Spl) = s and d(Spl) = r, the splitting and reaping
numbers, respectively.

Inequalities between cardinal characteristics associated with relational systems can be
determined by the dual of a relational system and also via Tukey connections, which we
introduce below.

Definition 1.10. If R = ⟨X, Y,⊏⟩ is a relational system, then its dual relational system
is defined by R⊥ := ⟨Y,X,⊏⊥⟩ where y ⊏⊥ x if ¬(x ⊏ y).

Fact 1.11. Let R = ⟨X, Y,⊏⟩ be a relational system.

(a) (R⊥)⊥ = R.

(b) The notions of R⊥-dominating set and R-unbounded set are equivalent.

(c) The notions of R⊥-unbounded set and R-dominating set are equivalent.

(d) d(R⊥) = b(R) and b(R⊥) = d(R).

Definition 1.12. Let R = ⟨X, Y,⊏⟩ and R′ = ⟨X ′, Y ′,⊏′⟩ be relational systems. We
say that (Ψ−,Ψ+) : R → R′ is a Tukey connection from R into R′ if Ψ− : X → X ′ and
Ψ+ : Y

′ → Y are functions such that

∀x ∈ X ∀ y′ ∈ Y ′ : Ψ−(x) ⊏
′ y′ ⇒ x ⊏ Ψ+(y

′).

The Tukey order between relational systems is defined by R ⪯T R′ iff there is a Tukey
connection from R into R′. Tukey equivalence is defined by R ∼=T R′ iff R ⪯T R′ and
R′ ⪯T R
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Fact 1.13. Assume that R = ⟨X, Y,⊏⟩ and R′ = ⟨X ′, Y ′,⊏′⟩ are relational systems and
that (Ψ−,Ψ+) : R → R′ is a Tukey connection.

(a) If D′ ⊆ Y ′ is R′-dominating, then Ψ+[D
′] is R-dominating.

(b) (Ψ+,Ψ−) : (R
′)⊥ → R⊥ is a Tukey connection.

(c) If E ⊆ X is R-unbounded then Ψ−[E] is R
′-unbounded.

Corollary 1.14. (a) R ⪯T R
′ implies (R′)⊥ ⪯T R

⊥.

(b) R ⪯T R
′ implies b(R′) ≤ b(R) and d(R) ≤ d(R′).

(c) R ∼=T R
′ implies b(R′) = b(R) and d(R) = d(R′).

Example 1.15. The diagram in Figure 1 can be expressed in terms of the Tukey order
since CI ⪯T I and C⊥

I ⪯T I when I is an ideal on X such that
⋃ I = X. The first

inequality is obtained via the Tukey connection x ∈ X 7→ {x} ∈ I and A ∈ I 7→ A ∈ I,
and the second is obtained via A ∈ I 7→ A ∈ I and B ∈ I 7→ yB ∈ X such that yB /∈ B.

b b

b

b b

b

bℵ0

add(I)

cov(I)

non(I)

cof(I)

|X|

2|X|

Figure 1: Diagram of the cardinal characteristics associated with I. An arrow x → y
means that (provably in ZFC) x ≤ y.

b b b b b

b b

b b b b b

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Figure 2: Cichoń’s diagram. The arrows mean ≤ and dotted arrows represent add(M) =
min{b, cov(M)} and cof(M) = max{d, non(M)}, which we call the dependent values.

Cichoń’s diagram (Figure 2) illustrates the inequalities between the cardinal characteris-
tics associated with measure and category of the real numbers. The initial study of this
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diagram was completed between 1981 and 1993. Inequalities were proved by Bartoszyński,
Fremlin, Miller, Rothberger and Truss. The name “Cichoń’s diagram” was attributed by
Fremlin [Fre83]. On the other hand, the diagram is complete in the sense that no more
arrows can be added. Moreover, for any ℵ1-ℵ2 assignment to the cardinals in Cichoń’s
diagram that does not contradict the arrows (and the dependent values), there is a forc-
ing poset that forces the corresponding model. This part of the study was completed by
Bartoszyński, Judah, Miller and Shelah. In fact, the inequalities in Cichoń’s diagram can
be obtained via the Tukey connections as illustrated in Figure 3. See e.g. [BJ95, Bla10]
for all the details.

C⊥
[R]<ℵ1 N⊥

CN

C⊥
N

N

M⊥ CM

C⊥
M M

(ωω)⊥ ωω

C[R]<ℵ1

Figure 3: Cichon’s diagram via Tukey connections. Any arrow represents a Tukey con-
nection in the given direction.

We look at more classical cardinal characteristics. Concerning those associated with E :

Lemma 1.16 ([BJ95, Lem. 7.4.3]). CE ⪯T Spl.

Theorem 1.17 ([BS92], see also [BJ95, Sec. 2.6]).

(a) min{b, non(N )} ≤ non(E) ≤ min{non(M), non(N )}.

(b) max{cov(M), cov(N )} ≤ cov(E) ≤ max{d, cov(N )}.

(c) add(E) = add(M) and cof(E) = cof(M).

Definition 1.18.

(1) For a, b ∈ [ω]ℵ0 , we define a ⊆∗ b iff a∖ b is finite;

(2) and we say that a splits b if both a ∩ b and b ∖ a are infinite, that is, a ⊉∗ b and
ω ∖ a ⊉∗ b.

(3) F ⊆ [ω]ℵ0 is a splitting family if every y ∈ [ω]ℵ0 is split by some x ∈ F . The splitting
number s is the smallest size of a splitting family.

(4) D ⊆ [ω]ℵ0 is an unreaping family if no x ∈ [ω]ℵ0 splits every member of D. The
reaping number r is the smallest size of an unreaping family.

(5) D ⊆ [ω]ℵ0 is groupwise dense when:

(i) if a ∈ [ω]ℵ0 , b ∈ D and a ⊆∗ b, then a ∈ D,
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(ii) if ⟨In : n < ω⟩ is an interval partition of ω then
⋃

n∈a In ∈ D for some a ∈ [ω]ℵ0 .

The groupwise density number g is the smallest size of a collection of groupwise
dense sets whose intersection is empty.

(6) The distributivity number h is the smallest size of a collection of dense subsets of
⟨[ω]ℵ0 ,⊆∗⟩ whose intersection is empty.

(7) Say that a ∈ [ω]ℵ0 is a pseudo-intersection of F ⊆ [ω]ℵ0 if a ⊆∗ b for all b ∈ F .

(8) The pseudo-intersection number p is the smallest size of a filter base of subsets of
[ω]ℵ0 without pseudo-intersection.

(9) The tower number t is the smallest length of a (transfinite) ⊆∗-decreasing sequence
in [ω]ℵ0 without pseudo-intersection.

(10) Given a class P of forcing notions, m(P) denotes the minimal cardinal κ such that,
for some Q ∈ P , there is some collection D of size κ of dense subsets of Q without
a filter in Q intersecting every member of D.

(11) Let P be a poset. A set A ⊆ P is k-linked (in P) if every k-element subset of A has
a lower bound in P. A is centered if it is k-linked for all k ∈ ω.

(12) A poset P is k-Knaster, if for each uncountable A ⊆ P there is a k-linked uncountable
B ⊆ A. And P has precaliber ℵ1, if such a B can be chosen centered. For notational
convenience, 1-Knaster means ccc, and ω-Knaster means precaliber ℵ1.

(13) For 1 ≤ k ≤ ω denote mk := m(k-Knaster) and m := m1. We also set m0 := ℵ1.

(14) Define the relational system Pred = ⟨ωω,Pr,⊏pr⟩ where Pr is the set of functions π
(called predictors) into ω with domain

⋃
n∈Dπ

ωn for some Dπ ∈ [ω]ℵ0 , and

x ⊏pr π iff ∃m < ω ∀n ≥ m : n ∈ Dπ ⇒ x(n) = π(x↾n),

in which case we say that π predict x. We define e := b(Pred) the evasion number.

The inequalities between the cardinal characteristics presented so far are summarized
in Figure 4. See [Bla10, BJ95] for the definitions and the proofs for the inequalities (with
the exception of cof(M) ≤ i, which was proved in [BHHH04]).

Below we list some additional properties of these cardinals. Unless noted otherwise, proofs
can be found in [Bla10].

Fact 1.19.

(1) In [MS16] it was proved that p = t.1

(2) The cardinals add(N ), add(M), b, t,
h and g are regular.

(3) cf(s) ≥ t (see [DS18]).

(4) 2<t = c.

(5) cf(c) ≥ g.

(6) For 1 ≤ k ≤ k′ ≤ ω, mk ≤ mk′.

1Only the trivial inequality p ≤ t is used in this mini-course.
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(7) For 1 ≤ k ≤ ω, mk > ℵ1 implies
mk = mω (well-known, but see e.g.

