VALUATION SEMIGROUPS OF TWO DIMENSIONAL LOCAL RINGS

STEVEN DALE CUTKOSKY AND PHAM AN VINH

Abstract

We consider the question of when a semigroup is the semigroup of a valuation dominating a two dimensional noetherian domain, giving some surprising examples. We give a necessary and sufficient condition for the pair of a semigroup S and a field extension L / \mathfrak{k} to be the semigroup and residue field of a valuation dominating a regular local ring R of dimension two with residue field \mathfrak{k}, generalizing the theorem of Spivakovsky for the case when there is no residue field extension.

1. Introduction

Suppose that $\left(R, \mathfrak{m}_{R}\right)$ is a Noetherian local ring which is dominated by a valuation ν. The semigroup of ν in R is

$$
S^{R}(\nu)=\{\nu(f) \mid f \in R \backslash\{0\}\} .
$$

$S^{R}(\nu)$ generates the value group of ν.
In this paper we give a classification of the semigroups and residue field extensions that may be obtained by a valuation dominating a regular local ring of dimension two. Our results are completely general, as we make no further assumptions on the ring or on the residue field extension of the valuation ring. This classification (given in Theorems Theorem3* and 1.2) is very simple. The classification does not extend to more general rings.

We give an example showing that the semigroup of a valuation dominating a normal local ring of dimension two can be quite different from the semigroup of a regular local ring, even on an A_{2} singularity (Example 9.2). In $[17],[18]$ and $[11]$, we give examples showing that the semigroups of valuations dominating regular local rings of dimension ≥ 3 can be very complicated. For instance, in Proposition 6.3 of [II], we show that there exists a regular local ring R of dimension 3 dominated by a rational rank 1 valuation ν which has the property that given $\varepsilon>0$, there exists an i such that $\beta_{i+1}-\beta_{c \uparrow 2}<\varepsilon$, where $\beta_{0}<\beta_{1}<\cdots$ is the minimal set of of generators of $S^{R}(\nu)$. In $[17]$ and $[18]$ we give examples showing that spectacularly strange behavior of the semigroup can occur for a higher rank valuation. The growth of valuation semigroups is however bounded by a polynomial whose coefficients are computed from the multiplicities of the centers of the composite valuations on R. This is proven in [18].

The possible value groups Γ of a valuation ν dominating a Noetherian lpcal ring have been extensively studied and classified, including in the papers MacLane [35], MacLane and Schilling [36], Zariski and Samuel [48], and Kuhlmann ${ }^{[32]}$. Γ can be any ordered abelian group of finite rational rank (Theorem 1.1 (32]). The semigroup $S^{R}(\nu)$ is however not well understood, although it is known to encode important information about the
 [24], $[37],[42],[27]$ to mention a few references, and the ideal theory of R [46], [47], [48] and its development in many subsequent papers.

The first author was partially supported by NSF.

In Sections ${ }_{3}^{\text {RLR1 }}$ through 8 Poly of this paper we analyze valuations dominating a regular local ring R of dimension two. Our analysis is constructive, being based on an algorithm which finds a generating sequence for the valuation. A generating sequence of ν in R is a set of elements of $R_{\text {prel }}$ whose initial forms are generators of the graded $\mathfrak{k}=R / \mathfrak{m}_{R^{-}}$-algebra $\operatorname{gr}_{\nu}(R)$ (Section 2). The characteristic of the residue field of R does not appear at all in the proofs, although the proof may be simplified significantly if the assumption that R has equal characteristic is added; in this case we may reduce to the case where R is a polynomial ring over a field (Section 8). 8 A construction of a generating sequence, and the subsequent classification of the semigroups, is classical in the case when the residue field of R is algebraically closed; this was proven by Spivakovsky in [41]. Besides the complete generality of our results, our proofs differ from those of Spivakovsky in that we only use elementary techniques, using nothing more sophisticated than the definition of linear independence in a vector space, and the definition of the minimal polynomial of an element in a field extension. In our proof we construct the residue field of the valuation ring as a tower of primitive extensions; the minimal polynomials of the primitive elements are used to construct the generating sequence for the valuation. It is not necessary for R to be excellent in our analysis; the only place in this paper where excellence manifests itself is in the possibility of ramification in the extension of a valuation to the completion of a non excellent regular local ring (Proposition 3.4).

In a finite field extension, the quotient of the valuation group of an extension ${ }_{z f}$ a valuation by the value group is always a finite group (2nd corollary on page 52 of $[48]$). This raises the following question: Suppose that $R \rightarrow T$ is a finite extension of regular local rings, and ν is a valuation which dominates R. Is $S^{T}(\nu)$ a finitely generated module over the semigroup $S^{R}(\nu)$? We give a counterexample to this question in Example 9.4.4. This exampleis especially interesting in light of the results on relative finite generation in the papers $[22]$ of Ghezzi, Hà and Kashcheyeva, and $[23]$ of Ghezzi and Kashcheyeva.

We now turn to a discussion of our results on regular local rings of dimension two. We obtain the following necessary and sufficient condition for a semigroup and field extension to be the semigroup and residue field extension of a valuation dominating a complete regular local ring of dimension two in the following theorem (proven in Section ffo:

Theorem3* Theorem 1.1. Suppose that R is a complete regular local ring of dimension two with residue field $R / \mathfrak{m}_{R}=\mathfrak{k}$. Let S be a subsemigroup of the positive elements of a totally ordered abelian group and L be a field extension of \mathfrak{k}. Then S is the semigroup of a valuation ν dominating R with residue field $V_{\nu} / \mathfrak{m}_{\nu}=L$ if and only if there exists a finite or countable index set I, of cardinality $\Lambda=|I|-1 \geq 1$ and elements $\beta_{i} \in S$ for $i \in I$ and $\alpha_{i} \in L$ for $i \in I_{+}$, where $I_{+}=\{i \in I \mid i>0\}$, such that

1) The semigroup S is generated by $\left\{\beta_{i}\right\}_{i \in I}$ and the field L is generated over \mathfrak{k} by $\left\{\alpha_{i}\right\}_{i \in I_{+}}$.
2) Let

$$
\bar{n}_{i}=\left[G\left(\beta_{0}, \ldots, \beta_{i}\right): G\left(\beta_{0}, \ldots, \beta_{i-1}\right)\right]
$$

and

$$
d_{i}=\left[\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right): \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right] .
$$

Then there are inequalities

$$
\beta_{i+1}>\bar{n}_{i} d_{i} \beta_{i}>\beta_{i}
$$

with $\bar{n}_{i}<\infty$ and $d_{i}<\infty$ for $1 \leq i<\Lambda$ and if $\Lambda<\infty$, then either $\bar{n}_{\Lambda}=\infty$ and $d_{\Lambda}=1$ or $\bar{n}_{\Lambda}<\infty$ and $d_{\Lambda}=\infty$.

Here $G\left(\beta_{0}, \ldots, \beta_{i}\right)$ is the subgroup generated by $\beta_{0}, \ldots, \beta_{i}$.
The case when R is not complete is more subtle, because of the possibility, when R is not complete, of the existence of a rank 1 discrete valuation which dominates R and such that the residue field extension $V_{\nu} / \mathfrak{m}_{\nu}$ of $\mathfrak{k}=R / \mathfrak{m}_{R}$ is finite. For all other valuations ν which dominate R (so that ν is not rank 1 discrete with $V_{\nu} / \mathfrak{m}_{\nu}$ finite over \mathfrak{k}) the analysis is the same as for the complete case, as there is then a unique extension of ν to a valuation dominating the completion of R which is an immediate extension; that is, there is no extension of the valuation semigroups or of the residue fields of the valuations. The differences between the complete and non complete cases are explained in more detail by Theorem 3.1 , Corollary 3.2, Example 3.3 , Proposition 3.4 and Corollary 5.1 to Theorem In.1.

We give a necessary and sufficient condition for a semigroup to be the semigroup of a valuation dominating a reqular local ring of dimension two in the following theorem, which is proven in Section ${ }^{5}$:

Theorem 1.2. Suppose that R is a regular local ring of dimension two. Let S be a subsemigroup of the positive elements of a totally ordered abelian group. Then S is the semigroup of a valuation ν dominating R if and only if there exists a finite or countable index set I, of cardinality $\Lambda=|I|-1 \geq 1$ and elements $\beta_{i} \in S$ for $i \in I$ such that

1) The semigroup S is generated by $\left\{\beta_{i}\right\}_{i \in I}$.
2) Let

$$
\bar{n}_{i}=\left[G\left(\beta_{0}, \ldots, \beta_{i}\right): G\left(\beta_{0}, \ldots, \beta_{i-1}\right)\right] .
$$

There are inequalities

$$
\beta_{i+1}>\bar{n}_{i} \beta_{i}
$$

with $\bar{n}_{i}<\infty$ for $1 \leq i<\Lambda$. If $\Lambda<\infty$ then $\bar{n}_{\Lambda} \leq \infty$.
Theorem $\frac{\text { Corollary } 4 *}{1.2}$ is proven by Spivakovsky when R has algebraically closed residue field in \& 41].

The proof in Section 5 of $\left[\frac{[D D K}{[1]}\right.$, given for the case when the residue field of R is algebraically closed, now extends to arbitrary regular local rings of dimension two, using the conclusions of Theorem 1.2 , to prove the following:
lim Corollary 1.3. Suppose that R is a regular local ring of dimension two and ν is a rank 1 valuation dominating R. Embed the value group of ν in \mathbb{R}_{+}so that 1 is the smallest nonzero element of $S^{R}(\nu)$. Let $\varphi(n)=\left|S^{R}(\nu) \cap(0, n)\right|$ for $n \in \mathbb{Z}_{+}$. Then

$$
\lim _{n \rightarrow \infty} \frac{\varphi(n)}{n^{2}}
$$

exists. The set of limits which are obtained by such valuations ν dominating R is the real half open interval $\left[0, \frac{1}{2}\right)$.

As a consequence of Theorem $\frac{\text { Theorem3* }}{1.1, \text { we obtain }}$ the following example, which we prove in Section 6 , showing the subtlety of the criteria of Theorem ITheo

Nores Example 1.4. There exists a semigroup S which satisfies the sufficient conditions 1) and 2) of Theorem 1.2 , such that if $\left(R, \mathfrak{m}_{R}\right)$ is a 2-dimensional regular local ring dominated by a valuation ν such that $S^{R}(\nu)=S$, then $R / \mathfrak{m}_{R}=V_{\nu} / \mathfrak{m}_{\nu}$; that is, there can be no residue field extension.

The main technique we use in the proofs of the above theorems is the algorithm of Theorem 4.2 , which constructs a sequence of elements $\left\{P_{i}\right\}$ in R, starting with a given
 in R. This fact is proven in Theorems 4.11 and 4.12 .

In Section 7 , we develop the birational theory of the generating sequence $\left\{P_{i}\right\}$, generalizing to the case when R has arbitrary residue field the results of [41].

Suppose that R is a regular local ring of dimension two which is dominated by a valuation ν. Let $\mathfrak{k}=R / \mathfrak{m}_{R}$ and

$$
\begin{equation*}
R \rightarrow T_{1} \rightarrow T_{2} \rightarrow \cdots \tag{1}
\end{equation*}
$$

be the sequence of quadratic transforms along ν, so that $V_{\nu}=\cup T_{i}$, and $L=V_{\nu} / \mathfrak{m}_{\nu}=$ $\cup T_{i} / \mathfrak{m}_{T_{i}}$. Suppose that x, y are regular parameters in R, and let $P_{10}=x, P_{1}=y$ and $\left\{P_{i}\right\}$ be the sequence of elements of R constructed in Theorem 4.2 . Suppose there exists some smallest value i in the sequence (II) such that the divisor of $x y$ in $\operatorname{Spec}\left(T_{i}\right)$ has only one component. Let $R_{1}=T_{i}$. By Theorem 7.1 , a local equation of the exceptional divisor and a strict transform of P_{2} in R_{1} are a regular system of parameters in R_{2}, and a local equation of the exceptional divisor and a strict transform of P_{i} in R_{1} for $i \geq 2$ satisfy the conclusions of Theorem $\frac{1.2 \text { on } R_{2}}{4 .}$

We can repeat this construction, for this new sequence, to construct a sequence of quadratic transforms $R_{1} \rightarrow R_{2}$ such that a local equation of the exceptional divisor and a strict transform of P_{3} is a regular system of parameters in R_{2}, and a local equation of the exceptional divisor and a strict transform of P_{i} for ≥ 3 satisfy the conclusions of Theorem 4.2 on R_{2}.

We thus have a sequence of iterated quadratic transforms

$$
R \rightarrow R_{1} \rightarrow R_{2} \rightarrow \cdots
$$

such that $V_{\nu}=\cup R_{i}$ and where a local equation of the exceptional divisor of $R_{i} \rightarrow R_{i+1}$ and the strict transform of P_{i+1} are a regular system of parameters in R_{i} for all i.

The notion of a generating sequence of a valuation already can be recognized in the famous algorithm of Newton to find the branches of a (characteristic zero) plane curve
 nomials"), Zariski [46], Abhyankar $[3]$, 444 ("approximate roots"), and Spivakovsky 441$]$. Most recently, the construction and applicatioct of generating sequences of a valuation bave appeared in many papers, including [13], [9], [15], [20], $[21],[25],[22],[23],[34\},[38]$, [43]. The theory of generating sequences in regular local rings of dimension two is closely related to the configuration of exceptional curves appearing in the sequence of quadratic transforms along the center of the valuation. This subject has been explored in many papers, including $[7]$ and $[33]$. The extension of valuations to the completion of a lgcal ring, which becemes extremely diffiofylt in higher dimension and rank, is studied in 441 ,
 complete ideals in local rings, beginning with Zariski's articles [46] and [48].

We thank Soumya Sanyal for his meticulous reading of this paper.

2. Preliminaries

Suppose that $\left(R, \mathfrak{m}_{R}\right)$ is a Noetherian local domain and ν is valuation of the quotient field which dominates R. Let V_{ν} be the valuation ring of ν, and \mathfrak{m}_{ν} be its maximal ideal. Let Γ_{ν} be the value group of ν. Let $\mathfrak{k}=R / \mathfrak{m}_{R}$. The semigroup of ν on R is

$$
S^{R}(\nu)=\{\nu(f) \mid f \in R \backslash\{0\}\}
$$

For $\varphi \in \Gamma_{\nu}$, define valuation ideals

$$
\mathcal{P}_{\varphi}(R)=\{f \in R \mid \nu(f) \geq \varphi\},
$$

and

$$
\mathcal{P}_{\varphi}^{+}(R)=\{f \in R \mid \nu(f)>\varphi\} .
$$

We have that $\mathcal{P}_{\varphi}^{+}(R)=\mathcal{P}_{\varphi}(R)$ if and only if $\varphi \notin S^{R}(\nu)$. The associated graded ring of ν on R is

$$
\operatorname{gr}_{\nu}(R)=\bigoplus_{\varphi \in \Gamma_{\nu}} \mathcal{P}_{\varphi}(R) / \mathcal{P}_{\varphi}^{+}(R)
$$

Suppose that $f \in R$ and $\nu(f)=\varphi$. Then the initial form of f in $\operatorname{gr}_{\nu}(R)$ is

$$
\operatorname{in}_{\nu}(f)=f+\mathcal{P}_{\varphi}^{+}(R) \in\left[\operatorname{gr}_{\nu}(R)\right]_{\varphi}=\mathcal{P}_{\varphi}(R) / \mathcal{P}_{\varphi}^{+}(R)
$$

A set of elements $\left\{F_{i}\right\}_{i \in I}$ such that $\left\{\operatorname{in}_{\nu}\left(F_{i}\right)\right\}$ generates $\operatorname{gr}_{\nu}(R)$ as a \mathfrak{k}-algebra is called a generating sequence of ν in R.

We have that the vector space dimension

$$
\operatorname{dim}_{R / \mathfrak{m}_{R}} \mathcal{P}_{\varphi}(R) / \mathcal{P}_{\varphi}^{+}(R)<\infty
$$

and

$$
\operatorname{dim}_{R / \mathfrak{m}_{R}} \mathcal{P}_{\varphi}(R) / \mathcal{P}_{\varphi}^{+}(R) \leq\left[V_{\nu} / \mathfrak{m}_{\nu}: R / \mathfrak{m}_{R}\right]
$$

for all $\varphi \in \Gamma_{\nu}$.
$T^{R}(\nu)$ is countable and is well ordered of ordinal type $\leq \omega^{2}$ by Proposition 2, Appendix 3 [48]. Further, $V_{\nu} / \mathfrak{m}_{\nu}$ is a countably generated field extension of $\mathfrak{k}=R / \mathfrak{m}_{R}$, since $\operatorname{gr}_{\nu}(R)$ is a countably generated vector space over R / \mathfrak{m}_{R}, and if $0 \neq \alpha \in V_{\nu} / \mathfrak{m}_{\nu}$, then α is the residue of $\frac{f}{g}$ for some $f, g \in R$ with $\nu(f)=\nu(g)$.

$$
\begin{equation*}
\text { rat } \operatorname{rank} \nu+\operatorname{trdeg}_{R / \mathfrak{m}_{R}} V_{\nu} / \mathfrak{m}_{\nu} \leq \operatorname{dim} R \tag{2}
\end{equation*}
$$

If equality holds then $\Gamma_{\nu} \cong \mathbb{Z}^{m}$ as an unordered group, where $m=\operatorname{rat} \operatorname{rank} \nu$, and $V_{\nu} / \mathfrak{m}_{\nu}$ is a finitely generated field extension of R / \mathfrak{m}_{R}.

We have that

$$
\operatorname{rank} \nu \leq \operatorname{rat} \operatorname{rank} \nu \leq \operatorname{dim} R .
$$

Let $n=\operatorname{rank} \nu$. Then we have an order preserving embedding

$$
\begin{equation*}
\Gamma_{\nu} \subset \Gamma_{\nu} \mathbb{R} \cong\left(\mathbb{R}^{n}\right)_{\operatorname{lex}} \tag{3}
\end{equation*}
$$

If I is an ideal in R, we may define $\nu(I)=\min \{\nu(f) \mid f \in I \backslash\{0\}\}$, since $S^{R}(\nu)$ is well ordered.
\mathbb{N} denotes the natural numbers $\{0,1,2, \ldots\}$ and \mathbb{Z}_{+}denotes the positive integers $\{1,2,3, \ldots\}$.
Given elements z_{1}, \ldots, z_{n} in a group G, let $G\left(z_{1}, \ldots, z_{n}\right)$ be the subgroup generated by z_{1}, \ldots, z_{n}. Let $S\left(z_{1}, \ldots, z_{n}\right)$ be the semigroup generated by z_{1}, \ldots, z_{n}.
Lemma2 Lemma 2.1. Suppose that Γ is a totally ordered abelian group, I is a finite or countable index set of cardinality ≥ 2 and $\beta_{i} \in \Gamma$ are positive elements for $i \in I$. Let $\Lambda=|I|-1$. Let

$$
\bar{n}_{i}=\left[G\left(\beta_{0}, \ldots, \beta_{i}\right): G\left(\beta_{0}, \ldots, \beta_{i-1}\right)\right] \in \mathbb{Z}_{+} \cup\{\infty\}
$$

for ≥ 1. Assume that $\bar{n}_{i} \in \mathbb{Z}_{+}$if $i<\Lambda$. Let s_{i} be the smallest positive integer t such that $t \beta_{i} \in S_{i-1}$ (or $s_{i}=\infty$ if $i=\Lambda$ and no such t exists).

Suppose that $1 \leq k<\Lambda$ and $\bar{n}_{i} \beta_{i}<\beta_{i+1}$ for $1 \leq i \leq k-1$. Then

1) $s_{i}=\bar{n}_{i}$ for $1 \leq i \leq k$.
2) If $\gamma \in G\left(\beta_{0}, \ldots, \beta_{k}\right)$ and $\gamma \geq \bar{n}_{k} \beta_{k}$ then $\gamma \in S\left(\beta_{0}, \ldots, \beta_{k}\right)$.

