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Abstract. We consider the question of when a semigroup is the semigroup of a valuation
dominating a two dimensional noetherian domain, giving some surprising examples. We
give a necessary and sufficient condition for the pair of a semigroup S and a field extension
L/k to be the semigroup and residue field of a valuation dominating a regular local ring
R of dimension two with residue field k, generalizing the theorem of Spivakovsky for the
case when there is no residue field extension.

1. Introduction

Suppose that (R,mR) is a Noetherian local ring which is dominated by a valuation ν.
The semigroup of ν in R is

SR(ν) = {ν(f) | f ∈ R \ {0}}.

SR(ν) generates the value group of ν.
In this paper we give a classification of the semigroups and residue field extensions that

may be obtained by a valuation dominating a regular local ring of dimension two. Our
results are completely general, as we make no further assumptions on the ring or on the
residue field extension of the valuation ring. This classification (given in Theorems

Theorem3*
1.1

and
Corollary4*
1.2) is very simple. The classification does not extend to more general rings.

We give an example showing that the semigroup of a valuation dominating a normal
local ring of dimension two can be quite different from the semigroup of a regular local
ring, even on an A2 singularity (Example

Example1
9.2). In

CT1
[17],

CT2
[18] and

CDK
[11], we give examples

showing that the semigroups of valuations dominating regular local rings of dimension
≥ 3 can be very complicated. For instance, in Proposition 6.3 of

CDK
[11], we show that there

exists a regular local ring R of dimension 3 dominated by a rational rank 1 valuation
ν which has the property that given ε > 0, there exists an i such that βi+1 − βi < ε,
where β0 < β1 < · · · is the minimal set of of generators of SR(ν). In

CT1
[17] and

CT2
[18] we

give examples showing that spectacularly strange behavior of the semigroup can occur for
a higher rank valuation. The growth of valuation semigroups is however bounded by a
polynomial whose coefficients are computed from the multiplicities of the centers of the
composite valuations on R. This is proven in

CT2
[18].

The possible value groups Γ of a valuation ν dominating a Noetherian local ring have
been extensively studied and classified, including in the papers MacLane

M
[35], MacLane

and Schilling
MS
[36], Zariski and Samuel

ZS
[48], and Kuhlmann

K
[32]. Γ can be any ordered

abelian group of finite rational rank (Theorem 1.1
K
[32]). The semigroup SR(ν) is however

not well understood, although it is known to encode important information about the
topology and resolution of singularities of Spec(R)

B
[5],

BK
[6],

Z3
[44],

Z4
[45],

Ca
[7],

CS
[16],

EN
[19],

Ka
[31],

GT
[24],

Mi
[37],

T
[42],

G-P
[27] to mention a few references, and the ideal theory of R

Z1
[46],

Z2
[47],

ZS
[48]

and its development in many subsequent papers.

The first author was partially supported by NSF.
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In Sections
RLR1
3 through

Poly
8 of this paper we analyze valuations dominating a regular local

ring R of dimension two. Our analysis is constructive, being based on an algorithm which
finds a generating sequence for the valuation. A generating sequence of ν in R is a set
of elements of R whose initial forms are generators of the graded k = R/mR-algebra
grν(R) (Section

Prel
2). The characteristic of the residue field of R does not appear at all in

the proofs, although the proof may be simplified significantly if the assumption that R
has equal characteristic is added; in this case we may reduce to the case where R is a
polynomial ring over a field (Section

Poly
8). A construction of a generating sequence, and

the subsequent classification of the semigroups, is classical in the case when the residue
field of R is algebraically closed; this was proven by Spivakovsky in

S
[41]. Besides the

complete generality of our results, our proofs differ from those of Spivakovsky in that we
only use elementary techniques, using nothing more sophisticated than the definition of
linear independence in a vector space, and the definition of the minimal polynomial of an
element in a field extension. In our proof we construct the residue field of the valuation
ring as a tower of primitive extensions; the minimal polynomials of the primitive elements
are used to construct the generating sequence for the valuation. It is not necessary for
R to be excellent in our analysis; the only place in this paper where excellence manifests
itself is in the possibility of ramification in the extension of a valuation to the completion
of a non excellent regular local ring (Proposition

Prop17
3.4).

In a finite field extension, the quotient of the valuation group of an extension of a
valuation by the value group is always a finite group (2nd corollary on page 52 of

ZS
[48]).

This raises the following question: Suppose that R → T is a finite extension of regular
local rings, and ν is a valuation which dominates R. Is ST (ν) a finitely generated module
over the semigroup SR(ν)? We give a counterexample to this question in Example

Example3
9.4.

This example is especially interesting in light of the results on relative finite generation in
the papers

GHK
[22] of Ghezzi, Hà and Kashcheyeva, and

GK
[23] of Ghezzi and Kashcheyeva.

We now turn to a discussion of our results on regular local rings of dimension two. We
obtain the following necessary and sufficient condition for a semigroup and field extension
to be the semigroup and residue field extension of a valuation dominating a complete
regular local ring of dimension two in the following theorem (proven in Section

Proof1
5):

Theorem3* Theorem 1.1. Suppose that R is a complete regular local ring of dimension two with
residue field R/mR = k. Let S be a subsemigroup of the positive elements of a totally
ordered abelian group and L be a field extension of k. Then S is the semigroup of a
valuation ν dominating R with residue field Vν/mν = L if and only if there exists a finite
or countable index set I, of cardinality Λ = |I| − 1 ≥ 1 and elements βi ∈ S for i ∈ I and
αi ∈ L for i ∈ I+, where I+ = {i ∈ I | i > 0}, such that

1) The semigroup S is generated by {βi}i∈I and the field L is generated over k by
{αi}i∈I+.

2) Let

ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)]

and

di = [k(α1, . . . , αi) : k(α1, . . . , αi−1)].

Then there are inequalities

βi+1 > nidiβi > βi

with ni < ∞ and di < ∞ for 1 ≤ i < Λ and if Λ < ∞, then either nΛ = ∞ and
dΛ = 1 or nΛ <∞ and dΛ =∞.
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Here G(β0, . . . , βi) is the subgroup generated by β0, . . . , βi.
The case when R is not complete is more subtle, because of the possibility, when R is

not complete, of the existence of a rank 1 discrete valuation which dominates R and such
that the residue field extension Vν/mν of k = R/mR is finite. For all other valuations ν
which dominate R (so that ν is not rank 1 discrete with Vν/mν finite over k) the analysis
is the same as for the complete case, as there is then a unique extension of ν to a valuation
dominating the completion of R which is an immediate extension; that is, there is no
extension of the valuation semigroups or of the residue fields of the valuations. The
differences between the complete and non complete cases are explained in more detail by
Theorem

TheoremR4
3.1, Corollary

CorollaryR2
3.2, Example

ExampleR1
3.3, Proposition

Prop17
3.4 and Corollary

CorollaryN1
5.1 to Theorem

Theorem3*
1.1.

We give a necessary and sufficient condition for a semigroup to be the semigroup of a
valuation dominating a regular local ring of dimension two in the following theorem, which
is proven in Section

Proof2
6:

Corollary4* Theorem 1.2. Suppose that R is a regular local ring of dimension two. Let S be a sub-
semigroup of the positive elements of a totally ordered abelian group. Then S is the semi-
group of a valuation ν dominating R if and only if there exists a finite or countable index
set I, of cardinality Λ = |I| − 1 ≥ 1 and elements βi ∈ S for i ∈ I such that

1) The semigroup S is generated by {βi}i∈I .
2) Let

ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)].

There are inequalities
βi+1 > niβi

with ni <∞ for 1 ≤ i < Λ. If Λ <∞ then nΛ ≤ ∞.

Theorem
Corollary4*
1.2 is proven by Spivakovsky when R has algebraically closed residue field in

S
[41].

The proof in Section 5 of
CDK
[11], given for the case when the residue field of R is alge-

braically closed, now extends to arbitrary regular local rings of dimension two, using the
conclusions of Theorem

Corollary4*
1.2, to prove the following:

lim Corollary 1.3. Suppose that R is a regular local ring of dimension two and ν is a rank
1 valuation dominating R. Embed the value group of ν in R+ so that 1 is the smallest
nonzero element of SR(ν). Let ϕ(n) = |SR(ν) ∩ (0, n)| for n ∈ Z+. Then

lim
n→∞

ϕ(n)

n2

exists. The set of limits which are obtained by such valuations ν dominating R is the real
half open interval [0, 1

2).

As a consequence of Theorem
Theorem3*
1.1, we obtain the following example, which we prove in

Section
Proof2
6, showing the subtlety of the criteria of Theorem

Theorem3*
1.1.

Nores Example 1.4. There exists a semigroup S which satisfies the sufficient conditions 1) and
2) of Theorem

Corollary4*
1.2, such that if (R,mR) is a 2-dimensional regular local ring dominated by

a valuation ν such that SR(ν) = S, then R/mR = Vν/mν ; that is, there can be no residue
field extension.

The main technique we use in the proofs of the above theorems is the algorithm of
Theorem

Theorem1*
4.2, which constructs a sequence of elements {Pi} in R, starting with a given
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regular system of parameters P0 = x, P1 = y of R, which gives a generating sequence of ν
in R. This fact is proven in Theorems

Corollary1*
4.11 and

Corollary3*
4.12.

In Section
RLR2
7, we develop the birational theory of the generating sequence {Pi}, gener-

alizing to the case when R has arbitrary residue field the results of
S
[41].

Suppose that R is a regular local ring of dimension two which is dominated by a valu-
ation ν. Let k = R/mR and

eqX3*eqX3* (1) R→ T1 → T2 → · · ·

be the sequence of quadratic transforms along ν, so that Vν = ∪Ti, and L = Vν/mν =
∪Ti/mTi . Suppose that x, y are regular parameters in R, and let P0 = x, P1 = y and {Pi}
be the sequence of elements of R constructed in Theorem

Theorem1*
4.2. Suppose there exists some

smallest value i in the sequence (
eqX3*
1) such that the divisor of xy in Spec(Ti) has only one

component. Let R1 = Ti. By Theorem
birat
7.1, a local equation of the exceptional divisor

and a strict transform of P2 in R1 are a regular system of parameters in R2, and a local
equation of the exceptional divisor and a strict transform of Pi in R1 for i ≥ 2 satisfy the
conclusions of Theorem

Theorem1*
4.2 on R2.

We can repeat this construction, for this new sequence, to construct a sequence of
quadratic transforms R1 → R2 such that a local equation of the exceptional divisor and a
strict transform of P3 is a regular system of parameters in R2, and a local equation of the
exceptional divisor and a strict transform of Pi for ≥ 3 satisfy the conclusions of Theorem
Theorem1*
4.2 on R2.

We thus have a sequence of iterated quadratic transforms

R→ R1 → R2 → · · ·

such that Vν = ∪Ri and where a local equation of the exceptional divisor of Ri → Ri+1

and the strict transform of Pi+1 are a regular system of parameters in Ri for all i.
The notion of a generating sequence of a valuation already can be recognized in the

famous algorithm of Newton to find the branches of a (characteristic zero) plane curve
singularity. In more modern times, it has been developed by Maclane

M
[35] (“key poly-

nomials”), Zariski
Z1
[46], Abhyankar

Ab3
[3],

Ab4
[4] (“approximate roots”), and Spivakovsky

S
[41].

Most recently, the construction and application of generating sequences of a valuation
have appeared in many papers, including

CG
[13],

CGP
[9],

CP
[15],

EH
[20],

FJ
[21],

GAS
[25],

GHK
[22],

GK
[23],

LMSS
[34],

Mo
[38],

V
[43]. The theory of generating sequences in regular local rings of dimension two is closely
related to the configuration of exceptional curves appearing in the sequence of quadratic
transforms along the center of the valuation. This subject has been explored in many
papers, including

Ca
[7] and

Li
[33]. The extension of valuations to the completion of a local

ring, which becomes extremely difficult in higher dimension and rank, is studied in
S
[41],

HS
[28],

CE
[12],

C
[10],

CK
[14],

CoG
[8],

CE
[12] and

HOST
[30]. There is an extensive literature on the theory of

complete ideals in local rings, beginning with Zariski’s articles
Z1
[46] and

ZS
[48].

We thank Soumya Sanyal for his meticulous reading of this paper.

2. Preliminaries
Prel

Suppose that (R,mR) is a Noetherian local domain and ν is valuation of the quotient
field which dominates R. Let Vν be the valuation ring of ν, and mν be its maximal ideal.
Let Γν be the value group of ν. Let k = R/mR. The semigroup of ν on R is

SR(ν) = {ν(f) | f ∈ R \ {0}}.
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For ϕ ∈ Γν , define valuation ideals

Pϕ(R) = {f ∈ R | ν(f) ≥ ϕ},
and

P+
ϕ (R) = {f ∈ R | ν(f) > ϕ}.

We have that P+
ϕ (R) = Pϕ(R) if and only if ϕ 6∈ SR(ν). The associated graded ring of ν

on R is
grν(R) =

⊕
ϕ∈Γν

Pϕ(R)/P+
ϕ (R).

Suppose that f ∈ R and ν(f) = ϕ. Then the initial form of f in grν(R) is

inν(f) = f + P+
ϕ (R) ∈ [grν(R)]ϕ = Pϕ(R)/P+

ϕ (R).