[GKMS21a, Lemma 4.2]).

ℵ1

add(N )

cov(N )

cov(E)

b

add(M)

non(M)

non(E)

d

cov(M)

cof(M)

non(N )

cof(N )

s

r

c

m p h g

e

a u i

1
Figure 4: Diagram of inequalities between classical cardinal characteristics

Concerning cofinalities:

Fact 1.20. Let I be an ideal on X such that
⋃ I = X.

(1) add(I) is regular, cf(cof(I)) ≥ add(I) and cf(non(I)) ≥ add(I).

(2) cf(cov(M)) ≥ add(N ) (Bartoszyński and Shelah 1989, see [BJ95, Thm. 5.1.5]).

(3) If cov(N ) ≤ b then cf(cov(N )) > ω (Bartoszyński 1988, see [BJ95, Thm. 5.1.17]).

(4) If cov(E) ≤ d then cf(cov(E)) > ω (Miller, see [BJ95, Thm. 5.1.18]).

The problem of the cofinality of cov(N ) was settled with the following result.

Theorem 1.21 (Shelah [She00]). It is consistent with ZFC that cf(cov(N )) = ω.

The following question is still unsolved.

Question 1.22. Is it consistent with ZFC that cf(cov(E)) = ω?

To solve this problem in the positive, it is necessary to force d < cov(E), which implies
cov(E) = cov(N ) (see Theorem 1.17), so it would be needed to force cf(cov(N )) = ω via
an ωω-bounding forcing.

Figure 4 is quite complete, but the following is still unknown.

Question 1.23. Is a ≤ i?
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It is not even known how to solve:

Question 1.24. Does i = ℵ1 imply a = ℵ1?

The positive answer to this problem is implied by the positive answer to the following
famous problem in set theory.

Question 1.25 (Roitman’s problem). Does d = ℵ1 imply a = ℵ1?

The following strengthening of Roitman’s problem was formulated by Brendle and Ragha-
van [BR14].

Question 1.26. Does b = s = ℵ1 imply a = ℵ1?

2 Finite Support iterations

2.1 Generic reals

We first look at the types of generic reals we intend to add by forcing. Recall that a
Polish space is a separable completely metrizable space. The real line R and any product∏

n<ω b(n) of countable discrete spaces, such as the Cantor space 2ω and the Baire space
ωω, are canonical examples. Polish spaces are used to resemble the combinatorics and the
descriptive set theory of the real line.

For a Polish space Z, denote by Σ̄(Z) the field of sets generated by the analytic subsets
of Z.

Definition 2.1. We say that R = ⟨X, Y,⊏⟩ is a relational system of the reals if

(i) X ∈ Σ̄(Z1) and Y ∈ Σ̄(Z2) for some Polish spaces Z1 and Z2, and

(ii) ⊏ ∈ Σ̄(Z1 × Z2).

In most of the cases, X = Z1 is a perfect Polish space and, for any y ∈ Y , {x ∈ X : x ⊏ y}
is meager in X.

The reason we use Σ̄ is to have absoluteness of the statements “x ∈ X”, “y ∈ Y ” and
“x ⊏ y”. In general, we can just use definable sets X, Y and ⊏ such that the previous
statements are absolute for the arguments we are carrying out.

For the rest of this section, we fix a relational system of the reals R = ⟨X, Y,⊏⟩. We
introduce the following type of (generic) reals related to R.

Definition 2.2. Let M be a (transitive) model of ZFC.2

(1) A point y∗ ∈ Y is R-dominating over M if ∀x ∈ X ∩M : x ⊏ y∗.

(2) A point x∗ ∈ X is R-unbounded over M if ∀ y ∈ Y ∩M : x∗ ̸⊏ y.

2Since such set models cannot exist, most of the time this expression means that M satisfies a large
enough fragment of ZFC to perform the arguments at hand.
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We look at many particular cases related to the cardinals in Cichoń’s diagram.

Definition 2.3. [Localization] For h ∈ ωω and H ⊆ ωω, define

S(ω, h) :=
∏
i<ω

[ω]≤h(i),

S(ω,H) :=
⋃
h∈H

S(ω, h).

Objects in these sets are usually called slaloms.

For functions x and y with domain ω, we define the relation “y localizes x” by

x ∈∗ y iff ∃m < ω ∀ i ≥ m : x(i) ∈ y(i).

Define the following localization relational systems :

Lc(ω, h) := ⟨ωω,S(ω, h),∈∗⟩,
Lc(ω,H) := ⟨ωω,S(ω,H),∈∗⟩.

It is easy to check that these are relational systems of the reals when H is countable.

The localization relational systems work to easily characterize the cardinal characteristics
associated with N .

Theorem 2.4 (Bartoszyński [Bar84](1984), see also [CM23, Sec. 4]).
If h → ∞ and H ⊆ ωω is a countable set containing some function diverging to infinity,
then

Lc(ω, h) ∼=T Lc(ω,H) ∼=T N .

In particular, b(Lc(ω, h)) = b(Lc(ω,H)) = add(N ) and d(Lc(ω, h)) = d(Lc(ω,H)) =
cof(N ).

We now introduce a forcing to modify Lc(ω, h). In the context of forcing, V always refers
to the ground model.

Definition 2.5 (Localization forcing). For h ∈ ωω, define the poset3

Lch := {(n, φ) ∈ ω × S(ω, h) : ∃m < ω : φ ∈ S(ω,m)}

ordered by

(n′, φ′) ≤ (n, φ) iff n ≤ n′, φ′↾n = φ↾n and ∀ i < ω : φ(i) ⊆ φ′(i).

When h → ∞ we have that Lch is ccc (even σ-k-linked for any k < ω) and it adds a
generic slalom φ∗ ∈ S(ω, h) which localizes all functions in the ground model, i.e. it is
Lc(ω, h)-dominating over the ground model. If G is Lc(ω, h)-generic over V , the generic
slalom is defined by φ∗(i) := φ(i) when (n, φ) ∈ G and i < n (this value is the same for
any such (n, φ)).

3The m in S(ω,m) refers to the constant function with value m.
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We present a relational system of the reals that represents the relational system CN (more
precisely, its dual). For this purpose, we code measure zero sets as follows.

Definition 2.6. For any topological space X, denote by B(X) the σ-algebra of Borel
subsets of X. Let Lb2 be the measure on B(2ω) defined as the product measure of the
uniform measure on 2 = {0, 1}.4 Recall that {[s] : s ∈ 2<ω} forms a base of 2ω and
that each [s] is clopen in 2ω. Then, Lb2 is the unique measure on B(2ω) such that
Lb2([s]) = 2−|s| for any s ∈ 2<ω.5

We abuse notation and denote [F ] :=
⋃

s∈F [s] for F ⊆ 2<ω. Since 2ω is compact, we have
that the clopen sets are precisely of the form [c] for c ⊆ 2<ω finite.

We code measure zero subsets of 2ω in the following way. Fix a sequence ε̄ = ⟨εn : n < ω⟩
of positive real numbers such that

∑
n<ω εn <∞. Define

Ωε̄ :=
{
c̄ = ⟨cn : n < ω⟩ : ∀n < ω : cn ∈ [2<ω]<ℵ0 and Lb2([cn]) < εn

}
.

For any sequence c̄ = ⟨cn : n < ω⟩ of finite subsets of 2<ω, denote

N(c̄) =
⋂
m<ω

⋃
n≥m

[cn],

i.e. for x ∈ 2ω, x ∈ N(c̄) iff x ∈ [cn] for infinitely many n.

Define the relational system Cn := ⟨Ωε̄, 2
ω, ̸▶⟩ such that c̄ ̸▶ y iff y /∈ N(c̄).

The sequences in Ωε̄ are simple codes of (a base of) measure zero sets in 2ω.

Fact 2.7 (See e.g. [BJ95, Lemma 2.3.10]). If c̄ ∈ Ωε̄, then N(c̄) ∈ N (Lb2) and, for any
A ∈ N (Lb2), there exists c̄ ∈ Ωε̄ such that A ⊆ N(c̄).

In combinatorics of the reals, it is the same (and more practical) to work in the Cantor
space than on R, because functions in 2ω represent the numbers in [0, 1] when expressed
in base 2. For this reason, the measure theory of 2ω is equivalent to the one of [0, 1] (with
the Lebesgue measure), so N (R) ∼=T N (2ω) and CN (R) ∼=T CN (2ω). See details in [Lev02,
Ch. VII, §3].

As a direct consequence of Fact 2.7, we obtain:

Fact 2.8. Cn ∼=T C⊥
N (2ω), so b(Cn) = cov(N ) and d(Cn) = non(N ).

Definition 2.9. Random forcing is B(2ω) ∖ N (2ω) ordered by ⊆ . If G is a generic set
over V , then we can define r ∈ 2ω by r :=

⋃{s ∈ 2<ω : [s] ∈ G}. Such r is called a random
real (over V ).