Proof. We first prove 2). By repeated Euclidean division, we obtain an expansion $\gamma=$ $a_{0} \beta_{0}+a_{1} \beta_{1}+\cdots+a_{k} \beta_{k}$ with $a_{0} \in \mathbb{Z}$ and $0 \leq a_{i}<\bar{n}_{i}$ for $1 \leq i \leq k$. Now we calculate, using the inequalities $\bar{n}_{i} \beta_{i}<\beta_{i+1}$,

$$
a_{1} \beta_{1}+\cdots+a_{k} \beta_{k}<\bar{n}_{k} \beta_{k} .
$$

Thus $a_{0}>0$ and $\gamma \in S\left(\beta_{0}, \ldots, \beta_{k}\right)$.
Now 1) follows from 2) and induction on k.
A Laurent monomial in $H_{0}, H_{1}, \ldots, H_{l}$ is a product $H_{0}^{a_{0}} H_{1}^{a_{1}} \cdots H_{l}^{a_{l}}$ with $a_{0}, a_{1}, \ldots, a_{l} \in$ \mathbb{Z}.

Suppose that R is a regular local ring with maximal ideal \mathfrak{m}_{R}. Suppose that $f \in R$. Then we define

$$
\operatorname{ord}(f)=\max \left\{n \in \mathbb{N} \mid f \in \mathfrak{m}_{R}^{n}\right\}
$$

3. Regular local Rings of dimension two

Suppose that $\left(R, \mathfrak{m}_{R}\right)$ is a Noetherian local domain of dimension two. Up to order isomorphism, the value groups Γ_{ν} of a valuation ν which dominates R are by Abhyankar's inequality and Example 3, Section 15, Chapter VI [48]:

1. $\alpha \mathbb{Z}+\beta \mathbb{Z}$ with $\alpha, \beta \in \mathbb{R}$ rationally independent.
2. $\left(\mathbb{Z}^{2}\right)_{\text {lex }}$.
3. Any subgroup of \mathbb{Q}.

Suppose that N is a field, and V is a valuation ring of N. We say that the rank of V increases under completion if there exists an analytically normal local domain T with quotient field N such that V dominates T and there exists an extension of V to a valuation ring of the quotient field of \hat{T} which dominates \hat{T} and which has higher rank than the rank of V.
TheoremR4 Theorem 3.1. (Theorem 4.2, $\frac{C \mathrm{CK}}{[14]} ; \mathrm{S}_{4}{ }_{41}$ in in the case when R / \mathfrak{m}_{R} is algebraically closed) Suppose that V dominates an excellent two dimensional local ring R. Then the rank of V increases under completion if and only if V / \mathfrak{m}_{V} is finite over R / \mathfrak{m}_{R} and V is discrete of rank 1.

CorollaryR2 Corollary 3.2. If R is complete and ν is a discrete rank one valuation which dominates R then $\left[V_{\nu} / \mathfrak{m}_{\nu}: R / \mathfrak{m}_{R}\right]=\infty$.

The following example shows an important distinction between the case when R is complete and when R is not.

ExampleR1 Example 3.3. Suppose that \mathfrak{k} is a field and $R=\mathfrak{k}[x, y]_{(x, y)}$ is a localization of a polynomial ring in two variables. Then there exists a rank one discrete valuation ν dominating R such that $V_{\nu} / \mathfrak{m}_{\nu}=\mathfrak{k}$.
Proof. Let $f(t) \in \mathfrak{k}[t]]$ be a transcendental element over $\mathfrak{k}(t)$. Embed R into $\mathfrak{k}[[t]]$ by substituting t for x and $f(t)$ for y. The valuation ν on R obtained by restriction of the t-adic valuation to R has the desired properties.

Suppose that ν is a valuation which dominates R. Let a be the smallest positive element in $S^{R}(\nu)$. Suppose that $\left\{f_{i}\right\}$ is a Cauchy sequence in R (for the $\mathfrak{m}_{R^{\prime}}$-adic topology). Then
either there exist $n_{0} \in \mathbb{Z}_{+}, m \in \mathbb{Z}_{+}$and $\gamma \in S^{R}(\nu)$ such that $\gamma<m a$ and $\nu\left(f_{i}\right)=\gamma$ for $i \geq n_{0}$, or

Given $m \in \mathbb{Z}_{+}$, there exists $n_{0} \in \mathbb{Z}_{+}$such that $\nu\left(f_{i}\right)>m a$ for $i>n_{0}$
Let $I_{\hat{R}}$ be the set of limits of Cauchy sequences $\left\{f_{i}\right\}$ satisfying (egZ12 ${ }^{4}$.Then $I_{\hat{R}}$ is a prime

Prop17 Proposition 3.4. Suppose that R is a regular local ring of dimension two, and let ν be a valuation which dominates R. Then there exists an extension of ν to a valuation $\hat{\nu}$ which dominates the completion \hat{R} of R with respect to \mathfrak{m}_{R}, which has one of the following semigroups:

1. $\operatorname{rank} \nu=\operatorname{rank} \hat{\nu}=1$ and

$$
\begin{equation*}
S^{R}(\nu)=S^{\hat{R}}(\hat{\nu}) \tag{5}
\end{equation*}
$$

2. ν is discrete of rank 1, $\hat{\nu}$ is discrete of rank 2 and
(6) $S^{\hat{R}}(\hat{\nu})$ is generated by $S^{R}(\nu)$ and an element α such that $\alpha>\gamma$ for all $\gamma \in S^{R}(\nu)$.
3. ν and $\hat{\nu}$ are discrete of rank 2, there exists a height one prime I_{R} in R, and a discrete rank 1 valuation $\bar{\nu}$ which dominates the maximal ideal $\mathfrak{m}_{R}\left(R / I_{R}\right)$ of R / I_{R} such that
$S^{R}(\nu)$ is generated by $S^{R / I_{R}}(\bar{\nu})$ and an element α such that $\alpha>\gamma$
for all $\gamma \in S^{R / I_{R}}(\bar{\nu})$.
$S^{\hat{R}}(\hat{\nu})$ is generated by $S^{R / I_{R}}(\bar{\nu})$ and an element β such that $\alpha-t \beta \in S^{R / I_{R}}(\bar{\nu})$, for some $t \in \mathbb{Z}_{+}$. If $R_{\mathfrak{m}}$ is excellent, then $t=1$.
4. ν and $\hat{\nu}$ are discrete of rank 2, $I_{\hat{R}}=(0)$ and $S^{R}(\nu)=S^{\hat{R}}(\hat{\nu})$.

Proof. First suppose that ν has rank 1. Then $I_{\hat{R}} \cap R=(0)$, so we have an embedding $R \subset \hat{R} / I_{\hat{R}}$. We can then extend ν to a valuation $\bar{\nu}$ which dominates $\hat{R} / I_{\hat{R}}$ by defining for $f \notin I_{\hat{R}}, \bar{\nu}\left(f+I_{\hat{R}}\right)=\lim _{i \rightarrow \infty} \nu\left(f_{i}\right)$, where $\left\{f_{i}\right\}$ is a Cauchy sequence in R representing f. We have that $S^{R}(\nu)=S^{\hat{R} / I_{\hat{R}}}(\bar{\nu})$.

If $I_{\hat{R}}=(0)$ then we have constructed the desired extension $\hat{\nu}=\bar{\nu}$ of ν to \hat{R}. Suppose that $I_{\hat{R}} \neq(0)$. Then $\hat{R} / I_{\hat{R}}$ has dimension 1 , so $\bar{\nu}$ is discrete of rank 1 . We have that $I_{\hat{R}}=(v)$ is a height one prime ideal. We can extend $\bar{\nu}$ to a rank 2 valuation $\hat{\nu}$ which dominates \hat{R} by defining $\hat{\nu}(f)=(n, \bar{\nu}(g)) \in\left(\mathbb{Z} \bigoplus \Gamma_{\bar{\nu}}\right)_{\text {lex }}$ if $f \in \hat{R}$ has a factorization $f=v^{n} g$ where $n \in \mathbb{N}$ and $v \not \backslash g$.

Now assume that ν has rank 2. Further assume that $I_{\hat{R}} \cap R \neq(0)$. Then ν has rank 2, and $I_{R}=I_{\hat{R}} \cap R$ is a height one prime ideal in R. Thus there exists an irreducible $g \in R$ such that $I_{R}=(g)$. We then have that $I_{\hat{R}}$ is a height one prime ideal in \hat{R}, so there exists an irreducible $v \in \hat{R}$ such that $I_{\hat{R}}=(v)$.

There exists a valuation $\bar{\nu}$ dominating R / I_{R} such that if $f \in R$ has a factorization $f=g^{n} h$ where $g \not \backslash h$, then

$$
\nu(f)=n \nu(g)+\bar{\nu}(h)
$$

Write $g=v^{t} \varphi$ where $t \in \mathbb{Z}_{+}$and $v \nmid \varphi$. Thus $\varphi \notin I_{\hat{R}}$. If R is excellent, then g is reduced
 extends to a valuation $\hat{\bar{\nu}}$ which dominates $\hat{R} / I_{\hat{R}}$. We then extend ν to a valuation $\hat{\nu}$ which dominates \hat{R} by setting

$$
t \hat{\nu}(v)=\underset{7}{\nu(g)-\hat{\bar{\nu}}(\varphi)}
$$

in $\Gamma_{\nu} \mathbb{R} \cong\left(\mathbb{R}^{2}\right)_{\text {lex }}$. Suppose that $0 \neq f \in \hat{R}$. Factor f as $f=v^{n} h$ where $n \in \mathbb{N}$ and $v \not \nless h$. Then define

$$
\hat{\nu}(f)=n \hat{\nu}(v)+\hat{\bar{\nu}}(h) .
$$

We now show that $S^{R / I_{R}}(\bar{\nu})=S^{\hat{R} / I_{\hat{R}}(\hat{\bar{\nu}})}$. We have that $\hat{\bar{\nu}}\left(\mathfrak{m}\left(\hat{R} / I_{\hat{R}}\right)\right)=\bar{\nu}\left(\mathfrak{m}\left(R / I_{R}\right)\right)$. Suppose that $0 \neq h \in \hat{R} / I_{\hat{R}}$, and that $\hat{\bar{\nu}}(h)=\gamma$. There exists $n \in \mathbb{Z}_{+}$such that $n \hat{\bar{\nu}}\left(\mathfrak{m}\left(\hat{R} / I_{\hat{R}}\right)\right)>\gamma$ and there exists $f \in R$ such that if \bar{f} is the image of f in R / I_{R}, then $\bar{f}-h \in \mathfrak{m}^{n}\left(\hat{R} / I_{\hat{R}}\right)$. Thus $\nu(f)=\bar{\nu}(\bar{f})=\hat{\bar{\nu}}(h)=\gamma$.

Suppose that rank $\nu=2$ and $I_{\hat{R}} \cap R=(0)$. We can extend ν to a valuation $\bar{\nu}$ dominating $R / I_{\hat{R}}$ by defining for $f \notin I_{\hat{R}}, \bar{\nu}\left(f+I_{\hat{R}}\right)=\lim _{i \rightarrow \infty} \nu\left(f_{i}\right)$ if $\left\{f_{i}\right\}$ is a Cauchy sequence in R converging to f. We must have that $I_{\hat{R}}=(0)$, since otherwise we would be able to extend $\bar{\nu}$ to a valuation $\tilde{\nu}$ dominating \hat{R} which is composite with the rank 2 extension $\bar{\nu}$ of ν to $\hat{R} / I_{\hat{R}}$; this extension would have rank ≥ 3 which is impossible by Abhyankar's inequality. Thus $I_{\hat{R}}=(0)$.

Remark 3.5. Nagata gives an example in the Appendix to $\left[\frac{\mathrm{Na}}{39]}\right.$ of a regular local ring R of dimension two with an irreducible element $f \in R$ such that f is not reduced in \hat{R}.

4. The Algorithm

In this section, we will suppose that R is a regular local ring of dimension two, with maximal ideal \mathfrak{m}_{R} and residue field $\mathfrak{k}=R / \mathfrak{m}_{R}$. For $f \in R$, let \bar{f} or $[f]$ denote the residue of f in \mathfrak{k}. Suppose that $C S$ is a coefficient set of R. A coefficient set of R is a subset $C S$ of R such that the mapping $C S \rightarrow \mathfrak{k}$ defined by $s \mapsto \bar{s}$ is a bijection. We further require that $0 \in C S$ and $1 \in C S$.

Remark 4.1. Suppose that x, y are regular parameters in $R, a, b \in C S$ and $n \in \mathbb{Z}_{+}$. Let $c \in C S$ be defined by $\overline{a+b}=\bar{c}$. Then there exist $e_{i j} \in C S$ such that

$$
a+b=c+\sum_{i+j=1}^{n-1} e_{i j} x^{i} y^{j}+h
$$

with $h \in \mathfrak{m}_{R}^{n}$. Let $d \in C S$ be defined by $\overline{a b}=\bar{d}$. Then there exist $g_{i j} \in C S$ such that

$$
a b=d+\sum_{i+j=1}^{n-1} g_{i j} x_{i} y_{j}+h^{\prime}
$$

with $h^{\prime} \in \mathfrak{m}_{R}^{n}$.

Theorem1*

Theorem 4.2. Suppose that ν is a valuation of the quotient field of R dominating R. Let $L=V_{\nu} / m_{\nu}$ be the residue field of the valuation ring V_{ν} of ν. For $f \in V_{\nu}$, let $[f]$ denote the class of f in L. Suppose that x, y are regular parameters in R. Then there exist $\Omega \in \mathbb{Z}_{+} \cup\{\infty\}$ and $P_{i} \in \mathfrak{m}_{R}$ for $i \in \mathbb{Z}_{+}$with $i<\min \{\Omega+1, \infty\}$ such that $P_{0}=x, P_{1}=y$ and for $1 \leq i<\Omega$, there is an expression

$$
\begin{equation*}
P_{i+1}=P_{i}^{n_{i}}+\sum_{k=1}^{\lambda_{i}} c_{k} P_{0}^{\sigma_{i, 0}(k)} P_{1}^{\sigma_{i, 1}(k)} \cdots P_{i}^{\sigma_{i, i}(k)} \tag{8}
\end{equation*}
$$

with $n_{i} \geq 1, \lambda_{i} \geq 1$,

$$
\begin{equation*}
0 \neq c_{k} \in C S \tag{9}
\end{equation*}
$$

for $1 \leq k \leq \lambda_{i}, \sigma_{i, s}(k) \in \mathbb{N}$ for all $s, k, 0 \leq \sigma_{i, s}(k)<n_{s}$ for $s \geq 1$. Further,

$$
n_{i} \nu\left(P_{i}\right)=\nu\left(P_{0}^{\sigma_{i, 0}(k)} P_{1}^{\sigma_{i, 1}(k)} \cdots P_{i}^{\sigma_{i, i}(k)}\right)
$$

for all k.
For all $i \in \mathbb{Z}_{+}$with $i<\Omega$, the following are true:

1) $\nu\left(P_{i+1}\right)>n_{i} \nu\left(P_{i}\right)$.
2) Suppose that $r \in \mathbb{N}, m \in \mathbb{Z}_{+}, j_{k}(l) \in \mathbb{N}$ for $1 \leq l \leq m$ and $0 \leq j_{k}(l)<n_{k}$ for $1 \leq k \leq r$ are such that $\left(j_{0}(l), j_{1}(l), \ldots, j_{r}(l)\right)$ are distinct for $1 \leq l \leq m$, and

$$
\nu\left(P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \cdots P_{r}^{j_{r}(l)}\right)=\nu\left(P_{0}^{j_{0}(1)} \cdots P_{r}^{j_{r}(1)}\right)
$$

for $1 \leq l \leq m$. Then

$$
1,\left[\frac{P_{0}^{j_{0}(2)} P_{1}^{j_{1}(2)} \cdots P_{r}^{j_{r}(2)}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \cdots P_{r}^{j_{r}(1)}}\right], \ldots,\left[\frac{P_{0}^{j_{0}(m)} P_{1}^{j_{1}(m)} \cdots P_{r}^{j_{r}(m)}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \cdots P_{r}^{j_{r}(1)}}\right]
$$

are linearly independent over \mathfrak{k}.
3) Let

$$
\bar{n}_{i}=\left[G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{i}\right)\right): G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{i-1}\right)\right)\right] .
$$

Then \bar{n}_{i} divides $\sigma_{i, i}(k)$ for all k in (8). In1* n particular, $n_{i}=\bar{n}_{i} d_{i}$ with $d_{i} \in \mathbb{Z}_{+}$
4) There exists $U_{i}=P_{0}^{w_{0}(i)} P_{1}^{w_{1}(i)} \ldots P_{i-1}^{w_{i-1}(i)}$ for $i \geq 1$ with $w_{0}(i), \ldots, w_{i-1}(i) \in \mathbb{N}$ and $0 \leq w_{j}(i)<n_{j}$ for $1 \leq j \leq i-1$ such that $\nu\left(P_{i}^{\bar{n}_{i}}\right)=\nu\left(U_{i}\right)$ and if

$$
\alpha_{i}=\left[\frac{P_{i}^{\bar{n}_{i}}}{U_{i}}\right]
$$

then

$$
b_{i, t}=\left[\sum_{\sigma_{i, i}(k)=t \bar{n}_{i}} c_{k} \frac{P_{0}^{\sigma_{i, 0}(k)} P_{1}^{\sigma_{i, 1}(k)} \cdots P_{i-1}^{\sigma_{i, i-1}(k)}}{U_{i}^{\left(d_{i}-t\right)}}\right] \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)
$$

for $0 \leq t \leq d_{i}-1$ and

$$
f_{i}(u)=u^{d_{i}}+b_{i, d_{i}-1} u^{d_{i}-1}+\cdots+b_{i, 0}
$$

is the minimal polynomial of α_{i} over $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$.
The algorithm terminates with $\Omega<\infty$ if and only if either

$$
\begin{equation*}
\bar{n}_{\Omega}=\left[G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{\Omega}\right)\right): G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{\Omega-1}\right)\right)\right]=\infty \tag{10}
\end{equation*}
$$

or

$$
\begin{align*}
& \bar{n}_{\Omega}<\infty\left(\text { so that } \alpha_{\Omega}\right. \text { is defined as in 4)) and } \\
& d_{\Omega}=\left[\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{\Omega}\right): \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{\Omega-1}\right)\right]=\infty . \tag{11}
\end{align*}
$$

If $\bar{n}_{\Omega}=\infty$, set $\alpha_{\Omega}=1$.
Proof. Consider the following statements $A(i), B(i), C(i), D(i)$ for $1 \leq i<\Omega$:

There exists $U_{i}=P_{0}^{w_{0}(i)} P_{1}^{w_{1}(i)} \ldots P_{i-1}^{w_{i-1}(i)}$ for some $w_{j}(i) \in \mathbb{N}$ and $0 \leq w_{j}(i)<n_{j}$ for $1 \leq j \leq i-1$
such that $\bar{n}_{i} \nu\left(P_{i}\right)=\nu\left(U_{i}\right)$. Let $\alpha_{i}=\left[\frac{P_{i}^{\bar{n}_{i}}}{U_{i}}\right] \in L$ and
$f_{i}(u)=u^{d_{i}}+b_{i, d_{i}-1} u^{d_{i}-1}+\cdots+b_{i, 0} \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)[u]$
be the minimal polynomial of α_{i}.
Let d_{i} be the degree of $f_{i}(u)$, and $n_{i}=\bar{n}_{i} d_{i}$. Then there exist $a_{s, t} \in C S$
and $j_{0}(s, t), j_{1}(s, t), \ldots, j_{i-1}(s, t) \in \mathbb{N}$ with $0 \leq j_{k}(s, t)<n_{k}$
for $k \geq 1$ and $0 \leq t<\bar{d}_{i}$ such that
$\nu\left(P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i-1}^{j_{i-1}(s, t)} P_{i}^{t \bar{n}_{i}}\right)=\bar{n}_{i} d_{i} \nu\left(P_{i}\right)$
for all s, t and
satisfies

$$
b_{i, t}=\left[\sum_{s=1}^{\lambda_{t}} a_{s, t} \frac{P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t) \ldots} \ldots P_{i-1}^{j_{i}(s, t)}}{U_{i}^{d_{i}-t}}\right]
$$

for $0 \leq t \leq d_{i}-1$. In particular,

$$
\begin{equation*}
P_{i+1}:=P_{i}^{\bar{n}_{i} d_{i}}+\sum_{t=0}^{d_{i}-1}\left(\sum_{s=1}^{\lambda_{t}} a_{s, t} P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i-1}^{j_{i-1}(s, t)}\right) P_{i}^{t \bar{n}_{i}} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\nu\left(P_{i+1}\right)>n_{i} \nu\left(P_{i}\right) . \tag{13}
\end{equation*}
$$

$B(i) \quad$ Suppose that M is a Laurent monomial in $P_{0}, P_{1}, \ldots, P_{i}$ and $\nu(M)=0$. Then there exist $s_{i} \in \mathbb{Z}$ such that

$$
M=\prod_{j=1}^{i}\left[\frac{P_{j}^{\bar{n}_{j}}}{U_{j}}\right]^{s_{j}}
$$

so that

$$
[M] \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right) .
$$

Suppose that $\lambda \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right)$ and N is a Laurent monomial in $P_{0}, P_{1}, \ldots, P_{i}$ such that $\gamma=\nu(N) \geq n_{i} \nu\left(P_{i}\right)$. Then there exists

$$
\begin{equation*}
G=\sum_{j} c_{j} P_{0}^{\tau_{0}(j)} P_{1}^{\tau_{1}(j)} \cdots P_{i}^{\tau_{i}(j)} \tag{i}
\end{equation*}
$$

with $\tau_{0}(j), \ldots, \tau_{i}(j) \in \mathbb{N}, 0 \leq \tau_{k}(j)<n_{k}$ for $1 \leq k \leq i$ and $c_{j} \in C S$ such that

$$
\nu\left(P_{0}^{\tau_{0}(j)} P_{1}^{\tau_{1}(j)} \cdots P_{i}^{\tau_{i}(j)}\right)=\gamma \text { for all } j
$$

and

$$
\left[\frac{G}{N}\right]=\lambda .
$$

Suppose that $m \in \mathbb{Z}_{+}, j_{k}(l) \in \mathbb{N}$ for $1 \leq l \leq m$ and $0 \leq j_{k}(l)<n_{k}$ for $1 \leq k \leq i$ are such that the $\left(j_{0}(l), j_{1}(l), \ldots, j_{i}(l)\right)$ are distinct for $1 \leq l \leq m$, and $\nu\left(P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \cdots P_{i}^{j_{i}(l)}\right)=\nu\left(P_{0}^{j_{0}(1)} \cdots P_{i}^{j_{i}(1)}\right)$
$D(i) \quad$ for $1 \leq l \leq m$. Then
$1,\left[\frac{P_{0}^{j_{0}(2)} P_{1}^{j_{1}(2)} \ldots P_{i}^{j_{i}(2)}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \ldots P_{i}^{j_{i}(1)}}\right], \ldots,\left[\frac{P_{0}^{j_{0}(m)} P_{1}^{j_{1}(m)} \ldots P_{i}^{j_{i}(m)}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \ldots P_{i}^{j_{i}(1)}}\right]$
are linearly independent over \mathfrak{k}.
We will leave the proofs of $A(1), B(1), C(1)$ and $D(1)$ to the reader, as they are an easier variation of the following inductive statement, which we will prove.

