
Forcing the Σ1
3-Separation property

Stefan Hoffelner

WWU Münster

May 20, 2020

The separation property is an old concept, introduced in the 1920s.
Given two disjoint sets of reals A1 and A2, we say that a set C
separates A1 and A2 iff A1 ⊂ C and A2 ⊂ Cc. The problem
becomes interesting when considered through the lens of definability.

Definition
We say that the Σ1

3-separation property holds iff every pair A1 and A2

of disjoint Σ1
3-sets has a separating set C such that C is both Σ1

3 and
Π1

3.

The separation property is connected to two notions, the reduction-
and the uniformization property.

Definition
A projective pointclass Γ has the reduction property if for every pair
A,B ∈ Γ there are A′ ⊂ A,A′ ∈ Γ and B′ ⊂ B,B ∈ Γ such that
A′ ∩B′ = ∅ and A ∪B = A′ ∪B′.

Definition
A projective pointclass Γ has the uniformization property if for every set
A in the plane, there exists a partial function f ∈ Γ which uniformizes
A, i.e. whenever (x, y) ∈ A, then f is defined and (x, f(x)) ∈ A.

Theorem
Let Γ be some projective pointclass, and let ¬Γ denote its dual class.
Then

1. If Γ has the uniformization property then Γ has the reduction
property.

2. If Γ has the reduction property then ¬Γ has the separation
property.

Classical work of M. Kondo shows that the Σ1
2, Π1

1-uniformization
property and hence the Π1

2, Σ1
1-separation property are true in ZFC.

This is as much as ZFC can prove about the separation property in the
projective hierarchy.
In Gödels constructible universe L, the reals have a good
Σ1
2-well-order, which in particular implies that the Σ1

3, in fact the
Σ1

n-uniformization property is true, and so Π1
n-separation holds in L.

On the other hand ∆1
2-determinacy implies that Σ1

3-separation is true.
Note however that the determinacy assumption has considerable large
cardinal strength, as it implies an inner model with a Woodin cardinal.

Question (Mathias)
Is it possible to force the Σ1

3-separation property over a model of ZFC?

The answer is yes and its proof will be the topic of this talk.

Theorem
There is a generic extension of L in which the Σ1

3-separation property
is true.

We outline first how this talk is organized.

1. We introduce first a generic extension of L called W which will be
the suitable ground model for our needs.

2. We use an iteration over W to prove an easier result, stated on
the next slide, in a way which will introduce some key ideas.

3. Then extend the proof to give a proof of the theorem.

Theorem
There is a generic extension of L which satisfies that there is a
countable ordinal α0, such that any two disjoint (lightface) Σ1

3-sets Am
and Ak can be separated by a set which is ∆1

3(α0).

We start to define our suitable ground model W which will be a
generic extension of L. Recall that an (ω1-) Suslin tree S is a tree of
height ω1 such that every antichain of S is countable.

Definition
A sequence (Sα : α < ω1) of Suslin trees is independent if for every
finite set e ⊂ ω1, the product tree

∏
n∈e Sn is a Suslin tree again.

Independent sequences can be generated via forcing.

Fact
The countably supported product of ω1-Cohen forcing will introduce an
independent sequence of length ω1 of Suslin trees.

Fact
Let ~S = (Sα : α < ω1) be an independent sequence of Suslin trees
in V , and let A ∈ P (ω1)

V be an arbitrary subset. Let
∏
i∈A Si be the

finitely supported product, G the generic filter, then for any α /∈ A, Sα
remains a Suslin tree in V [G].

So adding branches through trees from the independent sequence
can be used to code up information, as long as we do have the the
sequence ~S available as a parameter. As we are aiming for
Σ1
3-predicates we have to add further forcings which will turn

membership in ~S into a Σ1
3-property.

So we use an additional coding forcing, taking advantage of club
shooting forcing, to make ~S nicely definable.

Definition
For a stationary a ⊂ ω1 the club-shooting forcing for a, denoted by Pa
consists of conditions which are closed subsets of ω1, which are also
subsets of a, ordered by end-extension.

Fact
The club-shooting forcing Pa generically adds a club through the
stationary set a ⊂ ω1, while being ω-distributive and hence
ω1-preserving. Moreover Suslin trees remain Suslin in the generic
extension.

We proceed now as follows. We work in L[~S].