A set of elements {Fi}i∈I such that {inν(Fi)} generates grν(R) as a k-algebra is called
a generating sequence of ν in R.

We have that the vector space dimension

dimR/mRPϕ(R)/P+
ϕ (R) <∞

and
dimR/mRPϕ(R)/P+

ϕ (R) ≤ [Vν/mν : R/mR]

for all ϕ ∈ Γν .
SR(ν) is countable and is well ordered of ordinal type ≤ ω2 by Proposition 2, Appendix

3
ZS
[48]. Further, Vν/mν is a countably generated field extension of k = R/mR, since grν(R)

is a countably generated vector space over R/mR, and if 0 6= α ∈ Vν/mν , then α is the

residue of f
g for some f, g ∈ R with ν(f) = ν(g).

We will make use of Abhyankar’s Inequality (
Ab1
[1], Appendix 2

ZS
[48]):

eq17eq17 (2) rat rank ν + trdegR/mRVν/mν ≤ dimR

If equality holds then Γν ∼= Zm as an unordered group, where m = rat rank ν, and Vν/mν

is a finitely generated field extension of R/mR.
We have that

rank ν ≤ rat rank ν ≤ dimR.

Let n = rank ν. Then we have an order preserving embedding

eqZ11eqZ11 (3) Γν ⊂ ΓνR ∼= (Rn)lex

(Proposition 2.10
Ab2
[2]). We say that ν is discrete if Γν is discrete in the Euclidean topology.

If I is an ideal in R, we may define ν(I) = min{ν(f) | f ∈ I \ {0}}, since SR(ν) is well
ordered.

N denotes the natural numbers {0, 1, 2, . . .} and Z+ denotes the positive integers {1, 2, 3, . . .}.
Given elements z1, . . . , zn in a group G, let G(z1, . . . , zn) be the subgroup generated by

z1, . . . , zn. Let S(z1, . . . , zn) be the semigroup generated by z1, . . . , zn.

Lemma2 Lemma 2.1. Suppose that Γ is a totally ordered abelian group, I is a finite or countable
index set of cardinality ≥ 2 and βi ∈ Γ are positive elements for i ∈ I. Let Λ = |I| − 1.
Let

ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)] ∈ Z+ ∪ {∞}
for ≥ 1. Assume that ni ∈ Z+ if i < Λ. Let si be the smallest positive integer t such that
tβi ∈ Si−1 (or si =∞ if i = Λ and no such t exists).

Suppose that 1 ≤ k < Λ and niβi < βi+1 for 1 ≤ i ≤ k − 1. Then
5



1) si = ni for 1 ≤ i ≤ k.
2) If γ ∈ G(β0, . . . , βk) and γ ≥ nkβk then γ ∈ S(β0, . . . , βk).

Proof. We first prove 2). By repeated Euclidean division, we obtain an expansion γ =
a0β0 + a1β1 + · · · + akβk with a0 ∈ Z and 0 ≤ ai < ni for 1 ≤ i ≤ k. Now we calculate,
using the inequalities niβi < βi+1,

a1β1 + · · ·+ akβk < nkβk.

Thus a0 > 0 and γ ∈ S(β0, . . . , βk).
Now 1) follows from 2) and induction on k. �

A Laurent monomial in H0, H1, . . . ,Hl is a product Ha0
0 Ha1

1 · · ·H
al
l with a0, a1, . . . , al ∈

Z.
Suppose that R is a regular local ring with maximal ideal mR. Suppose that f ∈ R.

Then we define

ord(f) = max{n ∈ N | f ∈ mn
R}.

3. Regular local rings of dimension two
RLR1

Suppose that (R,mR) is a Noetherian local domain of dimension two. Up to order
isomorphism, the value groups Γν of a valuation ν which dominates R are by Abhyankar’s
inequality and Example 3, Section 15, Chapter VI

ZS
[48]:

1. αZ + βZ with α, β ∈ R rationally independent.
2. (Z2)lex.
3. Any subgroup of Q.

Suppose that N is a field, and V is a valuation ring of N . We say that the rank of
V increases under completion if there exists an analytically normal local domain T with
quotient field N such that V dominates T and there exists an extension of V to a valuation
ring of the quotient field of T̂ which dominates T̂ and which has higher rank than the rank
of V .

TheoremR4 Theorem 3.1. (Theorem 4.2,
CK
[14];

S
[41] in the case when R/mR is algebraically closed)

Suppose that V dominates an excellent two dimensional local ring R. Then the rank of V
increases under completion if and only if V/mV is finite over R/mR and V is discrete of
rank 1.

CorollaryR2 Corollary 3.2. If R is complete and ν is a discrete rank one valuation which dominates
R then [Vν/mν : R/mR] =∞.

The following example shows an important distinction between the case when R is
complete and when R is not.

ExampleR1 Example 3.3. Suppose that k is a field and R = k[x, y](x,y) is a localization of a polynomial
ring in two variables. Then there exists a rank one discrete valuation ν dominating R such
that Vν/mν = k.

Proof. Let f(t) ∈ k[[t]] be a transcendental element over k(t). Embed R into k[[t]] by
substituting t for x and f(t) for y. The valuation ν on R obtained by restriction of the
t-adic valuation to R has the desired properties. �

Suppose that ν is a valuation which dominates R. Let a be the smallest positive element
in SR(ν). Suppose that {fi} is a Cauchy sequence in R (for the mR-adic topology). Then
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either there exist n0 ∈ Z+, m ∈ Z+ and γ ∈ SR(ν) such that γ < ma and ν(fi) = γ for
i ≥ n0, or

eqZ12eqZ12 (4) Given m ∈ Z+, there exists n0 ∈ Z+ such that ν(fi) > ma for i > n0

Let IR̂ be the set of limits of Cauchy sequences {fi} satisfying (
eqZ12
4). Then IR̂ is a prime

ideal in R̂ (
C
[10],

CG
[13],

CE
[12],

S
[41],

T
[42]). The following proposition is well known.

Prop17 Proposition 3.4. Suppose that R is a regular local ring of dimension two, and let ν be
a valuation which dominates R. Then there exists an extension of ν to a valuation ν̂
which dominates the completion R̂ of R with respect to mR, which has one of the following
semigroups:

1. rank ν = rank ν̂ = 1 and

eq14eq14 (5) SR(ν) = SR̂(ν̂).

2. ν is discrete of rank 1, ν̂ is discrete of rank 2 and

eq15eq15 (6) SR̂(ν̂) is generated by SR(ν) and an element α such that α > γ for all γ ∈ SR(ν).

3. ν and ν̂ are discrete of rank 2, there exists a height one prime IR in R, and a
discrete rank 1 valuation ν which dominates the maximal ideal mR(R/IR) of R/IR
such that

eq16eq16 (7)

SR(ν) is generated by SR/IR(ν) and an element α such that α > γ

for all γ ∈ SR/IR(ν).

SR̂(ν̂) is generated by SR/IR(ν) and an element β such that α− tβ ∈ SR/IR(ν),
for some t ∈ Z+. If Rm is excellent, then t = 1.

4. ν and ν̂ are discrete of rank 2, IR̂ = (0) and SR(ν) = SR̂(ν̂).

Proof. First suppose that ν has rank 1. Then IR̂ ∩ R = (0), so we have an embedding

R ⊂ R̂/IR̂. We can then extend ν to a valuation ν which dominates R̂/IR̂ by defining for
f 6∈ IR̂, ν(f + IR̂) = limi→∞ ν(fi), where {fi} is a Cauchy sequence in R representing f .

We have that SR(ν) = SR̂/IR̂(ν).

If IR̂ = (0) then we have constructed the desired extension ν̂ = ν of ν to R̂. Suppose

that IR̂ 6= (0). Then R̂/IR̂ has dimension 1, so ν is discrete of rank 1. We have that
IR̂ = (v) is a height one prime ideal. We can extend ν to a rank 2 valuation ν̂ which

dominates R̂ by defining ν̂(f) = (n, ν(g)) ∈ (Z
⊕

Γν)lex if f ∈ R̂ has a factorization
f = vng where n ∈ N and v 6 | g.

Now assume that ν has rank 2. Further assume that IR̂ ∩R 6= (0). Then ν has rank 2,
and IR = IR̂ ∩R is a height one prime ideal in R. Thus there exists an irreducible g ∈ R
such that IR = (g). We then have that IR̂ is a height one prime ideal in R̂, so there exists

an irreducible v ∈ R̂ such that IR̂ = (v).
There exists a valuation ν dominating R/IR such that if f ∈ R has a factorization

f = gnh where g 6 | h, then
ν(f) = nν(g) + ν(h).

Write g = vtϕ where t ∈ Z+ and v 6 | ϕ. Thus ϕ 6∈ IR̂. If R is excellent, then g is reduced

in R̂ (by Scholie IV 7.8.3 (vii)
G
[26]), so t = 1. We have an inclusion R/IR ⊂ R̂/IR̂, and ν

extends to a valuation ν̂ which dominates R̂/IR̂. We then extend ν to a valuation ν̂ which

dominates R̂ by setting
tν̂(v) = ν(g)− ν̂(ϕ)
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in ΓνR ∼= (R2)lex. Suppose that 0 6= f ∈ R̂. Factor f as f = vnh where n ∈ N and v 6 | h.
Then define

ν̂(f) = nν̂(v) + ν̂(h).

We now show that SR/IR(ν) = SR̂/IR̂(ν̂). We have that ν̂(m(R̂/IR̂)) = ν(m(R/IR)).

Suppose that 0 6= h ∈ R̂/IR̂, and that ν̂(h) = γ. There exists n ∈ Z+ such that

nν̂(m(R̂/IR̂)) > γ and there exists f ∈ R such that if f is the image of f in R/IR,

then f − h ∈ mn(R̂/IR̂). Thus ν(f) = ν(f) = ν̂(h) = γ.
Suppose that rank ν = 2 and IR̂∩R = (0). We can extend ν to a valuation ν dominating

R/IR̂ by defining for f 6∈ IR̂, ν(f + IR̂) = limi→∞ ν(fi) if {fi} is a Cauchy sequence in R
converging to f . We must have that IR̂ = (0), since otherwise we would be able to extend

ν to a valuation ν̃ dominating R̂ which is composite with the rank 2 extension ν of ν to
R̂/IR̂; this extension would have rank ≥ 3 which is impossible by Abhyankar’s inequality.
Thus IR̂ = (0).

�

Remark 3.5. Nagata gives an example in the Appendix to
Na
[39] of a regular local ring R

of dimension two with an irreducible element f ∈ R such that f is not reduced in R̂.

4. The Algorithm

In this section, we will suppose that R is a regular local ring of dimension two, with
maximal ideal mR and residue field k = R/mR. For f ∈ R, let f or [f ] denote the residue
of f in k. Suppose that CS is a coefficient set of R. A coefficient set of R is a subset CS
of R such that the mapping CS → k defined by s 7→ s is a bijection. We further require
that 0 ∈ CS and 1 ∈ CS.

RemarkG4 Remark 4.1. Suppose that x, y are regular parameters in R, a, b ∈ CS and n ∈ Z+. Let
c ∈ CS be defined by a+ b = c. Then there exist eij ∈ CS such that

a+ b = c+

n−1∑
i+j=1

eijx
iyj + h

with h ∈ mn
R. Let d ∈ CS be defined by ab = d. Then there exist gij ∈ CS such that

ab = d+
n−1∑
i+j=1

gijxiyj + h′

with h′ ∈ mn
R.

Theorem1* Theorem 4.2. Suppose that ν is a valuation of the quotient field of R dominating R.
Let L = Vν/mν be the residue field of the valuation ring Vν of ν. For f ∈ Vν , let [f ]
denote the class of f in L. Suppose that x, y are regular parameters in R. Then there exist
Ω ∈ Z+ ∪ {∞} and Pi ∈ mR for i ∈ Z+ with i < min{Ω + 1,∞} such that P0 = x, P1 = y
and for 1 ≤ i < Ω, there is an expression

eq11*eq11* (8) Pi+1 = Pnii +

λi∑
k=1

ckP
σi,0(k)
0 P

σi,1(k)
1 · · ·P σi,i(k)

i

with ni ≥ 1, λi ≥ 1,

eq12*eq12* (9) 0 6= ck ∈ CS
8



for 1 ≤ k ≤ λi, σi,s(k) ∈ N for all s, k, 0 ≤ σi,s(k) < ns for s ≥ 1. Further,

niν(Pi) = ν(P
σi,0(k)
0 P

σi,1(k)
1 · · ·P σi,i(k)

i )

for all k.
For all i ∈ Z+ with i < Ω, the following are true:

1) ν(Pi+1) > niν(Pi).
2) Suppose that r ∈ N, m ∈ Z+, jk(l) ∈ N for 1 ≤ l ≤ m and 0 ≤ jk(l) < nk for

1 ≤ k ≤ r are such that (j0(l), j1(l), . . . , jr(l)) are distinct for 1 ≤ l ≤ m, and

ν(P
j0(l)
0 P

j1(l)
1 · · ·P jr(l)r ) = ν(P

j0(1)
0 · · ·P jr(1)

r )

for 1 ≤ l ≤ m. Then

1,

[
P
j0(2)
0 P

j1(2)
1 · · ·P jr(2)

r

P
j0(1)
0 P

j1(1)
1 · · ·P jr(1)

r

]
, . . . ,

[
P
j0(m)
0 P

j1(m)
1 · · ·P jr(m)

r

P
j0(1)
0 P

j1(1)
1 · · ·P jr(1)

r

]
are linearly independent over k.