Assume that $i \geq 1$ and $A(i), B(i), C(i)$ and $D(i)$ are true. We will prove that $A(i+1)$, $B(i+1)$ and $C(i+1)$ and $D(i+1)$ are true. Let $\beta_{j}=\nu\left(P_{j}\right)$ for $0 \leq j \leq i+1$. By Lemma [2.1, there exists $U_{i+1}=P_{0}^{w_{0}(i)} P_{1}^{w_{1}(i)} \cdots P_{i}^{w_{i}(i)}$ for some $w_{j}(i) \in \mathbb{N}$ such that $0 \leq w_{j}(i)<n_{j}$ for $1 \leq j \leq i$ and $\nu\left(U_{i+1}\right)=\bar{n}_{i+1} \beta_{i+1}\left(\right.$ where $\left.\bar{n}_{i+1}=\left[G\left(\beta_{0}, \ldots, \beta_{i+1}\right): G\left(\beta_{0}, \ldots, \beta_{i}\right)\right]\right)$.

Let $f_{i+1}(u)$ be the minimal polynomial of

$$
\alpha_{i+1}=\left[\frac{P_{i+1}^{\bar{n}_{i+1}}}{U_{i+1}}\right]
$$

over $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. Let $d=d_{i+1}=\operatorname{deg} f_{i+1}$. Expand

$$
f_{i+1}(u)=u^{d}+b_{d-1} u^{d-1}+\cdots+b_{0}
$$

with $b_{j} \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. For $j \geq 1$,

$$
\nu\left(U_{i+1}^{j}\right)=j \bar{n}_{i+1} \beta_{i+1} \geq \beta_{i+1}>n_{i} \beta_{i} .
$$

In the inductive statement $C(i)$, take $N=U_{i+1}^{d-t}$ for $0 \leq t<d=d_{i+1}$, to obtain for $0 \leq t<d_{i+1}$,

$$
\begin{equation*}
G_{t}=\sum_{s=1}^{\lambda_{t}} a_{s, t} P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i}^{j_{i}(s, t)} \tag{14}
\end{equation*}
$$

with $a_{s, t} \in C S, j_{k}(s, t) \in \mathbb{N}$ and $0 \leq j_{k}(s, t)<n_{k}$ for $1 \leq k \leq i$ such that

$$
\nu\left(G_{t}\right)=\nu\left(P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i}^{j_{i}(s, t)}\right)=(d-t) \bar{n}_{i+1} \beta_{i+1}
$$

for all s, t and

$$
\begin{equation*}
\left[\frac{G_{t}}{U_{i+1}^{d-t}}\right]=b_{t} . \tag{15}
\end{equation*}
$$

Set

$$
\begin{align*}
P_{i+2} & =P_{i+1}^{\bar{n}_{i+1} d_{i+1}}+G_{d-1} P_{i+1}^{\bar{n}_{i+1}\left(d_{i+1}-1\right)}+\cdots+G_{0} \tag{16}\\
& =P_{i+1}^{\bar{n}_{i+1} d_{i+1}}+\sum_{t=0}^{d-1} \sum_{s=1}^{\lambda_{t}} a_{s, t} P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i}^{j_{i}(s, t)} P_{i+1}^{t \bar{n}_{i+1}} .
\end{align*}
$$

We have established $A(i+1)$.
Suppose M is a Laurent polynomial in $P_{0}, P_{1}, \ldots, P_{i+1}$ and $\nu(M)=0$. We have a factorization

$$
M=P_{0}^{a_{0}} P_{11}^{a_{1}} \cdots P_{i}^{a_{i}} P_{i+1}^{a_{i+1}}
$$

with all $a_{j} \in \mathbb{Z}$. Thus $a_{i+1} \beta_{i+1} \in G\left(\beta_{0}, \ldots, \beta_{i}\right)$, so that \bar{n}_{i+1} divides a_{i+1}. Let $s=\frac{a_{i+1}}{\bar{n}_{i+1}}$. Then

$$
M=U_{i+1}^{s}\left(P_{0}^{a_{0}} P_{1}^{a_{1}} \cdots P_{i}^{a_{i}}\right)\left(\frac{P_{i+1}^{\bar{n}_{i+1}}}{U_{i+1}}\right)^{s}
$$

Now $U_{i+1}^{s} P_{0}^{a_{0}} \cdots P_{i}^{a_{i}}$ is a Laurent monomial in P_{0}, \ldots, P_{i} of value zero, so the validity of $B(i+1)$ follows from the inductive assumption $B(i)$.

We now establish $C(i+1)$. Suppose $\lambda \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i+1}\right)$ and N is a Laurent monomial in $P_{0}, P_{1}, \ldots, P_{i+1}$ such that $\gamma=\nu(N) \geq n_{i+1} \nu\left(P_{i+1}\right)$. We have

$$
\gamma \geq n_{i+1} \beta_{i+1}=\bar{n}_{i+1} d_{i+1} \beta_{i+1} \geq \bar{n}_{i+1} \beta_{i+1}
$$

 $0 \leq k<\bar{n}_{i+1}$ such that

$$
\bar{N}=P_{0}^{r_{0}} P_{1}^{r_{1}} \cdots P_{i}^{r_{i}} P_{i+1}^{k}
$$

satisfies $\nu(\bar{N})=\gamma$. Let $\tilde{N}=P_{0}^{r_{0}} P_{1}^{r_{1}} \cdots P_{i}^{r_{i}}$, so that $\bar{N}=\tilde{N} P_{i+1}^{k}$. Let $\tau=\left[\frac{N}{N}\right]$. We have that $0 \neq \tau \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i+1}\right)$ by $B(i+1)$.

Suppose $0 \leq j \leq d_{i+1}-1$. Then

$$
\begin{align*}
\nu\left(\frac{\tilde{N}}{U_{i+1}^{j}}\right) & =\nu(\tilde{N})-j \nu\left(U_{i+1}\right) \\
& \geq \gamma-\left(\bar{n}_{i+1}-1\right) \beta_{i+1}-\left(d_{i+1}-1\right) \bar{n}_{i+1} \beta_{i+1} \tag{17}\\
& \geq \bar{n}_{i+1} d_{i+1} \beta_{i+1}-\bar{n}_{i+1} \beta_{i+1}+\beta_{i+1}-d_{i+1} \bar{n}_{i+1} \beta_{i+1}+\bar{n}_{i+1} \beta_{i+1} \\
& \geq \beta_{i+1}>n_{i} \beta_{i} .
\end{align*}
$$

Write

$$
\tau \lambda=e_{0}+e_{1} \alpha_{i+1}+\cdots+e_{d_{i+1}-1} \alpha_{i+1}^{d_{i+1}-1}
$$

with $e_{j} \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right)$. By the inductive statement $C(i)$ and (legF2 (here exist for $0 \leq j \leq$ $d_{i+1}-1$

$$
H_{j}=\sum_{k} c_{k, j} P_{0}^{\delta_{0}(k, j)} P_{1}^{\delta_{1}(k, j)} \cdots P_{i}^{\delta_{i}(k, j)}
$$

with $\delta_{0}(k, j), \delta_{1}(k, j), \ldots, \delta_{i}(k, j) \in \mathbb{N}, 0 \leq \delta_{l}(k, j)<n_{l}$ for $1 \leq l$ and $c_{k, j} \in C S$ for all k, j such that

$$
\nu\left(P_{0}^{\delta_{0}(k, j)} P_{1}^{\delta_{1}(k, j)} \cdots P_{i}^{\delta_{i}(k, j)}\right)=\nu\left(\frac{\tilde{N}}{U_{i+1}^{j}}\right)
$$

for all j, k and

$$
\left[\frac{H_{j}}{\left(\frac{\tilde{N}}{U_{i+1}^{j}}\right)}\right]=e_{j}
$$

for all j. Set

$$
G=H_{0} P_{i+1}^{k}+H_{1} P_{i+1}^{\bar{n}_{i+1}+k}+\cdots+H_{d_{i+1}-1} P_{i+1}^{\bar{n}_{i+1}\left(d_{i+1}-1\right)+k} .
$$

We have

$$
\bar{n}_{i+1}\left(d_{i+1}-1\right)+k<\bar{n}_{i+1}\left(d_{i+1}-1\right)+\bar{n}_{i+1} \leq \bar{n}_{i+1} d_{i+1}=n_{i+1}
$$

and

$$
\frac{G}{\bar{N}}=\frac{H_{0}}{\tilde{N}}+\left(\frac{H_{1} U_{i+1}}{\tilde{N}}\right)\left(\frac{P_{i+1}^{\bar{n}_{i+1}}}{U_{i+1}}\right)+\cdots+\left(\frac{H_{d_{i+1}-1} U_{i+1}^{d_{i+1}-1}}{\tilde{N}}\right)\left(\frac{P_{i+1}^{\bar{n}_{i+1}}}{U_{i+1}}\right)^{d_{i+1}-1} .
$$

We have

$$
\left[\frac{G}{\bar{N}}\right]=e_{0}+e_{1} \alpha_{i+1}+\cdots+e_{d_{i+1}-1} \alpha_{i+1}^{d_{i+1}-1}=\tau \lambda .
$$

Thus

$$
\left[\frac{G}{N}\right]=\left[\frac{G}{\bar{N}}\right]\left[\frac{\bar{N}}{\bar{N}}\right]=\tau \lambda \tau^{-1}=\lambda .
$$

We have established $C(i+1)$.
Suppose that $D(i+1)$ is not true. We will obtain a contradiction. Under the assumption that $D(i+1)$ is not true, there exists $m \in \mathbb{Z}_{+}, j_{k}(l) \in \mathbb{N}$ for $1 \leq l \leq m$ with $0 \leq j_{k}(l)<n_{k}$ for $1 \leq k \leq i+1$ such that $\left(j_{0}(l), j_{1}(l), \ldots, j_{i+1}(l)\right)$ are distinct for $1 \leq l \leq m$, and

$$
\nu\left(P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \cdots P_{i+1}^{j_{i+1}(l)}\right)=\nu\left(P_{0}^{j_{0}(1)} P_{1}^{j_{0}(1)} \cdots P_{i+1}^{j_{i+1}(1)}\right)
$$

for $1 \leq l \leq m$ and $\tilde{a}_{l} \in \mathfrak{k}$ for $1 \leq l \leq m$ not all zero such that

$$
\tilde{a}_{1}+\tilde{a}_{2}\left[\frac{P_{0}^{j_{0}(2)} P_{1}^{j_{1}(2)} \cdots P_{i+1}^{j_{i+1}(2)}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \cdots P_{i+1}^{j_{i+1}(1)}}\right]+\cdots+\tilde{a}_{m}\left[\frac{P_{0}^{j_{0}(m)} P_{1}^{j_{1}(m)} \cdots P_{i}^{j_{i}(m)}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \cdots P_{i+1}^{j_{i+1}(1)}}\right]=0 .
$$

$\left(j_{i+1}(l)-j_{i+1}(1)\right) \beta_{i+1} \in G\left(\beta_{0}, \ldots, \beta_{i}\right)$ for $1 \leq l \leq m$, so \bar{n}_{i+1} divides $\left(j_{i+1}(l)-j_{i+1}(1)\right)$ for all l. Thus after possibly dividing all monomials $P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \cdots P_{i+1}^{j_{i+1}(l)}$ by a common power of P_{i+1}, we may assume that

$$
\bar{n}_{i+1} \text { divides } j_{i+1}(l) \text { for all } l
$$

After possibly reindexing the $P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \ldots P_{i+1}^{j_{i+1}(l)}$, we may assume that $j_{i+1}(1)=\bar{n}_{i+1} \varphi$ is the largest value of $j_{i+1}(l)$.

For $1 \leq l \leq m$, define $a_{l} \in C S$ by $\bar{a}_{l}=\tilde{a}_{l}$. Let

$$
Q=\sum_{l=1}^{m} a_{l} P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \cdots P_{i+1}^{j_{i+1}(l)}
$$

Let

$$
Q_{s}=\sum_{j_{i+1}(l)=s \bar{n}_{i}} a_{l} P_{0}^{j_{0}(l)} P_{1}^{j_{1}(l)} \cdots P_{i}^{j_{i}(l)}
$$

for $0 \leq s \leq \varphi$. Then

$$
\begin{equation*}
Q=\sum_{s=0}^{\varphi} Q_{s} P_{i+1}^{\bar{n}_{i+1} s} \tag{19}
\end{equation*}
$$

Let

$$
c_{s}=\left[\frac{Q_{s}}{P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \cdots P_{i}^{j_{i}(1)} U_{i+1}^{(\varphi-s)}}\right] \in \mathfrak{k}\left(\alpha_{1}, \ldots \alpha_{i}\right)
$$

by $B(i)$. We further have that $c_{\varphi} \neq 0$ by $D(i)$ since the monomials are all distinct.

Dividing Q by $P_{0}^{j_{0}(1)} P_{1}^{j_{1}(1)} \cdots P_{i}^{j_{i}(1)} U_{i+1}^{\varphi}$, we have

$$
0=\sum_{s=0}^{\varphi} c_{s} \alpha_{i+1}^{s}
$$

Thus the minimal polynomial $f_{i+1}(u)$ of α_{i+1} divides $g(u)=\sum_{s=0}^{\varphi} c_{s} u^{s}$ in $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right)[u]$. But then $\varphi \geq d_{i+1}$, so that $j_{i+1}(1)=\bar{n}_{i+1} \varphi \geq n_{i+1}$, a contradiction.

Theorem1* this statement (which has the same proof) (29) must be replaced with " c_{k} are units in R for $1 \leq k \leq \lambda_{i}$ ". In the proof, the statement " $a_{s, t} \in C S$ " in $A(i)$ must be replaced with " $a_{s, t}$ units in R or $a_{s, t}=0$ ". The statement " $c_{j} \in C S$ " in $C(i)$ must be replaced with " c_{j} is a unit in R or $c_{j}=0$ ".
RemarkH10 Remark 4.4. For $i>0$, there is an expression

$$
P_{i+1}=y^{n_{1} \cdots n_{i}}+x \Theta_{i+1}
$$

with $\Theta_{i+1} \in R$. This follows by considering the expression (l) (811* and the various constraints on the values of the terms of the monomials in this expression.

Theorem1*
 $\mathbb{Q} \nu(x)$ (so that $\operatorname{rank}(\nu)=2$) or ν is discrete of rank 1 with $\operatorname{trdeg}_{R / \mathfrak{m}_{R}} V_{\nu} / \mathfrak{m}_{\nu}=1$ (so that ν is divisorial).
 if either

$$
\left[G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{\Omega}\right)\right): G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{\Omega-1}\right)\right)\right]=\infty
$$

or

$$
\left[G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{\Omega}\right)\right): G\left(\nu\left(P_{0}\right), \ldots, \nu\left(P_{\Omega-1}\right)\right)\right]<\infty \text { and }\left[\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{\Omega}\right): \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{\Omega-1}\right)\right]=\infty .
$$

Remark2 Remark 4.6. Suppose that $\Omega=\infty$ and $n_{i}=1$ for $i \gg 0$ in the conclusions of Theorem 4.2. Then ν is discrete, and $V_{\nu} / \mathfrak{m}_{\nu}$ is finite over \mathfrak{k}.

Proof. We first deduce a consequence of the assumption that $\Omega=\infty$ and $n_{i}=1$ for $i \gg 0$. There exists $i_{0} \in \mathbb{Z}_{+}$such that $n_{i}=1$ for all $i \geq i_{0}$. Thus for $i \geq i_{0}, P_{i+1}$ is the sum of P_{i} and a \mathfrak{k}-linear combination of monomials M in x and the finitely many P_{j} with $j<i_{0}$, and with $\nu(M)=\nu\left(P_{i}\right)$. We see that the P_{i} form a Cauchy sequence in \hat{R} whose limit f in \hat{R} is nonzero (by Remark RemarkH10 4.4 , and such that $\lim _{i \rightarrow \infty} \nu\left(P_{i}\right)=\infty$.

Thus $I_{\hat{R}} \neq(0), \nu$ is discrete and $V_{\nu} / \mathfrak{m}_{\nu}$ is finite over \mathfrak{k} by the proof of Proposition ${ }^{\text {Prop17 }}$ 3.4.

RemarkH5 Remark 4.7. Suppose that $V_{\nu} / \mathfrak{m}_{\nu}=R / \mathfrak{m}_{R}$ in the hypotheses of Theorem ${ }^{\text {Theorem } 1 *} 4.2$ (so that there is no residue field extension). Then the P_{i} constructed by the algorithm are binomials for $i \geq 2$; (8) becomes

$$
P_{i+1}=P_{i}^{\bar{n}_{i}}+c U_{i}=P_{i}^{\bar{n}_{i}}+c P_{0}^{w_{0}(i)} \cdots P_{i-1}^{w_{i-1}(i)}
$$

for some $0 \neq c \in C S$.