1. Use ♦ which holds in L to find a Σ1(ω1)-definable sequence of
stationary subsets ~a = (aα : α < ω1 · ω1) of ω1.

2. Then use club shooting forcing to code up the independent Suslin
trees ~S into the stationary sets ~a.

The resulting universe is our desired W .

In W , if α < ω1 is arbitrary then there is a set Xα ⊂ ω1 such that
membership in the tree Sα can be written in a Σ1(Xα, ω1)-way. The
set Xα just consists of codes for the relevant clubs through the aβ ’s:

∀γ < ω1(γ ∈ Sα ⇔ ∃M(M |= ZF− ∧ |M | = ℵ1 ∧Xα ∈M∧
M is transitive

∧M |= (aω1·α+γ·2)
L is nonstationary))

Likewise

∀γ < ω1(γ /∈ Sα ⇔ ∃M(M |= ZF− ∧ |M | = ℵ1 ∧M is transitive

∧Xα ∈M∧
M |= (aω1·α+γ·2+1)

L is nonstationary))

This description will play a role later .

We start to prove the auxiliary theorem.

Theorem
There is a generic extension of L which satisfies that there is a
countable ordinal α0, such that any two disjoint (lightface) Σ1

3-sets Am
and Ak can be separated by a set which is ∆1

3(α0).

We outline first a rough description of the proof strategy.

1. We split the definable sequence of Suslin trees ~S from W into

two sequences ~S1 and ~S2.

2. We will use a forcing iteration of length ω1 which is guided by
some bookkeeping function F . We list all the Σ1

3-formulas with
one free variable (ϕn(v0) : n ∈ ω), and let Ai denote the set of
reals which is defined using the according formula ϕi. Whenever
F (α) yields a triple (x,m, k) where x ∈ 2ω,m, k ∈ ω, then we
decide where to ”put” x, i.e. we decide whether to force the
characteristic function of (a real coding) (x,m, k) into and
ω-block of elements of ~S1 or ~S2.

3. Use an almost disjoint coding forcing to turn the property
”(x,m, k) is coded into an ω-block of ~Si” into a
Σ1
3(x,m, k)-statement Φi(x,m, k).

4. After ω1-many stages, for every triple (x,m, k), either
Φ1(x,m, k) is true or Φ2(x,m, k) and we let
D1
m,k := {x ∈ 2ω : Φ1(x,m, k) holds} and

D2
m,k := {x ∈ 2ω : Φ2(x,m, k) holds} which are both Σ1

3-sets.
The main task and difficulty is of course that we decided at every
stage of the iteration correctly such that Am ⊂ D1

m,k and
Ak ⊂ D2

m,k.

We briefly mention the difficulties with the above strategy.

I Of course Σ1
3-sets change during our iteration, they grow. Thus,

the following pathological situation could occur: at some stage we
decide for some x to be put in D1

m,k, yet in the course of our
iteration φk(x) becomes true. In that case D1

m,k and D2
m,k will

not separate Ak and Am.

I As the separating sets are Σ1
3 themselves, the set up of the proof

contains some amount of self-reference. If not handled this can
lead to all sorts of diagonalizations we know from logic.

To deal with the first problem we have to find a way of ensuring that,
given a real r which is not in Am, it will not become an element of Am
in all future extensions we are about to define. This sounds like a
circular definition, which is bad. To deal with the second problem, we
allow ourselves to be greedy, meaning that whenever we can force a
real x into both Am and Ak, we will do so. As Am and Ak now have
non-emtpy intersection, we can neglect them.

We only force (with finite support) with partial orders of the following
form. We first use a fresh ω-block (Siω·α+n : n ∈ ω) of Suslin trees
from either ~S1 or ~S2 and shoot a branch though either Siω·α+2n or
Siω·α+2n+1. In a second step we collect the added branches in some
set X and code them into one real r using almost disjoint coding
forcing Ah(X) relative to a fixed, L-definable, almost disjoint family of
reals h = {hα : α < ℵ1}. Recall that if X ⊂ ℵ1 be a set of ordinal,
then there is a ccc forcing, the almost disjoint coding Ah(X) which
adds a new real x which codes X relative to the family h in the
following way

α ∈ X if and only if x ∩ hα is finite.

Definition
The almost disjoint coding Ah(X) relative to an almost disjoint family
h consists of conditions (r,R) ∈ ω<ω × h<ω and (s, S) < (r,R)
holds if and only if

1. r ⊂ s and R ⊂ S.

