
ELIMINATING TAME RAMIFICATION:
GENERALIZATIONS OF ABHYANKAR’S LEMMA

ARPAN DUTTA AND FRANZ-VIKTOR KUHLMANN

Abstract. A basic version of Abhyankar’s Lemma states that
for two finite extensions L and F of a local field K, if L|K is
tamely ramified and if the ramification index of L|K divides the
ramification index of F |K, then the compositum L.F is an un-
ramified extension of F . In this paper, we generalize the result to
valued fields with value groups of rational rank 1, and show that
the latter condition is necessary. Replacing the condition on the
ramification indices by the condition that the value group of L be
contained in that of F , we generalize the result further in order to
give a necessary and sufficient condition for the elimination of tame
ramification of an arbitrary extension F |K by a suitable algebraic
extension of the base field K. In addition, we derive more precise
ramification theoretical statements and give several examples.

1. Introduction

In this paper we consider valued fields (K, v), i.e., fields K with a
Krull valuation v. The valuation ring of v on K will be denoted by
OK . The value group of (K, v) will be denoted by vK, and its residue
field by Kv. The value of an element a will be denoted by va, and its
residue by av. By (L|K, v) we denote a field extension L|K where v
is a valuation on L and K is endowed with the restriction of v. For
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background on valuation theory, see [4, 5, 8, 14]. Basic facts that we
will need, in particular from ramification theory, will be presented in
Section 2.

Throughout, we will consider the following general situation. We
let (M, v) be an arbitrary algebraically closed extension of some valued
field (K, v). Every subfield E of M will be endowed with the restriction
of v, which we will again denote by v; note that (M, v) contains a unique
henselization of (E, v), which we denote by (Eh, v). Further, we take
an arbitrary subextension F |K and an algebraic subextension L|K of
M |K. The compositum of the fields F and L within M is the
smallest subfield of M that contains both F and L, and we denote it
by L.F . The restriction of v from M to L.F is then a simultaneous
extension of the restrictions to L and F . Similarly, the compositum
of the value groups vF and vL within vM is the smallest subgroup
of vM that contains both vF and vL, and we denote it by vL+ vF .

An algebraic extension (L|K, v) of henselian fields is called tame if
every finite subextension E|K of L|K satisfies the following conditions:

(TE1) the ramification index (vE : vK) is not divisible by charKv.
(TE2) the residue field extension Ev|Kv is separable.
(TE3) the extension (E|K, v) is defectless, i.e.,

[E : K] = (vE : vK)[Ev : Kv] .

Note that the extension (L|K, v) is called tamely ramified if (TE1)
and (TE2) hold for all finite subextensions E|K, so a finite tame exten-
sion is the same as a finite defectless tamely ramified extension. The
extension (L|K, v) is called unramified if the canonical embedding of
vK in vL is onto and the residue field extension Lv|Kv is separable;
this does not necessarily imply that the extension is defectless.

In the case of a henselian discretely valued field (K, v), condition
(TE3) is known to hold as soon as L|K is separable. Therefore, if in
addition charK = 0, then a finite extension of (K, v) is tame once it
is tamely ramified. If in addition (K, v) is complete, then condition
(TE3) always holds.

For henselian discretely valued fields, Abhyankar’s Lemma provides a
sufficient condition to eliminate tame ramification of a finite extension
(F |K, v) by lifting through a finite extension. In this case we can choose
M to be the algebraic closure of K, and the extension of v from K to
L, F and L.F is uniquely determined.

Theorem 1. (Abhyankar’s Lemma) Let (K, v) be a henselian dis-
cretely valued field, (L|K, v) be a finite tame extension and (F |K, v) a
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finite extension. If the ramification index of (L|K, v) divides the rami-
fication index of (F |K, v), then the extension (L.F/F, v) is unramified.

In [3] the following version of Abhyankar’s Lemma is shown: the
ramification index of the compositum of two finite extensions of local
fields is equal to the least common multiple of the ramification indices
corresponding to the finite extensions, provided at least one of the
extensions is tame. This version is a special case of a more general
theorem that we will present next.

The condition on the ramification indices in Theorem 1 is also nec-
essary. Indeed, (L.F |F, v) being unramified implies that v(L.F ) = vF .
Thus,

(vF : vK) = (v(L.F ) : vK) = (v(L.F ) : vL)(vL : vK) ,

hence (vL : vK) divides (vF : vK).