Example 4.8. There exists a rank 2 valuation ν dominating $R=\mathfrak{k}[x, y]_{(x, y)}$ such that the set

$$
\left\{\nu\left(P_{0}\right), \nu\left(P_{1}\right), \nu\left(P_{2}\right), \ldots\right\}
$$

does not generate the semigroup $S^{R}(\nu)$.
Proof. Suppose that \mathfrak{k} is a field of characteristic zero. We define a rank 2 valuation $\hat{\nu}$ on $\mathfrak{k}[[x, y]]$. Let $g(x, y)=y-x \sqrt{x+1}$. For $0 \neq f(x, y) \in \mathfrak{k}[[x, y]]$, we have a factorization $f=g^{n} h$ where $n \in \mathbb{N}$ and $g \not \backslash h$. The rule

$$
\hat{\nu}(f)=(n, \operatorname{ord}(h(x, x \sqrt{1+x}))) \in\left(\mathbb{Z}^{2}\right)_{\operatorname{lex}}
$$

then defines a rank 2 valuation dominating $\mathfrak{k}[[x, y]]$ with value group $\left(\mathbb{Z}^{2}\right)_{\text {lex }}$.
We have that $(g) \cap \mathfrak{k}[x, y]=\left(y^{2}-x^{2}-x^{3}\right)$. Thus $\hat{\nu}$ restricts to a rank 2 valuation ν which dominates the maximal ideal $\mathfrak{n}=(x, y)$ of $\mathfrak{k}[x, y]$. Expand

$$
x \sqrt{1+x}=\sum_{j \geq 1} a_{i} x^{j}=x+\frac{1}{2} x^{2}-\frac{1}{8} x^{3}+\cdots
$$

as a series with all $a_{j} \in \mathfrak{k}$ non zero. Applying the algorithm of Theorem Theorem $1 *$. ${ }^{\text {The }}$, wenstruct the infinite sequence of polynomials P_{1}, P_{2}, \cdots where $P_{0}=x, P_{1}=y$ and $P_{i}=y-$ $\sum_{j=1}^{i-1} a_{i} x^{i}$ for $i \geq 2$. We have that $\nu\left(P_{i}\right)=(0, i)$ for $i \geq 0$. However, $\nu\left(y^{2}-x^{2}-x^{3}\right)=(1,1)$.

Thus the set $\left\{\nu(x), \nu\left(P_{1}\right), \nu\left(P_{2}\right), \ldots\right\}$ does not generate the semigroup $S^{R}(\nu)$.

Lemma 4.9. Suppose that ν is a valuation dominating R. Let

$$
P_{0}=x, P_{1}=y, P_{2}, \ldots
$$

Theorem1*
be the sequence of elements of R constructed by Theorem $\frac{\text { Theorem } 1 *}{4.2 . ~ S e t ~} \beta_{i}=\nu\left(P_{i}\right)$ for $i \geq 0$. Suppose that $P_{0}^{m_{0}} P_{1}^{m_{1}} \ldots P_{r}^{m_{r}}$ is a monomial in $P_{0}, \ldots, P_{\text {eqм }}$ and $m_{i} \geq n_{i}$ for some $i \geq 1$. Let $\rho=\nu\left(P_{0}^{m_{0}} P_{1}^{m_{1}} \cdots P_{r}^{m_{r}}\right)$. Then with the notation of (12),

$$
\begin{align*}
P_{0}^{m_{0}} \cdots P_{r}^{m_{r}}= & -\sum_{t=0}^{d_{i}-1} \sum_{s=1}^{\lambda_{t}} a_{s, t} P_{0}^{m_{0}+j_{0}(s, t)} \cdots P_{i-1}^{m_{i-1}+j_{i-1}(s, t)} P_{i}^{m_{i}-n_{i}+t \bar{n}_{i}} P_{i+1}^{m_{i+1}} \cdots P_{r}^{m_{r}} \tag{20}\\
& +P_{0}^{m_{0}} \cdots P_{i}^{m_{i}-n_{i}} P_{i+1}^{m_{i+1}+1} \cdots P_{r}^{m_{r}}
\end{align*}
$$

All terms in the first sum of (120) (20) have value ρ and $\nu\left(P_{0}^{m_{0}} \cdots P_{i}^{m_{i}-n_{i}} P_{i+1}^{m_{i+1}+1} \cdots P_{r}^{m_{r}}\right)>\rho$.
Suppose that W is a Laurent monomial in P_{0}, \ldots, P_{r} such that $\nu(W)=\rho$. Then

$$
\begin{equation*}
\left[\frac{P_{0}^{m_{0}} P_{1}^{m_{1}} \cdots P_{r}^{m_{r}}}{W}\right]=-\sum_{t=0}^{d_{i}-1} \sum_{s=1}^{\lambda_{t}} \bar{a}_{s, t}\left[\frac{P_{0}^{m_{0}+j_{0}(s, t)} \cdots P_{i-1}^{m_{i-1}+j_{i-1}(s, t)} P_{i}^{m_{i}-n_{i}+\bar{n}_{i} t} P_{i+1}^{m_{i+1}} \cdots P_{r}^{m_{r}}}{W}\right] \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(m_{0}+j_{0}(s, t)\right)+\cdots+\left(m_{i-1}+j_{i-1}(s, t)\right)+\left(m_{i}-n_{i}+t \bar{n}_{i}\right)+m_{i+1}+\cdots+m_{r} \tag{22}\\
& >m_{0}+m_{1}+\cdots+m_{r}
\end{align*}
$$

for all terms in the first sum of (20) (20).
Proof. We have

$$
P_{0}^{m_{0}} \cdots P_{r}^{m_{r}}=P_{0}^{m_{0}} \cdots P_{i}^{n_{i}} P_{i}^{m_{i}-n_{i}} \cdots P_{r}^{m_{r}}
$$

where $m_{i}-n_{i} \geq 0_{\text {eqhat }}$ Substituting $\left(\frac{(\text { egM1 }}{12)}\right.$ for $P_{i}^{n_{i}}$, we obtain equation (eqW1 (20). We compute, from the first term of (20),

$$
\begin{aligned}
& -\sum_{t=1}^{d_{i}-1} \sum_{s=1}^{\lambda_{t}} \bar{a}_{s, t}\left[\frac{P_{0}^{m_{0}+j_{0}(s, t)} \ldots P_{r}^{m_{r}}}{W}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\left[\frac{P_{0}^{m_{0} \ldots P_{i}^{m_{i}-n_{i}} \ldots P_{r}^{m_{r}} U_{i}^{d_{i}}}}{W}\right]\left(\sum_{t=0}^{d_{i}-1} b_{i, t} \alpha_{i}^{t}\right) \\
& =\left[\frac{P_{0}^{m_{0} \ldots P_{i}^{m_{i}-n_{i}} \ldots P_{r}^{m_{r}} U_{i}^{d_{i}}}}{W}\right] \alpha_{i}^{d_{i}} \\
& \begin{array}{l}
=\left[\frac{P_{0}^{m_{0}} \ldots P_{i}^{m_{i}-n_{i} \ldots P_{r}^{m_{r}} U_{i}^{d_{i}}}{ }^{W}}{W}\right]\left[\frac{P_{i}^{\bar{n}_{i}}}{U_{i}}\right]^{d_{i}} \\
=\left[\frac{P_{0}^{m_{0}} \ldots P_{i}^{m_{i}} \ldots P_{r}^{m_{r}}}{W}\right],
\end{array}
\end{aligned}
$$

giving (2egw2). For all s, t (with $0 \leq t \leq d_{i}-1$),

$$
\begin{aligned}
n_{i} \beta_{i} & =j_{0}(s, t) \beta_{0}+j_{1}(s, t) \beta_{1}+\cdots+j_{i-1}(s, t) \beta_{i-1}+\bar{n}_{i} t \beta_{i} \\
& <\left(j_{0}(s, t)+j_{1}(s, t)+\cdots+j_{i-1}(s, t)+\bar{n}_{i} t\right) \beta_{i}
\end{aligned}
$$

so

$$
n_{i}<j_{0}(s, t)+j_{1}(s, t)+\cdots+j_{i-1}(s, t)+\bar{n}_{i} t .
$$

${ }_{(22)}^{(\text {eqW }}$ follows.

Theorem 4.10. Suppose that ν is a valuation dominating R. Let

$$
P_{0}=x, P_{1}=y, P_{2}, \ldots
$$

be the sequence of elements of R constructed by Theorem $\frac{\text { Theorem } 1 *}{4.2 . \text { Set }} \beta_{i}=\nu\left(P_{i}\right)$ for $i \geq 0$. Suppose that $f \in R$ and there exists $n \in \mathbb{Z}_{+}$such that $\nu(f)<n \nu\left(\mathfrak{m}_{R}\right)$. Then there exists an expansion

$$
f=\sum_{I} a_{I} P_{0}^{i_{0}} P_{1}^{i_{1}} \cdots P_{r}^{i_{r}}+\sum_{J} \varphi_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}}+h
$$

where $r \in \mathbb{N}$, $a_{I} \in C S, I, J \in \mathbb{N}^{r+1}, \nu\left(P_{0}^{i_{0}} P_{1}^{i_{1}} \cdots P_{r}^{i_{r}}\right)=\nu(f)$ for all I in the first sum, $0 \leq i_{k}<n_{k}$ for $1 \leq k \leq r, \nu\left(P_{0}^{j_{0}} \cdots P_{r}^{j_{r}}\right)>\nu(f)$ for all terms in the second sum, $\varphi_{J} \in R$ and $h \in \mathfrak{m}_{R}^{n}$.

The first sum is uniquely determined by these conditions.
Proof. We first prove existence. We have an expansion

$$
f=\sum a_{i_{0}, i_{1}} x^{i_{0}} y^{i_{1}}+h_{0}
$$

with $a_{i_{0}, i_{1}} \in C S$ and $h_{0} \in \mathfrak{m}_{R}^{n}$. More generally, suppose that we have an expansion

$$
\begin{equation*}
f=\sum a_{I} P_{0}^{i_{0}} P_{1}^{i_{1}} \cdots P_{r}^{i_{r}}+h \tag{23}
\end{equation*}
$$

for some $r \in \mathbb{Z}_{+}, I=\left(i_{0}, \ldots, i_{r}\right) \in \mathbb{N}^{r+1}, a_{I} \in C S$ and $h \in \mathfrak{m}_{R}^{n}$. Let

$$
\rho=\min \left\{\nu\left(P_{0}^{i_{0}} P_{16}^{i_{1}} \cdots P_{r}^{i_{r}}\right) \mid a_{I} \neq 0\right\} .
$$

We can rewrite ${ }_{\left({ }^{(23 G)} \text { (23) }\right.}$ as

$$
\begin{equation*}
f=\sum_{J} a_{J} P_{0}^{j_{0}} P_{1}^{j_{1}} \cdots P_{r}^{j_{r}}+\sum_{J^{\prime}} a_{J^{\prime}} P_{0}^{j_{0}^{\prime}} P_{1}^{j_{1}^{\prime}} \cdots P_{r}^{j_{r}^{\prime}}+h \tag{24}
\end{equation*}
$$

where the terms in the first sum have minimal value $\nu\left(P_{0}^{j_{0}} P_{1}^{j_{1}} \cdots P_{r}^{j_{r}}\right)=\rho$ and the nonzero terms in the second sum have value $\nu\left(P_{0}^{j_{0}^{\prime}} P_{1}^{j_{1}^{\prime}} \ldots P_{r}^{j_{r}^{\prime}}\right)>\rho$.

If we have that the first sum is nonzero and $0 \leq j_{k}<n_{k}$ for $1 \leq k \leq r$ for all terms in the first sum of (24) then $\rho=\nu(f)$ and we have achieved the conclusions of the theorem. So suppose that one of these conditions fails.

First suppose that $\sum_{J} a_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}} \neq 0$ and for some $J, j_{i} \geq n_{i}$ for some $i \geq 1$. Let

$$
a=\min \left\{j_{0}+\cdots+j_{r} \mid j_{i} \geq n_{i} \text { for some } i \geq 1\right\}
$$

and let b be the numbers of terms in $\sum_{J} a_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}}$ such that $j_{i} \geq n_{i}$ for some $i \geq 1$ and $j_{0}+\cdots+\bar{j}_{r}=a$. Let $\sigma=(a, b) \in\left(\mathbb{Z}^{2}\right)_{\text {lex }}$. Let $J_{0}=\left(\bar{j}_{0}, \ldots, \bar{j}_{r}\right)$ be such that $a_{J_{0}} \neq 0$ and $\bar{j}_{0}+\cdots+\bar{j}_{r}=a$. Write

$$
P_{0}^{\bar{j}_{0}} \cdots P_{r}^{\bar{j}_{r}}=P_{0}^{\bar{j}_{0}} \cdots P_{i}^{\bar{j}_{i}-n_{i}} P_{i}^{n_{i}} \cdots P_{r}^{\bar{j}_{r}}
$$

and substitute (eqM1 (I2) $P_{i}^{n_{i}}$ to obtain an expression of the form eqW1
 an expression of the form (24) such that either the first sum is zero or the first sum is nonzero and all terms in the first sum satisfy $j_{i}<n_{i}$ for $1 \leq i$ so that $\nu(f)=\rho$ and we have achieved the conclusions of the therem, or the first sum has a nonzero term which satisfies $j_{i} \geq n_{i}$ for some $i \geq 1$. By (2q), we have an increase in σ if this last case holds.

Since there are only finitely many monomials M in $P_{0}, \ldots P_{r}$ which have the yalue ρ, after a finite number of iterations of this step we must either find an expression (24) where the first sum is zero, or attain an expression (24) satisfying the conclusions of the theorem.

If we obtain an expression (24) where the first sum is zero, then we have an expression (23) with an increase in ρ (and possibly an increase in r), and we repeat the last step, either attaining the conclusions of the theorem or obtaining another increase in ρ. Since there are only a finite number of monomials in the $\left\{P_{i}\right\}$ which have value $\leq \nu(f)$, we must achieve the conclusions of the theorem in a finite number of steps

Uniqueness of the first sum follows from 2) of Theorem 4.2.

Theorem 4.11. Suppose that ν is a rank 1 valuation which dominates R and $\nu(x)=$ $\nu\left(\mathfrak{m}_{R}\right)$. Then
a) The set $\left\{\operatorname{in}_{\nu}(x)\right\} \cup\left\{\operatorname{in}_{\nu}\left(P_{i}\right) \mid n_{i}>1\right\}$ minimally generates $\operatorname{gr}_{\nu}(R)$ as a \mathfrak{k}-algebra.
b) The set

$$
\{\nu(x)\} \cup\left\{\nu\left(P_{i}\right) \mid \bar{n}_{i}>1\right\}
$$

minimally generates the semigroup $S^{R}(\nu)$.
 4.2.

Proof. Theorem $\frac{\text { TheoremG2 }}{4.10}$ implies that the set $\left\{\operatorname{in}_{\nu}(x)\right\} \cup\left\{\operatorname{in}_{\nu}\left(P_{i}\right) \mid n_{i}>1\right\}$ generates $\operatorname{gr}_{\nu}(R)$ as a \mathfrak{k}-algebra. We will show that the set generates $\operatorname{gr}_{\nu}(R)$ minimally. Suppose that it doesn't. Then there exists an $i \in \mathbb{N}$ such that $n_{i}>1$ if $i>0$ and a sum

$$
\begin{equation*}
H=\sum_{J} c_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}} \tag{25}
\end{equation*}
$$

for some $r \in \mathbb{N}$ with $c_{J} \in C S$ such that the monomials $P_{0}^{j_{0}} \ldots P_{r}^{j_{r}}$ have value $\nu\left(P_{0}^{j_{0}} \ldots P_{r}^{j_{r}}\right)=$ $\nu\left(P_{i}\right)$ with $j_{i}=0$ and $j_{k}=0$ if $n_{k}=1$ for $1 \leq k \leq r$ for all J, and

$$
\nu\left(\sum_{J} c_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}}-P_{i}\right)>\nu\left(P_{i}\right) .
$$

We thus have The $\left._{\text {be }} 1\right)_{\text {qf }}$ of Theorem $\frac{\text { heorem } 1 *}{4.2 \text { and } \text { since } ~} \nu\left(P_{0}\right)=\nu\left(\mathfrak{m}_{R}\right)$, that $r \leq i-1$. Thus $i \geq 1$. By Theorem 4.10 applied to H, we have an expression

$$
\begin{equation*}
P_{i}=\sum_{K} d_{K} \mathcal{P}_{0}^{k_{0}} \cdots P_{s}^{k_{s}}+f \tag{26}
\end{equation*}
$$

where $s \in \mathbb{N}, d_{K} \in C S, 0 \leq k_{l}<n_{l}$ for $1 \leq l$, some $d_{K} \neq 0, f \in R$ is such that $\nu(f)>\nu\left(P_{i}\right)$, and

$$
\nu\left(P_{0}^{k_{0}} \ldots P_{i}^{k_{s}}\right)=\nu(H)=\nu\left(P_{i}\right)
$$

for all monomials in the first sum of (26). Since the minimal value terms of the expression of
 the algorithm of Theorem 4.10 endhyoith $s_{\text {dem }} \leq i-1$ in (26). But then we obtain from (26) a contradiction to 2) of Theorem 4.2 .2 *

Now a) and 3) of Theorem 4.2 imply statement b).
Suppose that $\lambda \in L=V_{\nu} / \mathfrak{m}_{\nu}$. Then $\lambda=\left[\frac{f}{f^{\prime}}\right]$ for some $f, f^{\prime} \in R$ with $\nu(f)=\nu\left(f^{\prime}\right)$. By Theorem 4.10, there exist $r \in \mathbb{Z}_{+}$and expressions

$$
\begin{aligned}
& f=\sum_{i=1}^{m} a_{i} P_{0}^{\sigma_{0}(i)} P_{1}^{\sigma_{1}(i)} \cdots P_{r}^{\sigma_{r}(i)}+h, \\
& f^{\prime}=\sum_{j=1}^{n} b_{j} P_{0}^{\tau_{0}(j)} P_{1}^{\tau_{1}(j)} \cdots P_{r}^{\tau_{r}(j)}+h^{\prime}
\end{aligned}
$$

with $a_{i}, b_{j} \in C S, 0 \leq \sigma_{k}(i)<n_{k}$ for $1 \leq k$ and $0 \leq \tau_{k}(j)<n_{k}$ for $1 \leq k$, the $P_{0}^{\sigma_{0}(i)} P_{1}^{\sigma_{1}(i)} \cdots P_{r}^{\sigma_{r}(i)}, P_{0}^{\tau_{0}(j)} P_{1}^{\tau_{1}(j)} \cdots P_{r}^{\tau_{r}(j)}$ all have the common value

$$
\rho:=\nu(f)=\nu\left(f^{\prime}\right),
$$

$h, h^{\prime} \in R$ and $\nu(h)>\rho, \nu\left(h^{\prime}\right)>\rho$.

$$
\begin{aligned}
& \lambda=\left(\sum_{i} \bar{a}_{i}\left[P_{0}^{\sigma_{0}(i)-\sigma_{0}(1)} \cdots P_{r}^{\sigma_{r}(i)-\sigma_{r}(1)}\right]\right)\left(\sum_{j} \bar{b}_{j}\left[P_{0}^{\tau_{0}(i)-\sigma_{0}(1)} \cdots P_{r}^{\tau_{r}(i)-\sigma_{r}(1)}\right]\right)^{-1} \\
& \quad \in \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{r}\right) \\
& B(r) \text { Theorem } 1 *
\end{aligned}
$$

by $B(r)$ of the proof of Theorem $\frac{T h e o t}{4.2}$.

If $V_{\nu} / \mathfrak{m}_{\nu}$ is transcendental over \mathfrak{k} then $\Gamma_{\nu} \cong \mathbb{Z}$ by Abhyankar's inequality. Zariski called such a valuation a "prime divisor of the second kind". By c) of Theorem 4.11, $V_{\nu} / \mathfrak{m}_{\nu}=\mathfrak{k}\left(\alpha_{i} \mid d_{i}>1\right)$. There thus exists an index i such that $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$ is algebraic over \mathfrak{k} and $\alpha_{\dot{d}}$ is is $_{1}$ transcendental over $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$. Thus $\Omega=i$ in the algorithm of Theorem 4.2, since α_{i} does not have a minimal polynomial over $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$.