2. If α ∈ X and hα ∈ R then r ∩ hα = s ∩ hα.

We can repeat this if desired. Forcings of this form will be called legal.
Recall that the almost disjoint coding forcing is Knaster, thus it will
never destroy any Suslin tree. As an easy consequence we obtain:

Fact
Legal forcings P preserve all the Suslin trees from W which are not
explicitly used in P.

We use an iteration of length ω1 of legal forcings over W guided by
some bookkeeping F . Assume we are at some stage α < ω1 and
F (α) = (x,m, k), x ∈ 2ω,m, k ∈ ω. By induction we assume that we
have defined already Pα and W [Gα]. Goal is to define the next forcing
P(α). We split into three cases.
Assume that x ∈ Am. In that case we code a real w coding the triple
(x,m, k) into ~S1, i.e. we let P(α) = Q0 ∗Q1, where
Q0 =

∏
i∈w S

1
ω·ξ+2i ×

∏
i/∈w S

1
ω·ξ+2i+1. We let Xx,m,k ⊂ ω1 be a

code for the ω-many branches we just added and the ω1-many clubs
we need to define {Sω·ξ+n : n ∈ ω} then we rewrite Xx,m,k into a set
Yx,m,k ⊂ ω1 (David’s trick) and code, using Q1 := Ah(Yx,m,k) into
one real rx,m,k which will satisfy:

(∗) For any countable, transitive model M of ZF− such that
ωM1 = (ωL1)M and rx,m,k ∈M , M can construct its version of
L[rx,m,k] which in turn thinks that there is an ordinal ξ < ω1 such
that for any i ∈ ω, SLξ+2i is Suslin iff i ∈ w and SLξ+2i+1 is Suslin
iff i /∈ w.

In the second case we assume that F (α) = (x,m, k), x /∈ Am ∪Ak
and there is a legal forcing P such that
P ∃z(z ∈ Am ∩Ak). As we
decided on being greedy, we force with P, ignoring the fact that P
might introduce new codes on ~S which are unwanted.
In case c, F (α) = (x,m, k), x /∈ Am ∪Ak and there is no legal
forcing P such that
P ∃z(z ∈ Am ∩Ak). We distinguish two
subcases. First, if there is a legal forcing Q such that there is a q ∈ Q
and q
Q x ∈ Am. In that situation we mark all the (ctbly many) blocks
bα of Suslin trees which are used by Q, but do not force with Q, instad
we ensure that from now on, none of these blocks must be touched by

any future forcing we use. Then we code (x,m, k) into ~S1 into some
fresh block of Suslin trees. This has the following consequence:

Lemma
Under the assumption of case c, let Q be legal such that
Q x ∈ Am
which uses the set bα of blocks of elements of ~S. Let P be a legal
forcing in W [Gα] which does not use any tree S ∈ bα. Then

P x /∈ Ak.

Proof.
Assume not, then there is a p ∈ P such that p
P x ∈ Ak. There is
also a q ∈ Q such that q
Q x ∈ Am, by assumption.
Now P×Q is a legal forcing, and if g × h is P×Q-generic over
W [Gα] which contains the condition (p, q) then W [Gα ∗ g] |= x ∈ Ak,
hence because Shoenfield W [Gα ∗ (g × h)] |= x ∈ Ak. On the other
hand W [Gα ∗ h] |= x ∈ Am so again by Shoenfield
W [Gα ∗ (h× g)] |= x ∈ Am, so there has been a legal forcing, which
forces Am ∩Ak 6= ∅, which is a contradiction.

In the second subcase of case c, there is no legal forcing P for which

P ∃z(z ∈ (Am ∩Ak)), and there is no legal Q such that

Q x ∈ Am. In that situation, we can safely write a code for (x,m, k)

into ~S2, and will avoid the pathological situation that later in the
iteration we might have x ∈ Am. This ends the definition of the
iteration.
We continue to discuss the resulting universe W [Gω1]. The following
is true in this universe:

I CH holds, as CH is true in W and we used an ω1-length iteration
of ccc forcings of size ℵ1.

I For any pair (m, k) ∈ ω2, if we let
D1
m,k := {x ∈ 2ω : ∃α < ω1((x,m, k) is coded into ~S1 at α)},

and D2
m,k := {x : ∃α < ω1((x,m, k) is coded into ~S2 at α)},

then D1
m,k ∪D2

m,k = 2ω.