3) Let

ni = [G(ν(P0), . . . , ν(Pi)) : G(ν(P0), . . . , ν(Pi−1))].

Then ni divides σi,i(k) for all k in (
eq11*
8). In particular, ni = nidi with di ∈ Z+

4) There exists Ui = P
w0(i)
0 P

w1(i)
1 · · ·Pwi−1(i)

i−1 for i ≥ 1 with w0(i), . . . , wi−1(i) ∈ N
and 0 ≤ wj(i) < nj for 1 ≤ j ≤ i− 1 such that ν(Pnii ) = ν(Ui) and if

αi =

[
Pnii
Ui

]
then

bi,t =

 ∑
σi,i(k)=tni

ck
P
σi,0(k)
0 P

σi,1(k)
1 · · ·P σi,i−1(k)

i−1

U
(di−t)
i

 ∈ k(α1, . . . , αi−1)

for 0 ≤ t ≤ di − 1 and

fi(u) = udi + bi,di−1u
di−1 + · · ·+ bi,0

is the minimal polynomial of αi over k(α1, . . . , αi−1).

The algorithm terminates with Ω <∞ if and only if either

eqL15eqL15 (10) nΩ = [G(ν(P0), . . . , ν(PΩ)) : G(ν(P0), . . . , ν(PΩ−1))] =∞

or

eqL10eqL10 (11)
nΩ <∞ (so that αΩ is defined as in 4)) and
dΩ = [k(α1, . . . , αΩ) : k(α1, . . . , αΩ−1)] =∞.

If nΩ =∞, set αΩ = 1.

Proof. Consider the following statements A(i), B(i), C(i), D(i) for 1 ≤ i < Ω:
9



There exists Ui = P
w0(i)
0 P

w1(i)
1 · · ·Pwi−1(i)

i−1 for some wj(i) ∈ N
and 0 ≤ wj(i) < nj for 1 ≤ j ≤ i− 1

such that niν(Pi) = ν(Ui). Let αi = [
P
ni
i
Ui

] ∈ L and

A(i) fi(u) = udi + bi,di−1u
di−1 + · · ·+ bi,0 ∈ k(α1, . . . , αi−1)[u]

be the minimal polynomial of αi.
Let di be the degree of fi(u), and ni = nidi. Then there exist as,t ∈ CS
and j0(s, t), j1(s, t), . . . , ji−1(s, t) ∈ N with 0 ≤ jk(s, t) < nk
for k ≥ 1 and 0 ≤ t < di such that

ν(P
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji−1(s,t)

i−1 P tnii ) = nidiν(Pi)
for all s, t and

eqM1eqM1 (12) Pi+1 := Pnidii +

di−1∑
t=0

(
λt∑
s=1

as,tP
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji−1(s,t)

i−1

)
P tnii

satisfies

bi,t =

[∑λt
s=1 as,t

P
j0(s,t)
0 P

j1(s,t)
1 ···P

ji−1(s,t)

i−1

U
di−t
i

]
for 0 ≤ t ≤ di − 1. In particular,

eqM2eqM2 (13) ν(Pi+1) > niν(Pi).

B(i) Suppose that M is a Laurent monomial in P0, P1, . . . , Pi and ν(M) = 0. Then
there exist si ∈ Z such that

M =
∏i
j=1

[
P
nj
j

Uj

]sj
,

so that
[M ] ∈ k(α1, . . . , αi).

Suppose that λ ∈ k(α1, . . . , αi) and N is a Laurent monomial
in P0, P1, . . . , Pi such that γ = ν(N) ≥ niν(Pi). Then there exists

C(i) G =
∑

j cjP
τ0(j)
0 P

τ1(j)
1 · · ·P τi(j)i

with τ0(j), . . . , τi(j) ∈ N, 0 ≤ τk(j) < nk for 1 ≤ k ≤ i and cj ∈ CS such that

ν(P
τ0(j)
0 P

τ1(j)
1 · · ·P τi(j)i ) = γ for all j

and[
G
N

]
= λ.

10



Suppose that m ∈ Z+, jk(l) ∈ N for 1 ≤ l ≤ m and 0 ≤ jk(l) < nk
for 1 ≤ k ≤ i are such that the (j0(l), j1(l), . . . , ji(l)) are distinct for 1 ≤ l ≤ m, and

ν(P
j0(l)
0 P

j1(l)
1 · · ·P ji(l)i ) = ν(P

j0(1)
0 · · ·P ji(1)

i )
D(i) for 1 ≤ l ≤ m. Then

1,

[
P
j0(2)
0 P

j1(2)
1 ···P ji(2)

i

P
j0(1)
0 P

j1(1)
1 ···P ji(1)

i

]
, . . . ,

[
P
j0(m)
0 P

j1(m)
1 ···P ji(m)

i

P
j0(1)
0 P

j1(1)
1 ···P ji(1)

i

]
are linearly independent over k.

We will leave the proofs of A(1), B(1), C(1) and D(1) to the reader, as they are an
easier variation of the following inductive statement, which we will prove.

Assume that i ≥ 1 and A(i), B(i), C(i) and D(i) are true. We will prove that A(i+ 1),
B(i+ 1) and C(i+ 1) and D(i+ 1) are true. Let βj = ν(Pj) for 0 ≤ j ≤ i+ 1. By Lemma
Lemma2
2.1, there exists Ui+1 = P

w0(i)
0 P

w1(i)
1 · · ·Pwi(i)i for some wj(i) ∈ N such that 0 ≤ wj(i) < nj

for 1 ≤ j ≤ i and ν(Ui+1) = ni+1βi+1 (where ni+1 = [G(β0, . . . , βi+1) : G(β0, . . . , βi)]).
Let fi+1(u) be the minimal polynomial of

αi+1 =

[
P
ni+1

i+1

Ui+1

]
over k(α1, . . . , αi). Let d = di+1 = deg fi+1. Expand

fi+1(u) = ud + bd−1u
d−1 + · · ·+ b0

with bj ∈ k(α1, . . . , αi). For j ≥ 1,

ν(U ji+1) = jni+1βi+1 ≥ βi+1 > niβi.

In the inductive statement C(i), take N = Ud−ti+1 for 0 ≤ t < d = di+1, to obtain for
0 ≤ t < di+1,

eqF3eqF3 (14) Gt =

λt∑
s=1

as,tP
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji(s,t)i

with as,t ∈ CS, jk(s, t) ∈ N and 0 ≤ jk(s, t) < nk for 1 ≤ k ≤ i such that

ν(Gt) = ν(P
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji(s,t)i ) = (d− t)ni+1βi+1

for all s, t and

eqF5eqF5 (15)

[
Gt

Ud−ti+1

]
= bt.

Set

eqF1eqF1 (16)
Pi+2 = P

ni+1di+1

i+1 +Gd−1P
ni+1(di+1−1)
i+1 + · · ·+G0

= P
ni+1di+1

i+1 +
∑d−1

t=0

∑λt
s=1 as,tP

j0(s,t)
0 P

j1(s,t)
1 · · ·P ji(s,t)i P

tni+1

i+1 .

We have established A(i+ 1).

Suppose M is a Laurent polynomial in P0, P1, . . . , Pi+1 and ν(M) = 0. We have a
factorization

M = P a0
0 P a1

1 · · ·P
ai
i P

ai+1

i+1
11



with all aj ∈ Z. Thus ai+1βi+1 ∈ G(β0, . . . , βi), so that ni+1 divides ai+1. Let s = ai+1

ni+1
.

Then

M = U si+1(P a0
0 P a1

1 · · ·P
ai
i )

(
P
ni+1

i+1

Ui+1

)s
.

Now U si+1P
a0
0 · · ·P

ai
i is a Laurent monomial in P0, . . . , Pi of value zero, so the validity of

B(i+ 1) follows from the inductive assumption B(i).

We now establish C(i+ 1). Suppose λ ∈ k(α1, . . . , αi+1) and N is a Laurent monomial
in P0, P1, . . . , Pi+1 such that γ = ν(N) ≥ ni+1ν(Pi+1). We have

γ ≥ ni+1βi+1 = ni+1di+1βi+1 ≥ ni+1βi+1.

By Lemma
Lemma2
2.1 there exist r0, r1, . . . , ri, k ∈ N such that 0 ≤ rj < nj for 1 ≤ j ≤ i and

0 ≤ k < ni+1 such that

N = P r00 P r11 · · ·P
ri
i P

k
i+1

satisfies ν(N) = γ. Let Ñ = P r00 P r11 · · ·P
ri
i , so that N = ÑP ki+1. Let τ = [N

N
]. We have

that 0 6= τ ∈ k(α1, . . . , αi+1) by B(i+ 1).
Suppose 0 ≤ j ≤ di+1 − 1. Then

eqF2eqF2 (17)

ν

(
Ñ

Uji+1

)
= ν(Ñ)− jν(Ui+1)

≥ γ − (ni+1 − 1)βi+1 − (di+1 − 1)ni+1βi+1

≥ ni+1di+1βi+1 − ni+1βi+1 + βi+1 − di+1ni+1βi+1 + ni+1βi+1

≥ βi+1 > niβi.

Write

τλ = e0 + e1αi+1 + · · ·+ edi+1−1α
di+1−1
i+1

with ej ∈ k(α1, . . . , αi). By the inductive statement C(i) and (
eqF2
17), there exist for 0 ≤ j ≤

di+1 − 1

Hj =
∑
k

ck,jP
δ0(k,j)
0 P

δ1(k,j)
1 · · ·P δi(k,j)i

with δ0(k, j), δ1(k, j), . . . , δi(k, j) ∈ N, 0 ≤ δl(k, j) < nl for 1 ≤ l and ck,j ∈ CS for all k, j
such that

ν(P
δ0(k,j)
0 P

δ1(k,j)
1 · · ·P δi(k,j)i ) = ν

(
Ñ

U ji+1

)
for all j, k and  Hj(

Ñ

Uji+1

)
 = ej

for all j. Set

G = H0P
k
i+1 +H1P

ni+1+k
i+1 + · · ·+Hdi+1−1P

ni+1(di+1−1)+k
i+1 .

We have

ni+1(di+1 − 1) + k < ni+1(di+1 − 1) + ni+1 ≤ ni+1di+1 = ni+1,
12



and

G

N
=
H0

Ñ
+

(
H1Ui+1

Ñ

)(
P
ni+1

i+1

Ui+1

)
+ · · ·+

(
Hdi+1−1U

di+1−1
i+1

Ñ

)(
P
ni+1

i+1

Ui+1

)di+1−1

.

We have [
G

N

]
= e0 + e1αi+1 + · · ·+ edi+1−1α

di+1−1
i+1 = τλ.

Thus [
G

N

]
=

[
G

N

] [
N

N

]
= τλτ−1 = λ.

We have established C(i+ 1).

Suppose that D(i+1) is not true. We will obtain a contradiction. Under the assumption
that D(i+1) is not true, there exists m ∈ Z+, jk(l) ∈ N for 1 ≤ l ≤ m with 0 ≤ jk(l) < nk
for 1 ≤ k ≤ i+ 1 such that (j0(l), j1(l), . . . , ji+1(l)) are distinct for 1 ≤ l ≤ m, and

ν(P
j0(l)
0 P

j1(l)
1 · · ·P ji+1(l)

i+1 ) = ν(P
j0(1)
0 P

j0(1)
1 · · ·P ji+1(1)

i+1 )

for 1 ≤ l ≤ m and ãl ∈ k for 1 ≤ l ≤ m not all zero such that

ã1 + ã2

[
P
j0(2)
0 P

j1(2)
1 · · ·P ji+1(2)

i+1

P
j0(1)
0 P

j1(1)
1 · · ·P ji+1(1)

i+1

]
+ · · ·+ ãm

[
P
j0(m)
0 P

j1(m)
1 · · ·P ji(m)

i

P
j0(1)
0 P

j1(1)
1 · · ·P ji+1(1)

i+1

]
= 0.

(ji+1(l)− ji+1(1))βi+1 ∈ G(β0, . . . , βi) for 1 ≤ l ≤ m, so ni+1 divides (ji+1(l)− ji+1(1))

for all l. Thus after possibly dividing all monomials P
j0(l)
0 P

j1(l)
1 · · ·P ji+1(l)

i+1 by a common
power of Pi+1, we may assume that

eqH1eqH1 (18) ni+1 divides ji+1(l) for all l.

After possibly reindexing the P
j0(l)
0 P

j1(l)
1 · · ·P ji+1(l)

i+1 , we may assume that ji+1(1) = ni+1ϕ
is the largest value of ji+1(l).

For 1 ≤ l ≤ m, define al ∈ CS by al = ãl. Let

Q =
m∑
l=1

alP
j0(l)
0 P

j1(l)
1 · · ·P ji+1(l)

i+1 .