Random forcing is ccc (even σ-k-linked for any k < ω).

Fact 2.10. If r is a random real over V , then r /∈ N(c̄) for any c̄ ∈ Ωε̄ ∩ V , i.e. any
random real over V is Cn-dominating over V .

4The uniform measure on a finite non-empty set set b assigns probability 1
|b| to each point.

5For s ∈ 2<ω, |s| = |dom s| is the length of s as a sequence.
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The previous indicates that any random real over V evades the Borel measure zero sets
coded in the ground model.

Concerning the directed preorder ⟨ωω,≤∗⟩, we introduce:

Definition 2.11. Hechler forcing is the poset D := ω<ω × ωω ordered by

(t, g) ≤ (s, f) iff s ⊆ t, ∀ i < ω : f(i) ≤ g(i), and ∀ i ∈ |t|∖ |s| : t(i) ≥ f(i).

This poset is ccc (even σ-centered).

If G is D-generic over V , then d :=
⋃{s : ∃ f : (s, f) ∈ G} is ⟨ωω,≤∗⟩-dominating over V .

We now turn to CM. First, we introduce a useful characterization of its cardinal charac-
teristics.

Definition 2.12. Define the relation system Ed := ⟨ωω, ωω, ̸=∗⟩ where

x ̸=∗ y iff ∃m < ω ∀ i ≥ m : x(i) ̸= y(i).

Theorem 2.13 (Miller [Mil82], Bartoszyński [Bar87], see also [CM23, Thm. 5.3]).
b(Ed) = non(M) and d(Ed) = cov(M).

Definition 2.14. Define the eventually different real forcing by

E :=

{
(s, φ) : s ∈ ω<ω, φ ∈

⋃
m<ω

S(ω,m)

}

ordered by

(t, ψ) ≤ (s, φ) iff s ⊆ t, ∀ i < ω : φ(i) ≤ ψ(i), and ∀ i ∈ |t|∖ |s| : t(i) /∈ φ(i).

This forcing is ccc (even σ-centered).

If G is E-generic over V then e :=
⋃{s : ∃φ : (s, φ) ∈ G} is Ed-dominating over V .

Therefore, by Theorem 2.13, E can be used to increase non(M). But it actually does
more:

Theorem 2.15 (Cardona & Mej́ıa). E adds a CE-dominating real over V , i.e. an Fσ

subset of R that covers R ∩ V .

In the same way as measure, we have that M(R) ∼=T M(2ω) and CM(R) ∼=T CM(2ω), so
we obtain the same cardinal characteristics for the meager ideal using the Cantor space
instead of R. More generally, as a consequence of [Kec95, Subsec. 15.D]:

Theorem 2.16. For any perfect Polish space X, M(X) ∼=T M(R) and CM(X)
∼=T CM(R).

We now look at the effect of Cohen forcing to meager sets. As we did with measure zero,
we introduce a coding of (a base of) meager subsets of 2ω.
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Definition 2.17. Let I be the set of interval partitions of ω. Define the relational system
M := ⟨2ω, 2ω × I,⊏m⟩ where

x ⊏m (y, Ī) iff ∃m < ω ∀n ≥ m : x↾In ̸= y↾In.

The members of 2ω × I are usually called matching reals. For any matching real (y, Ī),
define M(y, Ī) := {x ∈ 2ω : x ⊏m (y, Ī)}.

Fact 2.18 (See e.g. [Bla10]). For any matching real (y, Ī), M(y, Ī) is meager in 2ω. And,
for any A ∈ M(2ω), there is some matching real (y, Ī) such that A ⊆M(y, Ī).

Corollary 2.19. M ∼=T CM(2ω). In particular, b(M) = non(M) and d(M) = cov(M).

Definition 2.20. Let I be a set and b̄ = ⟨b(i) : i ∈ I⟩ a sequence of non-empty sets.
Define the poset

Fn(b̄) := {p : p is a finite function, dom p ⊆ I and ∀ i ∈ dom p : p(i) ∈ b(i)}

ordered by ⊇. The generic real added by this poset is g :=
⋃
G ∈ ∏

b̄ :=
∏

i∈I b(i)
whenever G is Fn(I, b̄)-generic over V .

We use this forcing to add Cohen reals, not just over 2ω or ωω, but over any perfect space
of the form

∏
n<ω b(n), endowed with the product topology for countable discrete spaces

b(n) (n < ω).

Fix a countable sequence b̄ := ⟨b(n) : n < ω⟩ of countable non-empty sets. Note that
∏
b̄

is a perfect Polish space iff |b(n)| ≥ 2 for infinitely many n < ω. In this case, we call
Fn(b̄) the forcing adding a Cohen real in

∏
b̄, usually referred to as Cohen forcing. We

use c to denote the generic real in
∏
b̄ added by this poset, which we often call Cohen

real. For example, Ωε̄ is such a space, and a Cohen real in Ωε̄ over V codes a measure
zero set that covers 2ω ∩ V . The letter C is reserved for any version of Cohen forcing.

For any set I, denote CI := Fn(b̂) where b̂ := ⟨b(i, n) : i ∈ I, n < ω⟩ is defined by
b(i, n) := b(n). This poset adds a sequence ⟨ci : i ∈ I⟩ where each ci ∈

∏
n<ω b(n) is a

Cohen real over V (and even over V CI∖{i}).

All the versions of Cohen forcing are forcing equivalent:

Theorem 2.21. Any countable atomless forcing notion is forcing equivalent with C.

In general, for any perfect Polish space X, it is possible to define a countable atomless
forcing that adds a generic real c ∈ X.6 The main property of this generic real is that it
evades all the Borel meager subsets of X coded in the ground model. In particular,

Theorem 2.22. If c ∈ 2ω is a Cohen real over V , then c /∈ M(y, Ī) for any matching
real (y, Ī) ∈ V . In particular, any Cohen real is M-unbounded over V .

6Using finite fragments of Cauchy sequences coming from a countable dense subset of X.
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2.2 FS iterations

We now turn to FS (finite support) iterations. Any FS iteration ⟨Pα, Q̇β : α ≤ π, β < π⟩
of length π is defined by recursion as follows:

(I) P0 := {⟨ ⟩} is the poset containing the empty sequence ⟨ ⟩, usually called the trivial
poset.

(II) When Pα has been defined, we pick a Pα-name Q̇α of a poset and define Pα+1 =
Pα ∗ Q̇α.

(III) For limit γ ≤ π, Pγ := limdirα<γ Pα =
⋃

α<γ Pα ordered by

q ≤γ p iff ∃α < γ : p, q ∈ Pα and q ≤α p.

Here, ≤α denotes the preorder of Pα. It can be proved by induction that Pα ⊂· Pβ whenever
α ≤ β ≤ π, where ⊂· denotes the complete-subposet relation.7

If G is Pπ-generic over V and α ≤ π, then Gα := Pα ∩G is Pα-generic over V , so Gπ = G.
In the context of FS iterations, we denote Vα := V [Gα], so V0 = V . The relation ⊂·
indicates that Vα ⊆ Vβ whenever α ≤ β ≤ π. So, when α < π, we call Vα an intermediate
generic extension, and Vπ the final generic extension.

In this context, we abbreviate the forcing relation ⊩Pα by ⊩α.

We review some basic facts about FS iterations of ccc posets.

Lemma 2.23. Any FS iteration of ccc posets is ccc, i.e. if ⊩β Q̇β is ccc for all β < π,
then Pα is ccc for all α ≤ π.

Lemma 2.24. In any FS iteration of ccc posets of length π: if cf(π) > ω then R ∩ Vπ =⋃
α<π R ∩ Vα.

Lemma 2.25. Any FS iteration of non-trivial8 posets adds Cohen reals at limit stages.
Concretely, Pα+ω adds a Cohen real over Vα.

The Cohen reals added by a FS iteration determine a Tukey connection for CM as follows.

Corollary 2.26. Any FS iteration of ccc posets of length π with uncountable cofinality
forces non(M) ≤ cf(π) ≤ cov(M), even more, π ⪯T CM.

Proof. Work in Vπ. For any matching real (y, Ī), by Lemma 2.24 there is some αy,Ī < π
such that (y, Ī) ∈ Vαy,Ī

. On the other hand, by Lemma 2.25, there is some Cohen real

cα ∈ 2ω ∩ Vα+ω over Vα. Then by Theorem 2.22, cα ̸⊏m (y, Ī) whenever (y, Ī) ∈ Vα, which
happens when αy,Ī ≤ α. This indicates that the maps α 7→ cα and (y, Ī) 7→ αy,Ī form a
Tukey connection for π ⪯T M.