Even more is true, both D1
m,k and D2

m,k are Σ1
3-sets because of

property (∗). Recall

(∗) For any countable, transitive model M of ZF− such that
ωM1 = (ωL1)M and rx,m,k ∈M , M can construct its version of
L[rx,m,k] which in turn thinks that there is an ordinal ξ < ω1 such
that for any i ∈ ω, SLξ+2i is Suslin iff i ∈ w and SLξ+2i+1 is Suslin
iff i /∈ w.

So x ∈ D1
m,k iff ∃r(for any countable, transitive model M of ZF− such

that ωM1 = (ωL1)M and r, x ∈M , M can construct its version of L[r]
which in turn thinks that there is an ordinal ξ < ω1 such that for any
i ∈ ω, SLξ+2i is Suslin iff i ∈ (x,m, k) and SLξ+2i+1 is Suslin iff
i /∈ (x,m, k)).

Lemma
In W [Gω1], there is an α0 < ω1 such that if we let D1

m,k(α0) be the

set of x such that (x,m, k) is coded in ~S1 above α0, and D2
m,k(α0)

accordingly, then both sets are Σ1
3(α0) and separate every pair

(Am, Ak) of disjoint Σ1
3-sets.

Proof.
We let α0 be the supremum of indices of ordinals which are used in
Pω1 when in case b. As there are only ctbly many fromulas, α0 < ω1.
Any code written above α0 by Pω1 will be a correct one, as for them
only case a or c is responsible and we ensured that no ”bad” codes
are added by these forcings.
Consequentially, for any m, k ∈ ω, D1

m,k(α0) ∩D2
m,k(α0) is

empty.

Now we turn to proving the main theorem. Our old strategy will not
work anymore, as there are real parameters in the formulas, so there
is no chance to apply case b only countably many times. The right
modification of the old proof is to successively narrow down the
forcings we allow to use in case b.
Returning briefly to the discussion of case c, we see that under these
assumptions we can define an assignment function gm,k which maps
a real x (x can even belong to a legal extension of the model we are
currently in) to the set {m, k} × [ω1]

ω. We think of the value of
gm,k(x) as the outcome of the reasoning in case c, thus

gm,k(x) = (m, b) is true whenever we code x into ~S1 and ensure that
no pathological situation arises as long as we don’t touch trees from ~S
with indices in b.

So the right modification of the iteration looks as follows: the set up is
the same as before, but we inductively assume that we have a notion
of β-legal for some β < ω1. Let F (α) = (x,m, k, y), where y now is
the parameter for Am(·, y) and Ak(·, y). Now split again into three
cases a,b and c.
Case a is defined exactly as before.
For case b, we ask whether there is a β-legal forcing which forces
∃z(z ∈ Am(y) ∩Ak(y)). If the answer is yes, we use it.
For case c, no β-legal forcing P exists such that

 ∃z(z ∈ Am(y) ∩Ak(y)). We split into the same subcases as
before, and define a new assignment function gm,k,y which can be
applied to any (even future) real. We use the assignment function to
define the new notion β + 1-legal: A legal forcing is β + 1-legal if it is
β-legal and respects the assignment gm,k,y. Then we code (x,m, k)
into the according sequence of Suslin trees and continue, ensuring
that no blocks of Suslin trees, given by the assignment functions we
have defined so far, are touched.

Remark
A legal forcing (P(γ) : γ < δ) is thus β-legal, whenever every factor
P(γ), if it codes one quadruple (r,m, k, y) into ~S1 or ~S2, and gm,k,y is
defined, then the placement of (r,m, k, y) is in accordance with
gm,k,y and moreover the set of indices of Suslin trees of gm,k,y(r) is
not touched by (P(γ) : γ < δ). Note that we can always decide
whether some legal forcing is β-legal, as soon as β-legal is defined.

Lemma

I For every α < ω1, if at stage α of the iteration Pω1 , we have
defined the notion of βα-legal, then the tail of the iteration P[α,ω1)

is βα-legal.

I For every α < ω1 and any quadruple (x,m, k, y), if at stage
α+ 1 the assignment function gm,k,y has already been defined,
then the iteration will not add ”bad” codes for (x,m, k, y) from

that stage on. In particular the set of codes in ~S1 and ~S2 which
are created from that stage on which contain (m, k, y) form a
separating set for Am(y) and Ak(y).

As a last fact we note that,