Let

Qs =
∑

ji+1(l)=sni

alP
j0(l)
0 P

j1(l)
1 · · ·P ji(l)i

for 0 ≤ s ≤ ϕ. Then

eqH2eqH2 (19) Q =

ϕ∑
s=0

QsP
ni+1s
i+1 .

Let

cs =

[
Qs

P
j0(1)
0 P

j1(1)
1 · · ·P ji(1)

i U
(ϕ−s)
i+1

]
∈ k(α1, . . . αi)

by B(i). We further have that cϕ 6= 0 by D(i) since the monomials are all distinct.
13



Dividing Q by P
j0(1)
0 P

j1(1)
1 · · ·P ji(1)

i Uϕi+1, we have

0 =

ϕ∑
s=0

csα
s
i+1.

Thus the minimal polynomial fi+1(u) of αi+1 divides g(u) =
∑ϕ

s=0 csu
s in k(α1, . . . , αi)[u].

But then ϕ ≥ di+1, so that ji+1(1) = ni+1ϕ ≥ ni+1, a contradiction.
�

RemarkH1 Remark 4.3. Theorem
Theorem1*
4.2 can be stated without recourse to a coefficient set. To give

this statement (which has the same proof) (
eq12*
9) must be replaced with “ck are units in R for

1 ≤ k ≤ λi”. In the proof, the statement “as,t ∈ CS” in A(i) must be replaced with “as,t
units in R or as,t = 0”. The statement “cj ∈ CS” in C(i) must be replaced with “cj is a
unit in R or cj = 0”.

RemarkH10 Remark 4.4. For i > 0, there is an expression

Pi+1 = yn1···ni + xΘi+1

with Θi+1 ∈ R. This follows by considering the expression (
eq11*
8) and the various constraints

on the values of the terms of the monomials in this expression.

RemarkH2 Remark 4.5. The algorithm of Theorem
Theorem1*
4.2 concludes with Ω <∞ if and only if ν(PΩ) 6∈

Qν(x) (so that rank(ν) = 2) or ν is discrete of rank 1 with trdegR/mRVν/mν = 1 (so that

ν is divisorial).

Proof. From Theorem
Theorem1*
4.2, we see that the algorithm terminates with Ω < ∞ if and only

if either

[G(ν(P0), . . . , ν(PΩ)) : G(ν(P0), . . . , ν(PΩ−1))] =∞
or

[G(ν(P0), . . . , ν(PΩ)) : G(ν(P0), . . . , ν(PΩ−1))] <∞ and [k(α1, . . . , αΩ) : k(α1, . . . , αΩ−1)] =∞.

�

Remark2 Remark 4.6. Suppose that Ω = ∞ and ni = 1 for i � 0 in the conclusions of Theorem
Theorem1*
4.2. Then ν is discrete, and Vν/mν is finite over k.

Proof. We first deduce a consequence of the assumption that Ω =∞ and ni = 1 for i� 0.
There exists i0 ∈ Z+ such that ni = 1 for all i ≥ i0. Thus for i ≥ i0, Pi+1 is the sum of
Pi and a k-linear combination of monomials M in x and the finitely many Pj with j < i0,

and with ν(M) = ν(Pi). We see that the Pi form a Cauchy sequence in R̂ whose limit f

in R̂ is nonzero (by Remark
RemarkH10
4.4), and such that limi→∞ν(Pi) =∞.

Thus IR̂ 6= (0), ν is discrete and Vν/mν is finite over k by the proof of Proposition
Prop17
3.4.
�

RemarkH5 Remark 4.7. Suppose that Vν/mν = R/mR in the hypotheses of Theorem
Theorem1*
4.2 (so that

there is no residue field extension). Then the Pi constructed by the algorithm are binomials
for i ≥ 2; (

eq11*
8) becomes

Pi+1 = Pnii + cUi = Pnii + cP
w0(i)
0 · · ·Pwi−1(i)

i−1

for some 0 6= c ∈ CS.
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Example 4.8. There exists a rank 2 valuation ν dominating R = k[x, y](x,y) such that the
set

{ν(P0), ν(P1), ν(P2), . . .}

does not generate the semigroup SR(ν).

Proof. Suppose that k is a field of characteristic zero. We define a rank 2 valuation ν̂ on
k[[x, y]]. Let g(x, y) = y − x

√
x+ 1. For 0 6= f(x, y) ∈ k[[x, y]], we have a factorization

f = gnh where n ∈ N and g 6 | h. The rule

ν̂(f) = (n, ord(h(x, x
√

1 + x))) ∈ (Z2)lex

then defines a rank 2 valuation dominating k[[x, y]] with value group (Z2)lex.
We have that (g) ∩ k[x, y] = (y2 − x2 − x3). Thus ν̂ restricts to a rank 2 valuation ν

which dominates the maximal ideal n = (x, y) of k[x, y]. Expand

x
√

1 + x =
∑
j≥1

aix
j = x+

1

2
x2 − 1

8
x3 + · · ·

as a series with all aj ∈ k non zero. Applying the algorithm of Theorem
Theorem1*
4.2, we construct

the infinite sequence of polynomials P1, P2, · · · where P0 = x, P1 = y and Pi = y −∑i−1
j=1 aix

i for i ≥ 2. We have that ν(Pi) = (0, i) for i ≥ 0. However, ν(y2−x2−x3) = (1, 1).

Thus the set {ν(x), ν(P1), ν(P2), . . .} does not generate the semigroup SR(ν).
�

LemmaG10 Lemma 4.9. Suppose that ν is a valuation dominating R. Let

P0 = x, P1 = y, P2, . . .

be the sequence of elements of R constructed by Theorem
Theorem1*
4.2. Set βi = ν(Pi) for i ≥ 0.

Suppose that Pm0
0 Pm1

1 · · ·Pmrr is a monomial in P0, . . . , Pr and mi ≥ ni for some i ≥ 1.
Let ρ = ν(Pm0

0 Pm1
1 · · ·Pmrr ). Then with the notation of (

eqM1
12),

eqW1eqW1 (20)

Pm0
0 · · ·Pmrr = −

∑di−1
t=0

∑λt
s=1 as,tP

m0+j0(s,t)
0 · · ·Pmi−1+ji−1(s,t)

i−1 Pmi−ni+tnii P
mi+1

i+1 · · ·Pmrr

+Pm0
0 · · ·Pmi−nii P

mi+1+1
i+1 · · ·Pmrr .

All terms in the first sum of (
eqW1
20) have value ρ and ν(Pm0

0 · · ·Pmi−nii P
mi+1+1
i+1 · · ·Pmrr ) > ρ.

Suppose that W is a Laurent monomial in P0, . . . , Pr such that ν(W ) = ρ. Then
eqW2eqW2 (21)[

Pm0
0 Pm1

1 · · ·Pmrr

W

]
= −

di−1∑
t=0

λt∑
s=1

as,t

[
P
m0+j0(s,t)
0 · · ·Pmi−1+ji−1(s,t)

i−1 Pmi−ni+niti P
mi+1

i+1 · · ·Pmrr

W

]
and

eqW3eqW3 (22)
(m0 + j0(s, t)) + · · ·+ (mi−1 + ji−1(s, t)) + (mi − ni + tni) +mi+1 + · · ·+mr

> m0 +m1 + · · ·+mr

for all terms in the first sum of (
eqW1
20).

Proof. We have

Pm0
0 · · ·Pmrr = Pm0

0 · · ·Pnii Pmi−nii · · ·Pmrr
15



where mi−ni ≥ 0. Substituting (
eqM1
12) for Pnii , we obtain equation (

eqW1
20). We compute, from

the first term of (
eqW1
20),

−
∑di−1

t=1

∑λt
s=1 as,t

[
P
m0+j0(s,t)
0 ···Pmrr

W

]
= −

[
P
m0
0 ···Pmi−nii ···Pmrr U

di
i

W

](∑di−1
t=0

∑λt
s=1 as,t

[
P
j0(s,t)
0 ···P

ji−1(s,t)

i−1

U
di−t
i

] [
P
ni
i
Ui

]t)

= −
[
P
m0
0 ···Pmi−nii ···Pmrr U

di
i

W

](∑di−1
t=0 bi,tα

t
i

)
=

[
P
m0
0 ···Pmi−nii ···Pmrr U

di
i

W

]
αdii

=

[
P
m0
0 ···Pmi−nii ···Pmrr U

di
i

W

] [
P
ni
i
Ui

]di
=
[
P
m0
0 ···Pmii ···P

mr
r

W

]
,

giving (
eqW2
21). For all s, t (with 0 ≤ t ≤ di − 1),

niβi = j0(s, t)β0 + j1(s, t)β1 + · · ·+ ji−1(s, t)βi−1 + nitβi
< (j0(s, t) + j1(s, t) + · · ·+ ji−1(s, t) + nit)βi

so

ni < j0(s, t) + j1(s, t) + · · ·+ ji−1(s, t) + nit.

(
eqW3
22) follows.

�

TheoremG2 Theorem 4.10. Suppose that ν is a valuation dominating R. Let

P0 = x, P1 = y, P2, . . .

be the sequence of elements of R constructed by Theorem
Theorem1*
4.2. Set βi = ν(Pi) for i ≥ 0.

Suppose that f ∈ R and there exists n ∈ Z+ such that ν(f) < nν(mR). Then there exists
an expansion

f =
∑
I

aIP
i0
0 P

i1
1 · · ·P

ir
r +

∑
J

ϕJP
j0
0 · · ·P

jr
r + h

where r ∈ N, aI ∈ CS, I, J ∈ Nr+1, ν(P i00 P
i1
1 · · ·P irr ) = ν(f) for all I in the first sum,

0 ≤ ik < nk for 1 ≤ k ≤ r, ν(P j00 · · ·P
jr
r ) > ν(f) for all terms in the second sum, ϕJ ∈ R

and h ∈ mn
R.

The first sum is uniquely determined by these conditions.

Proof. We first prove existence. We have an expansion

f =
∑

ai0,i1x
i0yi1 + h0

with ai0,i1 ∈ CS and h0 ∈ mn
R. More generally, suppose that we have an expansion

eqG5eqG5 (23) f =
∑

aIP
i0
0 P

i1
1 · · ·P

ir
r + h

for some r ∈ Z+, I = (i0, . . . , ir) ∈ Nr+1, aI ∈ CS and h ∈ mn
R. Let

ρ = min{ν(P i00 P
i1
1 · · ·P

ir
r ) | aI 6= 0}.
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We can rewrite (
eqG5
23) as

eqG6eqG6 (24) f =
∑
J

aJP
j0
0 P j11 · · ·P

jr
r +

∑
J ′

aJ ′P
j′0
0 P

j′1
1 · · ·P

j′r
r + h

where the terms in the first sum have minimal value ν(P j00 P j11 · · ·P
jr
r ) = ρ and the nonzero

terms in the second sum have value ν(P
j′0
0 P

j′1
1 · · ·P

j′r
r ) > ρ.

If we have that the first sum is nonzero and 0 ≤ jk < nk for 1 ≤ k ≤ r for all terms in
the first sum of (

eqG6
24) then ρ = ν(f) and we have achieved the conclusions of the theorem.

So suppose that one of these conditions fails.

First suppose that
∑

J aJP
j0
0 · · ·P

jr
r 6= 0 and for some J , ji ≥ ni for some i ≥ 1. Let

a = min{j0 + · · ·+ jr | ji ≥ ni for some i ≥ 1}

and let b be the numbers of terms in
∑

J aJP
j0
0 · · ·P

jr
r such that ji ≥ ni for some i ≥ 1

and j0 + · · ·+ jr = a. Let σ = (a, b) ∈ (Z2)lex. Let J0 = (j0, . . . , jr) be such that aJ0 6= 0
and j0 + · · ·+ jr = a. Write

P
j0
0 · · ·P

jr
r = P

j0
0 · · ·P

ji−ni
i Pnii · · ·P

jr
r

and substitute (
eqM1
12) for Pnii , to obtain an expression of the form (

eqW1
20) of Lemma

LemmaG10
4.9.

Substitute this expression (
eqW1
20) for P

j0
0 · · ·P

jr
r in (

eqG6
24) and apply Remark

RemarkG4
4.1, to obtain

an expression of the form (
eqG6
24) such that either the first sum is zero or the first sum is

nonzero and all terms in the first sum satisfy ji < ni for 1 ≤ i so that ν(f) = ρ and we
have achieved the conclusions of the theorem, or the first sum has a nonzero term which
satisfies ji ≥ ni for some i ≥ 1. By (

eqW3
22), we have an increase in σ if this last case holds.

Since there are only finitely many monomials M in P0, . . . Pr which have the value ρ,
after a finite number of iterations of this step we must either find an expression (

eqG6
24) where

the first sum is zero, or attain an expression (
eqG6
24) satisfying the conclusions of the theorem.

If we obtain an expression (
eqG6
24) where the first sum is zero, then we have an expression

(
eqG5
23) with an increase in ρ (and possibly an increase in r), and we repeat the last step,

either attaining the conclusions of the theorem or obtaining another increase in ρ. Since
there are only a finite number of monomials in the {Pi} which have value ≤ ν(f), we must
achieve the conclusions of the theorem in a finite number of steps.