Corollary3* Theorem 4.12. Suppose that ν is a rank 2 valuation which dominates R and $\nu(x)=$ $\nu\left(\mathfrak{m}_{R}\right)$. Let I_{ν} be the height one prime ideal in V_{ν}. Then one of the following three cases hold:

1. $I_{\nu} \cap R=\mathfrak{m}_{R}$. Then
a) the finite set

$$
\left\{\operatorname{in}_{\nu}(x)\right\} \cup\left\{\operatorname{in}_{\nu}\left(P_{i}\right) \mid n_{i}>1\right\}
$$

minimally generates $\operatorname{gr}_{\nu}(R)$ as an \mathfrak{k}-algebra and
b) the finite set

$$
\{\nu(x)\} \cup\left\{\nu\left(P_{i}\right) \mid \bar{n}_{i}>1\right\}
$$

minimally generates the semigroup $S^{R}(\nu)$.
c) $V_{\nu} / \mathfrak{m}_{\nu}=\mathfrak{k}\left(\alpha_{i} \mid d_{i}>1\right)$.
2. $I_{\nu} \cap R=\left(P_{\Omega}\right)$ is a height one prime ideal in R and
a) the finite set

$$
\left\{\operatorname{in}_{\nu}(x)\right\} \cup\left\{\operatorname{in}_{\nu}\left(P_{i}\right) \mid n_{i}>1\right\}
$$

minimally generates $\operatorname{gr}_{\nu}(R)$ as a \mathfrak{k}-algebra, and
b) The finite set

$$
\{\nu(x)\} \cup\left\{\nu\left(P_{i}\right) \mid \bar{n}_{i}>1\right\}
$$

minimally generates the semigroup $S^{R}(\nu)$.
c) $V_{\nu} / \mathfrak{m}_{\nu}=\mathfrak{k}\left(\alpha_{i} \mid d_{i}>1\right)$.
3. $I_{\nu} \cap R=(g)$ is a height one prime ideal in R and
a) the finite set

$$
\left\{\operatorname{in}_{\nu}(x)\right\} \cup\left\{\operatorname{in}_{\nu}\left(P_{i}\right) \mid n_{i}>1\right\} \cup\left\{\operatorname{in}_{\nu}(g)\right\}
$$

minimally generates $\operatorname{gr}_{\nu}(R)$ as a \mathfrak{k}-algebra, and
b) The finite set

$$
\{\nu(x)\} \cup\left\{\nu\left(P_{i}\right) \mid \bar{n}_{i}>1\right\} \cup\{\nu(g)\}
$$

minimally generates the semigroup $S^{R}(\nu)$.
c) $V_{\nu} / \mathfrak{m}_{\nu}=\mathfrak{k}\left(\alpha_{i} \mid d_{i}>1\right)$.

Proof. Since ν has rank 2 , the set $\left\{P_{i} \mid n_{i}>1\right\}$ is a finite set since otherwise either Γ_{ν} is not a finitely generated group or $^{\text {grored }} V_{\nu} / \mathfrak{m}_{\nu}$ is not a finitely generated field extension of \mathfrak{k}, by 3) and 4) of Theorem $\frac{\text { heoremis }}{4.2 \text {, which }}$ is a contradiction to Abhyankar's inequality.

The case when $I_{\nu} \cap R=\mathfrak{m}_{R}$ now follows from Theorem Corollary1* ${ }^{\text {and }} 2$), 3) of Theorem 4.2 ; the proof of c) is the same as the proof of c) of Theorem 4.11 .

Suppose that $I_{\nu} \cap R=(g)$ is a height one prime ideal in R. Suppose that $f \in R$. Then there exists $n \in \mathbb{N}$ and $u \in R$ such that $f=g^{n} u$ with $u \notin(g)$. Thus

$$
\begin{equation*}
\nu(f)=n \nu(g)+\nu(u) \tag{27}
\end{equation*}
$$

Assume that $\Omega<\infty$. Then $\nu\left(P_{\Omega}\right) \notin \mathbb{Q} \nu\left(\mathfrak{m}_{R}\right)$ by Remark R RemarkH2 4.5 Then $P_{\Omega}=g f$ for some $f \in R$. We will show that f is a unit in R. Suppose not. Then $\nu(g)<\nu\left(P_{\Omega}\right)$. Let $t=\operatorname{ord}(g)$. There exists $c \in \mathbb{Z}_{+}$such that if $j_{0}, j_{1}, \ldots, j_{\Omega-1} \in \mathbb{N}$ are such that $\nu\left(P_{0}^{j_{0}} P_{1}^{j_{1}} \cdots P_{\Omega-1}^{j_{\Omega-1}}\right) \geq c \nu\left(\mathfrak{m}_{R}\right)$ then $\operatorname{ord}\left(P_{0}^{j_{0}} P_{1}^{j_{1}} \cdots P_{\Omega-1}^{j_{\Omega-1}}\right)>t$. We may assume that c is larger than t. Write

$$
g=\sum_{i, j=1}^{c} a_{i j} x^{i} y^{j}+\Lambda
$$

with $\Lambda \in \mathfrak{m}_{R}^{c}$ and $a_{i j} \in C S . g$ has an expression of the form

$$
\begin{equation*}
g=\sum_{J} a_{J} P_{0}^{j_{0}} \cdots P_{\Omega}^{j_{\Omega}}+\sum_{J^{\prime}} a_{J^{\prime}} P_{0}^{j_{0}^{\prime}} \cdots P_{\Omega}^{j_{\Omega^{\prime}}}+h \tag{28}
\end{equation*}
$$

with $a_{J}, a_{J^{\prime}} \in C S$ and $h \in \mathfrak{m}_{R}^{c}$, and the terms in the first sum all have a common value ρ, which is smaller than the values of the terms in the second sum.

Now we draw some conclusions which must hold for an expression of the form (eq*). We must have that

$$
\begin{equation*}
\rho<c \nu\left(\mathfrak{m}_{R}\right), \tag{29}
\end{equation*}
$$

since otherwise, by our choice of c and our assumption that $\operatorname{ord}(f)>0$, so that $\operatorname{ord}\left(P_{\Omega}\right)>$ $\operatorname{ord}(g)=t$, we would have that the right hand side of (28) has order larger than t, which is impossible. In particular, we have

$$
\begin{equation*}
j_{\Omega}=0 \tag{30}
\end{equation*}
$$

in all terms in the first sum.
We also must have that

$$
\begin{equation*}
j_{i} \geq n_{i} \text { for some } i \text { with } 1 \leq i<\Omega \text { for all terms in the first sum. } \tag{31}
\end{equation*}
$$

This follows since otherwise we would have $\nu(g)_{\overline{\overline{\mathfrak{d}}}} \rho<c \nu\left(\mathfrak{m}_{R}\right)$, which is impossible.
We apply the algorithm of Theorem 4.9 to (28), and apply a substitution of the form (20) to a monomial in the first sum. As shown in the proof of Theorem 4.9, we must obtain
obtat an expression (28) with an increase in ρ after a finite number of iterations, since ${ }^{\left({ }^{\text {eg ** }} \text {. }\right.}$ must continue to hold. Since there are only finitely many values in the semigroup $S^{R}(\nu)$ between 0 and $c \nu\left(\mathfrak{m}_{R}\right)$, after finitely many iterations of the algorithm we obtain an expression (28) with $\rho \geq c \nu\left(\mathfrak{m}_{R}\right)$, which is a contradiction to (29). This contradiction shows that P_{Ω} is a unit times g, so we may replace g with P_{Ω}, and we are in Case 2 of the conclusions of the corollary.

If $\Omega=\infty$ then $\nu\left(P_{i}\right) \in \mathbb{Q} \nu\left(\mathfrak{m}_{R}\right)$ for all i (by Remark $\frac{\text { RemarkH2 }}{4.5 \text {) and }}$ we are in Case 3 of the conclusions of the corollary.

The conclusions of a) and b) of Cases 2 and 3 of the corollary now follow from applying Theorem 4.10 and 2), 3) of Theorem $\sqrt{4.2}$ to u in (2Z).

Suppose that $\lambda \in V_{\nu} / \mathfrak{m}_{\nu}$. Then $\lambda=\left[\frac{f}{f^{\prime}}\right]$ for some $f, f^{\prime} \in R$ with $\nu(f)=\nu\left(f^{\prime}\right)$. We may assume (after possibly dividing out a common factor) that $g \not \backslash f$ and $q_{0} \gamma_{1} f_{\text {ary } 17}^{\prime}$ Then the proof of c) of cases 2 and 3 proceeds as in the proof of c) of Theorem 4.11.

5. VALUATION SEMIGROUPS AND RESIDUE FIELD EXTENSION ON A TWO DIMENSIONAL REGULAR LOCAL RING

In this section, we prove Theorem $\frac{\text { Theorem3* }}{1.1 \text { which is stated in the introduction. Theorem }}$ $\|_{1.1}^{\text {Theorem3* }}$ gives necessary and sufficient conditions for a semigroup and field extension to be the valuation semigroup and residue field of a valuation dominating a regular local ring of dimension two.

Suppose that ν is a valuation dominating R. Let $S=S^{r}(\nu)$ and $L=V_{\nu} / \mathfrak{m}_{\nu}$. Let x, y be regular parameters in R such that $\nu(x)=\nu\left(\mathfrak{m}_{R}\right)$. Set $P_{0}=x$ and $P_{\text {dheorem }} y_{k}$ wet $\left\{P_{i}\right\}$ be the sequence of elements of R defined by the algorithm of Theorem 4.2. We have by Remark $\frac{\text { Remark2 }}{4.6 \text { and }}$ its proof, that if

$$
\Omega=\infty \text { and } n_{i}=1 \text { for } i \gg 0,
$$

then $I_{\hat{R}} \neq(0)$ (where $I_{\hat{R}}$ is the prime ideal in \hat{R} of Cauchy sequences in R satisfying (egz12 Thus ν has rank 2 since R is complete, and ν must satisfy Case 3 of Theorem 4.12.

Set $\sigma(0)=0$ and inductively define

$$
\sigma(i)=\min \left\{j \mid j>\underset{20}{\left.\sigma(i-1) \text { and } n_{j}>1\right\} . . . ~}\right.
$$

This defines an index set I of finite or infinite cardinality $\Lambda=|I|-1 \geq 1$. Suppose that ${ }^{\text {thary }}$ either ν has rank 1 or ν has rank 2 and one of the first two cases of Theorem 4.12 hold for the P_{i}. Let

$$
\beta_{i}=\nu\left(P_{\sigma(i)}\right) \in S^{R}(\nu)
$$

for $i \in I$ and

$$
\gamma_{i}=\left[\frac{P_{\sigma(i)}^{\bar{n}_{\sigma(i)}}}{U_{\sigma(i)}}\right] \in V_{\nu} / \mathfrak{m}_{\nu}
$$

By Theorem fieorem 2 and . Theorem 4.11 or $4.12,\left\{\beta_{i}\right\}$ and $\left\{\gamma_{i}\right\}$ satisfy the conditions 1) and 2) of Theorem 1.1.

Corollary3*

Suppose that ν has rank 2 and the third case of Theorem 4.12 holds for the P_{i}. Then $\Lambda<\infty$. Let $I_{\nu} \cap R=(g)$ (where I_{ν} is the height one prime ideal of V_{ν}). Let $\bar{\Lambda}=\Lambda+1$. Define $\beta_{i}=\nu\left(P_{\sigma(i)}\right)$ for $i<\bar{\Lambda}$ and $\beta_{\bar{\Lambda}}=\nu(g)$. Define

$$
\gamma_{i}=\left[\frac{P_{\sigma(i)}^{\bar{n}_{\sigma(i)}}}{U_{\sigma(i)}}\right] \in V_{\nu} / \mathfrak{m}_{\nu}
$$

 $\left\{\gamma_{i}\right\}$ satisfy conditions 1) and 2) of Theorem 1.1.

Now suppose that S and L and the given sets $\left\{\beta_{i}\right\}$ and $\left\{\alpha_{i}\right\}$ satisfy conditions 1) and 2) of the theorem. We will construct a valuation ν which dominates R with $S^{R}(\nu)=S$ and $V_{\nu} / \mathfrak{m}_{\nu}=L$.

Let

$$
f_{i}(u)=u^{d_{i}}+b_{i, d_{i}-1} u^{d_{i}-1}+\cdots+b_{i, 0}
$$

be the minimal polynomial of α_{i} over $\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)$, and let $n_{i}=\bar{n}_{i} d_{i}$.
We will inductively define $P_{i} \in R$, a function ν on Laurent monomials in P_{0}, \ldots, P_{i} such that

$$
\nu\left(P_{0}^{a_{0}} P_{1}^{a_{1}} \cdots P_{i}^{a_{i}}\right)=a_{0} \beta_{0}+a_{1} \beta_{1}+\cdots+a_{i} \beta_{i}
$$

for $a_{0}, \ldots, a_{i} \in \mathbb{Z}$ and monomials U_{i} in P_{0}, \ldots, P_{i-1}, such that

$$
\nu\left(U_{i}\right)=\bar{n}_{i} \beta_{i}
$$

a function res on the Laurent monomials $P_{0}^{a_{0}} P_{1}^{a_{1}} \cdots P_{i}^{a_{i}}$ which satisfy $\nu\left(P_{0}^{a_{0}} P_{1}^{a_{1}} \cdots P_{i}^{a_{i}}\right)=$ 0 , such that

$$
\begin{equation*}
\operatorname{res}\left(\frac{P_{j}^{\bar{n}_{j}}}{U_{j}}\right)=\alpha_{j} \tag{32}
\end{equation*}
$$

for $1 \leq j \leq i$.
Let x, y be regular parameters in R. Define $P_{0}=x, P_{1}=y, \beta_{0}=\nu\left(P_{0}\right)$, and $\beta_{1} \overline{\overline{\text { Th}}} \nu\left(P_{r} P_{\text {em }}\right)$ * We inductively construct the P_{i} by the procedure of the algorithm of Theorem 4.2. We must modify the inductive statement $A(i)$ of the proof of Theorem 4.2 as follows:

$$
\begin{align*}
& \text { There exists } U_{i}=P_{0}^{w_{0}(i)} P_{1}^{w_{1}(i)} \cdots P_{i-1}^{w_{i-1}(i)} \text { for some } w_{j}(i) \in \mathbb{N} \\
& \text { and } 0 \leq w_{j}(i)<n_{j} \text { for } 1 \leq j \leq i-1 \\
& \bar{A}(i) \quad \text { such that } \bar{n}_{i} \nu\left(P_{i}\right)=\nu\left(U_{i}\right) \text {. There exist } a_{s, t} \in C S \\
& \text { and } j_{0}(s, t), j_{1}(s, t), \ldots j_{i-1}(s, t) \in \mathbb{N} \text { with } 0 \leq j_{k}(s, t)<n_{k} \\
& \text { for } k \geq 1 \text { and } 0 \leq t<\bar{d}_{i} \text { such that } \\
& \nu\left(P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i-1}^{j_{-1}(s, t)} P_{i}^{t \bar{n}_{i}}\right)=\bar{n}_{i} d_{i} \nu\left(P_{i}\right) \\
& \text { for all } s, t \text { and } \\
& P_{i+1}:=P_{i}^{\bar{n}_{i} d_{i}}+\sum_{t=0}^{d_{i}-1}\left(\left(\sum_{s=1}^{\lambda_{t}} a_{s, t} P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i-1}^{j_{i-1}(s, t)}\right) P_{i}^{t \bar{n}_{i}}\right. \tag{33}\\
& \text { satisfies } \\
& b_{i, t}=\sum_{s=1}^{\lambda_{t}} \bar{a}_{s, t} \text { res }\left(\frac{P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t) \ldots P_{i-1}^{j_{i-1}(s, t)}}}{U_{i}^{d_{i}}}\right) \\
& \text { for } 0 \leq t \leq d_{i}-1 .
\end{align*}
$$

We inductively verify $\bar{A}(i)$ for $1 \leq i<\Lambda$ and the statements $B(i), C(i)$ and $D(i)$ (with the residues $[M]$ reqlaced with res (M)). We observe from $B(i)$ that the function res is determined by (32). The inequality in 2) of the assumptions of the theorem is necessary to allow us to apply Lemma 2.1.

We now show that if $\Lambda=\infty$, then given $\sigma \in \mathbb{Z}_{+}$, there exists $\tau \in \mathbb{Z}_{+}$such that

$$
\begin{equation*}
\operatorname{ord}\left(P_{i}\right)>\sigma \text { if } i>\tau \tag{34}
\end{equation*}
$$

We establish ${ }^{\left({ }^{2} \text { 3q22 }\right.}$) by induction on σ. Suppose that $\operatorname{ord}\left(P_{i}\right)>\sigma$ if $i>\tau$. There exists λ such that $\beta_{0}<\beta_{i}$ if $i \geq \lambda$. Legt $\tau_{1}^{\prime}=\max \{\sigma+\tau+1, \tau+1, \lambda\}$. We will show that $\operatorname{ord}\left(P_{i}\right)>\sigma+1$ if $i>\tau^{\prime}$. From (33), we must show that if $i>\tau^{\prime}$ and $\left(a_{0}, \ldots, a_{i-1}\right) \in \mathbb{N}^{i}$ are such that

$$
a_{0} \beta_{0}+a_{1} \beta_{1}+\cdots+a_{i-1} \beta_{i-1}=n_{i-1} \beta_{i-1}
$$

then

$$
\begin{equation*}
a_{0} \operatorname{ord}\left(P_{0}\right)+a_{1} \operatorname{ord}\left(P_{1}\right)+\cdots+a_{i-1} \operatorname{ord}\left(P_{i-1}\right)>\sigma+1 \tag{35}
\end{equation*}
$$

If $a_{\tau+1}+\cdots+a_{i-1} \geq 2$ then (eqz21 follows from induction. If $a_{\tau+1}+\cdots+a_{i-1}=1$ then some $a_{j} \neq 0$ with $0 \leq j \leq \tau$ since $n_{i-1}>1$, so (35) follows from induction. If $a_{j}=0$ for $j \geq \tau+1$ then

$$
n_{i-1} \beta_{i-1}=a_{0} \beta_{0}+\cdots+a_{\tau} \beta_{\tau}<\left(a_{0}+\cdots+a_{\tau}\right) \beta_{\tau} .
$$

Thus

$$
\left(a_{0}+\cdots+a_{\tau}\right)>\frac{n_{i-1} \beta_{i-1}}{\beta_{\tau}} \geq 2^{i-\tau}>\sigma+1 .
$$

Thus (${ }^{\left({ }^{2} \mathrm{E} 2 \mathrm{~F}\right)}$ holds in this case.
We first suppose that for all P_{i}, there exists $m_{i} \in \mathbb{Z}_{+}$such that $m_{i} \nu\left(P_{i}\right)>\min \left\{\beta_{0}, \beta_{1}\right\}$.
We now establish the following:
Suppose that $f \in R$. Then there exists an expansion

$$
\begin{equation*}
f=\sum_{I} a_{I} P_{0}^{i_{0}} P_{1}^{i_{1}} \cdots P_{r}^{i_{r}}+\sum_{J} \varphi_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}} \tag{36}
\end{equation*}
$$

for some $r \in \mathbb{N}$ where $\nu\left(P_{0}^{i_{0}} P_{1}^{i_{1}} \ldots P_{r}^{i_{r}}\right)$ have a common value ρ for all terms in the first sum, all $a_{I} \in C S, I, J \in \mathbb{N}^{r+1}$ and some $a_{I} \neq 0,0 \leq i_{k}<n_{k}$ for $1 \leq k \leq r$ $\nu\left(P_{0}^{j_{0}} \cdots P_{r}^{j_{r}}\right)>\rho$ for all terms in the second sum, and $\varphi_{J} \in R$ for all terms in the second sum. The first sum $\sum_{I} a_{I} P_{0}^{i_{0}} P_{1}^{i_{1}} \cdots P_{r}^{i_{r}}$ is uniquely determined by these conditions.

Lfund LemmaG10 TheoremG2
The proof of $\left(\frac{\text { fund }}{36}\right)$ follows from the proofs of Lemma $\frac{\text { Lemmacio }}{4.9 \text { and }}$ Theorem 4.10 , observing that all properties of a valuation which ν is required to satisfy in these proofs hold for the function ν on Laureap \ddagger_{0} monomials in the P_{i} which we have defined above, and replacing $[M]$ in Lemma 4.9 with the function res (M) for Laurent monomials M with $\nu(M)=0$.

The n in the statement of Theorem 4.10 is chosen so that if M is a monomial in the P_{i} with $\operatorname{ord}(M)_{0}=\operatorname{ord}(f)$, then $\nu(M)<n \min \left\{\beta_{0}, \beta_{1}\right\}$ (such an n exists trivially if $\Lambda<\infty$ and by (34) if $\Lambda=\infty$).

We can thus extend ν to R by defining

$$
\nu(f)=\rho \text { if } f \text { has an expansion (lfund }
$$

Now we will show that ν is a valuation. Suppose that $f, g \in R$. We have expansions

$$
\begin{equation*}
f=\sum_{I} a_{I} P_{0}^{i_{0}} P_{1}^{i_{1}} \cdots P_{r}^{i_{r}}+\sum_{J} \varphi_{J} P_{0}^{j_{0}} \cdots P_{r}^{j_{r}} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
g=\sum_{K} b_{K} P_{0}^{k_{0}} P_{1}^{k_{1}} \cdots P_{r}^{k_{r}}+\sum_{L} \varphi_{L} P_{0}^{l_{0}} \cdots P_{r}^{l_{r}} \tag{38}
\end{equation*}
$$

 $\min \{\nu(f), \nu(g)\}$ follows from Remark 4.1 and the algorithm of Theorem 4.10 .

