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Toy model

The random graph R.

Construction : Take N as a domain (vertices) and put an edge between

two points with probability 1/2. Almost surely you obtain one structure

(up to isomorphism), call it R.

This structure has an interesting automorphism group : if A and B are two

finite subgraphs of R and f an isomorphism between A and B, then there

is an automorphism of R extending f .

If you denote LO(N) the space of linear orderings on N, then there is an

action Aut(R) y LO(N) in the following way :

a(g · <)b ⇔ g−1a < g−1b
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Fact 1 : This action is very good at describing other actions of this group.

Fact 2 : There is only one invariant probability measure for this action.

An invariant (probability) measure is a measure on the space LO(N), such

that for any A measurable and g ∈ G = Aut(R),

µ(g · A) = µ(A).

Here the invariant measure is the one such that

µ(x1 < · · · < xn) =
1

n!
.
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More on Fräıssé limits

A Fräıssé class is a collection F of finite structures that verify the

Hereditary Property (HP), the Joint Embedding Property (JEP) and the

Amalgamation Property (AP).

Theorem (Fräıssé ’54)

A Fräıssé class F admits a Fräıssé limit F, i.e. a countable homogeneous

structure such that Age(F), the class of finite structures embeddable in F,

is exactly F .

Examples :
Fräıssé class Fräıssé limit Aut. group

finite graphs Random graph Aut(R)

finite sets N S∞
finite linear orderings (Q, <) Aut(Q)

finite partial orderings The generic poset PO Aut(PO)

finite complete partite graphs ω-partite graph Aut(Part)

4/34



More on Fräıssé limits
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Some dynamics

Let G be a Polish group. A G -flow is a continuous G -action on a compact

space.

Examples : If G = Aut(F) for some Fräıssé limit F, then there are two

remarkable G -flows.

1) G y [0, 1]F by permuting the coordinates.

This flow always admits some invariant measures of the form νF for

some ν measure on [0, 1].

2) G y LO(F) as before. The invariant measure mentioned before is

also an invariant measure for G .

Remark : There can be more invariant measures than these.
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Some Dynamics

Definition
A group G is amenable if for every G-flow G y X there is a G-invariant

(probability) measure on X .

Definition
A group G is extremely amenable if every G-flow admits a fixed point.

Definition
A G- flow is minimal if it admits no proper subflow.
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Theorem (Ellis ′69)

There exists a unique universal minimal flow (UMF) M(G ).

This means that for any minimal G -flow G y X , there is a surjective

G -map from M(G ) to X .

Definition
G is uniquely ergodic iff every minimal G-flows admits a unique

G-invariant measure.

Equivalently : G y M(G ) admits a unique invariant measure. (Angel,

Kechris, Lyons ’12).

Examples :

I Compact groups.

I (Weiss ; J., Zucker) Locally compact non compact Polish groups are

never uniquely ergodic.

I S∞, Aut(Q) (and all extremely amenable groups).

I Angel, Kechris and Lyons prove that Aut(R) is uniquely ergodic.
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Question (Angel, Kechris, Lyons ′12)

If G is amenable with metrizable UMF, is G uniquely ergodic ?

Problem : Finding G with interesting M(G ).
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Computing UMFs - The

Kechris-Pestov-Todorcevic correspondence

Theorem (Kechris-Pestov-Todorcevic, ’05)

Let F be a Fräıssé limit, Aut(F) is extremely amenable iff Age(F) has the

Ramsey property.

If G admits a ”nice enough” extremely amenable subgroup G ∗, then

M(G ) = Ĝ/G ∗.

Theorem (Ben Yaacov-Melleray-Nguyen Van Thé-Tsankov ’14-’17,

Zucker ’14)

G has metrizable UMF iff there exists G ∗ ≤ G extremely amenable such

that

M(G ) = Ĝ/G ∗.
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The class of finite linear orderings has the Ramsey property, therefore

(Pestov) Aut((Q, <)) is extremely amenable.

If G = S∞ then G ∗ = Aut(Q) and M(S∞) = LO(N).

The class of finite ordered graph has the Ramsey property.

If G = Aut(R), G ∗ = Aut(R<) and M(Aut(R)) = LO(R).

For the limit of the class of partite complete graphs, the UMF of the

automorphism group is the space of linear orderings for which each part is

an interval.

For the limit of the class of partial orderings, the UMF of the

automorphism group is the space of linear orderings extending the generic

poset.
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Main result

Theorem (J.)