Uniqueness of the first sum follows from 2) of Theorem
Theorem1*
4.2.

�

Corollary1* Theorem 4.11. Suppose that ν is a rank 1 valuation which dominates R and ν(x) =
ν(mR). Then

a) The set {inν(x)} ∪ {inν(Pi) | ni > 1} minimally generates grν(R) as a k-algebra.
b) The set

{ν(x)} ∪ {ν(Pi) | ni > 1}
minimally generates the semigroup SR(ν).

c) Vν/mν = k(αi | di > 1) where αi is defined by 4) (and possibly (
eqL10
11)) of Theorem

Theorem1*
4.2.

Proof. Theorem
TheoremG2
4.10 implies that the set {inν(x)} ∪ {inν(Pi) | ni > 1} generates grν(R)

as a k-algebra. We will show that the set generates grν(R) minimally. Suppose that it
doesn’t. Then there exists an i ∈ N such that ni > 1 if i > 0 and a sum

eqZ30eqZ30 (25) H =
∑
J

cJP
j0
0 · · ·P

jr
r

17



for some r ∈ N with cJ ∈ CS such that the monomials P j00 · · ·P
jr
r have value ν(P j00 · · ·P

jr
r ) =

ν(Pi) with ji = 0 and jk = 0 if nk = 1 for 1 ≤ k ≤ r for all J , and

ν(
∑
J

cJP
j0
0 · · ·P

jr
r − Pi) > ν(Pi).

We thus have by 1) of Theorem
Theorem1*
4.2 and since ν(P0) = ν(mR), that r ≤ i− 1. Thus i ≥ 1.

By Theorem
TheoremG2
4.10 applied to H, we have an expression

eqZ31eqZ31 (26) Pi =
∑
K

dKPk0
0 · · ·P

ks
s + f

where s ∈ N, dK ∈ CS, 0 ≤ kl < nl for 1 ≤ l, some dK 6= 0, f ∈ R is such that
ν(f) > ν(Pi), and

ν(P k0
0 · · ·P

ks
s ) = ν(H) = ν(Pi)

for all monomials in the first sum of (
eqZ31
26). Since the minimal value terms of the expression of

H in (
eqZ30
25) only involve P0, . . . , Pi−1 and all these monomials have the same value ρ = ν(H),

the algorithm of Theorem
TheoremG2
4.10 ends with s ≤ i− 1 in (

eqZ31
26). But then we obtain from (

eqZ31
26)

a contradiction to 2) of Theorem
Theorem1*
4.2.

Now a) and 3) of Theorem
Theorem1*
4.2 imply statement b).

Suppose that λ ∈ L = Vν/mν . Then λ =
[
f
f ′

]
for some f, f ′ ∈ R with ν(f) = ν(f ′). By

Theorem
TheoremG2
4.10, there exist r ∈ Z+ and expressions

f =

m∑
i=1

aiP
σ0(i)
0 P

σ1(i)
1 · · ·P σr(i)r + h,

f ′ =
n∑
j=1

bjP
τ0(j)
0 P

τ1(j)
1 · · ·P τr(j)r + h′

with ai, bj ∈ CS, 0 ≤ σk(i) < nk for 1 ≤ k and 0 ≤ τk(j) < nk for 1 ≤ k, the

P
σ0(i)
0 P

σ1(i)
1 · · ·P σr(i)r , P

τ0(j)
0 P

τ1(j)
1 · · ·P τr(j)r all have the common value

ρ := ν(f) = ν(f ′),

h, h′ ∈ R and ν(h) > ρ, ν(h′) > ρ.

λ =
(∑

i ai[P
σ0(i)−σ0(1)
0 · · ·P σr(i)−σr(1)

r ]
)(∑

j bj [P
τ0(i)−σ0(1)
0 · · ·P τr(i)−σr(1)

r ]
)−1

∈ k(α1, . . . , αr)

by B(r) of the proof of Theorem
Theorem1*
4.2. �

If Vν/mν is transcendental over k then Γν ∼= Z by Abhyankar’s inequality. Zariski
called such a valuation a “prime divisor of the second kind”. By c) of Theorem

Corollary1*
4.11,

Vν/mν = k(αi | di > 1). There thus exists an index i such that k(α1, . . . , αi−1) is algebraic
over k and αi is transcendental over k(α1, . . . , αi−1). Thus Ω = i in the algorithm of
Theorem

Theorem1*
4.2, since αi does not have a minimal polynomial over k(α1, . . . , αi−1).

Corollary3* Theorem 4.12. Suppose that ν is a rank 2 valuation which dominates R and ν(x) =
ν(mR). Let Iν be the height one prime ideal in Vν . Then one of the following three cases
hold:

1. Iν ∩R = mR. Then
18



a) the finite set
{inν(x)} ∪ {inν(Pi) | ni > 1}

minimally generates grν(R) as an k-algebra and
b) the finite set

{ν(x)} ∪ {ν(Pi) | ni > 1}
minimally generates the semigroup SR(ν).

c) Vν/mν = k(αi | di > 1).
2. Iν ∩R = (PΩ) is a height one prime ideal in R and

a) the finite set
{inν(x)} ∪ {inν(Pi) | ni > 1}

minimally generates grν(R) as a k-algebra, and
b) The finite set

{ν(x)} ∪ {ν(Pi) | ni > 1}
minimally generates the semigroup SR(ν).

c) Vν/mν = k(αi | di > 1).
3. Iν ∩R = (g) is a height one prime ideal in R and

a) the finite set

{inν(x)} ∪ {inν(Pi) | ni > 1} ∪ {inν(g)}
minimally generates grν(R) as a k-algebra, and

b) The finite set

{ν(x)} ∪ {ν(Pi) | ni > 1} ∪ {ν(g)}
minimally generates the semigroup SR(ν).

c) Vν/mν = k(αi | di > 1).

Proof. Since ν has rank 2, the set {Pi | ni > 1} is a finite set since otherwise either Γν is
not a finitely generated group or Vν/mν is not a finitely generated field extension of k, by
3) and 4) of Theorem

Theorem1*
4.2, which is a contradiction to Abhyankar’s inequality.

The case when Iν ∩R = mR now follows from Theorem
TheoremG2
4.10 and 2), 3) of Theorem

Theorem1*
4.2;

the proof of c) is the same as the proof of c) of Theorem
Corollary1*
4.11.

Suppose that Iν ∩R = (g) is a height one prime ideal in R. Suppose that f ∈ R. Then
there exists n ∈ N and u ∈ R such that f = gnu with u 6∈ (g). Thus

eqZ15eqZ15 (27) ν(f) = nν(g) + ν(u).

Assume that Ω < ∞. Then ν(PΩ) 6∈ Qν(mR) by Remark
RemarkH2
4.5. Then PΩ = gf for

some f ∈ R. We will show that f is a unit in R. Suppose not. Then ν(g) < ν(PΩ).
Let t = ord(g). There exists c ∈ Z+ such that if j0, j1, . . . , jΩ−1 ∈ N are such that

ν(P j00 P j11 · · ·P
jΩ−1

Ω−1 ) ≥ cν(mR) then ord(P j00 P j11 · · ·P
jΩ−1

Ω−1 ) > t. We may assume that c is
larger than t. Write

g =
c∑

i,j=1

aijx
iyj + Λ

with Λ ∈ mc
R and aij ∈ CS. g has an expression of the form

eq*eq* (28) g =
∑
J

aJP
j0
0 · · ·P

jΩ
Ω +

∑
J ′

aJ ′P
j′0
0 · · ·P

jΩ′
Ω + h

with aJ , aJ ′ ∈ CS and h ∈ mc
R, and the terms in the first sum all have a common value ρ,

which is smaller than the values of the terms in the second sum.
19



Now we draw some conclusions which must hold for an expression of the form (
eq*
28). We

must have that

eq1eq1 (29) ρ < cν(mR),

since otherwise, by our choice of c and our assumption that ord(f) > 0, so that ord(PΩ) >
ord(g) = t, we would have that the right hand side of (

eq*
28) has order larger than t, which

is impossible. In particular, we have

eq2eq2 (30) jΩ = 0

in all terms in the first sum.
We also must have that

eq**eq** (31) ji ≥ ni for some i with 1 ≤ i < Ω for all terms in the first sum.

This follows since otherwise we would have ν(g) = ρ < cν(mR), which is impossible.
We apply the algorithm of Theorem 4.9 to (

eq*
28), and apply a substitution of the form

(20) to a monomial in the first sum. As shown in the proof of Theorem 4.9, we must
obtain an expression (

eq*
28) with an increase in ρ after a finite number of iterations, since

(
eq**
31) must continue to hold. Since there are only finitely many values in the semigroup
SR(ν) between 0 and cν(mR), after finitely many iterations of the algorithm we obtain
an expression (

eq*
28) with ρ ≥ cν(mR), which is a contradiction to (

eq1
29). This contradiction

shows that PΩ is a unit times g, so we may replace g with PΩ, and we are in Case 2 of the
conclusions of the corollary.

If Ω = ∞ then ν(Pi) ∈ Qν(mR) for all i (by Remark
RemarkH2
4.5) and we are in Case 3 of the

conclusions of the corollary.
The conclusions of a) and b) of Cases 2 and 3 of the corollary now follow from applying

Theorem
TheoremG2
4.10 and 2), 3) of Theorem

Theorem1*
4.2 to u in (

eqZ15
27).

Suppose that λ ∈ Vν/mν . Then λ =
[
f
f ′

]
for some f, f ′ ∈ R with ν(f) = ν(f ′). We

may assume (after possibly dividing out a common factor) that g 6 | f and g 6 | f ′. Then
the proof of c) of cases 2 and 3 proceeds as in the proof of c) of Theorem

Corollary1*
4.11.

�

5. Valuation semigroups and residue field extension on a two dimensional
regular local ring

Proof1

In this section, we prove Theorem
Theorem3*
1.1 which is stated in the introduction. Theorem

Theorem3*
1.1 gives necessary and sufficient conditions for a semigroup and field extension to be the
valuation semigroup and residue field of a valuation dominating a regular local ring of
dimension two.

Suppose that ν is a valuation dominating R. Let S = Sr(ν) and L = Vν/mν . Let x, y
be regular parameters in R such that ν(x) = ν(mR). Set P0 = x and P1 = y. Let {Pi}
be the sequence of elements of R defined by the algorithm of Theorem

Theorem1*
4.2. We have by

Remark
Remark2
4.6 and its proof, that if

Ω =∞ and ni = 1 for i� 0,

then IR̂ 6= (0) (where IR̂ is the prime ideal in R̂ of Cauchy sequences in R satisfying (
eqZ12
4)).

Thus ν has rank 2 since R is complete, and ν must satisfy Case 3 of Theorem
Corollary3*
4.12.

Set σ(0) = 0 and inductively define

σ(i) = min{j | j > σ(i− 1) and nj > 1}.
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This defines an index set I of finite or infinite cardinality Λ = |I| − 1 ≥ 1. Suppose that
either ν has rank 1 or ν has rank 2 and one of the first two cases of Theorem

Corollary3*
4.12 hold

for the Pi. Let

βi = ν(Pσ(i)) ∈ SR(ν)

for i ∈ I and

γi =

Pnσ(i)

σ(i)

Uσ(i)

 ∈ Vν/mν

if i > 0 and σ(i) < Ω or σ(i) = Ω and nΩ <∞. Set γΛ = 1 if σ(Λ) = Ω and nΩ =∞.
By Theorem

Theorem1*
4.2 and Theorem

Corollary1*
4.11 or

Corollary3*
4.12, {βi} and {γi} satisfy the conditions 1) and

2) of Theorem
Theorem3*
1.1.

Suppose that ν has rank 2 and the third case of Theorem
Corollary3*
4.12 holds for the Pi. Then

Λ < ∞. Let Iν ∩ R = (g) (where Iν is the height one prime ideal of Vν). Let Λ = Λ + 1.
Define βi = ν(Pσ(i)) for i < Λ and βΛ = ν(g). Define

γi =

Pnσ(i)

σ(i)

Uσ(i)

 ∈ Vν/mν

for 0 < i < Λ and define γΛ = 1. By Theorem
Theorem1*
4.2 and Case 3 of Theorem

Corollary3*
4.12, {βi} and

{γi} satisfy conditions 1) and 2) of Theorem
Theorem3*
1.1.

Now suppose that S and L and the given sets {βi} and {αi} satisfy conditions 1) and
2) of the theorem. We will construct a valuation ν which dominates R with SR(ν) = S
and Vν/mν = L.

Let

fi(u) = udi + bi,di−1u
di−1 + · · ·+ bi,0

be the minimal polynomial of αi over k(α1, . . . , αi−1), and let ni = nidi.
We will inductively define Pi ∈ R, a function ν on Laurent monomials in P0, . . . , Pi such

that

ν(P a0
0 P a1

1 · · ·P
ai
i ) = a0β0 + a1β1 + · · ·+ aiβi

for a0, . . . , ai ∈ Z and monomials Ui in P0, . . . , Pi−1, such that

ν(Ui) = niβi,

a function res on the Laurent monomials P a0
0 P a1

1 · · ·P
ai
i which satisfy ν(P a0

0 P a1
1 · · ·P

ai
i ) =

0, such that

eqL40eqL40 (32) res

(
P
nj
j

Uj

)
= αj

for 1 ≤ j ≤ i.
Let x, y be regular parameters in R. Define P0 = x, P1 = y, β0 = ν(P0), and β1 = ν(P1).