Let V be a monomial in P_{0}, \ldots, P_{r} such that $\nu(V)=\nu\left(P_{0}^{i_{0}} \cdots P_{r}^{i_{r}}\right)$ for all I in the first sum of f in (37) and let W be a moqnomial in P_{0}, \ldots, P_{r} such that $\nu(W)=\nu\left(P_{0}^{k_{0}} \ldots P_{r}^{k_{r}}\right)$ for all K in the first sum of g in (38). We have that

$$
\sum \bar{a}_{I} \text { res }\left(\frac{P_{0}^{i_{0}} \cdots P_{r}^{i_{r}}}{V}\right) \neq 0 \text { in } L
$$

and

$$
\sum \bar{b}_{K} \operatorname{res}\left(\frac{P_{0}^{k_{0}} \cdots P_{r}^{k_{r}}}{W}\right) \neq 0 \text { in } L
$$

by $D(r)$.
We have (applying Remark 焉年) an ark4 expansion

$$
\begin{equation*}
f g=\sum_{M} d_{M} P_{0}^{m_{0}} P_{1}^{m_{1}} \cdots P_{r}^{m_{r}}+\sum_{Q} \psi_{Q} P_{0}^{q_{0}} \cdots P_{r}^{q_{r}} \tag{39}
\end{equation*}
$$

with $d_{M} \in S$ for all $M, \psi_{Q} \in R$ for all $Q, \nu\left(P_{0}^{m_{0}} P_{1}^{m_{1}} \cdots P_{s}^{m_{r}}\right)=\rho+\rho^{\prime}$ for all terms in the first sum, and some $d_{M} \neq 0$ and $\psi_{u n d}\left(P_{0}^{q_{0}} \cdots P_{r}^{q_{r}}\right)>\rho+\rho^{\prime}$ for all terms in the second sum, which satisfies all conditions of (36) except that we only have that $m_{0}, m_{1}, \ldots, m_{r} \in \mathbb{N}$. We have
$\sum_{M} \bar{d}_{M} \operatorname{res}\left(\frac{P_{0}^{m_{0}} \cdots P_{r}^{m_{r}}}{V W}\right)=\left(\sum_{I} \bar{a}_{I} \operatorname{res}\left(\frac{P_{0}^{i_{0}} \cdots P_{r}^{i_{r}}}{V}\right)\right)\left(\sum_{K} \bar{b}_{K} \operatorname{res}\left(\frac{P_{0}^{k_{0}} \cdots P_{r}^{k_{r}}}{W}\right)\right) \neq 0$.
 $\nu(M)=0$) we see that the algorithm of Theorem 4.10 which puts the expansion (39) into
the form $\binom{\left(\frac{f}{3}\right.$ und }{36} converges to an expression $\left(\frac{\mathfrak{f} \text { und }}{36}\right)$ where the terms in the first sum all have $\nu\left(P_{0}^{i_{0}} \cdots P_{r}^{i_{r}}\right)=\rho+\rho^{\prime}$ with

$$
\sum_{I} \bar{a}_{I} \operatorname{res}\left(\frac{P_{0}^{i_{0}} \cdots P_{r}^{i_{r}}}{V W}\right)=\sum_{M} \bar{d}_{M} \operatorname{res}\left(\frac{P_{0}^{m_{0}} \cdots P_{r}^{m_{r}}}{V W}\right) \neq 0 .
$$

Thus $\nu(f g)=\nu\left(f f_{0}+\nu(g)_{*}\right.$ We have established that ν is a valuation.
By Theorem 4.11 or Case 1 of Theorem 4.12, we have that $S=S^{R}(\nu)$ and $L=V_{\nu} / \mathfrak{m}_{\nu}$.
Finally, we suppose that Λ is finite and $\bar{n}_{\Lambda}=\infty$. Given $g \in R$, write

$$
\begin{equation*}
g=P_{\Lambda}^{t} f \tag{40}
\end{equation*}
$$

where $P_{\Lambda} \not \backslash f$. Choose $n \in \mathbb{Z}_{+}$so that if M is a monomial in $P_{0}, \ldots, P_{\Lambda-1}$ with $\operatorname{ord}(M)=$ $\operatorname{ord}(f)$ then $\nu(M)<n \min \left\{\beta_{0}, \beta_{1}\right\}$.

The argument giving the expansion (${ }^{(\mathrm{fund}}$) now provides an expansion

$$
\begin{equation*}
f=\sum_{I} a_{I} P_{0}^{i_{0}} \cdots P_{\Lambda}^{i_{\Lambda}}+\sum_{J} \varphi_{J} P_{0}^{j_{0}} \cdots P_{\Lambda}^{j_{\Lambda}}+h_{1} \tag{41}
\end{equation*}
$$

where $\nu\left(P_{0}^{i_{0}} \cdots P_{\Lambda}^{i_{\Lambda}}\right)$ has a common value ρ for all monomials in the first sum, $a_{I} \in C S$ for all $I, \nu\left(P_{0}^{j_{0}} \cdots P_{\Lambda}^{j_{\Lambda}}\right)>\rho$ for all monomials in the second sum, $\varphi_{J} \in R$ for all J and $h_{1} \in \mathfrak{m}_{R}^{n}$.

If $i_{\text {Af }}=0$ for all monomials in the first sum, then we obtain an expansion of f of the form (36). Suppose that $i_{\Lambda} \neq 0$ for some monomial in the first sum. Then $i_{\Lambda} \neq 0$ for all terms in the first sum, $j_{\Lambda} \neq 0$ for all terms in the second sum, and we have an expression $f=P_{\Lambda} t_{1}+h_{1}$ for some $t_{1} \in R$. Repeating this argument for increasingly large values of n, we either obtain an n giving an expression (36) for f, or we obtain the statement that

$$
f \in \cap_{n=1}^{\infty}\left(\left(P_{\Lambda}\right)+\mathfrak{m}_{R}^{n}\right)=\left(P_{\Lambda}\right),
$$

which is impossible. Thus we can extend ν to R by defining $\nu(g)=t \beta_{\Lambda}+\rho$ if $g=P_{\Lambda}^{t} f$ where $P_{\Lambda} \not \backslash f$ and f has an expansion (36).

It follows that ν is a yaluation, by an extension of the proof of the previous case. By Case 2 of Theorem 4.12 , we have that $S=S^{R}(\nu)$ and $L=V_{\nu} / \mathfrak{m}_{\nu}$.

Corollary 5.1. Suppose that R is a regular local ring of dimension two and ν is a valua-
 generated over $\mathfrak{k}=R / \mathfrak{m}_{R}$ by a set $\left\{\alpha_{i}\right\}_{i \in I_{+}}$such that 1) and 2) of Theorem $\frac{\text { neorehld, }}{1.1}$ hold, the additional case that $\bar{n}_{\Lambda}<\infty$ and $d_{\Lambda}<\infty$ if $\Lambda<\infty$ may hold if R is not complete.

Theorem3*
Proof. The only case we have not considered in Theorem 1.1 is the analysis in the case when $\Omega=\infty, n_{i}=1$ for $i \gg 0, I_{\hat{R}} \neq 0$ and $I_{\hat{R}} \cap R=(0)$ (so that R is not complete). In this case ν is discrete of rank $1, \Lambda<\infty, \bar{n}_{\lambda}<\infty$ and $d_{\Lambda}<\infty$ by Remark 4.6, giving the additional possibility stated in the Corollary.

6. Valuation Semigroups on a regular local ring of dimension two

In this section we prove Theorem Corollary ${ }^{\text {C* }} 1.2$ which is stated in the introduction. Theorem ${ }_{1}^{\text {Corollary } 4 *} 1.2$ gives necessary and sufficent conditions for a semigroup to be the valuation semigroup of a valuation dominating a regular local ring of dimension two.

[^0]ν with a prescribed semigroup S and residue field L satisfying the conditions 1) and 2) of Theorem $\mathbb{1} .1$ is valid for any regular local ring R of dimension 2 (with residue field \mathfrak{k}). Taking $L=\mathfrak{k}$ (or $L=\mathfrak{k}(t)$ where t is an indeterminate), we may thus construct a valuation ν dominating R pith semigroup $S^{R}(\nu)=S$ whenever S satisfies the conditions 1) and 2) of Theorem 1.2.

Definition 6.1. Suppose that S is a semigroup such that the group G generated by S is isomorphic to $\mathbb{Z} . S$ is symmetric if there exists $m \in G$ such that $s \in S$ if and only if $m-s \notin S$ for all $s \in G$.

Corollary 6.2. Suppose that R is a regular local ring of dimension two and ν is a valuation dominating R such that ν is discrete of rank 1. Then $S^{R}(\nu)$ is symmetric.
Proof. By Theorem $\frac{\text { Corollary } 4 *}{1.2, \text { and } \sin }$ ce ν is discrete of rank 1 , there exists a finite set

$$
\beta_{0}<\beta_{1}<\cdots<\beta_{\Lambda}
$$

such that $S^{\nu}(R)=S\left(\beta_{0}, \beta_{1}, \ldots, \beta_{\Lambda}\right)$ and $\beta_{i+1}>\bar{n}_{i} \beta_{i}$ for $1 \leq i<\Lambda$, where $\bar{n}_{i}=$ $\left[G\left(\beta_{0}, \ldots, \beta_{i}\right): G\left(\beta_{0}, \ldots, \beta_{i-1}\right)\right]$. We identify the value group Γ_{ν} with \mathbb{Z}. Then we calculate that

$$
\operatorname{lcm}\left(\operatorname{gcd}\left(\beta_{0}, \ldots, \beta_{i-1}\right), \beta_{i}\right)=\bar{n}_{i} \beta_{i}
$$

for $1 \leq i \leq \Lambda$. We have that $\bar{n}_{i} \beta_{i} \geq \beta_{i}>\bar{n}_{i-1} \beta_{i-1}$ for $2 \leq i \leq \Lambda$. By Lemma L.L.1. wema2 , have that $\bar{n}_{i} \beta_{i} \in S\left(\beta_{0}, \ldots, \beta_{i-1}\right)$ for $2 \leq i \leq \Lambda$. Since β_{0} and β_{1} are both positive, we have that $\bar{n}_{1} \beta_{1} \in S\left(\beta_{0}\right)$. Thus the criteria of Proposition $2.1[29]$ is satisfied, so that $S^{R}(\nu)$ is symmetric.

Example 6.3. There exists a semigroup S which satisfies the sufficient conditions 1) and 2) of Theorem 1.2, such that if $\left(R, \mathfrak{m}_{R}\right)$ is a 2-dimensional regular local ring dominated by a valuation ν such that $S^{R}(\nu)=S$, then $R / \mathfrak{m}_{R}=V_{\nu} / \mathfrak{m}_{\nu}$; that is, there can be no residue field extension.

Proof. Define $\beta_{i} \in \mathbb{Q}$ by

$$
\begin{equation*}
\beta_{0}=1, \beta_{1}=\frac{3}{2}, \text { and } \beta_{i}=2 \beta_{i-1}+\frac{1}{2^{i}} \text { for } i \geq 2 \tag{42}
\end{equation*}
$$

Let $S=S\left(\beta_{0}, \beta_{1}, \ldots\right)$ be the semigroup generated by $\beta_{0}, \beta_{1}, \ldots$. Observe that $\bar{n}_{i}=$ $2, \forall i \geq 1, \beta_{0}<\beta_{1}<\cdots$ is the minimal sequence of generators of S and S satisfies conditions 1) and 2) of Theorem 1.2. The group $\Gamma=G\left(\beta_{0}, \beta_{1}, \ldots\right)$ generated by S is $\Gamma=\frac{1}{2^{\infty}} \mathbb{Z}=\cup_{i=0}^{\infty} \frac{1}{2^{i}} \mathbb{Z}$.

Now suppose that $\left(R, \mathfrak{m}_{R}\right)$ is a regular local ring of dimension 2 , with residue field \mathfrak{k} and ν is a valuation of the quotient field of R which dominates R such that $S^{R}(\nu)=S$. Since $\Gamma_{\nu}=\frac{1}{2^{\infty}}$ is not discrete, we have by Proposition 3.4 that ν extends uniquely to a valuation $\hat{\nu}$ of the quotient field of \hat{R} which dominates \hat{R} and $S^{\hat{\nu}}(\hat{R})=S$.

We will now show that $V_{\nu} / \mathfrak{m}_{\nu}=V_{\hat{\nu}} / \mathfrak{m}_{\hat{\nu}}$. Suppose that $f \in \hat{R}$. Since $\hat{\nu}$ has rank 1 , there exists a positive integer n such that $\hat{\nu}(f)<n \nu(\mathfrak{m})$. There exists $f^{\prime} \in R$ such that $f^{\prime \prime}=f-f^{\prime} \in \mathfrak{m}_{R}^{n} \hat{R}$. Thus $\nu(f)=\nu\left(f^{\prime}\right)$. Suppose that $h \in V_{\hat{\nu}} / \mathfrak{m}_{\hat{\nu}}$. Then $h=\left[\frac{f}{g}\right]$ where $f, g \in \hat{R}$ and $\nu(f)=\nu(g)$. Write $f=f^{\prime}+f^{\prime \prime}$ and $g=g^{\prime}+g^{\prime \prime}$ where $f^{\prime}, g^{\prime} \in R$ and $f^{\prime \prime}, g^{\prime \prime} \in \hat{R}$ satisfy $\nu\left(f^{\prime \prime}\right)>\nu(f)$ and $\nu\left(g^{\prime \prime}\right)>\nu(g)$. Then $\left[\frac{f}{g}\right]=\left[\frac{f^{\prime}}{g^{\prime}}\right] \in V_{\nu} / \mathfrak{m}_{\nu}$.

We also have $\mathfrak{k}=R / \mathfrak{m}_{R}=\hat{R} / \mathfrak{m}_{\hat{R}}$. By Theorem $\stackrel{\text { Theorem3* }}{1.1, \text { there exists } \alpha_{i} \in V_{\hat{v} / M_{\hat{v}}} \text { for } i \geq 1}$ such that $V_{\hat{v} / M_{\hat{v}}}=\mathfrak{k}\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ and if $d_{i}=\left[\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right): \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]$ then

$$
\begin{equation*}
\beta_{i+1} \geq \bar{n}_{i} d_{i} \beta_{i}, \forall i \geq 1 \tag{43}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left[V_{\hat{\nu}} / \mathfrak{m}_{\hat{\nu}}: \mathfrak{k}\right]=\prod_{i=1}^{\infty}\left[\mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i}\right): \mathfrak{k}\left(\alpha_{1}, \ldots, \alpha_{i-1}\right)\right]=\prod_{i=1}^{\infty} d_{i} . \tag{44}
\end{equation*}
$$

On the other hand, since $\beta_{i} \geq \beta_{1}=\frac{3}{2}, \forall i \geq 1$, we have

$$
\begin{equation*}
\beta_{i+1}=2 \beta_{i}+\frac{1}{2^{i+1}} \leq 4 \beta_{i}+\frac{1}{2^{i+1}}-3<4 \beta_{i} . \tag{45}
\end{equation*}
$$

From (eqV2 ${ }^{(43)}$, (egV3) ${ }^{44}$) and $\left(\frac{\text { legV4 }}{45}\right.$) we have $d_{i}=1, \forall i \geq 1$ so that $\left[V_{\hat{\nu}} / \mathfrak{m}_{\hat{\nu}}: \mathfrak{k}\right]=1$.

7. Birational extensions

Suppose that R is a regular local ring of dimension two which is dominated by a valuation ν. Let $\mathfrak{k}=R / \mathfrak{m}_{R}$. The quadratic transform R_{1} of R along ν is defined as follows. Let u, v be a system of regular parameters in R, where we may assume that $\nu(u) \leq \nu(v)$. Then $R\left[\frac{v}{u}\right] \subset V_{\nu}$. Let

$$
R_{1}=R\left[\frac{v}{u}\right]_{R\left[\frac{v}{u}\right] \cap \mathfrak{m}_{\nu}}
$$

R_{1} is a two dimensional regular local ring which is dominated by ν. Let

$$
\begin{equation*}
R \rightarrow T_{1} \rightarrow T_{2} \cdots \tag{46}
\end{equation*}
$$

be the sequence of quadratic transforms along ν, so that $V_{\nu}=\cup T_{i}\left(\frac{A b 1}{} 1 \mathrm{I}\right)$, and $L=V_{\nu} / \mathfrak{m}_{\nu}=$ $\cup T_{i} / \mathfrak{m}_{T_{i}}$. Suppose that x, y are regular parameters in R.
birat Theorem 7 1 deo Let $P_{0}=x, P_{1}=y$ and $\left\{P_{i}\right\}$ be the sequence of elements of R constructed in Theorem sequence (${ }_{4} \overline{4}$) such that the divisor of $x y$ in $\operatorname{Spec}\left(T_{i}\right)$ has only one component. Let $R_{1}=T_{i}$. Then $R_{1} / \mathfrak{m}_{R_{1}} \cong \mathfrak{k}\left(\alpha_{1}\right)$, and there exists $x_{1} \in R_{1}$ and $w \in \mathbb{Z}_{+}$such that $x_{1}=0$ is a local equation of the exceptional divisor of $\operatorname{Spec}\left(R_{1}\right) \rightarrow \operatorname{Spec}(R)$, and $Q_{0}=x_{1}, Q_{1}=\frac{P_{2}}{x_{1}^{\omega n_{1}}}$ are regular parameters in R_{1}. We have that

$$
Q_{i}=\frac{P_{i+1}}{Q_{0}^{w n_{1} \cdots n_{i}}}
$$

for $1 \underset{\text { tor }}{6} i<\max \{\Omega, \infty\}$ satisfy the conclusions of Theorem $\frac{\text { Theorem } 1 *}{4.2 \text { (as in }}$ terpreted by Remark 4.3) for the ring R_{1}.
 $U_{1}=U^{w_{0}(1)}$. Let $w=w_{0}(1)$. Since \bar{n}_{1} and w are relatively prime, there exist $a, b \in \mathbb{N}$ such that

$$
\varepsilon:=\bar{n}_{1} b-w a= \pm 1 .
$$

Define elements of the quotient field of R by

$$
x_{1}=\left(x^{b} y^{-a}\right)^{\varepsilon}, y_{1}=\left(x^{-w} y^{\bar{n}_{1}}\right)^{\varepsilon} .
$$

We have that

$$
\begin{equation*}
x=x_{1}^{\bar{n}_{1}} y_{1}^{a}, y=x_{1}^{w} y_{1}^{b} \tag{47}
\end{equation*}
$$

Since $\bar{n}_{1} \nu(y)=w \nu(x)$, it follows that

$$
\bar{n}_{1} \nu\left(x_{1}\right)=\nu(x), \bar{\nu}\left(y_{1}\right)=0
$$

We further have that

$$
\begin{equation*}
\alpha_{1}=\left[y_{1}\right]^{\varepsilon} \in L \tag{48}
\end{equation*}
$$

Let $A=R\left[x_{1}, y_{1}\right] \subset V_{\nu}$ and $\mathfrak{m}_{A}=\mathfrak{m}_{\nu} \cap A . R \rightarrow A_{\mathfrak{m}_{A}}$ factors as a product of quadratic transforms such that $x y$ has two distinct irreducible factors in all intermediate rings. Thus $A=R_{1}$. Recall that

$$
f_{1}(u)=u^{d_{1}}+b_{1, d_{1}-1} u^{d-1-1}+\cdots+b_{1,0}
$$

is the minimal polynomial of $\alpha_{1}=\left[\frac{y^{\bar{n}_{1}}}{x^{w}}\right]$ over \mathfrak{k}, and from (leqM1 of $A(1)$,

$$
\begin{equation*}
P_{2}=y^{\bar{n}_{1} d_{1}}+a_{1, d_{1}-1} x^{w} y^{\bar{n}_{1}\left(d_{1}-1\right)}+\cdots+a_{1,0} x^{d_{1} w} \tag{49}
\end{equation*}
$$