7P ⊂· Q iff P is a suborder of Q, the incompatibility relation is preserved, and any predense subset of
P is predense in Q.

8A poset is trivial if all its conditions are pairwise compatible. This is equivalent to saying that the
poset if forcing equivalent with the trivial poset.
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The previous result puts a restriction to the models of Cichoń’s diagram that can be
obtained via FS iterations of ccc posets (of uncountable cofinality), since they force the
inequality non(M) ≤ cov(M). Therefore, in such models, the diagram of cardinal char-
acteristics presented in Figure 4 takes the form as in Figure 5.

ℵ1

add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N )

s

r c

m

p h

g

e

a u i

Figure 5: Cichoń’s diagram with other classical cardinal characteristics after a FS iteration
of ccc (non-trivial) posets of length with uncountable cofinality, as an effect of the forced
inequalities non(M) ≤ cov(M) and g ≤ cov(M).

Below, we summarize the effect of the forcings introduced in this section to modify the
cardinals in Cichoń’s diagram:

(1) When h → ∞, Lch adds Lc(ω, h)-dominating reals (so it affects add(N ) and
cof(N )).

(2) Random forcing adds Cn-dominating reals (affecting cov(N ) and non(N )).

(3) Hechler forcing adds ⟨ωω,≤∗⟩-dominating reals (affecting b and d).

(4) The forcing E adds Ed-dominating reals, and also CE -dominating reals (affecting
non(M), non(E) and cov(M), cov(E)).

(5) Cohen forcing adds M-unbounded reals (affecting cov(M) and non(M)).

We are going to use these forcings to modify the cardinals in Cichońs diagram. However,
we cannot just simply add dominating reals without any particular restriction, as indicated
in the following result.

Lemma 2.27. Let ⟨Pα, Q̇β : α ≤ π, β < π⟩ be a FS iteration of ccc posets. Assume
that cf(π) > ω, K ⊆ π is cofinal, R = ⟨X, Y,⊏⟩ is a relational system of the reals (see
Definition 2.1), and assume that, for α ∈ K, Q̇α adds an R-dominating real over Vα.

Then Pπ forces d(R) ≤ cf(π) ≤ b(R), even R ⪯T π.

Moreover, if ZFC proves CM ⪯T R, then Pπ forces R ∼=T CM ∼=T π, so b(R) = d(R) =
non(M) = cov(M) = cf(π).
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Proof. Work in Vπ. If x ∈ X, by Lemma 2.24 there is some αx < π such that x ∈ Vαx .
On the other hand, for any α < π, there is some βα ∈ K above α, so Q̇βα adds an R-
dominating real yα ∈ Y over Vβα . Then the maps x 7→ αx and α 7→ yα form the Tukey
connection for R ⪯T π.

There rest is consequence of Corollary 2.26.

When aiming to force many different values to cardinal characteristics, we cannot add
full dominating reals as in the previous lemma. However, there is a way to add restricted
dominating reals, allowing better control of the cardinal characteristics. We develop this
technique in the following part.

2.3 Book-keeping arguments

Fix, for the rest of this section:

(1) A relational system R = ⟨X, Y,⊏⟩ of the reals (see Definition 2.1) such that |X| =
c = 2ℵ0

(2) A very definable (i.e. Suslin) ccc poset QR adding R-dominating reals over the
ground model, such that |QR| ≤ c. Note that Lch, D, E, random forcing and Cohen
forcing satisfy these conditions (for certain R as in the previous subsection).

(3) An infinite cardinal θ.

We aim to force b(R) = θ. For the rest of this section we deal with b(R) ≥ θ, and from
the following section we deal with the converse inequality.

Forcing b(R) ≥ θ means to force that ∀F ∈ [X]<θ ∃ y ∈ Y ∀x ∈ F : x ⊏ y. One way
is to deal with one F at a time along a FS iteration. Concretely, if we are at step α
of a FS iteration, we pick some Fα ∈ [X]<θ ∩ Vα and aim to add a yα ∈ Y ∩ Vα+1 that
R-dominates all members of Fα. A very effective idea to do this comes from Brendle: in
Vα, pick a transitive model Nα of ZFC such that Fα ⊆ Nα and |Nα| = max{ℵ0, |Fα|} < θ.9

So forcing with Qα = QNα
R (which is ccc) does the job: it adds an R-dominating yα over

Nα, hence it dominates all members of Fα. The hope is that this yα does not dominates
much larger fragments of X.

Now, assume that π is an ordinal of uncountable cofinality, and that we perform a FS
iteration of ccc posets of length π as explained before. To force b(R) ≥ θ, it is enough to
guarantee that, in Vπ, {Fα : α < π} is cofinal in [X]<θ. Indeed, if F ∈ [X]<θ then F ⊆ Fα

for some α < π, so yα dominates all members of Fα, and then all members of F .

In the practice, we do not use all steps α < π to take care of b(R) ≥ θ, but only at
steps α ∈ K for some (cofinal) K ⊆ π, while in other steps can be used to take care of
something else. So we explain how to construct an iteration as above ensuring that some
choice of {Fα : α ∈ K} is cofinal in [X]<θ.

To do this, we first have to look at what happens to |X| in the final extension. Recall
that |X| = c. Assume θ ≤ λ = λℵ0 . Then, in a FS iteration of length λ, we can ensure

9This is possible because the members of X are “reals”.
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that |Pα| ≤ λ and ⊩α c ≤ λ as long as we have ⊩α |Q̇α| ≤ λ for all α < λ. This is fine in
the context of this text because all forcings we use to iterate have size ≤c.

Therefore, in Vλ, |X| = c = λ, so cof([X]<θ) = cof([λ]<θ). Now, producing a collection
{Fα : α ∈ K} cofinal in [X]<θ for some K ⊆ λ, K ∈ V , implies that cof([λ]<θ) =
cof([X]<θ) ≤ |K| ≤ λ. Hence, a requirement to obtain such a cofinal family is that
cof([λ]<θ) = λ and |K| = λ.

We now show that the assumptions θ ≤ cf(λ) ≤ λ = λℵ0 and cof([λ]<θ) = λ are enough
to construct such an iteration via a book-keeping argument. Let K ⊆ λ of size λ and fix
a bijection h : K → λ × λ such that h(α) = (ξ, η) implies ξ ≤ α. Now, perform a FS
iteration of ccc posets and assume we have reached the stage α < λ. Since cov([λ]<θ) is
not modified by ccc forcing10, in Vα we can pick a cofinal {Fα,η : η < λ} on [X]<θ ∩ Vα
(because |X| = c ≤ λ). In the previous steps ξ ≤ α, in the same way we had picked in
Vξ a cofinal {Fξ,η : η < λ} on [X]<θ ∩ Vξ. If α /∈ K then we can force with any ccc poset,
but when α ∈ K, the book-keeping function h makes the choice: letting h(α) = (ξ, η),
pick Fh(α) = Fξ,η (which exists because ξ ≤ α). As before, let Nα be a transitive model of
ZFC such that Fh(α) ⊆ Nα and |Nα| < θ, and we force with Qα := QNα

R to go to the step
α + 1.

At the end of the iteration, in Vλ, we have ensured that each member of {Fh(α) : α ∈ K} =
{Fξ,η : ξ, η < λ} is R-bounded. It remains to ensure that this family is cofinal in [X]<θ:
If F ∈ [X]<θ then, since cf(λ) ≥ θ, we have that F ∈ Vξ for some ξ < λ, so F ⊆ Fξ,η for
some η < λ.

Concerning cof([λ]<θ), by Fact 1.3 we have that cf(cof([λ]<θ)) ≥ add([λ]<θ) = cf(θ), so
cof([λ]<θ) = λ implies cf(λ) ≥ cf(θ), which is cf(λ) ≥ θ in the case when θ is regular.

Using the book-keeping argument presented above, we are now ready to present the first
important construction of models with several pairwise different cardinal characteristics.

Theorem 2.28. Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 be regular cardinals, and assume λ is a
cardinal such that λ = λℵ0 and cf([λ]<θi) = λ for i = 1, . . . , 4. Then, we can construct
a FS iteration of length (and size) λ of ccc posets forcing add(N ) = θ1, cov(N ) = θ2,
b ≥ θ3, non(E) = non(M) = θ4 and cov(M) = c = λ (see Figure 6).

Unfortunately, we only deal with b ≥ θ3 for the moment. In Section 4 we are going to
show how to obtain b = θ3, in addition.

In the first part of the proof we only deal with equalities of the form b(R) ≥ θi and c = λ.
In the next section, we deal with the rest of the proof.

Proof of Theorem 2.28, part 1. Partition λ = K1 ∪K2 ∪K3 ∪K4 with |Ki| = λ. Proceed
in two steps:

Step 1. Force with Cλ (i.e. add λ-many Cohen reals).

