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Preliminaries

X — an infinite Tychonoff space

Cp(X) — the space of real-valued continuous functions on X with
the pointwise topology

K — an infinite compact Hausdorff space

C(K) — the Banach space of real-valued continuous functions on
K with the supremum norm
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A measure i on a Tychonoff space X is a real-valued set function
defined on the Borel o-field Bor(X) of X, which is regular and

finite, i.e.
[l = sup{|u(A)| + |u(B)|: A, B € Bor(X), AN B =0} < .




Preliminaries

Measures

A measure i on a Tychonoff space X is a real-valued set function
defined on the Borel o-field Bor(X) of X, which is regular and
finite, i.e.

]l = sup{|p(A)| + |u(B)|: A,B € Bor(X), AN B =0} < .

If x € X, then 0, is a measure on X (the Dirac measure at x).

A measure p on X is finitely supported if 1 = 3 - a,dx for some
finite F and non-zero o, € R.

The set F is called the support of p, denoted by supp(u), and
[l = 2xer loxl.



The Josefson—Nissenzweig theorem for C(K)-spaces

Theorem (Josefson '75, Nissenzweig '75)

For every infinite compact space K there exists a sequence
(tn: n € w) of measures on K such that ||u,|| =1 and
Jk fdpn — 0 for every f € C(K).
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Theorem (Josefson '75, Nissenzweig '75)

For every infinite compact space K there exists a sequence
(tn: n € w) of measures on K such that ||u,|| =1 and
Jk fdpn — 0 for every f € C(K).

An application (one out of many!):
c = {x € R¥: x(n) — 0} with the supremum norm

C(Pw x Bw) may be written as the sum E @& ¢y where E is a closed
subspace, even though C(Bw) may not (Cembranos '84).



The Josefson—Nissenzweig theorem for C,(X)-spaces

Theorem (Banakh-Kakol-Sliwa '18)
For every infinite Tychonoff space X, TFAE:

@ C,(X) may be written as a sum E & (c)p where E is a closed
subspace and projections are continuous;

@ X admits a sequence (u,: n € w) of finitely supported
measures such that ||us|| =1 and [, fdp, — 0 for every
f e C(X).

(c0)p = {x € R¥: x(n) — 0} with the pointwise topology



The Josefson—Nissenzweig theorem for C,(X)-spaces

Theorem (Banakh-Kakol-Sliwa '18)
For every infinite Tychonoff space X, TFAE:
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Definition

For a Tychonoff space X we say that C,(X) has the
Josefson—Nissenzweig Property (JNP) if X satisfies (2) of the
theorem. A sequence (pp: n € w) from (2) is called a
JN-sequence on X.
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The Josefson—Nissenzweig Property of C,(X)-spaces

Theorem (Banakh-Kakol-Sliwa '18)
@ C,(Bw) does not have the JNP.

@ If X contains a non-trivial convergent sequence, then Cp(X)
has the JNP.

© There exists a compact space K containing many copies of
Bw but no non-trivial convergent sequences, yet such that
Co(K) has the JNP.
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Properties of JN-sequences

Assume that a space X admits a JN-sequence (1, n € w). Then:
Q for P, = {x € supp(un): pn({x}) >0} and

Ny, = supp(un) \ Pn we have:
limn ([ [ Pall = limp [[pn T Nall = 1/2;
@ every f € C(X) is bounded on |, supp(in);

© X admits a JN-sequence with pairwise disjoint supports;

@ if X is compact, then either X admits a JN-sequence with
supports of size 2, or lim, | supp(un)| = oo.
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Spaces admitting the JNP

Theorem
If K is a compact space satisfying one of the following conditions,
then Cp(K) has the JNP:

@ K is the Alexandrov Duplicate of a compact space;

If L is compact, then the Alexandrov Duplicate of L is the space

L x {0,1} endowed with the topology defined as follows: for every
x € L the point (x,1) is isolated and basic nhbds of (x, 0) are
given by sets of the form (U x {0}) U ((U \ {x}) x {1}), where U
is a nhbd of x in L.

Co(AD(L)) is isomorphic to Cp(L U a(|L|)).

@ K is the limit of an inverse system based on minimal
extensions;
© K is a product of at least two infinite compact spaces.
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Minimal extensions

Minimal extensions
A compact space K is obtained from a system of minimal
extensions if K is the inverse limit of a system
(Ko, T2 a < 3 < 6) such that:
e K, is the inverse limit of (Ko, 81 a < B <),
@ K,41 is a minimal extension of K, i.e. there is a unique point
Xo € K, such that |(7rg‘+1)_1(xa)| = 2 and
|(7Tg+1)_1(x)| =1 for every x # Xq,
@ Ky = 2% and every K, is perfect.
Remark: Many consistent examples of Efimov spaces are obtained
by minimal extensions, e.g.

Fedorchuk (¢), Dow and Pichardo-Mendoza (CH), Dow and
Shelah (MA+-CH) etc.
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Products of compact spaces and the JNP or ¢y

Theorem

For every infinite compact spaces K and L the space Cp(K X L)
has the JNP. In particular, C,(K x L) contains a complemented
copy of the space (cp)p.

Theorem (Cembranos '84, Freniche '84)

For every infinite compact spaces K and L the Banach space
C(K x L) contains a complemented copy of the space ¢.
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|dea of the proof

Fix infinite compact K and L.
Q Q,={-1,1}"%,=nx{n}, Q=U,Q E=U, %,

@ define a measure u, on Q, X L

s(/)
o= D o s im)

© (pn: n€w)is a JN-sequence on B x X with supports in
Qx X

Q 0Q x B = fw x fw, so Cp(fw X fw) has the JNP
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Idea of the proof, cntd.

