Grundbegriffe der Mathematischen Logik, Sommersemester 2011 Prüfungsteil I (Rekursionstheorie), Beispielblatt zur Vorbereitung

Name:	Matrikelnummer (leserlich!):	
Ja-Nein-Fragen		
	(falsch) ein. Eine richtige Antwort zählt 2 Punkte, eine falsch amit Sie im Mittel keinen Nachteil haben, wenn Sie nicht rate	
1. Ob ein LOOP-Programm anhält, hängt im Allg	emeinen von der Eingabe ab	
2. Die durch $f(x) = 7x^3 - 2x + 25$ definierte Funk	tion $f: \mathbb{N} \to \mathbb{N}$ ist primitiv rekursiv	
3. Alle Polynome $p\colon \mathbb{N}^k \to \mathbb{N}$ mit Koeffizienten in	N sind GOTO-berechenbar	
4. Jede Funktion $f \colon \mathbb{N}^k \to \mathbb{N}$, die höchstens die rekursiv	beiden Werte 0 und 1 annimmt, ist primitiv	
5. Jede primitiv rekursive Funktion $f \colon \mathbb{N} \to \mathbb{N}$ läss	t sich als Polynom schreiben	
6. Die Funktion $f(x,y) = x \uparrow^7 y$ lässt sich durch e	in Polynom $p(x,y)$ nach oben abschätzen	
7. Die Funktion $f(x,y) = 2 \uparrow^x x$ ist LOOP-berech	enbar	
8. Die Menge $\{(x, y, z) \in \mathbb{N}^3 \mid 19xyz - 24xy - 3yz\}$		
9. Seien $\alpha \colon \mathbb{N}^3 \to \mathbb{N}$ und $\beta \colon \mathbb{N}^5 \to \mathbb{N}$ primitiv rekurd und $\gamma(n+1,\bar{y}) = \beta(n,\gamma(n,\bar{y}),\bar{y})$ ist rekursiv	siv. Die Funktion $\gamma \colon \mathbb{N}^4 \to \mathbb{N}$ mit $\gamma(0, \bar{y}) = \alpha(\bar{y})$	
10. Alle rekursiven Mengen $A\subseteq \mathbb{N}^k$ sind rekursiv	aufzählbar	
11. Wenn $A \subseteq \mathbb{N}^2$ rekursiv ist, dann auch $\{x \in \mathbb{N} \mid$	$\exists y \colon (x,y) \in A\}. \dots$	
12. $f: \mathbb{N}^2 \to \mathbb{N}, f(x,y) = (x+y)(x+y+1)/2 + y$	+ 7 ist injektiv, aber nicht surjektiv	
13. Es gibt endlich viele rekursiv aufzählbare Me Funktionen $f: \mathbb{N} \to \mathbb{N}$ sind		
14. Jede rekursiv aufzählbare Menge $A\subseteq \mathbb{N}$ ist rel	cursiv und aufzählbar.	
15. In der Vorlesung wurde bewiesen, dass es ei rekursiv ist. Ganz analog könnte man auch zeige		

Bitte wenden!

Jede Frage zählt 2 Punkte. Für partielle oder fast richtige Lösungen gibt es evt. 1 Punkt. Hinweis: In der Prüfung haben Sie keinen Interpreter zum Testen. Überlegen Sie sich bei den LOOP-Programmen zuerst, was die jeweils innerste Schleife tut.

- 18. Programm 3 ist ein GOTO-Programm. Welche partielle Funktion $h \colon \mathbb{N} \dashrightarrow \mathbb{N}$ berechnet es?

Programm 1

```
loop input_1 times {
  output = Inc(output)
  loop input_2 times {
    output = Inc(output)
    input_2 = Dec(input_2)
  }
}
```

Programm 2

```
output = Inc(output)
loop input_1 times {
  x = Val(output)
  output = Zero()
  loop x times {
     loop input_1 times {
      output = Inc(output)
     }
  }
  input_1 = Dec(input_1)
}
```

Programm 3

```
true = Inc(true)
true = Val(input_1)
foutput goto 4
ff true goto 6
output = Dec(output)
ff true goto 5
```