Step 2. In V0 := V Cλ , using book-keeping as before at each Ki, iterate with length λ and
at:

10Because, when θ is uncountable, in any ccc generic extension, any set of ordinals of size <θ is covered
by a set in the ground model of size <θ.
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ℵ1 add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N ) c

θ1

θ2

θ3

θ4

λ

Figure 6: The constellation of Cichoń’s diagram forced in Theorem 2.28. For b it is only
guaranteed that b ≤ θ3, but the converse inequality is settled in Section 4.

α ∈ K1: force with LcNα
id ,11 |Nα| < θ1, which guarantees add(N ) ≥ θ1 in the final exten-

sion;

α ∈ K2: force with (B(2ω)∖N (2ω))Nα , |Nα| < θ2, which guarantees cov(N ) ≥ θ2 in the
final extension;

α ∈ K3: force with DNα , |Nα| < θ3, which guarantees b ≥ θ3 in the final extension;

α ∈ K4: force with ENα , |Nα| < θ4, which guarantees non(M) ≥ θ4, and even non(E) ≥ θ4
(by Theorem 2.15), in the final extension.

It is clear by the construction that, in Vλ, c = λ.

Note that we have not used the Cohen reals from step 1. These will be used to prove the
converse inequalities in the next section.

3 Preservation theory for cardinal characteristics

We deal with the problem of forcing b(R) ≤ θ (and much more) to conclude the proof of
Theorem 2.28. We proceed in two steps: we first add a strong type of R-unbounded family
(using Cohen reals), and then show that this strong unbounded family is not destroyed
in the remaining part of the iteration.

The strong type of unbounded family is defined as follows.

Definition 3.1. Let R = ⟨X, Y,⊏⟩ be a relation system, and θ an infinite cardinal. We
say that {xi : i ∈ I} ⊆ X is a θ-R-unbounded family if |I| ≥ θ and |{i ∈ I : xi ⊏ y}| < θ
for all y ∈ Y .

Although a θ-R-unbounded family is quite large, it has the property that any subset of
size θ is R-unbounded, which guarantees b(R) ≤ θ. But we get much more, as indicated
in the following result.

11Here id denotes the identity function on ω.
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Lemma 3.2. Assume that |I| ≥ θ. Then there exists a θ-R-unbounded family {xi : i ∈ I}
iff C[I]<θ ⪯T b(R). In particular, b(R) ≤ non([I]<θ) = θ and cov([I]<θ) ≤ d(R).

Proof. If {xi : i ∈ I} is a θ-R-unbounded family then the maps

i 7→ xi and y 7→ {i ∈ I : xi ⊏ y}

yield the desired Tukey connection.

Conversely, assume that C[I]<θ ⪯T R is witnessed by the Tukey connection i 7→ xi and
y 7→ Ay ∈ [I]<θ, i.e. xi ⊏ y implies i ∈ Ay. Therefore {i ∈ I : xi ⊏ y} ⊆ Ay, so it has size
<θ. Hence, {xi : i ∈ I} is a θ-R-unbounded family.

Concerning cov([I]<θ), we have

cov([I]<θ) =

{
|I| if θ < |I|,
cf(θ) if θ = |I|.

Hence cov([I]<θ) = |I| when θ is regular.

We use the following type of relational system of the reals for our θ-unbounded families.

Definition 3.3. We say that R = ⟨X, Y,⊏⟩ is a Polish relational system (Prs) if the
following is satisfied:

(i) X is a perfect Polish space,

(ii) Y is a non-empty analytic subspace of some Polish space Z and

(iii) ⊏ =
⋃

n<ω ⊏n where ⟨⊏n⟩n<ω is some increasing sequence of closed subsets of X×Z
such that (⊏n)

y = {x ∈ X : x ⊏n y} is closed nowhere dense for any n < ω and
y ∈ Y .

By (iii), the maps x 7→ x and y 7→ {x ∈ X : x ⊏ y} ∈ M(X) form a Tukey connection for
CM(X) ⪯T R. Moreover:

Fact 3.4. Any Cohen real x ∈ X over V is R-unbounded over V .

Example 3.5. The following relational systems are Polish:

(1) Lc(ω,H∗) where H∗ := {idk+1 : k < ω} (powers of the identity function on ω), see
Definition 2.3.

(2) Cn, see Definition 2.6.

(3) ⟨ωω,≤∗⟩.

(4) M, see Definition 2.17.

Recall from the previous section that these Polish relational systems describe the cardinal
characteristics in Cichoń’s diagram, see Figure 7.
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M ∼=T CM

Cn ∼=T C⊥
N

⟨ωω,≤∗⟩

N ∼=T Lc(ω,H∗)

Figure 7: Tukey connections between the relational systems determining the non-
dependant values in Cichoń’s diagram, along with their equivalent Polish relational sys-
tems.

For the rest of this section, we fix a Polish relational system R = ⟨X, Y,⊏⟩. In this case,
θ-R-unbounded families can easily be added using Cohen reals.

Lemma 3.6. Let λ be an uncountable cardinal. Then the Cohen reals {cα : α < λ} ⊆ X
added by Cλ form an ℵ1-R-unbounded family in V Cλ.

Proof. Working in V Cλ , let y ∈ Y . Since y is a real, it only depends on countable many
maximal antichains, so there is some C ∈ [λ]<ℵ1∩V such that y ∈ V CC . For any α ∈ λ∖C,
cα is Cohen over V CC , hence R-unbounded over V CC by Fact 3.4, so cα ̸⊏ y. Therefore,
{α < λ : cα ⊏ y} ⊆ C, which is countable.

Note that θ ≤ θ′ implies that any θ-R-unbounded family {xi : i ∈ I} is θ′-R-unbounded,
as long as θ′ ≤ |I|. Therefore, the Cohen reals added by Cλ form a θ-R-unbounded family
for all ℵ1 ≤ θ ≤ λ.

The reason we start with Cλ in Step 1 of the proof of Theorem 2.28 is to add θi-unbounded
families. Now we aim to show how to preserve them in the iteration of Step 2. For
this purpose, we introduce the preservation theory from Judah and Shelah [JS90] and
Brendle [Bre91].

Definition 3.7. Let κ be an infinite cardinal. A poset P is κ-R-good if, for any P-name
ẏ for a member of Y , there is a non-empty set H ⊆ Y (in the ground model) of size <κ
such that, for any x ∈ X, if x is R-unbounded over H then ⊩ x ̸⊏ ḣ.

We say that P is R-good if it is ℵ1-R-good.

Note that κ ≤ κ′ implies that any κ-R-good poset is κ′-R-good.

Goodness guarantees the preservation of strong unbounded families as follows.

Lemma 3.8. If κ and θ are infinite cardinals, and κ ≤ cf(θ), then any κ-R-good poset
preserves all the θ-R-unbounded families from the ground model.

Proof. Let P be a κ-R-good poset. Assume that {xi : i ∈ I} ⊆ X is a θ-R-unbounded
family. Let ẏ be a P-name of a member of Y . Find H ∈ [Y ]<κ non-empty as in Defini-
tion 3.7. For each y ∈ H let Ay := {i ∈ I : xi ⊏ y} and A :=

⋃
y∈H A

y. Then |Ay| < θ
and |A| < θ, the latter because cf(θ) ≥ κ.
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We claim that ⊩ {i ∈ I : xi ⊏ y} ⊆ A. Indeed, if i ∈ I ∖ A, xi ̸⊏ y for all y ∈ H, so
⊩ xi ̸⊏ ẏ.

Now, goodness is preserved along FS iterations.

Theorem 3.9. Let κ be an uncountable regular cardinal. Then, any FS iteration of κ-cc
κ-R-good posets is again κ-R-good.

Proof. See e.g. [CM19, Thm. 4.15].

This result can be weakened as follows.

Theorem 3.10. Let κ and θ be uncountable cardinals such that κ is regular and cf(θ) ≥ κ.
Then, any FS iteration of κ-cc posets preserving θ-R-unbounded families, preserves θ-R-
unbounded families.

We now turn to particular cases. One very useful fact is that small posets are good.

Lemma 3.11. Any poset P is κ-R-good for any infinite κ > |P|.
In particular, Cohen forcing is κ-R-good for all uncountable κ.

Proof. See [Mej13, Lem. 4], also [CM19, Lem. 4.10]

More concrete examples of R-good posets comes from the connection between the com-
binatorics of a forcing with R. We formalize this with the following notions.

Definition 3.12 ([Mej19]). We say that Γ is a linkedness property if Γ(P) ⊆ P(P) for
any poset P.

Let µ and κ be infinite cardinals.

(1) A poset P is µ-Γ-linked if it can be covered by ≤µ-many subsets in Γ(P).
When µ = ℵ0, we write σ-Γ-linked.