The question naturally arises how far the above formulation of Ab-
hyankar’s Lemma can be generalized. The next theorem, which implies
Theorem 1, shows that the result remains true whenever vK has ratio-
nal rank 1; the rational rank of an abelian group is the Q-dimension of
the divisible hull Q⊗Z Γ of Γ.

From now on we will assume the general situation as introduced in
the beginning, i.e., F |K is an arbitrary extension, and L|K is a (not
necessarily finite) algebraic extension.

Theorem 2. Assume that the value group of (K, v) is of rational rank
1, that the extension (L.Kh|Kh, v) is tame and that the ramification
indices (vL : vK) and (vF : vK) are finite. Then (v(L.F ) : vK) is
the least common multiple of (vL : vK) and (vF : vK). In particular,
(L.F |F, v) is unramified if and only if the ramification index of (L|K, v)
divides the ramification index of (F |K, v).

In contrast, in Section 7 we will show that the result fails for higher
rational rank (see Lemma 18). In particular, the result fails for general-
ized discretely valued fields, i.e., those valued fields whose value group
is a lexicographically ordered product of finitely many copies of Z.

By reformulating the condition on the ramification indices in a dif-
ferent way, using the value groups themselves instead, one can prove
a far-reaching generalization of Abhyankar’s Lemma. The absolute
ramification field (Kr, v) of (K, v) is the ramification field of the nor-
mal extension (Ksep|K, v), where Ksep denotes the separable-algebraic
closure of K. Likewise, the absolute inertia field (Ki, v) of (K, v)
is the inertia field of the extension (Ksep|K, v). Since M is assumed to
be algebraically closed, just as for henselizations, it contains a unique
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ramification field and a unique inertia field for every subfield (E, v). We
have that Eh ⊆ Ei ⊆ Er and hence, (Ei, v) and (Er, v) are henselian.

An extension (L|K, v) of valued fields is called immediate if the
canonical embeddings of vK in vL and of Kv in Lv are onto. Recall
that the henselization is an immediate extension.

In Section 3, we will prove the following:

Theorem 3. 1) Assume that (L, v) is contained in the absolute rami-
fication field of (K, v). Then (L.F, v) is contained in the absolute ram-
ification field of (F, v) and v(L.F ) = vL + vF . Further, (L.F, v) is
contained in the absolute inertia field of (F, v) (which implies that the
extension (L.F |F, v) is unramified) if and only if vL is a subgroup of
vF .

2) Assume that (L, v) is contained in the absolute inertia field of (K, v).
Then (L.F, v) is contained in the absolute inertia field of (F, v) and
(L.F )v = Lv.Fv. Further, (L.F, v) is contained in the henselization
of (F, v) (which implies that the extension (L.F |F, v) is immediate) if
and only if Lv is a subfield of Fv.

In Section 7 we will show that this theorem implies Theorem 2 and
hence also Theorem 1.

Note that if charKv = 0, then the absolute ramification field is alge-
braically closed, so (L, v) is contained in it as soon as L|K is algebraic.
If charKv > 0 and L|K is algebraic, then for (L, v) to lie in the abso-
lute ramification field (Kr, v) of (K, v), the following three conditions
are necessary and sufficient (the letters “PT” stand for “pre-tame”):

(PT1) charKv does not divide the order of any non-zero element in
vL/vK,
(PT2) the residue field extension Lv|Kv is separable,
(PT3) for every finite subextension E|K of L|K, the extension
(Eh|Kh, v) of their respective henselizations (in (M, v) ) is defectless.

This means that if (K, v) is henselian, then (L, v) lies in its absolute
ramification field if and only if (L|K, v) is a tame extension; in other
words, (Kr, v) is the unique maximal tame extension of (K, v).

Similarly, (L, v) lies in the absolute inertia field of (K, v) if and only
if L|K is algebraic, vL = vK, and conditions (PT2) and (PT3) hold.

Assume now that charKv = p > 0. Does elimination of tame ramifi-
cation also hold if the extension (Lh|Kh, v) is not tame? The answer is
yes if we restrict the scope to normal extensions. We denote by (vL)p′
the maximal subgroup of vL containing vK and such that p does not
divide the order of any of its nonzero element modulo vK. Further,
we denote by (Lv)s the maximal subfield of Lv separable over Kv. A
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p-extension is a (not necessarily finite) Galois extension with Galois
group a p-group.

Theorem 4. Assume that L|K is normal, F |K is an arbitrary exten-
sion, and charKv = p > 0. Then the following assertions hold.