Name:	Matrikelnummer (leserlich!):		
Ja-Nein-Fragen			
Bitte tragen Sie in die Kästchen W (wahr) oder F (fa Punkte. Eine unbeantwortete Frage zählt 1 Punkt, dam			
1. Jedes GOTO-Programm mit höchstens 3 Zeilen h	ält unabhängig von der Eingabe immer an.		
2. Die Fibonacci-Funktion $F: \mathbb{N} \to \mathbb{N}$ – definiert du $F(n+1)$ – ist LOOP-berechenbar			
3. Die Fakultätsfunktion ist primitiv rekursiv			
4. Jede beschränkte rekursive Funktion $f \colon \mathbb{N}^k \to \mathbb{N}$ i	st primitiv rekursiv		
5. Primitive Rekursion ist der Spezialfall von μ -Reku	ırsion für primitives μ		
6. Die Zahl 5 \uparrow^1 7 ist so groß, dass man sie in der Pr	axis nicht berechnen kann		
7. Die Funktion $f(x) = x \uparrow^4 x$ ist primitiv rekursiv.			
8. Die Menge $\{(x, y, z) \in \mathbb{N}^3 \mid x^2 + y^2 = z!\}$ ist rekur	siv		
9. Seien $\alpha \colon \mathbb{N}^3 \to \mathbb{N}$ und $\beta \colon \mathbb{N}^5 \to \mathbb{N}$ rekursiv. Die I $\gamma(n+1,\bar{y}) = \beta(n,\gamma(n,\bar{y}),\bar{y})$ ist primitiv rekursiv			
10. Eine rekursive Menge ist genau dann primitiv reist.	ekursiv, wenn ihr Komplement auch rekursiv		
11. Wenn $A\subseteq \mathbb{N}^2$ rekursiv aufzählbar ist, dann auch	$\{x \in \mathbb{N} \mid \exists y \colon (x,y) \in A\}. \dots$		
12. Jede gerade Zahl ist von der Form $(x+y)(x+y)$	$(x,y) + 1 + 2y$, wobei $x,y \in \mathbb{N}$		
13. Fast alle rekursiv aufzählbaren Mengen $A\subseteq \mathbb{N}$ sin $\mathbb{N}.$	nd Bilder von rekursiven Funktionen $f: \mathbb{N} \to \dots$		
14. Die charakteristische Funktion einer rekursiv auf	zählbaren Menge ist rekursiv.		
15. In der Vorlesung wurde bewiesen, dass es eine rekursiv ist. Der Beweis benutzt die Tatsache, dass es	9 9 1		

0

Bitte wenden!

gibt.

Jede Frage zählt 2 Punkte. Für partielle oder fast richtige Lösungen gibt es evt. 1 Punkt. Hinweis: Überlegen Sie sich bei den LOOP-Programmen zuerst, was die jeweils innerste Schleife tut.

- 18. Programm 3 ist ein GOTO-Programm. Welche partielle Funktion $h \colon \mathbb{N}^2 \dashrightarrow \mathbb{N}$ berechnet es?

Programm 1

```
output = Val(input_3)
loop input_1 times {
   loop input_2 times {
     input_2 = Dec(input_2)
     output = Dec(output)
   }
   output = Dec(output)
}
```

Programm 2

```
output = Val(input_1)
loop input_2 times {
   output = Dec(output)
}
counter = Zero()
counter = Inc(counter)
loop input_2 times {
   counter = Zero()
}
loop counter times {
   output = Val(input_2)
}
```

Programm 3

```
output = Zero()
0
     x = Val(input 1)
1
     y = Val(input 2)
2
3
     output = Inc(output)
     y = Dec(y)
4
     if y goto 3
5
     output = Inc(output)
6
7
     x = Dec(x)
     if x goto 2
     if output goto 12
9
     output = Inc(output)
10
     if output goto 10
11
```

N	am	e:
TΝ	am	С.

Matrikelnummer/Studienkennzahl:

Ja-Nein-Fragen

Bitte tragen Sie in die Kästchen **W** (wahr) oder **F** (falsch) ein. Eine richtige Antwort zählt 2 Punkte, eine falsche 0 Punkte. Eine unbeantwortete Frage zählt 1 Punkt, damit Sie im Mittel keinen Nachteil haben, wenn Sie nicht raten.

In den Fragen steht σ für eine beliebige Signatur. σ_N ist die Signatur mit $\sigma_N^{\mathrm{Op}} = \{\mathbf{0}, \mathbf{1}, +, \cdot\}$, $\sigma_N^{\mathrm{Rel}} = \{<\}$, wobei $\mathbf{0}$ und $\mathbf{1}$ nullstellig sind und +, \cdot und < zweistellig. $\mathbb N$ steht sowohl für die natürlichen Zahlen $\{0, 1, 2, \ldots\}$ als auch für die σ_N -Struktur $(\mathbb N, \mathbf{0}, \mathbf{1}, +, \cdot, <)$. σ_E ist die Signatur mit $\sigma_E^{\mathrm{Op}} = \emptyset$, $\sigma_E^{\mathrm{Rel}} = \{E\}$ und $\mathrm{ar}_E(E) = 2$.