(2) A poset P is κ-Γ-Knaster if ∀B ∈ [P]κ ∃A ∈ [B]κ : A ∈ Γ(P).
When κ = ℵ1, we just write Γ-Knaster.

If Γ satisfies that Q′ ⊆ Q ∈ Γ(P) implies Q′ ∈ Γ(P), then any µ-Γ-linked poset is µ+-Γ-
Knaster. A more concrete discussion about linkedness properties and iterations can be
found in [Mej19, Sec. 5].

Example 3.13. The following are examples of linkedness properties. Here, P denotes an
arbitrary poset.

(1) Λ<ω: Centered. Q ∈ Λ<ω(P) iff Q is a centered subset of P, i.e. for any finite F ⊆ Q,
there is a q ∈ P stronger that all members of P.
Then, µ-Λ<ω-linked means µ-centered, and κ-Λ<ω-Knaster means precaliber κ.
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(2) Λint: Positive intersection number. For n < ω non-zero and s ∈ Pn, define

ι∗(s) := max {|e| : e ⊆ n and {si : i ∈ e} has a common lower bound in P} .

For Q ⊆ P, define the intersection number of Q in P by

intP(Q) := inf

{
ι∗(s)

n
: s ∈ Qn, 0 < n < ω

}
.

We say that Q ∈ Λint iff intP(Q) > 0.

Notice that Λ<ω(P) ⊆ Λint(P) because any centered poset has intersection number 1.

According to the following result, Λ<ω is good for Cn:

Theorem 3.14 (Brendle [Bre91]). Any µ-centered poset is µ+-Cn-good. In particular,
any σ-centered poset is Cn-good.

Inspired by a result of Kamburelis [Kam89], we have that Λint is good for Lc(ω,H∗).
Recall that H∗ = {idk+1 : k < ω}.

Theorem 3.15. Any µ-Λint-linked poset if µ+-Lc(ω,H∗)-good.

Corollary 3.16. Any µ-centered poset is µ+-Lc(ω,H∗)-good.

Other examples are obtained using Boolean algebras with finitely additive measures.

Theorem 3.17 (Kelley [Kel59]). Let B be a Boolean algebra. Then B ∖ {0B} is σ-Λint-
linked iff there is a strictly positive fam Ξ: B → [0, 1] (i.e. Ξ(b) = 0 iff b = 0).

In combination with Theorem 3.15, we obtain

Corollary 3.18. If N is a transitive model of ZFC, then (B(2ω)∖N (2ω))N is Lc(ω,H∗)-
good.

In the next section, we will present a good linkedness property for ⟨ωω,≤∗⟩. For the
moment, we present the following examples.

Theorem 3.19 (Miller [Mil81]). E is ⟨ωω,≤∗⟩-good.

Theorem 3.20. Random forcing is ⟨ωω,≤∗⟩-good.12

We are finally ready to conclude the proof of Theorem 2.28.

Proof of Theorem 2.28, part 2. It remains to show that, in Vλ, add(N ) ≤ θ1, cov(N ) ≤
θ2, non(M) ≤ θ4 and λ ≥ cov(M).

By Lemma 3.6, the Cohen reals added at step 1 gives us ℵ1-R-unbounded families of size
λ for any Polish relational system R, in particular, we obtain in V Cλ an ℵ1-Lc(ω,H∗)-
unbounded {c1α : α < λ}, an ℵ1-Cn-unbounded {c2α : α < λ}, and an ℵ1-M-unbounded

12This easily follows from the fact that random forcing is ωω-bounding.
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{c4α : α < λ}. Now, if we prove that the iteration of step 2 is θ1-Lc(ω,H∗)-good, θ2-
Cn-good and θ4-M-good, we obtain by Lemma 3.8 that the previous families are, in the
final extension, θ1-Lc(ω,H∗)-unbounded, θ2-Cn-unbounded, and θ4-M-unbounded, respec-
tively. Therefore, by Lemma 3.2, add(N ) = b(Lc(ω,H∗)) ≤ θ1, cof(N ) = b(Cn) ≤ θ2,
non(M) = b(M) ≤ θ4 and cov(M) = d(M) ≥ cov([λ]<θ4) = λ.

By virtue of Theorem 3.9, it is enough to prove that all the iterands used in step 2 are
θ1-Lc(ω,H∗)-good, θ2-Cn-good and θ4-M-good. Indeed, for:

α ∈ K1: Qα = LcNα
id has size < θ1 because |Nα| < θ1, so it is θ1-R-good (and κ-R-good

for any κ ≥ θ1) for any Polish relational system R (by Lemma 3.11).

α ∈ K2: Qα = (B(2ω)/N (2ω))Nα has size <θ2, so it is θ2-R-good for any Polish relational
system R. On the other hand, by Corollary 3.18, Qα is Lc(ω,H∗)-good.

α ∈ K3: Qα = DNα has size <θ3, so it is θ3-R-good for any Polish relational system
R. On the other hand, Qα is Lc(ω,H∗)-good and Cn-good by Theorem 3.14
and Corollary 3.16, respectively.

α ∈ K4: Qα = ENα has size <θ4, so it is θ4-R-good for any Polish relational system
R. On the other hand, Qα is Lc(ω,H∗)-good and Cn-good by Theorem 3.14
and Corollary 3.16, respectively.

In the previous proof, we have that Qα is θ3-⟨ωω,≤∗⟩-good for α ∈ K1∪K2∪K3. However,
although E is ⟨ωω,≤∗⟩-good, it is unclear whether restrictions of the form EN for transitive
models N of ZFC are ⟨ωω,≤∗⟩-good. There are counter-examples when N is a proper-class
model:

Theorem 3.21 (Pawlikowsi [Paw92]). There is a proper-ωω-bounding generic extension
W of V in where EV and (B(2ω)∖N (2ω))V add dominating reals over W .

Even more, in the case of random forcing:

Theorem 3.22 (Judah and Shelah [JS93]). There is a ccc forcing extension W of V such
that (B(2ω)∖N (2ω))V adds dominating reals over W .

In the next section, we modify the forcing construction of Theorem 2.28 for α ∈ K4

to guarantee that the set of Cohen reals {c3α : α < λ} added by Cλ stays θ3-⟨ωω,≤∗⟩-
unbounded in the final extension.

4 FS iterations with measures and ultrafilters on the

natural numbers

We show how to modify the iteration in Theorem 2.28 to force, in addition, b ≤ θ3. We
start by introducing the following good property for ⟨ωω,≤∗⟩.
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Definition 4.1 ([Mej19, BCM21]). Let F ⊆ P(ω) be a filter. We assume that all filters
are free, i.e. they contain the Frechet filter Fr := {ω ∖ a : a ∈ [ω]<ℵ0}. A set a ⊆ ω is
F -positive if it intersects every member of F . Denote by F+ the collection of F -positive
sets.

We define the linkedness property ΛF , which we call F -linked : given a poset P and Q ⊆ P,
Q is F -linked if, for any ⟨pn : n < ω⟩ ∈ Qω, there is some q ∈ P such that

q ⊩ {n < ω : pn ∈ Ġ} ∈ F+.

Note that, in the case F = Fr, the previous equation is “q ⊩ {n < ω : pn ∈ Ġ} is infinite”.

We also define Λuf , which we call uf-linked (ultrafilter-linked): Q ∈ Λuf(P) if Q ∈ ΛF (P)
for every (ultra)filter F on ω.

If F and F ′ are filters on ω, it is clear that Λuf(P) ⊆ ΛF ′(P) ⊆ ΛF (P) ⊆ ΛFr(P). But, for
ccc posets:

Lemma 4.2 ([Mej19]). If P is ccc then Λuf(P) = ΛFr(P).

Example 4.3.

(1) Any singleton is uf-linked. Hence, any poset P is |P|-uf-linked. In particular, Cohen
forcing is σ-uf-linked.

(2) Random forcing is σ-uf-linked, in fact, any measure algebra is σ-uf-linked. Indeed,
if B is a complete Boolean algebra and µ : B → [0, 1] is a σ-additive measure such
that µ(p) ̸= 0 for all p ̸= 0B, then, for any δ > 0, {p ∈ B : µ(p) ≥ δ} is Fr-linked.

(3) The forcing E (see Definition 2.14) is σ-uf-linked. We show later that this poset
satisfies a stronger property.

The following series of results indicate that ΛFr is good for ⟨ωω,≤∗⟩.

Lemma 4.4. Let P be a poset and Q ⊆ P. Then Q is Fr-linked iff, for any P-name ṁ for
a natural number, there is some m′ ∈ ω (in the ground model) such that no p ∈ Q forces
m′ ≤ ṁ.