Substituting (eqZ1 into (egZ2 47), we find that

$$
P_{2}=x_{1}^{w n_{1}}\left(y_{1}^{b \bar{n}_{1} d_{1}}+a_{1, d_{1}-1} y_{1}^{a w+b \bar{n}_{1}\left(d_{1}-1\right)}+\cdots+a_{1,0} y_{1}^{a d_{1} w}\right)
$$

Thus

$$
Q_{1}=\frac{P_{2}}{x_{1}^{w n_{1}}} \in R_{1}
$$

We calculate

$$
\begin{equation*}
\nu\left(Q_{1}\right)=\nu\left(P_{2}\right)-w n_{1} \nu\left(x_{1}\right)=\nu\left(P_{2}\right)-n_{1} \nu\left(P_{1}\right)>0 \tag{50}
\end{equation*}
$$

Thus $x_{1}, Q_{1} \in \mathfrak{m}_{R_{1}}$.
Suppose that $\varepsilon=1$. Then since

$$
Q_{1}=y_{1}^{a w d_{1}}\left(y_{1}^{d_{1}}+a_{1, d_{1}-1} y_{1}^{d_{1}-1}+\cdots+a_{1,0}\right)
$$

and y_{1} is a unit in R_{1}, we have that

$$
R_{1} /\left(x_{1}, Q_{1}\right) \cong \mathfrak{k}\left[y_{1}\right] /\left(f\left(y_{1}\right)\right) \cong \mathfrak{k}\left(\alpha_{1}\right)
$$

Suppose that $\varepsilon=-1$. Let

$$
h(u)=y_{1}^{d_{1}}+\frac{b_{1,1}}{b_{1,0}} y_{1}^{d_{1}-1}+\cdots+\frac{1}{b_{1,0}}
$$

which is the minimal polynomial of α_{1}^{-1} over \mathfrak{k}. Since

$$
Q_{1}=y_{1}^{b \bar{n}_{1} d_{1}}\left(1+a_{1, d_{1}-1} y_{1}+\cdots+a_{1,0} y_{1}^{d_{1}}\right)
$$

and y_{1} is a unit in R_{1}, we have that

$$
R_{1} /\left(x_{1}, Q_{1}\right) \cong \mathfrak{k}\left[y_{1}\right] /\left(h\left(y_{1}\right)\right) \cong \mathfrak{k}\left(\alpha_{1}^{-1}\right)=\mathfrak{k}\left(\alpha_{1}\right)
$$

Now define $\beta_{i}=\nu\left(P_{i}\right)$ and $\hat{\beta}_{i}=\nu\left(Q_{i}\right)$ for $i \geq 0$. We have

$$
\hat{\beta}_{i}=\nu\left(P_{i+1}\right)-w n_{1} \cdots n_{i} \hat{\beta}_{0}
$$

for $i \geq 1$.
Since $\operatorname{gcd}\left(w, \bar{n}_{1}\right)=1$, we have that $G\left(\hat{\beta}_{0}\right)=G\left(\beta_{0}, \beta_{1}\right)$. Thus

$$
\bar{n}_{i+1}=\left[G\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{i}\right): G\left(\hat{\beta}_{0}, \ldots, \hat{\beta}_{i-1}\right)\right]
$$

for $i \geq 1$

We will leave the proof that the analogue of $A(1)$ of Theorem $\frac{\text { Theorem } 1 *}{4.2 \text { holds }}$ for Q_{1} in R_{1} for the reader, as is an easier variation of the following inductive statement, which we will prove.

Assume that $2 \leq i<\Omega-1$ and the analogue of $A(j)$ of Theorem 4e.2 holds for Q_{j} in R_{1} for $j<i$. We will prove that the analogue of $A(i)$ of Theorem 4.2 holds for Q_{i} in R_{1}.

In particular, we assume that

$$
\begin{equation*}
\hat{\beta}_{j+1}>n_{j+1} \hat{\beta}_{j} \tag{51}
\end{equation*}
$$

for $1 \leq j \leq i-1$.
Define

$$
\begin{align*}
V_{i} & =U_{i+1} Q_{0}^{-w n_{1} n_{2} \cdots n_{i} \bar{n}_{i+1}} y_{1}^{-\left(a w_{0}(i+1)+b w_{1}(i+1)\right)} \tag{52}\\
& =Q_{0}^{\hat{w}_{0}(i+1)} Q_{1}^{w_{2}(i+1)} \cdots Q_{i-1}^{w_{i}(i+1)}
\end{align*}
$$

where
$\hat{w}_{0}(i+1)=\bar{n}_{1} w_{0}(i+1)+w w_{1}(i+1)+w n_{1} w_{2}(i+1)+\cdots+w n_{1} n_{2} \cdots n_{i-1} w_{i}(i+1)-w n_{1} n_{2} \cdots n_{i} \bar{n}_{i+1}$.
We have that

$$
\nu\left(Q_{i}^{\bar{n}_{i+1}}\right)=\bar{n}_{i+1} \hat{\beta}_{i}=\bar{n}_{i+1} \nu\left(P_{i+1}\right)-w n_{1} n_{2} \cdots n_{i} \bar{n}_{i+1} \hat{\beta}_{0}=\nu\left(V_{i}\right)
$$

Thus

$$
\bar{n}_{i+1} \hat{\beta}_{i}=\hat{w}_{0}(i+1) \hat{\beta}_{0}+\hat{w}_{2}(i+1) \hat{\beta}_{1}+\hat{w}_{3}(i+1) \hat{\beta}_{2}+\cdots+w_{i}(i+1) \hat{\beta}_{i-1}
$$

Recall that $0 \leq w_{j}(i+1)<n_{j}$ for $1 \leq j \leq i$ and apply (51 eqJ1 to obtain

$$
\begin{align*}
\hat{w}_{0}(i+1) \hat{\beta}_{0} & =\bar{n}_{i+1} \hat{\beta}_{i}-w_{i}(i+1) \hat{\beta}_{i-1}-\cdots-w_{3}(i+1) \hat{\beta}_{2}-w_{2}(i+1) \hat{\beta}_{1} \\
& \geq \hat{\beta}_{i}-\left(n_{i}-1\right) \hat{\beta}_{i-1}-\cdots-\left(n_{3}-1\right) \hat{\beta}_{2}-\left(n_{2}-1\right) \hat{\beta}_{1} \\
& >\hat{\beta}_{i}-\left(n_{i}-1\right) \hat{\beta}_{i-1}-\cdots-\left(n_{4}-1\right) \hat{\beta}_{3}-n_{3} \hat{\beta}_{2} \tag{53}\\
& \vdots \\
& \geq \hat{\beta}_{i}-n_{i} \hat{\beta}_{i-1}>0
\end{align*}
$$

Thus $V_{i} \in R_{1}$. We have
eqJ3

$$
\frac{Q_{i}^{\bar{n}_{i+1}}}{V_{i}}=\left(\frac{P_{i+1}^{\bar{n}_{i+1}}}{U_{i+1}}\right) y_{1}^{a w_{0}(i+1)+b w_{1}(i+1)}
$$

Let

$$
\begin{equation*}
\hat{\alpha}_{i}=\left[\frac{Q_{i}^{\bar{n}_{i+1}}}{V_{i}}\right]=\alpha_{i+1} \alpha_{1}^{\varepsilon\left(a w_{0}(i+1)+b w_{1}(i+1)\right)} \in L \tag{55}
\end{equation*}
$$

From the minimal polynomial $f_{i+1}(u)$ of α_{i+1}, we see that
$g_{i}(u)=u^{d_{i+1}}+b_{i+1, d_{i+1}-1} \alpha_{1}^{\varepsilon\left(a w_{0}(i+1)+b w_{1}(i+1)\right) d_{i+1}} u^{d_{i+1}-1}+\cdots+b_{i+1,0} \alpha_{1}^{\varepsilon\left(a w_{0}(i+1)+b w_{1}(i+1)\right) d_{i+1}}$
is the minimal polynomial of $\hat{\alpha}_{i}$ over $\mathfrak{k}\left(\alpha_{1}\right)\left(\hat{\alpha}_{1}, \ldots, \hat{\alpha}_{i-1}\right)$.
Now from equation (12) of $A(i+1)$ determining P_{i+1}, we obtain

$$
\begin{align*}
Q_{i+1} & =\frac{P_{i+2}}{Q_{0}^{w n_{1} n_{2} \cdots n_{i+1}}} \tag{56}\\
& =Q_{i}^{\bar{n}_{i+1} d_{i+1}}+\sum_{t=0}^{d_{i+1}-1}\left(\sum_{s=1}^{\lambda_{t}} a_{s, t} y_{1}^{a j_{0}(s, t)+b j_{1}(s, t)} Q_{0}^{\hat{j}_{0}(s, t)} Q_{1}^{j_{2}(s, t)} \cdots Q_{i-1}^{j_{i}(s, t)}\right) Q_{i}^{t \bar{n}_{i+1}}
\end{align*}
$$

where
$\hat{j}_{0}(s, t)=\bar{n}_{1} j_{0}(s, t)+w j_{1}(s, t)+w n_{1} j_{2}(s, t)+\cdots+w n_{1} n_{2} \cdots n_{i-1} j_{i}(s, t)-\left(d_{i+1}-t\right) w n_{1} n_{2} \cdots n_{i} \bar{n}_{i+1}$.

Recall that $0 \leq j_{k}(s, t)<n_{k}$ for $1 \leq k \leq i$. We further have that

$$
\nu\left(Q_{0}^{\hat{j}_{0}(s, t)} Q_{1}^{j_{2}(s, t)} \cdots Q_{i-1}^{j_{i}(s, t)}\right)=\left(d_{i+1}-t\right) \bar{n}_{i+1} \hat{\beta}_{i} \geq \hat{\beta}_{i} .
$$

By a similar argument to (eqJ) (53) we obtain that $\hat{j}_{0}(s, t)>0$ for all s, t.
By the definition of Q_{i+1}, (52) and (56), we have

$$
\begin{align*}
& y_{1}^{\left(a w_{0}(i+1)+b w_{1}(i+1)\right) d_{i+1}} \frac{P_{i+2}}{U_{i+1}^{i_{+1}}}=\frac{Q_{i+1}}{V_{i}^{d_{i+1}}} \tag{57}\\
& \quad=\left(\frac{Q_{i}^{\bar{n}_{i+1}}}{V_{i}}\right)^{d_{i+1}}+\sum_{t=0}^{d_{i+1}-1}\left(\sum_{s=1}^{\lambda_{t}} y_{1}^{a j_{0}(s, t)+b j_{1}(s, t)} \frac{Q_{0}^{j_{0}(s, t)} Q_{1}^{j_{2}(s, t)} \ldots Q_{i-1}^{j_{i}(s, t)}}{V_{i}^{d_{i+1}-t}}\right)\left(\frac{Q_{i}^{\bar{n}_{i+1}}}{V_{i}}\right)^{t}
\end{align*}
$$

We have

$$
\left.\begin{array}{l}
{\left[\sum_{s=1}^{\lambda_{t}} a_{s, t} y_{1}^{a j_{0}(s, t)+b j_{1}(s, t)} \frac{\hat{Q}_{0}^{\hat{j}_{0}(s, t)} Q_{1}^{j_{2}(s, t)} \ldots Q_{i-1}^{j_{i}(s, t)}}{V_{i}^{d_{i+1}-t}}\right]} \\
\quad=\left[\sum_{s=1}^{\lambda_{t}} a_{s, t} y_{1}^{\left(a w_{0}(i+1)+b w_{1}(i+1)\right)\left(d_{i+1}-t\right)} \frac{P_{0}^{j_{0}(s, t)}}{P_{1}^{j_{1}(s, t) \ldots P_{i}^{j_{i}(s, t)}}} U_{i+1}^{d_{i+1}-t}\right.
\end{array}\right] .
$$

for $0 \leq t \leq d_{i+1}-1$ and

$$
\left[\frac{Q_{i+1}}{V_{i}^{d_{i+1}}}\right]=g_{i}\left(\hat{\alpha}_{i}\right)=0
$$

Thus

$$
\begin{aligned}
\hat{\beta}_{i+1} & =\nu\left(Q_{i+1}\right)>d_{i+1} \nu\left(V_{i}\right)=d_{i+1}\left(\nu\left(U_{i+1}\right)-w n_{1} n_{2} \cdots n_{i} \bar{n}_{i+1} \hat{\beta}_{0}\right) \\
& =n_{i+1}\left(\nu\left(P_{i+1}\right)-w n_{1} n_{2} \cdots n_{i} \hat{\beta}_{0}\right)=n_{i+1} \hat{\beta}_{i} .
\end{aligned}
$$

We have thus established that $A(i)$ holds for Q_{i} in R_{1}. By induction on i, we have that $A(i)$ of Theorem 4.2 holds for Q_{i} in R_{1} for $1 \leq i<\Omega-1$.

We now will show that $D(r)$ of Theorem $\begin{aligned} & \text { Theorem } 1 * \\ & 4.2 \text { holds }\end{aligned}$ for the Q_{i} in R_{1} for all r. We begin by establishing the following statement:

Suppose that $\lambda \geq n_{1} w$ is as integer. Then there exist $\delta_{0}, \delta_{1} \in \mathbb{N}$ with $0 \leq \delta_{1}<\bar{n}_{1}$ such that

$$
\begin{equation*}
x^{\delta_{0}+i w} y^{\delta_{1}+\left(d_{1}-1-i\right) \bar{n}_{1}}=x_{1}^{\lambda} y_{1}^{z-i \varepsilon} \tag{58}
\end{equation*}
$$

for $0 \leq i \leq d_{1}-1$ where $z=a \delta_{0}+b\left(\delta_{1}+\left(d_{1}-1\right) \bar{n}_{1}\right.$.
We first prove (eqZ5). We have that

$$
(\lambda \varepsilon b-r w) \bar{n}_{1}+\left(r \bar{n}_{1}-\lambda \varepsilon a\right) w=\lambda
$$

for all $r \in \mathbb{Z}$. Choose r so that $\delta_{1}=r \bar{n}_{1}-\lambda \varepsilon a$ satisfies $0 \leq \delta_{1}<\bar{n}_{1}$. Set

$$
\delta_{0}=(\lambda \varepsilon b-r w)-\left(d_{1}-1\right) w .
$$

Then

$$
(\lambda \varepsilon b-r w) \bar{n}_{1}=\lambda-\delta_{1} w \geq n_{1} w-\left(\bar{n}_{1}-1\right) w=\left(n_{1}-\bar{n}_{1}+1\right) w
$$

so

$$
\delta_{0} \geq\left(n_{1}-\bar{n}_{1}-d_{1}+2\right) w=\left(\left(\bar{n}_{1}-1\right)\left(d_{1}-1\right)+1\right) w \geq w .
$$

Substituting $\left(\begin{array}{l}(\mathrm{eqZ1} \\ 47) \\ \text { in } \\ x_{0}+i w\end{array} y^{\delta_{1}+\left(d_{1}-1-i\right) \bar{n}_{1}}\right.$, we obtain the formula (58).

We now will prove that statement $D(r)$ of Theorem $\frac{\text { Theorem }{ }^{*} *}{4.2 \text { holds }}$ for the Q_{i} in R_{1} for all r. Suppose that we have monomials $Q_{0}^{j_{0}(l)} Q_{1}^{j_{1}(l)} \cdots Q_{r}^{j_{r}(l)}$ for $1 \leq l \leq m$ such that

$$
\nu\left(Q_{0}^{j_{0}(l)} Q_{1}^{j_{1}(l)} \cdots Q_{r}^{j_{r}(l)}\right)=\nu\left(Q_{0}^{j_{0}(1)} Q_{1}^{j_{1}(1)} \cdots Q_{r}^{j_{r}(1)}\right)
$$

for $1 \leq l \leq m$, and that we have a dependence relation in $L=V_{\nu} / \mathfrak{m}_{\nu}$.

$$
0=e_{1}+e_{2}\left[\frac{Q_{0}^{j_{0}(2)} Q_{1}^{j_{1}(2)} \cdots Q_{r}^{j_{r}(2)}}{Q_{0}^{j_{0}(1)} Q_{1}^{j_{1}(1)} \cdots Q_{r}^{j_{r}(1)}}\right]+\cdots+e_{m}\left[\frac{Q_{0}^{j_{0}(m)} Q_{1}^{j_{1}(m)} \cdots Q_{r}^{j_{r}(m)}}{Q_{0}^{j_{0}(1)} Q_{1}^{j_{1}(1)} \cdots Q_{r}^{j_{r}(1)}}\right]
$$

with $e_{i} \in \mathfrak{k}\left(\alpha_{1}\right)$ (and some $e_{i} \neq 0$). Multiplying the $Q_{0}^{j_{0}(l)} Q_{1}^{j_{1}(l)} \cdots Q_{r}^{j_{r}(l)}$ for $1 \leq l \leq m$ by a common term Q_{0}^{t} with t a sufficiently large positive integer, we may assume that

$$
\hat{j}_{0}(l)=j_{0}(l)-j_{1}(l) w n_{1}-j_{2}(l) w n_{1} n_{2}-\cdots-j_{r}(l) w n_{1} n_{2} \cdots n_{r} \geq n_{1} w
$$

for $1 \leq l \leq m$. We have that

$$
Q_{0}^{j_{0}(l)} Q_{1}^{j_{1}(l)} \cdots Q_{r}^{j_{r}(l)}=Q_{0}^{\hat{j}_{0}(l)} P_{2}^{j_{1}(l)} \cdots P_{r+1}^{j_{r}(l)}
$$

Since $\hat{j}_{0}(l) \geq w n_{1}$, ${ }_{\left({ }^{(2 g 8)} \text { ² }\right.}$ implies that for each l with $1 \leq l \leq w$, there exist $\delta_{0}(l), \delta_{1}(l)$ with $\delta_{0}(l), \delta_{1}(l) \in \mathbb{N}$ and $0 \leq \delta_{1}(l)<\bar{n}_{1}$ such that

$$
P_{0}^{\delta_{0}(l)+i w} P_{1}^{\delta_{1}(l)+\left(d_{1}-1-i\right) \bar{n}_{1}}=y_{1}^{z(l)-i \varepsilon} Q_{0}^{\hat{j}_{0}(l)}
$$

for $0 \leq i \leq d_{1}-1$. The ordered set

$$
\left\{\alpha_{1}^{\varepsilon(z(l)-z(1))}, \alpha_{1}^{\varepsilon(z(l)-z(1))-1}, \cdots, \alpha_{1}^{\varepsilon(z(l)-z(1))-\left(d_{1}-1\right)}\right\}
$$

is a \mathfrak{k}-basis of $\mathfrak{k}\left(\alpha_{1}\right)$ for all l (since multiplication by $\alpha_{1}^{\varepsilon(z(l)-z(1))+\left(d_{1}-1\right)}$ is a \mathfrak{k}-vector space isomorphism of $\mathfrak{k}\left(\alpha_{1}\right)$, and thus takes a basis to a basis). Thus there exists $e_{l, i} \in \mathfrak{k}$ such that

$$
e_{l}=\sum_{i=0}^{d_{1}-1} e_{l, i} \alpha_{1}^{\varepsilon(z(l)-z(1))-i}
$$

Since some $e_{l, i} \neq 0$, we have a dependence relation

$$
0=\sum_{l=1}^{m} \sum_{i=0}^{d_{1}-1} e_{l, i}\left[\frac{P_{0}^{\delta_{0}(l)+i w} P_{1}^{\delta_{1}(l)+\left(d_{1}-1-i\right) \bar{n}_{1}} P_{2}^{j_{1}(l)} \cdots P_{r+1}^{j_{r}(l)}}{P_{0}^{\delta_{0}(1)} P_{1}^{\delta_{1}(1)+\left(d_{1}-1\right) \bar{n}_{1}} P_{2}^{j_{1}(1)} \cdots P_{r+1}^{j_{r}(1)}}\right],
$$

 $D(r)$ of Theorem 4.2 for the Q_{i} in R_{1}.

8. Polynomial rings in two variables

The algorithm of Theorem ${ }^{\text {Theorem } 1 *} 4.2$ is applicable when $R=\mathfrak{k}[x, y]$ is a polynomial ring over a field and ν is a valuation which dominates the maximal ideal (x, y) of R. In this case many of the calculations in this paper become much simpler, as we now indicate (of course we take the coefficient set $C F$ to be the field \mathfrak{k}). In the case when R is equicharacteristic, we can establish from the polpnomial case the results of this paper using Cohen's structure theorem and Proposition 3.4 to reduce to the case of a polynomial ring in two variables.