Let F be a transitive, ω-categorical Fräıssé limit with no algebraicity that

admits weak elimination of imaginaries. Denote G = Aut(F) and consider

the action G y LO(F). Then exactly one of the following holds :

1. The action G y LO(F) has a fixed point (i.e., there is a definable

linear order on F) ;

2. The action G y LO(F) is uniquely ergodic.
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Discussing the hypothesis

a) ω-categoricity : for any n ∈ N there are finitely many n-types. This is

the only hypothesis we are not sure is necessary. Allows us to use a

theorem of Tsankov on group representations (Tsankov ’12).

12/34



Discussing the hypothesis

b) No algebraicity : fixing finitely many points in the structure fixes no

other point.

Counterexample : Take F the countable-dimensional vector space over F2,

the M(Aut(F)) is a proper subflow of LO(F) (KPT) and the group is

uniquely ergodic (AKL).

The group therefore admits at least two invariant measures on LO(F) :

the uniform and the one supported on a proper subflow. There is also no

definable ordering on F.
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Discussing the hypothesis

c) Weak elimination of imaginaries : for every proper, open subgroup

V < G , there exists k and a tuple ā ∈ Mk such that Gā ≤ V and

[V : Gā] <∞.

Counterexample : ω-partite complete graph : we saw that again the UMF

of its automorphism group is a proper subflow of LO(F) and it also is the

support for a measure.
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Discussing the hypothesis

d) Transitivity : for any a, b ∈ F, there is g ∈ G such that g(a) = b.

Counterexample : Take N with two unary predicates P,Q. Consider the

measure that orders elements of P above elements of Q and orders each

part uniformly.

15/34



Consequences of the result

a) Recovers a lot of known unique ergodicity results.

The random graph, the homogenenous Kn-free graph, the generic

tournament...
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Consequences of the result

b) Since there is always one invariant fully supported measure on LO(F),

this allows us to prove non-amenability results.

Corollary

Suppose that F satisfies the assumptions of the Theorem and let

G = Aut(F). If the action G y LO(F) is not minimal and has no fixed

points, then G is not amenable.

Applies for instance for the generic poset (Kechris and Sokić).
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Consequences of the result

c) Allows us to get combinatorial results

Corollary

Suppose that F satisfies the assumptions of the Theorem. If F has the

Hrushovski property, then it has the ordering property, i.e. for every

A ∈ Age(F), there exists B ∈ Age(F) such that for any two linear orders

< and <′ on A and B respectively, there is an embedding of (A, <) into

(B, <′).
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A very important ingredient

The proof of this relies on

Theorem (Tsankov)

Let F be an ω-categorical structure with no algebraicity and weak

elimation of imaginaries. Then the only Aut(F)-ergodic invariant measures

on [0, 1]F are of the type νF, where ν is a Borel measure on [0, 1].

Counterexample : ω-partite complete graph. Denote E the equivalence

relation being in the same part. There is a map from [0, 1]F/E to [0, 1]F.

The pushfoward of νF/E to [0, 1]F is not of the form νF.

19/34



A very important ingredient

The proof of this relies on

Theorem (Tsankov)

Let F be an ω-categorical structure with no algebraicity and weak

elimation of imaginaries. Then the only Aut(F)-ergodic invariant measures

on [0, 1]F are of the type νF, where ν is a Borel measure on [0, 1].

Counterexample : ω-partite complete graph. Denote E the equivalence

relation being in the same part. There is a map from [0, 1]F/E to [0, 1]F.

The pushfoward of νF/E to [0, 1]F is not of the form νF.

19/34



(Sketch of) proof

G = Aut(F).

Step 1 : An efficient way to produce measures on LO(F).

Consider the map ρ : [0, 1]F → LO(F) where a <ρ(x) b ⇔ x(a) < x(b).

For any atomless measure λ on [0, 1], ρ is λF-a.s. well-defined. We

therefore have a measure µλ = ρ∗λ
F.

Moreover µλ is S∞-invariant, so

µλ(x1 < . . . < xn) =
1

n!
.

Therefore µλ does not depend on λ and we really produced just one

measure.
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Step 2 : Proving that all measures are produced this way or exhibiting a

fixed point of the action.

Take µ a G -invariant ergodic measure on LO(F), i.e. an extreme point of

the set of G -invariant measures on LO(F).

We want a map from LO(F) to [0, 1]F that reverses ρ and pushes µ to

some λF.

We want to associate a number to each a ∈ F and each ordering.

First idea : associate to a, <x the number

lim
n→∞

#{b ∈ Fn : b <x a}
#Fn

where Fn is an enumeration of F.

Problem : this is not well defined.
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Solution :

Consider τ a 2-type and a ∈ F, we call

Dτ (a) = {b ∈ F : tp(ab) = τ}.

