
L-like models

There are many models of set theory.

Perhaps the nicest one is Gödel’s L: It has a simple definition and a
very smooth internal structure.

A big success in set theory is the Inner Model Program, which
shows that there are models L[E ] like L which have large cardinals.

This is important as large cardinals are needed to show that many
interesting statements in set theory are consistent.



L-like models

There are many models of set theory.

Perhaps the nicest one is Gödel’s L: It has a simple definition and a
very smooth internal structure.

A big success in set theory is the Inner Model Program, which
shows that there are models L[E ] like L which have large cardinals.

This is important as large cardinals are needed to show that many
interesting statements in set theory are consistent.



L-like models

There are many models of set theory.

Perhaps the nicest one is Gödel’s L: It has a simple definition and a
very smooth internal structure.

A big success in set theory is the Inner Model Program, which
shows that there are models L[E ] like L which have large cardinals.

This is important as large cardinals are needed to show that many
interesting statements in set theory are consistent.



L-like models

There are many models of set theory.

Perhaps the nicest one is Gödel’s L: It has a simple definition and a
very smooth internal structure.

A big success in set theory is the Inner Model Program, which
shows that there are models L[E ] like L which have large cardinals.

This is important as large cardinals are needed to show that many
interesting statements in set theory are consistent.



L-like models

There are many models of set theory.

Perhaps the nicest one is Gödel’s L: It has a simple definition and a
very smooth internal structure.

A big success in set theory is the Inner Model Program, which
shows that there are models L[E ] like L which have large cardinals.

This is important as large cardinals are needed to show that many
interesting statements in set theory are consistent.



L-like models and forcing

But of course not all models of set theory are L-like.

There are also models obtained by forcing.

Indeed when showing that statements in set theory are consistent
we typically use models of the form M[G ] where M is an L-like
model possibly with large cardinals and G is generic over M.

Example: Gitik starts with a model with a totally measurable
cardinal (i.e. a cardinal κ such that o(κ) = κ++) and then forces a
failure of the singular cardinal hypothesis SCH.
If you want a “definable” failure of SCH you use an L-like ground
model with a totally measurable (SDF-Honzik).
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Mighty Mouse

Theorem

Suppose that Mighty Mouse exists. Then V = M[G ] where M is a
definable L-like model (obtained by “iterating” Mighty Mouse) and
G is generic over M (for a definable, Ord-cc class forcing).

If there is (far less than) a Woodin cardinal then Mighty Mouse
does exist.

Like all mice, Mighty Mouse is a transitive, L-like, set-sized
structure with large cardinals.

The Theorem is false without the hypothesis that Mighty Mouse
exists.
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Without Mighty Mouse

Nevertheless, there are interesting models which fail to contain
Mighty Mouse and which can be explicitly described as generic
extensions of L-like models (obtained through mouse iteration):

(Welch) L[Card] is a generic extension of an iterate of
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Minnie Mouse

Minnie Mouse is the least mouse with a measurable limit of
measurable cardinals. It is countable.

Now iterate the measurable cardinals of Minnie Mouse below the
top-measurable onto SuccLimCard, the ℵλ+ω, λ limit or 0. The
top-measurable is used to guarantee that the iteration doesn’t “die
out” at some stage as it can be used to generate fresh measurables.
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Minnie Mouse

Key fact: Suppose that κ with measure U is iterated λ times,
generating the sequence (κi | i ≤ λ) and sending the measure U on
κ to the measure Uλ on κλ. Suppose that cof(λ) = ω and
i0 < i1 < · · · is cofinal in λ. Then (κin | n < ω) is generic (over the
λ-th iterate) for the Prikry forcing defined using the measure Uλ.

Thus the ℵλ+n’s form a Prikry sequence for the measure of the
iterate on ℵλ+ω. Using a result of Gunter Fuchs, Welch observes
that in fact the entire collection of these Prikry sequences is generic
for a Prikry product.

So L[Card] is a Prikry-Product generic extension of an iterate of
Minnie Mouse.
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Mickey Mouse

Mickey Mouse is the least mouse with a measure concentrating on
measurables.

We want to show that L[Reg] is a generic extension of an iterate of
Mickey Mouse. The idea is to iterate each measurable through
ω-many regular cardinals, which will form a Prikry sequence over
the iterate and then the regular cardinals will be the union of these
Prikry sequences.