Proof. (⇒) [Mej19] Assume that, for any n < ω, there is some pn ∈ Q forcing n ≤ ṁ.
Then, if G is P-generic over V , then {n < ω : pn ∈ G} must be finite because pn ∈ G ⇒
n ≤ ṁ[G] < ω. Therefore, in V , Q cannot be Fr-linked.

(⇐) (with Cardona) Assume that Q is not Fr-linked, so there is some ⟨pn : n < ω⟩ ∈ Qω

such that ⊩“{n < ω : pn ∈ Ġ} is finite”. So pick some P-name ṁ of a natural number
such that ⊩“{n < ω : pn ∈ Ġ} ⊆ ṁ. Note that pn ⊩ n < ṁ.

Lemma 4.5. Let P be a poset and Q be an Fr-linked subset of P. If ẏ is a P-name of a
member of ωω, then there is some y′ ∈ ωω (in the ground model) such that, for any x ∈ ωω

x ≰∗ y′ ⇒ ∀n < ω ∀ p ∈ Q : p ⊮ ∀ i ≥ n : x(k) ≤ ẏ(k).
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Proof. Using Lemma 4.4, for each k < ω find y′(k) < ω such that no p ∈ Q forces
y′(k) ≤ ẏ(k). This defines y′ ∈ ωω.

Now assume that x ∈ ωω and x ≰∗ y′. Let n < ω and p ∈ Q, so there is some k ≥ n such
that x(k) > y′(k). On the other hand, p ⊮ y′(k) ≤ ẏ(k), so there is some q ≤ p forcing
ẏ(k) < y′(k) < x(k), so p ⊮ ∀ k ≥ n : x(k) ≤ ẏ(k).

Theorem 4.6 ([Mej19]). Any µ-Fr-linked poset is µ+-ωω-good.

This theorem is an easy consequence of Lemma 4.5. However, we do not know how to
modify the construction in Theorem 2.28 to obtain a θ3-ω

ω-good iteration. But we have
some other way to preserve unbounded families, as in the following result.

Theorem 4.7 ([BCM21]). Let θ be an uncountable regular cardinal. Then any θ-Fr-
Knaster poset preserves θ-ωω-unbounded families.

Proof. Assume that {xi : i ∈ I} is a θ-ωω-unbounded family, and that there is some
p ∈ P forcing that it is not, i.e. for some P-name ẏ of a member of ωω, p forces that
|{i ∈ I : xi ≤∗ ẏ}| ≥ θ. This implies that the set

I0 := {i ∈ I : ∃ p′ ≤ p : p′ ⊩ xi ≤∗ ẏ}
has size ≥θ. Pick I1 ⊆ I0 of size θ and, for each i ∈ I1, choose pi ≤ p and ni < ω such
that pi ⊩ xi(k) ≤ ẏ(k) for all k ≥ ni. Since cf(θ) > ω, we can find n < ω and I2 ⊆ I1 of
size θ such that ni = n for all i ∈ I2.

Since θ is regular and P is θ-Fr-Knaster, there is some I ′ ⊆ I2 such that the set Q :=
{pi : i ∈ I ′} is Fr-linked. Now find y′ ∈ ωω as in Lemma 4.5 for ẏ and Q. Then,
|{i ∈ I : xi ≤∗ y′}| < θ, so there is some i ∈ I ′ such that xi ≰∗ y′. Hence, by Lemma 4.5,
no p ∈ Q forces ∀ k ≥ n : xi(k) ≤ ẏ(k). But pi forces this, a contradiction.

Because of the previous theorem, the plan now is to modify the construction of Theo-
rem 2.28 to obtain a θ3-Fr-Knaster poset. To achieve this, we use the following linkedness
property, stronger than ultrafilter-linkedness.

Definition 4.8 (cf. [GMS16]). Given a (non-principal) ultrafilter D on ω, define the
linkedness property Λlim

D , called D-lim-linked : Q ∈ Λlim
D (P) if there are a P-name Ḋ′ of an

ultrafilter on ω extending D and a map limD : Qω → P such that, whenever p̄ = ⟨pn : n <
ω⟩ ∈ Qω,

limD p̄ ⊩ {n < ω : pn ∈ Ġ} ∈ Ḋ′.

Define the linkedness property Λlim
uf , called uf-lim-linked, by Q ∈ Λlim

uf (P) iff Q ∈ Λlim
D (P)

for any ultrafilter D on ω.

In addition, for an infinite cardinal µ, we say that a poset P is uniformly µ-D-lim-linked
if if is µ-Λlim

D -linked witnessed by some ⟨Qα : α < µ⟩, but the Ḋ′ above can be the same
for any Qα. And we say that P is uniformly µ-uf-lim-linked if there is some ⟨Qα : α < µ⟩
witnessing that P is uniformly µ-D-lim-linked for any ultrafilter D on ω.

Example 4.9. Any singleton is uf-lim-linked. As a consequence, any poset P is uniformly
|P|-uf-lim-linked, witnessed by its singletons: for p ∈ P , let Qp := {p}, and limD on Qp is
just the constant map with value p, when D is an ultrafilter on ω. Since limD p̄ ⊩ {n <
ω : pn ∈ Ġ} = ω for all p̄ ∈ Qω

p , Ḋ
′ can be any P-name of an ultrafilter extending D.
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Theorem 4.10 ([GMS16, BCM21]). E is uniformly σ-uf-lim-linked.

Proof. We only indicate the components and the limit functions. For s ∈ ω<ω and m ∈ ω,
consider the set Es,m of conditions in E of the form (s, φ) with φ ∈ S(ω,m). If D is an
ultrafilter on ω and p̄ = ⟨pn : n < ω⟩ ∈ Eω

s,m, pn = (s, φn), define limD p̄ := (s, φ) where

k ∈ φ(i) iff {n < ω : k ∈ φn(i)} ∈ D.

It is clear that (s, φ) ∈ Es,m.

The sequence ⟨Es,m : s ∈ ω<ω, m < ω⟩ witnesses that E is uniformly σ-D-lim-linked for
any ultrafilter D on ω. This is proved by showing that, whenever G is P-generic over V ,
the set

D ∪
⋃
s,m

{
{n < ω : pn ∈ G} : p̄ ∈ Eω

s,m ∩ V, limD p ∈ G
}

has the finite intersection property.

We present a framework to construct FS iterations that allow ultrafilter limits. The
candidates for such iterations can be presented in a more general fashion. For an infinite
cardinal θ, denote

θ− =

{
θ0 if θ = θ+0 for some cardinal θ0,
θ if θ is not a successor cardinal.

Definition 4.11. Let θ be an uncountable cardinal. A FS iteration ⟨Pα, Q̇ξ : α ≤ π, ξ <
π⟩ is a θ-Γ-iteration if it satisfies:

(i) P−
ξ ⊂· Pξ for all ξ < π, and

(ii) P−
ξ forces that Q̇ξ is µξ-Γ-linked witnessed by a sequence of P−

ξ -names ⟨Q̇ξ,ζ : ζ < µξ⟩,
where µξ < θ (known from the ground model).

Associated with this iteration, we define the following notions.

(1) A function h : dh → θ− with π ⊆ dh is usually called a guardrail for the iteration.

(2) For α ≤ π and h as above, let Ph
α be the set of conditions p ∈ Pα following h, i.e.

for ξ ∈ dom p, h(ξ) < µξ, p(ξ) is a P−
ξ -name and ⊩P−

ξ
p(ξ) ∈ Q̇ξ,h(ξ).

(3) P∗
α :=

⋃
h∈θ−π Ph

α.

(4) Let L be a linear order and ⟨pℓ : ℓ ∈ L⟩ a sequence of conditions in Pπ. We say that
⟨pℓ : ℓ ∈ L⟩ is a uniform ∆-system if it satisfies the following:

(i) All dom pℓ (ℓ ∈ L) have the same size n: dom pℓ = {αℓ,k : k < n} (increasing
enumeration).

(ii) There is some v ⊆ n such that, for each k ∈ v, the sequence ⟨αℓ,k : ℓ ∈ L⟩ is
constant with value α∗,k.

(iii) ⟨dom pℓ : ℓ ∈ L⟩ forms a ∆-system with root {α∗,k : k ∈ v}.
(iv) For k ∈ n∖ v, the sequence ⟨αℓ,k : ℓ ∈ L⟩ is increasing.
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(v) There is some guardrail h such that {pℓ : ℓ ∈ L} ⊆ Ph
π.

By recursion on α ≤ π, we can show:

Fact 4.12. For any θ-Γ-iteration as in Definition 4.11, P∗
α is dense in Pα.

We focus on the case Γ = Λlim
uf . We plan to construct a θ-Λlim

uf -iteration which is θ-Fr-
Knaster (in our case, θ = θ3).

Lemma 4.13. For a θ-ΛFr-iteration as in Definition 4.11: Let H be a set of guardrails,
θ′ ≥ θ regular, and assume:

(i) Any countable partial function from π into θ− can be extended by some h ∈ H.