1. Jede σ -Formel ist ein σ -Term	
2. Wenn t ein σ -Term ist, dann ist $\neg = tt$ eine σ -Formel	
3. Es gibt eine Signatur σ , so dass =++ eine σ -Formel ist	
4. Wenn $\wedge < 01$ eine σ -Formel ist, dann ist auch $= 01$ eine σ -Formel.	
5. Wenn φ eine (aussagenlogische) Tautologie ist, dann gibt es eine Belegung β der aussagenlogischen Prädikate, so dass $\bar{\beta}(\varphi) = 1$ ist	
6. $((p=p) \vee (p=p))$ ist eine Formel der Aussagenlogik in Infix-Notation	
7. Jede σ -Theorie erfüllt entweder die Voraussetzungen des Vollständigkeitssatzes oder die Voraussetzungen des Unvollständigkeitssatzes.	
8. Um zu verifizieren, dass eine Formel der Aussagenlogik eine Tautologie ist, muss man unendlich viele Fälle überprüfen. Dieses Problem wird durch den Beweisbarkeitsbegriff und den Vollständigkeitssatz gelöst.	
9. ¬∧=VV¬=VV ist eine Tautologie der Prädikatenlogik 1. Stufe	
10. Die Formel = 0 0 ist beweisbar.	
11. Die σ_N -Formel $\neg \exists \stackrel{0}{V} \exists \stackrel{1}{V} \exists \stackrel{0}{V} \neg = + \stackrel{0}{V} + \stackrel{1}{V} \vee \vee + + + \stackrel{0}{V} \vee $	
12. Die σ_N -Formel $\neg \Lambda \exists v = + \cdot v v 0 v \neg \exists v \exists v = + v 0 v$ ist beweisbar	
13. Sei G der unten abgebildete Graph als σ_E -Struktur codiert, d.h. $\underline{G} = \{1, 2, 3, 4\}$ und $E^G = \{(1, 2), (2, 1), (3, 4), (4, 3)\}$. Dann gilt $G \models \exists v \exists v \exists v v v v v v v v$	
14. Sei G der unten abgebildete Graph als σ_E -Struktur codiert, d.h. $\underline{G} = \{1, 2, 3, 4\}$ und $E^G = \{(1, 2), (2, 1), (3, 4), (4, 3)\}$. Dann gilt $G \models \exists_{V}^{O} \exists_{V}^{O} \neg \exists_{V}^{O} $	

Bitte wenden!

Jede Frage zählt 2 Punkte. Für partielle oder fast richtige Lösungen gibt es evt. 1 Punkt.

- 17. Beweisen Sie, dass es keine σ -Formel gibt, in der zwei = direkt hintereinander vorkommen. .
- 18. Sei σ eine Signatur mit einem einstelligen Operationssymbol f, und sei

$$\varphi = \mathbf{\Lambda} \neg \mathbf{J} \overset{0}{\mathbf{V}} = \overset{0}{\mathbf{V}} \mathbf{f} \overset{0}{\mathbf{V}} \neg \mathbf{J} \overset{0}{\mathbf{V}} \neg \mathbf{J} \overset{0}{\mathbf{V}} \neg \mathbf{J} \overset{0}{\mathbf{V}} = \overset{0}{\mathbf{V}} \mathbf{f} \mathbf{f} \overset{0}{\mathbf{V}}$$

$$\psi = \mathbf{J} \overset{0}{\mathbf{V}} \mathbf{J} \overset{1}{\mathbf{J}} \overset{2}{\mathbf{V}} \wedge \mathbf{\Lambda} \neg \mathbf{J} \overset{0}{\mathbf{V}} \neg \mathbf{J} \overset{0}{\mathbf{V}} \neg \mathbf{J} \overset{0}{\mathbf{V}} \neg \mathbf{J} \overset{1}{\mathbf{V}} \overset{2}{\mathbf{V}} \neg \mathbf{J} \overset{1}{\mathbf{V}} \overset{2}{\mathbf{V}} \overset{1}{\mathbf{V}}$$

$$\chi = \neg \mathbf{J} \overset{0}{\mathbf{V}} \mathbf{J} \overset{1}{\mathbf{V}} \mathbf{J} \overset{2}{\mathbf{V}} \overset{3}{\mathbf{V}} \wedge \mathbf{\Lambda} \wedge \mathbf{\Lambda} \wedge \neg \overset{0}{\mathbf{V}} \overset{1}{\mathbf{V}} \neg \mathbf{J} \overset{0}{\mathbf{V}} \neg \overset{0}{\mathbf{V}} \overset{1}{\mathbf{V}} \neg \mathbf{J} \overset{1}{\mathbf{V}} \overset{1}{\mathbf{V}} \neg \mathbf{J} \overset{1}{\mathbf{V}} \overset{1}{\mathbf$$

Ja-Nein-Fragen

Bitte tragen Sie in die Kästchen W (wahr) oder F (falsch) ein. Eine richtige Antwort zählt 2 Punkte, eine falsche 0 Punkte. Eine unbeantwortete Frage zählt 1 Punkt, damit Sie im Mittel keinen Nachteil haben, wenn Sie nicht raten.