We inductively construct the Pi by the procedure of the algorithm of Theorem
Theorem1*
4.2. We

must modify the inductive statement A(i) of the proof of Theorem
Theorem1*
4.2 as follows:
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There exists Ui = P
w0(i)
0 P

w1(i)
1 · · ·Pwi−1(i)

i−1 for some wj(i) ∈ N
and 0 ≤ wj(i) < nj for 1 ≤ j ≤ i− 1

A(i) such that niν(Pi) = ν(Ui). There exist as,t ∈ CS
and j0(s, t), j1(s, t), . . . , ji−1(s, t) ∈ N with 0 ≤ jk(s, t) < nk
for k ≥ 1 and 0 ≤ t < di such that

ν(P
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji−1(s,t)

i−1 P tnii ) = nidiν(Pi)
for all s, t and

eqM1*eqM1* (33) Pi+1 := Pnidii +

di−1∑
t=0

(
(

λt∑
s=1

as,tP
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji−1(s,t)

i−1

)
P tnii

satisfies

bi,t =
∑λt

s=1 as,tres

(
P
j0(s,t)
0 P

j1(s,t)
1 ···P

ji−1(s,t)

i−1

U
di−t
i

)
for 0 ≤ t ≤ di − 1.

We inductively verify A(i) for 1 ≤ i < Λ and the statements B(i), C(i) and D(i) (with
the residues [M ] replaced with res(M)). We observe from B(i) that the function res is
determined by (

eqL40
32). The inequality in 2) of the assumptions of the theorem is necessary

to allow us to apply Lemma
Lemma2
2.1.

We now show that if Λ =∞, then given σ ∈ Z+, there exists τ ∈ Z+ such that

eqZ20eqZ20 (34) ord(Pi) > σ if i > τ.

We establish (
eqZ20
34) by induction on σ. Suppose that ord(Pi) > σ if i > τ . There exists

λ such that β0 < βi if i ≥ λ. Let τ ′ = max{σ + τ + 1, τ + 1, λ}. We will show that
ord(Pi) > σ + 1 if i > τ ′. From (

eqM1*
33), we must show that if i > τ ′ and (a0, . . . , ai−1) ∈ Ni

are such that

a0β0 + a1β1 + · · ·+ ai−1βi−1 = ni−1βi−1

then

eqZ21eqZ21 (35) a0ord(P0) + a1ord(P1) + · · ·+ ai−1ord(Pi−1) > σ + 1.

If aτ+1 + · · · + ai−1 ≥ 2 then (
eqZ21
35) follows from induction. If aτ+1 + · · · + ai−1 = 1 then

some aj 6= 0 with 0 ≤ j ≤ τ since ni−1 > 1, so (
eqZ21
35) follows from induction. If aj = 0 for

j ≥ τ + 1 then

ni−1βi−1 = a0β0 + · · ·+ aτβτ < (a0 + · · ·+ aτ )βτ .

Thus

(a0 + · · ·+ aτ ) >
ni−1βi−1

βτ
≥ 2i−τ > σ + 1.

Thus (
eqZ21
35) holds in this case.

We first suppose that for all Pi, there exists mi ∈ Z+ such that miν(Pi) > min{β0, β1}.
We now establish the following:

Suppose that f ∈ R. Then there exists an expansion

fundfund (36) f =
∑
I

aIP
i0
0 P

i1
1 · · ·P

ir
r +

∑
J

ϕJP
j0
0 · · ·P

jr
r
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for some r ∈ N where ν(P i00 P
i1
1 · · ·P irr ) have a common value ρ for all terms in the

first sum, all aI ∈ CS, I, J ∈ Nr+1 and some aI 6= 0, 0 ≤ ik < nk for 1 ≤ k ≤ r

ν(P j00 · · ·P
jr
r ) > ρ for all terms in the second sum, and ϕJ ∈ R for all terms in the second

sum. The first sum
∑

I aIP
i0
0 P

i1
1 · · ·P irr is uniquely determined by these conditions.

The proof of (
fund
36) follows from the proofs of Lemma

LemmaG10
4.9 and Theorem

TheoremG2
4.10, observing

that all properties of a valuation which ν is required to satisfy in these proofs hold for the
function ν on Laurent monomials in the Pi which we have defined above, and replacing
[M ] in Lemma

LemmaG10
4.9 with the function res(M) for Laurent monomials M with ν(M) = 0.

The n in the statement of Theorem
TheoremG2
4.10 is chosen so that if M is a monomial in the Pi

with ord(M) = ord(f), then ν(M) < nmin{β0, β1} (such an n exists trivially if Λ < ∞
and by (

eqZ20
34) if Λ =∞).

We can thus extend ν to R by defining

ν(f) = ρ if f has an expansion (
fund
36).

Now we will show that ν is a valuation. Suppose that f, g ∈ R. We have expansions

eqL20eqL20 (37) f =
∑
I

aIP
i0
0 P

i1
1 · · ·P

ir
r +

∑
J

ϕJP
j0
0 · · ·P

jr
r

and

eqL21eqL21 (38) g =
∑
K

bKP
k0
0 P k1

1 · · ·P
kr
r +

∑
L

ϕLP
l0
0 · · ·P

lr
r

of the form (
fund
36). Let ρ = ν(f) and ρ′ = ν(g). The statement that ν(f + g) ≥

min{ν(f), ν(g)} follows from Remark
RemarkG4
4.1 and the algorithm of Theorem

TheoremG2
4.10.

Let V be a monomial in P0, . . . , Pr such that ν(V ) = ν(P i00 · · ·P irr ) for all I in the first

sum of f in (
eqL20
37) and let W be a monomial in P0, . . . , Pr such that ν(W ) = ν(P k0

0 · · ·P krr )
for all K in the first sum of g in (

eqL21
38). We have that∑

aI res

(
P i00 · · ·P irr

V

)
6= 0 in L

and ∑
bK res

(
P k0

0 · · ·P krr
W

)
6= 0 in L

by D(r).
We have (applying Remark

RemarkG4
4.1) an expansion

eqL22eqL22 (39) fg =
∑
M

dMP
m0
0 Pm1

1 · · ·Pmrr +
∑
Q

ψQP
q0
0 · · ·P

qr
r

with dM ∈ S for all M , ψQ ∈ R for all Q, ν(Pm0
0 Pm1

1 · · ·Pmrs ) = ρ+ ρ′ for all terms in the
first sum, and some dM 6= 0 and ν(P q00 · · ·P

qr
r ) > ρ + ρ′ for all terms in the second sum,

which satisfies all conditions of (
fund
36) except that we only have that m0,m1, . . . ,mr ∈ N.

We have∑
M

dM res

(
Pm0

0 · · ·Pmrr

VW

)
=

(∑
I

aI res

(
P i00 · · ·P irr

V

))(∑
K

bK res

(
P k0

0 · · ·P krr
W

))
6= 0.

By (
eqW2
21) of Lemma

LemmaG10
4.9 (with [M ] replaced with res(M) for a Laurent monomial N with

ν(M) = 0) we see that the algorithm of Theorem
TheoremG2
4.10 which puts the expansion (

eqL22
39) into
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the form (
fund
36) converges to an expression (

fund
36) where the terms in the first sum all have

ν(P i00 · · ·P irr ) = ρ+ ρ′ with∑
I

aI res

(
P i00 · · ·P irr
VW

)
=
∑
M

dM res

(
Pm0

0 · · ·Pmrr

VW

)
6= 0.

Thus ν(fg) = ν(f) + ν(g). We have established that ν is a valuation.
By Theorem

Corollary1*
4.11 or Case 1 of Theorem

Corollary3*
4.12, we have that S = SR(ν) and L = Vν/mν .

Finally, we suppose that Λ is finite and nΛ =∞. Given g ∈ R, write

eqL31eqL31 (40) g = P tΛf

where PΛ 6 | f . Choose n ∈ Z+ so that if M is a monomial in P0, . . . , PΛ−1 with ord(M) =
ord(f) then ν(M) < nmin{β0, β1}.

The argument giving the expansion (
fund
36) now provides an expansion

eqL30eqL30 (41) f =
∑
I

aIP
i0
0 · · ·P

iΛ
Λ +

∑
J

ϕJP
j0
0 · · ·P

jΛ
Λ + h1

where ν(P i00 · · ·P
iΛ
Λ ) has a common value ρ for all monomials in the first sum, aI ∈ CS

for all I, ν(P j00 · · ·P
jΛ
Λ ) > ρ for all monomials in the second sum, ϕJ ∈ R for all J and

h1 ∈ mn
R.

If iΛ = 0 for all monomials in the first sum, then we obtain an expansion of f of the
form (

fund
36). Suppose that iΛ 6= 0 for some monomial in the first sum. Then iΛ 6= 0 for all

terms in the first sum, jΛ 6= 0 for all terms in the second sum, and we have an expression
f = PΛt1 + h1 for some t1 ∈ R. Repeating this argument for increasingly large values of
n, we either obtain an n giving an expression (

fund
36) for f , or we obtain the statement that

f ∈ ∩∞n=1 ((PΛ) + mn
R) = (PΛ),

which is impossible. Thus we can extend ν to R by defining ν(g) = tβΛ + ρ if g = P tΛf
where PΛ 6 | f and f has an expansion (

fund
36).

It follows that ν is a valuation, by an extension of the proof of the previous case. By
Case 2 of Theorem

Corollary3*
4.12, we have that S = SR(ν) and L = Vν/mν .

CorollaryN1 Corollary 5.1. Suppose that R is a regular local ring of dimension two and ν is a valua-
tion dominating R. Then the semigroup SR(ν) has a generating set {βi}i∈I and Vν/mν is
generated over k = R/mR by a set {αi}i∈I+ such that 1) and 2) of Theorem

Theorem3*
1.1 hold, but

the additional case that nΛ <∞ and dΛ <∞ if Λ <∞ may hold if R is not complete.

Proof. The only case we have not considered in Theorem
Theorem3*
1.1 is the analysis in the case

when Ω =∞, ni = 1 for i� 0, IR̂ 6= 0 and IR̂ ∩ R = (0) (so that R is not complete). In
this case ν is discrete of rank 1, Λ <∞, nλ <∞ and dΛ <∞ by Remark

Remark2
4.6, giving the

additional possibility stated in the Corollary. �

6. Valuation Semigroups on a regular local ring of dimension two
Proof2

In this section we prove Theorem
Corollary4*
1.2 which is stated in the introduction. Theorem

Corollary4*
1.2

gives necessary and sufficent conditions for a semigroup to be the valuation semigroup of
a valuation dominating a regular local ring of dimension two.

If S = SR(ν) for some valuation ν dominating R, then 1) and 2) of Theorem
Corollary4*
1.2 hold

by Corollary
CorollaryN1
5.1. Observe that the construction in the proof of Theorem

Theorem3*
1.1 of a valuation
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ν with a prescribed semigroup S and residue field L satisfying the conditions 1) and 2)
of Theorem

Theorem3*
1.1 is valid for any regular local ring R of dimension 2 (with residue field k).

Taking L = k (or L = k(t) where t is an indeterminate), we may thus construct a valuation
ν dominating R with semigroup SR(ν) = S whenever S satisfies the conditions 1) and 2)
of Theorem

Corollary4*
1.2.

Definition 6.1. Suppose that S is a semigroup such that the group G generated by S is
isomorphic to Z. S is symmetric if there exists m ∈ G such that s ∈ S if and only if
m− s 6∈ S for all s ∈ G.

We deduce from Theorem
Corollary4*
1.2 a generalization of a result of Noh

N
[40].

Symmetric Corollary 6.2. Suppose that R is a regular local ring of dimension two and ν is a valu-
ation dominating R such that ν is discrete of rank 1. Then SR(ν) is symmetric.

Proof. By Theorem
Corollary4*
1.2, and since ν is discrete of rank 1, there exists a finite set

β0 < β1 < · · · < βΛ

such that Sν(R) = S(β0, β1, . . . , βΛ) and βi+1 > niβi for 1 ≤ i < Λ, where ni =
[G(β0, . . . , βi) : G(β0, . . . , βi−1)]. We identify the value group Γν with Z. Then we calculate
that

lcm (gcd(β0, . . . , βi−1), βi) = niβi

for 1 ≤ i ≤ Λ. We have that niβi ≥ βi > ni−1βi−1 for 2 ≤ i ≤ Λ. By Lemma
Lemma2
2.1, we have

that niβi ∈ S(β0, . . . , βi−1) for 2 ≤ i ≤ Λ. Since β0 and β1 are both positive, we have
that n1β1 ∈ S(β0). Thus the criteria of Proposition 2.1

H
[29] is satisfied, so that SR(ν) is

symmetric. �

Example 6.3. There exists a semigroup S which satisfies the sufficient conditions 1) and
2) of Theorem

Corollary4*
1.2, such that if (R,mR) is a 2-dimensional regular local ring dominated by

a valuation ν such that SR(ν) = S, then R/mR = Vν/mν ; that is, there can be no residue
field extension.