(ii) If h ∈ H and p̄ = ⟨pn : n < ω⟩ ⊆ Ph
π forms a uniform ∆-system, then there is some

q ∈ Pπ forcing that {n < ω : pn ∈ Ġ} is infinite.

Then Pπ is θ′-Fr-Knaster.

Proof. Let A ⊆ Pπ have size θ′. Since θ′ is regular uncountable, we can find an uniform
∆-system B ⊆ A of size θ′. Condition (ii) implies that B is Fr-linked.

The q in (ii) is found as an ultrafilter limit similar to Definition 4.8, so this requires to
construct ultrafilters along the iteration. For the successor step, the following lemma is
useful.

Lemma 4.14 ([BCM21, Lem. 3.20]). LetM ⊆ N be transitive models of ZFC and Q ∈M
be a poset. Assume that M |=“D− is an ultrafilter on ω”, M |=“Ḋ+ is a Q-name of an
ultrafilter on ω extending D−”, and N |=“D is an ultrafilter on ω extending D−”. Then,
in N , Q forces that D ∪D+ has the finite intersection property, i.e. it can be extended to
an ultrafilter (see Figure 8).

M

N

MQ

NQ

D− ∈

D ∈

∋ D+

Figure 8: The situation in Lemma 4.14

Definition 4.15. A θ-Λlim
uf -iteration as in Definition 4.11 has ultrafilter limits for H when:

(i) H is a set of guardrails,

(ii) for h ∈ H, ⟨Ḋh
ξ : ξ ≤ π⟩ is a sequence such that Ḋh

ξ is a Pξ name of a non-principal
ultrafilter on ω,

(iii) if ξ < η ≤ π then ⊩Pη Ḋ
h
ξ ⊆ Ḋh

η ,

(iv) Pξ forces that Ḋ
h
ξ ∩ V P−

ξ ∈ V P−
ξ ,

26



and whenever h ∈ H, ⟨ξn : n < ω⟩ ⊆ π and ⊩P−
ξn
q̇n ∈ Q̇ξn,h(ξn):

(v) if ⟨ξn : n < ω⟩ is constant with value ξ then

⊩Pξ
lim

Ḋh
ξ

n q̇n ⊩Q̇ξ
{n < ω : q̇n ∈ Ġ(ξ)} ∈ Ḋh

ξ+1,

(vi) and if ⟨ξn : n < ω⟩ is increasing, then

⊩Pπ {n < ω : q̇n ∈ Ġ(ξn)} ∈ Ḋh
π

Lemma 4.16. Any iteration as in Definition 4.15 satisfies (ii) of Lemma 4.13 for H.

Proof. Let ⟨pn : n < ω⟩ be an uniform ∆-system in Ph
π. Let ∆ be the root of the ∆-system

and define q ∈ Pπ with dom q := ∆ such that q(ξ) is a P−
ξ -name of lim

Ḋh
ξ

n pn(ξ) for ξ ∈ ∆.

Then q forces that {n < ω : pn ∈ Ġπ} ∈ Ḋh
π.

To obtain (i) of Definition 4.15 we could basically use H = θ−
π
. However, there are

steps ξ < π of the iteration where we want P−
ξ to be quite small, so to guarantee (iv) of

Definition 4.15 we need that H is also small. This is guaranteed by the following result.

Theorem 4.17 ([EK65, Rin12]). Let ν, κ be infinite cardinals and L be a set such that
ν ≤ κ ≤ |L| ≤ 2κ. Then there exists an H ⊆ Lκ such that |H| ≤ κ<ν , and any partial
function from L into κ with domain of size <ν can be extended by a function in H.

The following two theorems indicate how to construct iterations as in Definition 4.15.

Theorem 4.18. Let Pπ+1 be a θ-Λ
lim
uf -iteration of length π+1 and H be a set of guardrails

such that, up to π, it has ultrafilter limits for H.

Assume that P−
π ⊂· Pπ and Pπ forces Ḋh

π ∩ V P−
π ∈ V P−

π . Then, we can find Pπ+1-names
Ḋh

π+1 (h ∈ H) of ultrafilters extending Dh
π which make Pπ+1 have ultrafilter limits for H.

Proof. Direct application of Lemma 4.14.

Theorem 4.19. Assume that π is a limit ordinal and Pπ is a θ-Λlim
uf -iteration of length

π. Further assume that h is a guardrail and ⟨Ḋh
ξ : ξ < π⟩ is a sequence witnessing that,

for any ξ < π, Pξ is an iteration with uf-limits for h.

If, for any ξ < π, P−
ξ forces that Qξ,h(ξ) is centered, then we can find a Ḋh

π that makes Pπ

have uf-limits for h.

We are now ready to present the main forcing construction of this section.

Theorem 4.20 (cf. [GMS16, GKS19]). Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 be regular cardinals,
and assume λ is a cardinal such that λ = λℵ0 and cf([λ]<θi) = λ for i = 1, . . . , 4. Further
assume that one of the following holds:

(i) θ3 = θ4.

(ii) θ−3 < θ4, θ
ℵ0 < θ4 for every cardinal θ < θ4, and λ ≤ 2κ for some cardinal κ < θ4.
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Then, we can construct a FS iteration of length (and size) λ of ccc posets forcing add(N ) =
θ1, cov(N ) = θ2, b = θ3, non(E) = non(M) = θ4 and cov(M) = c = λ (see Figure 6).

Proof. In case (i) the result follows directly from Theorem 2.28, so we focus on the as-
sumptions of case (ii), in which we can further assume that κ ≥ θ−3 . We proceed exactly
as in the proof of Theorem 2.28 to construct a FS iteration of length π := λ + λ, us-
ing Cohen forcing at the first λ stages, but we modify the construction for α ∈ K4, the
steps where we increase non(M) (and even non(E)) using E, to obtain a θ3-Λ

lim
uf -iteration

with ultrafilter limits on some H of size <θ4. We aim to apply Lemma 4.13 and 4.16 to
conclude that the iteration is θ3-Fr-Knaster, hence ensuring that the first λ-many Cohen
reals added in the iteration form a θ3-ω

ω-unbounded family in the final extension, so the
remaining b ≤ θ3 will be forced.

Using that θ−3 ≤ κ < θ4 and λ ≤ 2κ, by Theorem 4.17 we can find H0 ⊆ κπ of size
≤κℵ0 < θ4 (by (ii)) such that any countable partial function from π into κ can be extended
by a function in H0. For any g ∈ κπ define g′ ∈ θ−3

π
by g′(ξ) := g(ξ) if g(ξ) < θ−3 , and

g′(ξ) := 0 otherwise. Then H := {g′ : g ∈ H0} ⊆ θ−3
π
has size <θ4 and any countable

partial function from π into θ−3 can be extended by a function in H. This guarantees
requirement (i) of Lemma 4.13.

To construct the iteration, proceed by recursion, starting with an ultrafilter Dh
0 on ω for

h ∈ H. In the successor step ξ → ξ + 1, we do some work in the case ξ = λ + α with
α ∈ K4 because in other cases we proceed as in Theorem 2.28 and just pick µξ < θ3 such

that ⊩Pξ
Q̇ξ = {q̇ξζ : ζ < µξ}, so we let P−

ξ := Pξ and Q̇ξ,ζ be a Pξ-name of {q̇ξζ}, so any

Pξ+1-name Ḋh
ξ+1 of an ultrafilter extending Ḋh

ξ is suitable.

Using the book-keeping for K4, in stage ξ = λ + α we have picked some Pξ-name Ḟα of
a subset of ωω of size <θ4, and aim to add an eventually different real over Ḟα in the
following step by using a restriction of E. Since Pξ has the ccc, we can find some να < θ4
such that Ḟα is represented by {ẋα,i : i < να}. Using the assumption (ii), for large enough
χ we can find M ≺ Hχ of size <θ4, closed under countable sequences, such that Pξ and
each ẋα,i (i < να) and Ḋ

h
ξ (h ∈ H) are in M . Consider P−

ξ := Pξ ∩M , which is a complete
suborder of Pξ because the latter has the ccc and M is closed under countable sequences.

Then, we force with Q̇ξ := EV
P−
ξ
to advance to the next stage. Note that this is a P−

ξ -name

(for E). Enumerate ω<ω × ω = {(sk,mk) : k < ω} and let νξ := ω and Q̇ξ,k be a P−
ξ -name

of Esk,mk
for k < ω.

By the construction of P−
ξ , for any h ∈ H we can find a P−

ξ -name Ḋh,−
ξ of Ḋh

ξ ∩V P−
ξ (which

exists because M is countably closed). Then, Theorem 4.18 applies.

Limit steps are guaranteed by Theorem 4.19, since all the components Qξ,ζ are centered.
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