© use the Stone Extension Property to prove that C,(K x L)
has the JNP:

D C K, E C L — countable discrete
p:w— D, ¢: w— E — bijections
®: fw — K, V: fw — L — cont. extensions of ¢ and 1)

define a measure v, on K x L as follows:

v= > {0} - Se0m)

(x,y)€supp(kin)

Q@ (vn: new)isa JIN-sequence on K x L:

o fey)dvabey) = [ #(@0), Y(»)dua(x.)
X LwX Bw
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Product of pseudocompact spaces

A Tychonoff space X is pseudocompact if every f € C(X) is
bounded on X.

Let X and Y be two infinite pseudocompact spaces.

@ X X Y need not be pseudocompact.
@ If X or Y is compact, then X x Y is pseudocompact.

© (Glicksberg '59) X x Y is pseudocompact if and only if
BX x BY = B(X x Y).

Corollary

If X and Y are infinite pseudocompact spaces such that X x Y is
pseudocompact, then C,(X x Y) has the JNP.
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A problem of Arkhangel'ski

Corollary

Let X and Y be Tychonoff spaces. If X x Y is pseudocompact,
then Co(X X Y) = C(X x Y) @R,

X XY)ZE®()pZED(w)p®@R=ECGXxY)BR

Question (Arkhangel'ski '82)

Is Cp(X) linearly homoeomorphic to C,(X) @ R for every infinite
space X7

True, e.g., if X contains a non-trivial convergent sequence or is not
pseudocompact.
False for compact spaces (Marciszewski '97).

Fact

If X is not pseudocompact, then
GX)ZEPRYZEBRYOR = C(X) R
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Haydon spaces

Construction of a Haydon space

For every A € [w]” let ua € A™ put:

X=wU{u,: A€ [w]”}

X with the topology inherited from Sw is a Haydon space.

Characterization of Haydon spaces

Let X be a subspace of Sw containing w. TFAE:
Q@ X is a Haydon space;
@ X is pseudocompact and |X| = 2¢;
© |X| =2“ and every A € [w]” has a limit point in X.
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Haydon spaces

Properties of Haydon spaces

Let X be a Haydon space. Then:

@ every compact subset of X is finite;
@ C,(X) does not have the JNP.

Proof

C(fw) does not have any complemented copy of ¢y (Grothendieck
'53, Cembranos '84). Since fw = X, the same applies to C(X).
By the Closed Graph Theorem, C,(X) does not have any
complemented copy of (cp)p, so it does not have the JNP.
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Let X =wU{ua: A€ [w]”} be a Haydon space such that for
distinct A, B € [w]“ the ultrafilters ua, ug are not isomorphic.
Then, the square X x X is not pseudocompact.



Products of Haydon spaces

Theorem

Let X =wU{ua: A€ [w]”} be a Haydon space such that for
distinct A, B € [w]“ the ultrafilters ua, ug are not isomorphic.
Then, the square X x X is not pseudocompact.

Proof

For every disjoint A, B € [w]“ and bijection f: A — B the graph
G = {(x,f(x)): x € A} is a discrete clopen subset of X x X.
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Products of Haydon spaces

Theorem

There exists a Haydon space Y such that Y x Y is
pseudocompact. Consequently, Cp(Y x Y') has the JNP.

Proof

{As: a < 2¥} — an enumeration of [w]”
{By: a < 2¥} — an enumeration of [w x w]*

for each v < 2% choose limit points u, € w* of A, and
(Pa, 9a) € Pw X Pw of B,

Y = wU{un, Pas Go: @ < 2%}

Corollary

Let Z=XUY. Then Z x Z is not pseudocompact, but
Cp(Z x Z) has the JNP.
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Non-pseudocompact squares of Haydon spaces

If any of the axioms from the below list holds, then there exists a
Haydon space X such that C,(X x X) does not have the JNP.

@ the Continuum Hypothesis
@ Martin's axiom

© there exists an antichain in the Rudin-Keisler ordering
consisting of weak P-points in w*

Q 0=2<u"
Q@ axiom (})

Theorem

Assume that there exist two RK-incompatible weak P-points in w*.
Then, there exist Haydon spaces X and Y such that Cp(X x Y)
does not have the JNP.
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Axiom ()

There exists a function A — up assigning to each A € [w]” a weak
P-point us € A% such that

for every pair (f1, f2) € w¥ x w* there exists a family A C [w]” of
size < 2% such that

for every A1 € A and A; € [w]” \ {A1}, if fi(ua,), 2(ua,) € w*,
then fl(uAl) =4 fz(qu).

Question
Does (t) hold in ZFC?
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Proof of the theorem

Let X be constructed using (f). Assume X2 admits a JN-sequence
(ftn: n € w).

@ We construct a new disjointly supported JN-sequence
(vn: n € w) such that J, supp(v,) is discrete.

(HERE WE USE WEAK P-POINTS.)

@ We prove that lim, |v,|(A%) = 0 by constructing a disjoint

sequence of clopens (V! x V2: n € w) outside of Ax such

XXX
that limsupy [vk|(VE x V2) > 0 and U, VI x V2 s

clopen.

(HERE WE USE THE REST OF ().)

Q lim, [vy|(Ax) =1, but Ax = X and Cp(X) does not have the
JNP, a contradiction.
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Open questions

Is it consistent that for any infinite pseudocompact space X the
space Cp(X x X) has the JNP?

Question

Is it consistent that there exists an infinite countably compact
space X such that the space C,(X x X) does not have the JNP?



Thank you for the attention!