Proof. Define βi ∈ Q by

eqV1eqV1 (42) β0 = 1, β1 =
3

2
, and βi = 2βi−1 +

1

2i
for i ≥ 2.

Let S = S(β0, β1, . . .) be the semigroup generated by β0, β1, . . .. Observe that ni =
2,∀i ≥ 1, β0 < β1 < · · · is the minimal sequence of generators of S and S satisfies
conditions 1) and 2) of Theorem

Corollary4*
1.2. The group Γ = G(β0, β1, . . .) generated by S is

Γ = 1
2∞Z = ∪∞i=0

1
2i
Z.

Now suppose that (R,mR) is a regular local ring of dimension 2, with residue field k
and ν is a valuation of the quotient field of R which dominates R such that SR(ν) = S.
Since Γν = 1

2∞ is not discrete, we have by Proposition
Prop17
3.4 that ν extends uniquely to a

valuation ν̂ of the quotient field of R̂ which dominates R̂ and S ν̂(R̂) = S.

We will now show that Vν/mν = Vν̂/mν̂ . Suppose that f ∈ R̂. Since ν̂ has rank 1,
there exists a positive integer n such that ν̂(f) < nν(m). There exists f ′ ∈ R such that

f ′′ = f − f ′ ∈ mn
RR̂. Thus ν(f) = ν(f ′). Suppose that h ∈ Vν̂/mν̂ . Then h =

[
f
g

]
where

f, g ∈ R̂ and ν(f) = ν(g). Write f = f ′ + f ′′ and g = g′ + g′′ where f ′, g′ ∈ R and

f ′′, g′′ ∈ R̂ satisfy ν(f ′′) > ν(f) and ν(g′′) > ν(g). Then
[
f
g

]
=
[
f ′

g′

]
∈ Vν/mν .
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We also have k = R/mR = R̂/mR̂. By Theorem
Theorem3*
1.1, there exists αi ∈ Vv̂/Mv̂

for i ≥ 1
such that Vv̂/Mv̂

= k(α1, α2, ...) and if di = [k(α1, ..., αi) : k(α1, ..., αi−1)] then

eqV2eqV2 (43) βi+1 ≥ nidiβi,∀i ≥ 1,

so that

eqV3eqV3 (44) [Vν̂/mν̂ : k] =
∞∏
i=1

[k(α1, ..., αi) : k(α1, ..., αi−1)] =
∞∏
i=1

di.

On the other hand, since βi ≥ β1 = 3
2 ,∀i ≥ 1, we have

eqV4eqV4 (45) βi+1 = 2βi +
1

2i+1
≤ 4βi +

1

2i+1
− 3 < 4βi.

From (
eqV2
43), (

eqV3
44) and (

eqV4
45) we have di = 1,∀i ≥ 1 so that [Vν̂/mν̂ : k] = 1.

�

7. Birational extensions
RLR2

Suppose that R is a regular local ring of dimension two which is dominated by a valu-
ation ν. Let k = R/mR. The quadratic transform R1 of R along ν is defined as follows.
Let u, v be a system of regular parameters in R, where we may assume that ν(u) ≤ ν(v).
Then R[ vu ] ⊂ Vν . Let

R1 = R
[v
u

]
R[ v

u
]∩mν

.

R1 is a two dimensional regular local ring which is dominated by ν. Let

eqX3eqX3 (46) R→ T1 → T2 · · ·
be the sequence of quadratic transforms along ν, so that Vν = ∪Ti (

Ab1
[1]), and L = Vν/mν =

∪Ti/mTi . Suppose that x, y are regular parameters in R.

birat Theorem 7.1. Let P0 = x, P1 = y and {Pi} be the sequence of elements of R constructed
in Theorem

Theorem1*
4.2. Suppose that Ω ≥ 2. Then there exists some smallest value i in the

sequence (
eqX3
46) such that the divisor of xy in Spec(Ti) has only one component. Let R1 = Ti.

Then R1/mR1
∼= k(α1), and there exists x1 ∈ R1 and w ∈ Z+ such that x1 = 0 is a local

equation of the exceptional divisor of Spec(R1) → Spec(R), and Q0 = x1, Q1 = P2

x
wn1
1

are

regular parameters in R1. We have that

Qi =
Pi+1

Qwn1···ni
0

for 1 ≤ i < max{Ω,∞} satisfy the conclusions of Theorem
Theorem1*
4.2 (as interpreted by Remark

RemarkH1
4.3) for the ring R1.

Proof. We use the notation of Theorem
Theorem1*
4.2 and its proof for R and the {Pi}. Recall that

U1 = Uw0(1). Let w = w0(1). Since n1 and w are relatively prime, there exist a, b ∈ N
such that

ε := n1b− wa = ±1.

Define elements of the quotient field of R by

x1 = (xby−a)ε, y1 = (x−wyn1)ε.

We have that

eqZ1eqZ1 (47) x = xn1
1 ya1 , y = xw1 y

b
1.

26



Since n1ν(y) = wν(x), it follows that

n1ν(x1) = ν(x), ν(y1) = 0.

We further have that

eqZ3eqZ3 (48) α1 = [y1]ε ∈ L.
Let A = R[x1, y1] ⊂ Vν and mA = mν ∩ A. R → AmA factors as a product of quadratic
transforms such that xy has two distinct irreducible factors in all intermediate rings. Thus
A = R1. Recall that

f1(u) = ud1 + b1,d1−1u
d−1−1 + · · ·+ b1,0

is the minimal polynomial of α1 =
[
yn1

xw

]
over k, and from (

eqM1
12) of A(1),

eqZ2eqZ2 (49) P2 = yn1d1 + a1,d1−1x
wyn1(d1−1) + · · ·+ a1,0x

d1w.

Substituting (
eqZ1
47) into (

eqZ2
49), we find that

P2 = xwn1
1

(
ybn1d1

1 + a1,d1−1y
aw+bn1(d1−1)
1 + · · ·+ a1,0y

ad1w
1

)
.

Thus

Q1 =
P2

xwn1
1

∈ R1.

We calculate

eqZ4eqZ4 (50) ν(Q1) = ν(P2)− wn1ν(x1) = ν(P2)− n1ν(P1) > 0

Thus x1, Q1 ∈ mR1 .
Suppose that ε = 1. Then since

Q1 = yawd1
1

(
yd1

1 + a1,d1−1y
d1−1
1 + · · ·+ a1,0

)
and y1 is a unit in R1, we have that

R1/(x1, Q1) ∼= k[y1]/(f(y1)) ∼= k(α1).

Suppose that ε = −1. Let

h(u) = yd1
1 +

b1,1
b1,0

yd1−1
1 + · · ·+ 1

b1,0
,

which is the minimal polynomial of α−1
1 over k. Since

Q1 = ybn1d1
1

(
1 + a1,d1−1y1 + · · ·+ a1,0y

d1
1

)
and y1 is a unit in R1, we have that

R1/(x1, Q1) ∼= k[y1]/(h(y1)) ∼= k(α−1
1 ) = k(α1).

Now define βi = ν(Pi) and β̂i = ν(Qi) for i ≥ 0. We have

β̂i = ν(Pi+1)− wn1 · · ·niβ̂0

for i ≥ 1.
Since gcd(w, n1) = 1, we have that G(β̂0) = G(β0, β1). Thus

ni+1 = [G(β̂0, . . . , β̂i) : G(β̂0, . . . , β̂i−1)]

for i ≥ 1.
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We will leave the proof that the analogue of A(1) of Theorem
Theorem1*
4.2 holds for Q1 in R1

for the reader, as is an easier variation of the following inductive statement, which we will
prove.

Assume that 2 ≤ i < Ω− 1 and the analogue of A(j) of Theorem
Theorem1*
4.2 holds for Qj in R1

for j < i. We will prove that the analogue of A(i) of Theorem
Theorem1*
4.2 holds for Qi in R1.

In particular, we assume that

eqJ1eqJ1 (51) β̂j+1 > nj+1β̂j

for 1 ≤ j ≤ i− 1.
Define

eqJ6eqJ6 (52)
Vi = Ui+1Q

−wn1n2···nini+1

0 y
−(aw0(i+1)+bw1(i+1))
1

= Q
ŵ0(i+1)
0 Q

w2(i+1)
1 · · ·Qwi(i+1)

i−1

where

ŵ0(i+1) = n1w0(i+1)+ww1(i+1)+wn1w2(i+1)+· · ·+wn1n2 · · ·ni−1wi(i+1)−wn1n2 · · ·nini+1.

We have that

ν(Q
ni+1

i ) = ni+1β̂i = ni+1ν(Pi+1)− wn1n2 · · ·nini+1β̂0 = ν(Vi).

Thus

ni+1β̂i = ŵ0(i+ 1)β̂0 + ŵ2(i+ 1)β̂1 + ŵ3(i+ 1)β̂2 + · · ·+ wi(i+ 1)β̂i−1.

Recall that 0 ≤ wj(i+ 1) < nj for 1 ≤ j ≤ i and apply (
eqJ1
51) to obtain

eqJ2eqJ2 (53)

ŵ0(i+ 1)β̂0 = ni+1β̂i − wi(i+ 1)β̂i−1 − · · · − w3(i+ 1)β̂2 − w2(i+ 1)β̂1

≥ β̂i − (ni − 1)β̂i−1 − · · · − (n3 − 1)β̂2 − (n2 − 1)β̂1

> β̂i − (ni − 1)β̂i−1 − · · · − (n4 − 1)β̂3 − n3β̂2
...

≥ β̂i − niβ̂i−1 > 0.

Thus Vi ∈ R1. We have

eqJ3eqJ3 (54)
Q
ni+1

i

Vi
=

(
P
ni+1

i+1

Ui+1

)
y
aw0(i+1)+bw1(i+1)
1 .

Let

eqJ4eqJ4 (55) α̂i =

[
Q
ni+1

i

Vi

]
= αi+1α

ε(aw0(i+1)+bw1(i+1))
1 ∈ L

From the minimal polynomial fi+1(u) of αi+1, we see that

gi(u) = udi+1+bi+1,di+1−1α
ε(aw0(i+1)+bw1(i+1))di+1

1 udi+1−1+· · ·+bi+1,0α
ε(aw0(i+1)+bw1(i+1))di+1

1

is the minimal polynomial of α̂i over k(α1)(α̂1, . . . , α̂i−1).
Now from equation (

eqM1
12) of A(i+ 1) determining Pi+1, we obtain

eqJ5eqJ5 (56)

Qi+1 = Pi+2

Q
wn1n2···ni+1
0

= Q
ni+1di+1

i +
∑di+1−1

t=0

(∑λt
s=1 as,ty

aj0(s,t)+bj1(s,t)
1 Q

ĵ0(s,t)
0 Q

j2(s,t)
1 · · ·Qji(s,t)i−1

)
Q
tni+1

i

where

ĵ0(s, t) = n1j0(s, t)+wj1(s, t)+wn1j2(s, t)+· · ·+wn1n2 · · ·ni−1ji(s, t)−(di+1−t)wn1n2 · · ·nini+1.
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Recall that 0 ≤ jk(s, t) < nk for 1 ≤ k ≤ i. We further have that

ν(Q
ĵ0(s,t)
0 Q

j2(s,t)
1 · · ·Qji(s,t)i−1 ) = (di+1 − t)ni+1β̂i ≥ β̂i.

By a similar argument to (
eqJ2
53), we obtain that ĵ0(s, t) > 0 for all s, t.

By the definition of Qi+1, (
eqJ6
52) and (

eqJ5
56), we have

eqJ10eqJ10 (57)

y
(aw0(i+1)+bw1(i+1))di+1

1
Pi+2

U
di+1
i+1

= Qi+1

V
di+1
i

=

(
Q
ni+1
i
Vi

)di+1

+
∑di+1−1

t=0

(∑λt
s=1 y

aj0(s,t)+bj1(s,t)
1

Q
ĵ0(s,t)
0 Q

j2(s,t)
1 ···Qji(s,t)i−1

V
di+1−t
i

)(
Q
ni+1
i
Vi

)t
We have [∑λt

s=1 as,ty
aj0(s,t)+bj1(s,t)
1

Q
ĵ0(s,t)
0 Q

j2(s,t)
1 ···Qji(s,t)i−1

V
di+1−t
i

]
=

[∑λt
s=1 as,ty

(aw0(i+1)+bw1(i+1))(di+1−t)
1

P
j0(s,t)
0 P

j1(s,t)
1 ···P ji(s,t)i

U
di+1−t
i+1

]
= bi+1,tα

ε(aw0(i+1)+bw1(i+1))(di+1−t)
1

for 0 ≤ t ≤ di+1 − 1 and [
Qi+1

V
di+1

i

]
= gi(α̂i) = 0.

Thus

β̂i+1 = ν(Qi+1) > di+1ν(Vi) = di+1(ν(Ui+1)− wn1n2 · · ·nini+1β̂0)

= ni+1(ν(Pi+1)− wn1n2 · · ·niβ̂0) = ni+1β̂i.