In den Fragen steht σ für eine beliebige Signatur. σ_N ist die Signatur mit $\sigma_N^{\mathrm{Op}} = \{\mathbf{0}, \mathbf{1}, +, \cdot\}$, $\sigma_N^{\mathrm{Rel}} = \{<\}$, wobei $\mathbf{0}$ und $\mathbf{1}$ nullstellig sind und +, \cdot und < zweistellig. $\mathbb N$ steht sowohl für die natürlichen Zahlen $\{0, 1, 2, \ldots\}$ als auch für die σ_N -Struktur $(\mathbb N, \mathbf{0}, \mathbf{1}, +, \cdot, <)$. σ_E ist die Signatur mit $\sigma_E^{\mathrm{Op}} = \emptyset$, $\sigma_E^{\mathrm{Rel}} = \{E\}$ und $\mathrm{ar}_E(E) = 2$.

1. Wenn σ eine Signatur ohne Relationssymbole ist, ist jeder σ -Term eine σ -Formel	
2. Es gibt eine Signatur σ , so dass $\neg \Lambda ++$ eine σ -Formel ist	
3. Wenn t ein σ -Term ist, dann ist Λtt eine σ -Formel	
4. Wenn $\Lambda=01$ eine σ -Formel ist, dann ist auch $==$ eine σ -Formel	
5. Es gibt eine aussagenlogische Tautologie φ und eine Belegung β der aussagenlogischen Prädikate, so dass $\bar{\beta}(\varphi)=0$ ist	
6. $(\exists p^0(pvp^1))$ ist eine Formel der Aussagenlogik in polnischer Notation	
7. Aus dem Unvollständigkeitssatz folgt, dass es einen σ_N -Satz φ gibt, so dass weder $\mathbb{N} \models \neg \varphi$ gilt	
8. Ob eine Formel der Aussagenlogik eine Tautologie ist, kann man durch endliche Fallunterscheidung und Einsetzen überprüfen	
9. Die σ -Formel $\neg \Lambda = XX \neg = XX$ ist eine Tautologie der Prädikatenlogik 1. Stufe	
10. Die σ -Formel $\neg \Lambda = XX \neg = XX$ ist ein Gleichheitsaxiom	
11. Die σ_N -Formel =+1+11++111 ist beweisbar	
12. Die σ_N -Formel $\neg \Lambda = X + \cdot XXX \neg \exists X = X + XX$ ist beweisbar	
13. Sei G der unten abgebildete Graph als σ_E -Struktur codiert, d.h. $\underline{G}=\{1,2,3,4\}$ und $E^G=\{1,2,3,4\}$	
$\{(1,2),(2,1),(3,4),(4,3)\}$. Dann gilt $G \models \neg \exists x \exists x \exists x \exists x \land \exists x \exists x \land \exists x \exists x \land \exists x \land \exists x \exists x$	
14. Sei G der unten abgebildete Graph als σ_E -Struktur codiert, d.h. $\underline{G} = \{1, 2, 3, 4\}$ und $E^G = \{(1, 2), (2, 1), (3, 4), (4, 3)\}$. Dann gilt $G \models \exists_{X}^{0} \exists_{X}^{1} E_{X}^{0} 1$	

Bitte wenden!

Jede Frage zählt 2 Punkte. Für partielle oder fast richtige Lösungen gibt es evt. 1 Punkt.

- 17. Geben Sie eine Signatur σ an, so dass 42 (eine Zeichenkette der Länge 2!) eine σ -Formel ist.
- 18. Sei σ eine Signatur mit einem einstelligen Operationssymbol f , und sei

$$\varphi = \neg \exists \overset{0}{\mathsf{X}} \exists \overset{1}{\mathsf{X}} \mathsf{\Lambda} = \mathsf{f}\overset{0}{\mathsf{X}} \mathsf{f}\overset{1}{\mathsf{X}} \neg = \overset{0}{\mathsf{X}}\overset{1}{\mathsf{X}}$$

$$\psi = \exists \overset{1}{\mathsf{x}} \neg \exists \overset{0}{\mathsf{x}} = \overset{1}{\mathsf{x}} \mathsf{f}\overset{0}{\mathsf{x}}$$

Beweisen Sie, dass die Grundmenge \underline{M} jedes Modells $M \models \mathbf{\Lambda} \varphi \psi$ mindestens 7 Elemente enthält.

(Druckfehler in Aufgabe 18 nachträglich korrigiert. Der zweite Existenzquantor in φ fehlte.)