Lemma
Let a ∈ F and τ a 2-type. Take A ⊂ Dτ (a) be a definable, infinite set.

Then for µ-a.a. x,

lim
n→∞

#{b ∈ Fn ∩ A : b <x a}
#Fn ∩ A

exists and does not depend on A.

Consequence of Tsankov’s Theorem.
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We can now define for almost all x ∈ LO(F)

ητa (x) = lim
n→∞

#{b ∈ Fn ∩ Dτ (a) : b <x a}
#Fn ∩ Dτ (a)

.

Lemma
If we denote λ the distribution of ητa , then the family (ητa )a∈F has

distribution λF.

This is again a consequence of Tsankov’s Theorem.
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We want to prove (if possible) that a.s.

1) λ is atomless.

2) For all a, b ∈ F, we have

a < b ⇔ ητa < ητb .

1) is not always true, we will have to assume it (for now), and prove 2).
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Remark
If Dτ (a) ∩ Dτ (b) 6= ∅, then

a < b ⇒{c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < a}
⊂ {c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < b}

⇒#{c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < a}
#Dτ (a) ∩ Dτ (b) ∩ Fn

≤ #{c ∈ Dτ (a) ∩ Dτ (b) ∩ Fn : c < b}
#Dτ (a) ∩ Dτ (b) ∩ Fn

⇒ητa ≤ ητb .

a

c

b

τ τ
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Lemma
If for all a, b ∈ F we have µ(ητa = ητb) = 0, then we have a.s. for all

a, b ∈ M :

a < b ⇔ ητa < ητb .

Facts :

1) We only have to show that ητa < ητb ⇒ a < b.

2) The above remark becomes : if Dτ (a) ∩ Dτ (b) 6= ∅, then

a < b ⇔ ητa < ητb .
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If Dτ (a) ∩ Dτ (b) = ∅, our hypothesis imply that there are infinitely many

”alternating τ -paths” between a and b.

· · ·

a

y1

τ

y2

y3

y4 y2n−2

y2n−1

b

τττ ττ

Since ητa < ητb and µ(ητyk = ητyj ) = 0 for all k 6= j , there must be a path

such that

ητa < ητy2
< · · · ητy2n−2

< ητb

which implies

a < y2 < · · · < b.
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We proved

Lemma
If for all a, b ∈ F we have µ(ητa = ητb) = 0, then we have a.s. for all

a, b ∈ M :

a < b ⇔ ητa < ητb .

Denote λ the distribution of ητa and assume it is atomless.

The hypothesis of the Lemma are verified, and the map φ

LO(F)→ [0, 1]F

<x 7→ (ητa (x))a∈F

is the converse of ρ and φ∗µ is of the form λF.

By step 1, µ is the uniform measure !
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There remains the case when µ(ητa = ητb = p) > 0 for some p. This is the

case when there will be a definable ordering.

The important remark is that if

a

c

b

τ τ

then

µ(a < c < b|ητa = ητb = p) = 0.

Indeed,

µ(a < c < b|ητa = ητb = p)

= E
[

#{c ′ ∈ Fn ∩ (Ga,b · c) : a < c ′ < b}
#Fn ∩ (Ga,b · c)

|ητa = ητb = p

]
→ E [ητb − ητa |ητa = ητb = p] = 0.
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In particular :

µ(a < c < b|ητa = ητb = ητc = p) = 0

for all c ∈ Dτ (a) ∩ Dτ (b).

We define a new measure ν by taking

ν(x1 < · · · < xn) = µ(x1 < · · · < xn|ητx1
= . . . = ητxn = p).

ν is supported on a proper subflow of G y LO(F).
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Under ν, one can again define ητ
−1

a for all a ∈ F.

Necessarily, this ν(ητ
−1

a = q) > 0 for some q ∈ [0, 1].

We define ν ′ as

ν ′(x1 < · · · < xn) = ν(x1 < · · · < xn|ητ
−1

x1
= . . . = ητ

−1

xn = q).

For all a, b, c ∈ F such that c ∈ Dτ−1(a) ∩ Dτ−1(b)

ν ′(a < c < b) = 0.

Take a, b, c , d ∈ F such that tp(ab) = tp(cd) = τ , then ν ′-as a < b iff

c < d .

We say that ν ′ respects τ .
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· · ·

a

y1

τ

y2

y3

y4 y2n−2

y2n−1

c

τττ ττ

b d

τ τ
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By iterating this process for all 2-types, we get a measure that is a Dirac

mass. Therefore we have a fixed point !
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Thank you !
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