We have thus established that A(i) holds for Qi in R1. By induction on i, we have that
A(i) of Theorem

Theorem1*
4.2 holds for Qi in R1 for 1 ≤ i < Ω− 1.

We now will show that D(r) of Theorem
Theorem1*
4.2 holds for the Qi in R1 for all r. We begin

by establishing the following statement:

Suppose that λ ≥ n1w is as integer. Then there exist δ0, δ1 ∈ N with 0 ≤ δ1 < n1 such that

eqZ5eqZ5 (58) xδ0+iwyδ1+(d1−1−i)n1 = xλ1y
z−iε
1

for 0 ≤ i ≤ d1 − 1 where z = aδ0 + b(δ1 + (d1 − 1)n1.

We first prove (
eqZ5
58). We have that

(λεb− rw)n1 + (rn1 − λεa)w = λ

for all r ∈ Z. Choose r so that δ1 = rn1 − λεa satisfies 0 ≤ δ1 < n1. Set

δ0 = (λεb− rw)− (d1 − 1)w.

Then

(λεb− rw)n1 = λ− δ1w ≥ n1w − (n1 − 1)w = (n1 − n1 + 1)w

so

δ0 ≥ (n1 − n1 − d1 + 2)w = ((n1 − 1)(d1 − 1) + 1)w ≥ w.
Substituting (

eqZ1
47) in xδ0+iwyδ1+(d1−1−i)n1 , we obtain the formula (

eqZ5
58).
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We now will prove that statement D(r) of Theorem
Theorem1*
4.2 holds for the Qi in R1 for all r.

Suppose that we have monomials Q
j0(l)
0 Q

j1(l)
1 · · ·Qjr(l)r for 1 ≤ l ≤ m such that

ν(Q
j0(l)
0 Q

j1(l)
1 · · ·Qjr(l)r ) = ν(Q

j0(1)
0 Q

j1(1)
1 · · ·Qjr(1)

r )

for 1 ≤ l ≤ m, and that we have a dependence relation in L = Vν/mν .

0 = e1 + e2

[
Q
j0(2)
0 Q

j1(2)
1 · · ·Qjr(2)

r

Q
j0(1)
0 Q

j1(1)
1 · · ·Qjr(1)

r

]
+ · · ·+ em

[
Q
j0(m)
0 Q

j1(m)
1 · · ·Qjr(m)

r

Q
j0(1)
0 Q

j1(1)
1 · · ·Qjr(1)

r

]
with ei ∈ k(α1) (and some ei 6= 0). Multiplying the Q

j0(l)
0 Q

j1(l)
1 · · ·Qjr(l)r for 1 ≤ l ≤ m by

a common term Qt0 with t a sufficiently large positive integer, we may assume that

ĵ0(l) = j0(l)− j1(l)wn1 − j2(l)wn1n2 − · · · − jr(l)wn1n2 · · ·nr ≥ n1w

for 1 ≤ l ≤ m. We have that

Q
j0(l)
0 Q

j1(l)
1 · · ·Qjr(l)r = Q

ĵ0(l)
0 P

j1(l)
2 · · ·P jr(l)r+1 .

Since ĵ0(l) ≥ wn1, (
eqZ5
58) implies that for each l with 1 ≤ l ≤ w, there exist δ0(l), δ1(l) with

δ0(l), δ1(l) ∈ N and 0 ≤ δ1(l) < n1 such that

P
δ0(l)+iw
0 P

δ1(l)+(d1−1−i)n1

1 = y
z(l)−iε
1 Q

ĵ0(l)
0

for 0 ≤ i ≤ d1 − 1. The ordered set

{αε(z(l)−z(1))
1 , α

ε(z(l)−z(1))−1
1 , · · · , αε(z(l)−z(1))−(d1−1)

1 }

is a k-basis of k(α1) for all l (since multiplication by α
ε(z(l)−z(1))+(d1−1)
1 is a k-vector space

isomorphism of k(α1), and thus takes a basis to a basis). Thus there exists el,i ∈ k such
that

el =

d1−1∑
i=0

el,iα
ε(z(l)−z(1))−i
1 .

Since some el,i 6= 0, we have a dependence relation

0 =

m∑
l=1

d1−1∑
i=0

el,i

[
P
δ0(l)+iw
0 P

δ1(l)+(d1−1−i)n1

1 P
j1(l)
2 · · ·P jr(l)r+1

P
δ0(1)
0 P

δ1(1)+(d1−1)n1

1 P
j1(1)
2 · · ·P jr(1)

r+1

]
,

a contradiction to D(r + 1) of Theorem
Theorem1*
4.2 for the Pi in R. Thus we have established

D(r) of Theorem
Theorem1*
4.2 for the Qi in R1. �

8. Polynomial rings in two variables
Poly

The algorithm of Theorem
Theorem1*
4.2 is applicable when R = k[x, y] is a polynomial ring over a

field and ν is a valuation which dominates the maximal ideal (x, y) of R. In this case many
of the calculations in this paper become much simpler, as we now indicate (of course we
take the coefficient set CF to be the field k). In the case when R is equicharacteristic, we
can establish from the polynomial case the results of this paper using Cohen’s structure
theorem and Proposition

Prop17
3.4 to reduce to the case of a polynomial ring in two variables.

If f ∈ R = k[x, y] is a nonzero polynomial, then we have an expansion f = a0(x) +
a1(x)y + · · · + ar(x)yr where ai(x) ∈ k[x] for all i and ar(x) 6= 0. We define ordy(f) = r,
and say that f is monic in y if ar(x) ∈ k. We first establish the following formula.

eqZ60eqZ60 (59) Pi is monic in y with degyPi = n1n2 · · ·ni−1 for i ≥ 2.
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We establish (
eqZ60
59) by induction. In the expansion (

eqM1
12) of Pi+1, we have for 0 ≤ t ≤ di−1

and whenever as,t 6= 0, that 0 ≤ jk(s, t) < nk for 1 ≤ k ≤ i− 1. Thus

degy(P
j0(s,t)
0 P

j1(s,t)
1 · · ·P ji−1(s,t)

i−1 P tnii )
= j1(s, t) + j2(s, t)n1 + j3(s, t)n1n2 + · · ·+ ji−1n1n2 · · ·ni−2 + tnin1n2 · · ·ni−1

< n1n2 · · ·ni.
Thus degyPi+1 = degyP

ni
i = n1n2 · · ·ni. We further see that Pi+1 is monic in y.

Set σ(0) = 0 and for i ≥ 1 let

σ(i) = min{j | j > σ(i− 1) and nj > 1}.
Let Qi = Pσ(i). We calculate (as long as we are not in the case Ω = ∞ and ni = 1
for i � 0) that for d ∈ Z+, there exists a unique r ∈ Z+ and j1, . . . , jr ∈ Z+ such that

0 ≤ jk < nk for 1 ≤ k ≤ r and degyQ
j1
1 · · ·Q

jr
r = d. Let Md be this monomial. Since the

monomials Md are monic in y, we see (continuing to assume that we are not in the case
Ω = ∞ and ni = 1 for i � 0) that if f ∈ R = k[x, y] is nonzero with degy(f) = d, then
there is a unique expression

eqZ61eqZ61 (60) f =

d∑
i=0

Ai(x)Mi

where Ai(x) ∈ k[x], and

eqZ62eqZ62 (61) ν(f) = min
i
{ord(Ai)ν(Q0) + ν(Mi)}.

In the case when Ω =∞ and ni = 1 for i� 0 we have a similar statement, but we may
need to introduce a new polynomial g of “infinite value” as in Case 3 of Theorem

Corollary3*
4.12.

9. The A2 singularity
norm

Lemma3 Lemma 9.1. Let k be an algebraically closed field, and let A = k[x2, xy, y2], a subring of
the polynomial ring B = k[x, y]. Let m = (x2, xy, y2)A and n = (x, y)B. Suppose that ν is
a rational nondiscrete valuation dominating Bn, such that ν has a generating sequence

P0 = x, P1 = y, P2, . . .

in k[x, y] of the form of the conclusions of Theorem
Theorem1*
4.2, such that each Pi is a k-linear

combinations of monomials in x and y of odd degree, and

β0 = ν(x), β1 = ν(y), β2 = ν(P2), . . .

is the increasing sequence of minimal generators of SBn(ν), with βi+1 > niβi for i ≥ 1,
where

ni = [G(β0, . . . , βi) : G(β0, . . . , βi−1)].

Then

SAm(ν) =

{
a0β0 + a1β1 + · · ·+ aiβi | i ∈ N, a0, . . . , ai ∈ N
and a0 + a1 · · ·+ ai ≡ 0 mod 2

}
.

Proof. For f ∈ k[x, y], let t = degy(f). By (
eqZ61
60), f has a unique expansion

f =
t∑
i=0

(
∑
k

bk,ix
k)P

j1(i)
1 · · ·P jr(i)r

where bk,i ∈ k, 0 ≤ jk(i) < nk for 1 ≤ k and

degyP
j1(i)
1 · · ·P jr(i)r = i
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for all i. Looking first at the t = degy(f) term, and then at lower order terms, we see that

f ∈ k[x2, xy, y2] if and only if k + j1(i) + · · ·+ jr(i) ≡ 0 mod 2 whenever bk,i 6= 0. �

Example1 Example 9.2. Suppose that k is a field and R is the localization of k[u, v, w]/uv−w2 at the
maximal ideal (u, v, w). Then there exists a rational nondiscrete valuation ν dominating
R such that if

γ0 < γ1 < · · ·
is the increasing sequence of minimal generators of the semigroup SR(ν), then given n ∈
Z+, there exists i > n such that γi+1 = γi + γ0

3 and γi+1 is in the group generated by
γ0, . . . , γi.

Proof. Let A = k[x, y] be a polynomial ring with maximal ideal n = (x, y)k[x, y]. We will
use the criterion of Theorem

Corollary4*
1.2 to construct a rational nondiscrete valuation ν dominating

T = An, with a generating sequence

P0 = x, P0 = y, P2, . . .

such that

β0 = ν(x), β1 = ν(y), β2 = ν(P2), . . .

is the increasing set of minimal generators of the semigroup ST (ν). We will construct the
Pi so that each Pi is a k-linear combination of monomials in x and y of odd degree.

We define the first part of a generating sequence by setting

P0 = x, P1 = y, P2 = y3 − x5,

with β0 = ν(x) = 1, β1 = ν(y) = 5
3 . Set b1 = 0.

We now inductively define

Pi+1 = P 3
i − xaiPi−1

with ai an even positive integer, and βi = ν(Pi) = bi + 5
3i

with bi ∈ Z+, for i ≥ 2, by
requiring that 3 divides ai + bi−1 and

bi =
ai + bi−1

3
> 3bi−1 + 5

for i ≥ 2. ai, bi satisfying these relations can be constructed inductively from bi−1.
Now let B = k[x2, xy, y2], m = (x2, xy, y2)B, so that R ∼= Bm. With this identification,

the semigroup SR(ν) is generated by {βi + βj | i, j ∈ N}. From 3βi < βi+1 for i ≥ 1 and
βi < βj if j > i, we conclude that if i ≤ j, k ≤ l and j < l, then

eq10eq10 (62) βi + βj < βk + βl.

Let

γ0 = 2 < γ1 < · · ·
be the sequence of minimal generators of the semigroup SR(ν). By (

eq10
62), for n ∈ Z+, there

exists an index l such that γl = β0 + βn. We have l ≥ n. The semigroup S(γ0, γ1, . . . , γl)
is generated by

{βi + βj | i ≤ j and j ≤ n− 1}
and β0 + βn.

Suppose β1 + βn ∈ S(γ0, γ1, . . . , γl). Since S(γ0, . . . , γl−1) ⊂ 1
3n−1Z, we have an expres-

sion β1 + βn = rγl + τ with r a positive integer, and τ ∈ S(γ0, . . . , γl−1). Now

γl = β0 + βn = 1 + bn +
5

3n
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and

β1 + βn =
5

3
+ bn +

5

3n

implies τ ≤ 5
3 − 1 = 2

3 , which is impossible, since γ0 = β0 + β0 = 2. Thus β1 + βn 6∈
S(γ0, γ1, . . . , γl) and β1 + βn = γl+1 is the next largest minimal generator of SR(ν).

We have that γl+1 = β1 + βn = (β0 + β1) + (β0 + βn) − 2β0 is in the group generated
by γ0, . . . , γl. �

Example2 Example 9.3. Let notation be as in Example
Example1
9.2 and its proof. Then R → T is finite,

but ST (ν) is not a finitely generated SR(ν) module.

Proof. Suppose ST (ν) is a finitely generated SR(ν) module. Then there exists n > 0 such
that ST (ν) is generated by β0, . . . , βn and {βi + βj} | i, j ∈ N}. For l > n, βl cannot be in
this semigroup. �

Example3 Example 9.4. Let A = k[u, v](u,v). Then A → T is a finite extension of regular local

rings, but ST (ν) is not a finitely generated SA(ν) module.

Proof. Since A is a subring of R, SA(ν) is a subsemigroup of SR(ν). Since ST (ν) is not
a finitely generated SR(ν)-module, by Example

Example2
9.3, ST (ν) cannot be a finitely generated

SA(ν)-module. �
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