If $f \in R=\mathfrak{k}[x, y]$ is a nonzero polynomial, then we have an expansion $f=a_{0}(x)+$ $a_{1}(x) y+\cdots+a_{r}(x) y^{r}$ where $a_{i}(x) \in \mathfrak{k}[x]$ for all i and $a_{r}(x) \neq 0$. We define $\operatorname{ord}_{y}(f)=r$, and say that f is monic in y if $a_{r}(x) \in \mathfrak{k}$. We first establish the following formula.
P_{i} is monic in y with $\operatorname{deg}_{y} P_{i}=n_{1} n_{2} \cdots n_{i-1}$ for $i \geq 2$.

We establish ((eqZ60 by induction. In the expansion (12 (12) of P_{i+1}, we have for $0 \leq t \leq d_{i}-1$ and whenever $a_{s, t} \neq 0$, that $0 \leq j_{k}(s, t)<n_{k}$ for $1 \leq k \leq i-1$. Thus

$$
\begin{aligned}
& \operatorname{deg}_{y}\left(P_{0}^{j_{0}(s, t)} P_{1}^{j_{1}(s, t)} \cdots P_{i-1}^{j_{i-1}(s, t)} P_{i}^{t \bar{n}_{i}}\right) \\
& \quad=j_{1}(s, t)+j_{2}(s, t) n_{1}+j_{3}(s, t) n_{1} n_{2}+\cdots+j_{i-1} n_{1} n_{2} \cdots n_{i-2}+t \bar{n}_{i} n_{1} n_{2} \cdots n_{i-1} \\
& \quad<n_{1} n_{2} \cdots n_{i}
\end{aligned}
$$

Thus $\operatorname{deg}_{y} P_{i+1}=\operatorname{deg}_{y} P_{i}^{n_{i}}=n_{1} n_{2} \cdots n_{i}$. We further see that P_{i+1} is monic in y.
Set $\sigma(0)=0$ and for $i \geq 1$ let

$$
\sigma(i)=\min \left\{j \mid j>\sigma(i-1) \text { and } n_{j}>1\right\} .
$$

Let $Q_{i}=P_{\sigma(i)}$. We calculate (as long as we are not in the case $\Omega=\infty$ and $n_{i}=1$ for $i \gg 0$) that for $d \in \mathbb{Z}_{+}$, there exists a unique $r \in \mathbb{Z}_{+}$and $j_{1}, \ldots, j_{r} \in \mathbb{Z}_{+}$such that $0 \leq j_{k}<n_{k}$ for $1 \leq k \leq r$ and $\operatorname{deg}_{y} Q_{1}^{j_{1}} \cdots Q_{r}^{j_{r}}=d$. Let M_{d} be this monomial. Since the monomials M_{d} are monic in y, we see (continuing to assume that we are not in the case $\Omega=\infty$ and $n_{i}=1$ for $i \gg 0$) that if $f \in R=\mathfrak{k}[x, y]$ is nonzero with $\operatorname{deg}_{y}(f)=d$, then there is a unique expression

$$
\begin{equation*}
f=\sum_{i=0}^{d} A_{i}(x) M_{i} \tag{60}
\end{equation*}
$$

where $A_{i}(x) \in \mathfrak{k}[x]$, and

$$
\begin{equation*}
\nu(f)=\min _{i}\left\{\operatorname{ord}\left(A_{i}\right) \nu\left(Q_{0}\right)+\nu\left(M_{i}\right)\right\} \tag{61}
\end{equation*}
$$

In the case when $\Omega=\infty$ and $n_{i}=1$ for $i \gg 0$ we have a similar statement, but we may need to introduce a new polynomial g of "infinite value" as in Case 3 of Theorem 4.12.

9. The A_{2} singularity

Lemma 9.1. Let \mathfrak{k} be an algebraically closed field, and let $A=\mathfrak{k}\left[x^{2}, x y, y^{2}\right]$, a subring of the polynomial ring $B=\mathfrak{k}[x, y]$. Let $\mathfrak{m}=\left(x^{2}, x y, y^{2}\right) A$ and $\mathfrak{n}=(x, y) B$. Suppose that ν is a rational nondiscrete valuation dominating $B_{\mathfrak{n}}$, such that ν has a generating sequence

$$
P_{0}=x, P_{1}=y, P_{2}, \ldots
$$

in $\mathfrak{k}[x, y]$ of the form of the conclusions of Theorem $\frac{\text { Theorem } 1 *}{4.2, \text { such }}$ that each P_{i} is a \mathfrak{k}-linear combinations of monomials in x and y of odd degree, and

$$
\beta_{0}=\nu(x), \beta_{1}=\nu(y), \beta_{2}=\nu\left(P_{2}\right), \ldots
$$

is the increasing sequence of minimal generators of $S^{B_{\mathrm{n}}}(\nu)$, with $\beta_{i+1}>\bar{n}_{i} \beta_{i}$ for $i \geq 1$, where

$$
\bar{n}_{i}=\left[G\left(\beta_{0}, \ldots, \beta_{i}\right): G\left(\beta_{0}, \ldots, \beta_{i-1}\right)\right] .
$$

Then

$$
S^{A_{\mathrm{m}}}(\nu)=\left\{\begin{array}{c}
a_{0} \beta_{0}+a_{1} \beta_{1}+\cdots+a_{i} \beta_{i} \mid i \in \mathbb{N}, a_{0}, \ldots, a_{i} \in \mathbb{N} \\
\text { and } a_{0}+a_{1} \cdots+a_{i} \equiv 0 \bmod 2
\end{array}\right\}
$$

Proof. For $f \in \mathfrak{k}[x, y]$, let $t=\operatorname{deg}_{y}(f)$. By (eqz61 f has a unique expansion

$$
f=\sum_{i=0}^{t}\left(\sum_{k} b_{k, i} x^{k}\right) P_{1}^{j_{1}(i)} \cdots P_{r}^{j_{r}(i)}
$$

where $b_{k, i} \in \mathfrak{k}, 0 \leq j_{k}(i)<\bar{n}_{k}$ for $1 \leq k$ and

$$
\operatorname{deg}_{y} P_{1}^{j_{1}(i)} \ldots P_{r}^{j_{r}(i)}=i
$$

for all i. Looking first at the $t=\operatorname{deg}_{y}(f)$ term, and then at lower order terms, we see that $f \in \mathfrak{k}\left[x^{2}, x y, y^{2}\right]$ if and only if $k+j_{1}(i)+\cdots+j_{r}(i) \equiv 0 \bmod 2$ whenever $b_{k, i} \neq 0$.
Example1 Example 9.2. Suppose that \mathfrak{k} is a field and R is the localization of $\mathfrak{k}[u, v, w] / u v-w^{2}$ at the maximal ideal (u, v, w). Then there exists a rational nondiscrete valuation ν dominating R such that if

$$
\gamma_{0}<\gamma_{1}<\cdots
$$

is the increasing sequence of minimal generators of the semigroup $S^{R}(\nu)$, then given $n \in$ \mathbb{Z}_{+}, there exists $i>n$ such that $\gamma_{i+1}=\gamma_{i}+\frac{\gamma_{0}}{3}$ and γ_{i+1} is in the group generated by $\gamma_{0}, \ldots, \gamma_{i}$.
Proof. Let $A=\mathfrak{k}[x, y]$ be a polynomial ring with maximal ideal $\mathfrak{n}=(x, y) \mathfrak{k}[x, y]$. We will use the criterion of Theorem 1.2 to construct a rational nondiscrete valuation ν dominating $T=A_{\mathfrak{n}}$, with a generating sequence

$$
P_{0}=x, P_{0}=y, P_{2}, \ldots
$$

such that

$$
\beta_{0}=\nu(x), \beta_{1}=\nu(y), \beta_{2}=\nu\left(P_{2}\right), \ldots
$$

is the increasing set of minimal generators of the semigroup $S^{T}(\nu)$. We will construct the P_{i} so that each P_{i} is a \mathfrak{k}-linear combination of monomials in x and y of odd degree.

We define the first part of a generating sequence by setting

$$
P_{0}=x, P_{1}=y, P_{2}=y^{3}-x^{5},
$$

with $\beta_{0}=\nu(x)=1, \beta_{1}=\nu(y)=\frac{5}{3}$. Set $b_{1}=0$.
We now inductively define

$$
P_{i+1}=P_{i}^{3}-x^{a_{i}} P_{i-1}
$$

with a_{i} an even positive integer, and $\beta_{i}=\nu\left(P_{i}\right)=b_{i}+\frac{5}{3^{i}}$ with $b_{i} \in \mathbb{Z}_{+}$, for $i \geq 2$, by requiring that 3 divides $a_{i}+b_{i-1}$ and

$$
b_{i}=\frac{a_{i}+b_{i-1}}{3}>3 b_{i-1}+5
$$

for $i \geq 2$. a_{i}, b_{i} satisfying these relations can be constructed inductively from b_{i-1}.
Now let $B=\mathfrak{k}\left[x^{2}, x y, y^{2}\right], \mathfrak{m}=\left(x^{2}, x y, y^{2}\right) B$, so that $R \cong B_{\mathfrak{m}}$. With this identification, the semigroup $S^{R}(\nu)$ is generated by $\left\{\beta_{i}+\beta_{j} \mid i, j \in \mathbb{N}\right\}$. From $3 \beta_{i}<\beta_{i+1}$ for $i \geq 1$ and $\beta_{i}<\beta_{j}$ if $j>i$, we conclude that if $i \leq j, k \leq l$ and $j<l$, then

$$
\begin{equation*}
\beta_{i}+\beta_{j}<\beta_{k}+\beta_{l} . \tag{62}
\end{equation*}
$$

Let

$$
\gamma_{0}=2<\gamma_{1}<\cdots
$$

be the sequence of minimal generators of the semigroup $S^{R}(\nu)$. By ($\left(\frac{\mathrm{eg} 10}{62}\right)$, for $n \in \mathbb{Z}_{+}$, there exists an index l such that $\gamma_{l}=\beta_{0}+\beta_{n}$. We have $l \geq n$. The semigroup $S\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{l}\right)$ is generated by

$$
\left\{\beta_{i}+\beta_{j} \mid i \leq j \text { and } j \leq n-1\right\}
$$

and $\beta_{0}+\beta_{n}$.
Suppose $\beta_{1}+\beta_{n} \in S\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{l}\right)$. Since $S\left(\gamma_{0}, \ldots, \gamma_{l-1}\right) \subset \frac{1}{3^{n-1}} \mathbb{Z}$, we have an expression $\beta_{1}+\beta_{n}=r \gamma_{l}+\tau$ with r a positive integer, and $\tau \in S\left(\gamma_{0}, \ldots, \gamma_{l-1}\right)$. Now

$$
\gamma_{l}=\beta_{0}+\beta_{n}=1+b_{n}+\frac{5}{3^{n}}
$$

and

$$
\beta_{1}+\beta_{n}=\frac{5}{3}+b_{n}+\frac{5}{3^{n}}
$$

implies $\tau \leq \frac{5}{3}-1=\frac{2}{3}$, which is impossible, since $\gamma_{0}=\beta_{0}+\beta_{0}=2$. Thus $\beta_{1}+\beta_{n} \notin$ $S\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{l}\right)$ and $\beta_{1}+\beta_{n}=\gamma_{l+1}$ is the next largest minimal generator of $S^{R}(\nu)$.

We have that $\gamma_{l+1}=\beta_{1}+\beta_{n}=\left(\beta_{0}+\beta_{1}\right)+\left(\beta_{0}+\beta_{n}\right)-2 \beta_{0}$ is in the group generated by $\gamma_{0}, \ldots, \gamma_{l}$.
Example2 Example 9.3. Let notation be as in Example $\frac{\text { Example1 }}{9.2 \text { and its proof. Then } R \rightarrow T \text { is finite, }}$ but $S^{T}(\nu)$ is not a finitely generated $S^{R}(\nu)$ module.
Proof. Suppose $S^{T}(\nu)$ is a finitely generated $S^{R}(\nu)$ module. Then there exists $n>0$ such that $S^{T}(\nu)$ is generated by $\beta_{0}, \ldots, \beta_{n}$ and $\left.\left\{\beta_{i}+\beta_{j}\right\} \mid i, j \in \mathbb{N}\right\}$. For $l>n, \beta_{l}$ cannot be in this semigroup.

Example3
Example 9.4. Let $A=\mathfrak{k}[u, v]_{(u, v)}$. Then $A \rightarrow T$ is a finite extension of regular local rings, but $S^{T}(\nu)$ is not a finitely generated $S^{A}(\nu)$ module.
Proof. Since A is a subring of $R, S^{A}(\nu)$ is a subsemigroup of $S^{R}(\nu)$. Since $S^{T}(\nu)$ is not a finitely generated $S^{R}(\nu)$-module, by Example $9.3, S^{\text {Examp } P^{2}}(\nu)$ cannot be a finitely generated $S^{A}(\nu)$-module.

References

[1] S. Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321 - 348.
[2] S. Abhyankar, Ramification theoretic methods in algebraic geometry, Princeton Univ Press, 1959.
[3] S. Abhyankar, Newton-Puiseux expansion and generalized Tschirnhausen transformation I, J. Reine Angew. Math. 260 (1973), 47-83.
[4] S. Abhyankar, Newton-Puiseux expansion and generalized Tschirnhausen transformation II, J. Reine Angew. Math. 261 (1973), 29-54.
[5] K. Brauner, Klassification der singularitäten algebroider Kurven, Abh. math. semin. Hamburg. Univ 6 (1928).
[6] E. Brieskorn and H. Knörrer, Plane algebraic curves, Birkhauäuser, (1986).
[7] A. Campillo, Algebroid curves in positive characteristic, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[8] V. Cossart and G. Moreno-Socías, Racines approchées, suites génératrices, sufficance des jets, Ann. Fac. Sci. Toulouse math. (6) 14 (2005), 353-394.
[9] V. Cossart, C. Galindo, O. Piltant, Un exemple effectif de gradué non noethérien associé à une valuation divisorielle, Ann. Inst. Fourier (Grenoble) 50 (2000), 105-112.
[10] S.D. Cutkosky, Local factorization and monomialization of morphisms, Astérisque 260, 1999.
[11] S.D. Cutkosky, Kia Dalili and Olga Kashcheyeva, Growth of rank 1 valuation semigroups, Communications in Algebra 38 (2010), 2768 - 2789.
[12] S.D. Cutkosky and S. El Hitti, Formal prime ideals of infinite value and their algebraic resolution, to appear in Annales de la Faculté des Sciences de Toulouse, Mathemématiques.
[13] S.D. Cutkosky and L. Ghezzi, Completions of valuation rings, Contemp. math. 386 (2005), 13-34.
[14] S.D. Cutkosky and O. Kashcheyeva, Algebraic series and valuation rings over nonclosed fields, J. Pure. Appl. Alg. 212 (2008), 1996-2010.
[15] S.D. Cutkosky and O. Piltant, Ramification of Valuations, Advances in Math. 183 (2004), 1-79.
[16] S.D. Cutkosky and H. Srinivasan, The algebraic fundamental group of the complement of a curve singularity, J. Algebra 230 (2000), 101-126.
[17] S.D. Cutkosky and B. Teissier, Semigroups of valuations on local rings, Mich. Math. J. 57 (2008), 173-193.
[18] S.D. Cutkosky and B. Teissier, Semigroups of valuations on local rings II, to appear in Amer. J. Math.
[19] D. Eisenbud and W. Neumann, Three dimensional link theory and invariants of plane curve singularities, Ann. Math. Studies 110,
[20] S. El Hitti, A geometric construction of minimal generating sequences, Master's Thesis, University of Missouri, 2006. Princeton Univ. Press, Princeton, N.J. (1985)
[21] C. Favre and M. Jonsson, The valuative tree, Lecture Notes in Math 1853, Springer Verlag, Berlin, Heidelberg, New York, 2004.
[22] L. Ghezzi, Huy Tài Hà and O. Kashcheyeva, Toroidalization of generating sequences in dimension two function fields, J. Algebra 301 (2006) 838-866.
[23] L. Ghezzi and O. Kashcheyeva, Toroidalization of generating sequences in dimension two function fields of positive characteristic, J. Pure Appl. Algebra 209 (2007), 631-649.
[24] R. Goldin and B. Teissier, Resolving singularities of plane analytic branches with one toric morphism, Valuation theory and its applications II, F.V. Kuhlmann, S. Kuhlmann and M. Marshall, editors, Fields Institute Communications 33, Amer. Math. Soc., Providence, RI, $315-340$.
[25] F.J. Herrera Govantes, M.A. Olalla Acosta, M. Spivakovsky, Valuations in algebraic field extensions, J. Algebra 312 (2007), 1033-1074.
[26] A. Grothendieck, and A. Dieudonné, Eléments de géométrie algébrique IV, vol. 2, Publ. Math. IHES 24 (1965).
[27] E.R. Garcia Barroso and P.D. González-Pérez, Decomposition in bunches of the critical locus of a quasi-ordinary map, Compos. math. 141 (2005) 461-486.
[28] W. Heinzer, W. and J. Sally, Extensions of valuations to the completion of a local domain, Journal of Pure and Applied Algebra 71 (1991), 175-185.
[29] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscript math. 3 (1970), 175-193.
[30] F.J. Herrera Govantes, M.S. Olalla Acosta, M. Spivakovsky, B. Teissier, Extending a valuation centered in a local domain to the formal completion, arXiv:1007.4656.
[31] E. Kähler, Über die Verzweigung einer algebraischen Funktion zweier Veränderlichen in der Umgebung einer singulären Stelle. Math. Z. 30 (1929).
[32] F.-V. Kuhlmann, Value groups, residue fields, and bad places of algebraic function fields, Trans. Amer. Math. Soc. 40 (1936), 363-395.
[33] J. Lipman, Proximity inequalities for complete ideals in two-dimensional regular local rings, In: Commutative Algebra, Syzygies, Multiplicities and Birational Algebra (South Hadley M.A. 1992) Contemp. Math. 159 (1992), 293-306.
[34] F. Lucas, J. Madden, D. Schaub and M. Spivakovsky, Approximate roots of a valuation and the Pierce-Birkhoff conjecture, arXiv:1003.1180.
[35] S. MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40 (1936), 363-395.
[36] S. MacLane and O. Schilling, Zero-dimensional branches of rank 1 on algebraic varieties, Annals of Math. 40 (1939), 507-520.
[37] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Studies 61 Princeton (1968).
[38] M. Moghaddam, A construction for a class of valuations of the field $K\left(X_{1}, \ldots, X_{d}, Y\right)$ with large value group, Journal of Algebra, 319, 7 (2008), 2803-2829.
[39] M. Nagata, Local Rings, John Wiley and Sons, New York (1962).
[40] S. Noh, The value semigroup of prime divisors of the second kind in 2-dim regular local rings, Tran. Amer. Math. Soc 336 (1993), 607-619.
[41] M. Spivakovsky, Valuations in function fields of surfaces, Amer. J. Math. 112 (1990), 107 156.
[42] B. Teissier, Valuations, deformations and toric geometry, Valuation theory and its applications II, F.V. Kuhlmann, S. Kuhlmann and M. Marshall, editors, Fields Institute Communications 33, Amer. Math. Soc., Providence, RI, 361-459.
[43] M. Vaquié, Extension d'une valuation, Trans. Amer. Math. Soc. 359 (2007), 3439-3481.
[44] O. Zariski, On the topology of algebroid singularities, Amer. J. Math., 54 (1932).
[45] O. Zariski, Algebraic Surfaces, (1935). Second supplemented edition, Ergebnisse der Math. 61, Springer Verlag, (1971).
[46] O. Zariski, Polynomial ideals defined by infinitely near base points, Amer. J. Math 60 (1938), 151-204.
[47] O. Zariski, The reduction of the singularities of an algebraic surface, Ann. Math. 40 (1939), 639-689.
[48] O. Zariski and P. Samuel, Commutative Algebra Volume II, Van Nostrand, 1960.
Steven Dale Cutkosky, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: cutkoskys@missouri.edu
Pham An Vinh, Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

E-mail address: vapnnc@mizzou.edu

[^0]: If $S=S^{R}(\nu)$ fof some valuation ν dominating R, then 1$)$ and 2) of Theorem, Corollary $4 *$ by Corollary 5.1. Observe that the construction in the proof of Theorem 1.1 of a valuation