But first note that if there are no weakly inaccessibles then L[Reg]
is just L[Card] and therefore our iteration should produce an iterate
not of Mickey but only of Minnie.

What happens is that when we iterate Mickey for Ord steps we
might not use all of the measures below the etop measurable, but
obly a proper initial segment of them.



Mickey Mouse

Mickey Mouse is the least mouse with a measure concentrating on
measurables.

We want to show that L[Reg] is a generic extension of an iterate of
Mickey Mouse. The idea is to iterate each measurable through
ω-many regular cardinals, which will form a Prikry sequence over
the iterate and then the regular cardinals will be the union of these
Prikry sequences.

But first note that if there are no weakly inaccessibles then L[Reg]
is just L[Card] and therefore our iteration should produce an iterate
not of Mickey but only of Minnie.

What happens is that when we iterate Mickey for Ord steps we
might not use all of the measures below the etop measurable, but
obly a proper initial segment of them.



Mickey Mouse

Mickey Mouse is the least mouse with a measure concentrating on
measurables.

We want to show that L[Reg] is a generic extension of an iterate of
Mickey Mouse. The idea is to iterate each measurable through
ω-many regular cardinals, which will form a Prikry sequence over
the iterate and then the regular cardinals will be the union of these
Prikry sequences.

But first note that if there are no weakly inaccessibles then L[Reg]
is just L[Card] and therefore our iteration should produce an iterate
not of Mickey but only of Minnie.

What happens is that when we iterate Mickey for Ord steps we
might not use all of the measures below the etop measurable, but
obly a proper initial segment of them.



Mickey Mouse

Mickey Mouse is the least mouse with a measure concentrating on
measurables.

We want to show that L[Reg] is a generic extension of an iterate of
Mickey Mouse. The idea is to iterate each measurable through
ω-many regular cardinals, which will form a Prikry sequence over
the iterate and then the regular cardinals will be the union of these
Prikry sequences.

But first note that if there are no weakly inaccessibles then L[Reg]
is just L[Card] and therefore our iteration should produce an iterate
not of Mickey but only of Minnie.

What happens is that when we iterate Mickey for Ord steps we
might not use all of the measures below the etop measurable, but
obly a proper initial segment of them.



Mickey Mouse

Mickey Mouse is the least mouse with a measure concentrating on
measurables.

We want to show that L[Reg] is a generic extension of an iterate of
Mickey Mouse. The idea is to iterate each measurable through
ω-many regular cardinals, which will form a Prikry sequence over
the iterate and then the regular cardinals will be the union of these
Prikry sequences.

But first note that if there are no weakly inaccessibles then L[Reg]
is just L[Card] and therefore our iteration should produce an iterate
not of Mickey but only of Minnie.

What happens is that when we iterate Mickey for Ord steps we
might not use all of the measures below the etop measurable, but
obly a proper initial segment of them.



Mickey Mouse

The iteration begins by iterating the measurables below the least
measurable limit of measurables onto SuccLimCard, the ℵλ+ω, λ
limit or 0. At some point this will be achieved for all measurables
below the least measurable limit of measurables and it is time to hit
that.

Doing so will create new measurables below the new measurable
limit of measurables, which have to be iterated further onto
elements of SuccLimCard. Then we hit the new least measurable
limit of measurables and repeat this again and again. There are 2
cases.

If the top measurable gets iterated through ω-many weakly
inaccessibles then we stop iterating it and move on to the least
measurable above it. Otherwise we move the least measurable limit
of measurables all the way to Ord.
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But if the least measurable limit of measurables gets moved all the
way to Ord then we don’t want the iterate Mickey∗ of Mickey but
the iterate Minnie∗ of Minnie. Ideally, Minnie∗ is just Mickey∗|Ord,
the truncation of Mickey∗ to Ord.

This requires revisiting the history of mice:

Classical mice: M = Lα[ ~U] where ~U is a sequence of total measures
(i.e. measures on the entire powerset in M)

Modern mice: M = Lα[~E ] where ~E is a sequence of total or partial
measures (i.e. measures on subsets of the powerset in M)

The advantage of Modern mice is that they enjoy Gödel-like
condensation.
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And the more general cases of L[Reg] will generate Prikry
sequences which taken together are generic not for a Prikry product
but for the Magidor iteration of Prikry forcings. In conclusion:

Theorem

L[Reg] is generic for the Magidor iteration over the truncation to
Ord of an iterate of ClassicalMickey.

Question: What is L[Cof]?
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