1) The quotient group v(L.F )/((vL)p′ +vF ) is a p-group. In particular,
v(L.F )/vF is a p-group if and only if (vL)p′ ⊆ vF .
2) If (vL)p′ = vK, then the maximal separable subextension of (L.F )v |
(Lv)s.Fv is a p-extension.

Trivial examples of ramification that can easily be eliminated appear
when the base field K is smaller than the constant field of the function
field F . More sophisticated examples will therefore present situations
where the base field K is equal to the constant field, i.e., is relatively
algebraically closed in F . But this does not imply that K is equal to the
relative algebraic closure of K in a fixed henselization of (F, v). In [6],
for valued rational function fields (K(x)|K, v) the implicit constant
field IC (K(x)|K, v) is defined to be the relative algebraic closure of K
in a fixed henselization of (K(x), v). While it depends on the chosen
henselization, it is unique up to valuation preserving isomorphism over
K. The following is Theorem 1.3 of [6]:

Theorem 5. Let (L|K, v) be a countably generated separable-algebraic
extension of non-trivially valued fields. Then there is an extension of v
from L to the algebraic closure L(x)ac = K(x)ac of the rational function
field K(x) such that, upon taking henselizations in (K(x)ac, v),

Lh = IC (K(x)|K, v) .

This means that L ⊂ K(x)h, so that L(x) = L.K(x) lies in the
henselization of K(x) and all ramification, whether tame or wild, is
eliminated. We will construct specific examples in Section 6.

Finally, let us mention that there are various other versions and
generalizations of Abhyankar’s Lemma. Here we list only a few. When
the valued field (K, v) is a formally ℘-adic field, then Theorem 1 is
Corollary 4 in [9, Chapter 5]. Elimination of ramification by so-called
strongly solvable extensions of the base field has been presented in [11,
12]. Generalizations are also discussed in the Stacks Project [13], some
of which we will cite in Section 7. Finally, a “perfectoid Abhyankar
lemma” has recently been presented in [2].
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2. Preliminaries

We recall some aspects of ramification theory and of general valu-
ation theory [cf. e.g. [1, 4, 5, 8, 10, 14]. We take a normal algebraic
extension (L|K, v) of valued fields and set G = AutL|K. The decom-
position group of the extension is defined as

Gd(L|K, v) := {σ ∈ G | v ◦ σ = v on L} ,
the inertia group as

Gi(L|K, v) := {σ ∈ G | ∀x ∈ OL : v(σx− x) > 0} ,
and the ramification group as

Gr(L|K, v) := {σ ∈ G | ∀x ∈ L× : v(σx− x) > vx} .
The corresponding fixed fields in Ksep will be denoted as (L|K, v)d,
(L|K, v)i and (L|K, v)r and are called the decomposition field, in-
ertia field and ramification field of (L|K, v), respectively. We have:

Gr(L|K, v) E Gi(L|K, v) E Gd(L|K, v) ≤ G

and
Gr(L|K, v) E Gd(L|K, v) ,

so (L|K, v)d ⊆ (L|K, v)i ⊆ (L|K, v)r with both extensions as well as
(L|K, v)d ⊆ (L|K, v)r Galois.

In the above notation, the absolute decomposition field, absolute
inertia field and absolute ramification field of (K, v) that we men-
tioned in the introduction are Kd = (Kac|K, v)d = (Ksep|K, v)d, Ki =
(Kac|K, v)i = (Ksep|K, v)i and Kr = (Kac|K, v)r = (Ksep|K, v)r, re-
spectively.

We collect the main facts of ramification theory that we will need
in this paper in the next theorem. To simplify notation, we set Ld =
(L|K, v)d, Li = (L|K, v)i, Lr = (L|K, v)r, and denote by Ls the maxi-
mal separable extension of K inside of L.

Theorem 6. 1) The extension (Ld|K, v) is immediate and v has a
unique extension from Ld to L.

2) The extension Liv|Ldv is separable, and Lrv = Liv .

3) We have that vLi = vLd, and the order of no element in vLr/vLi =
vLr/vK is divisible by charKv.

4) If charKv = p > 0, then Gr(L|K, v) is a p-group, so Ls|Lr is a
p-extension. If charKv = 0, then Gr(L|K, v) is trivial and Lr = L.
The extension Lv|Lrv is purely inseparable, and vL/vLr is a p-group.

5) If K ⊆ K1 ⊆ K2 ⊆ Lr, K2|K1 is finite and (K1, v) (and thus also
(K2, v) ) is henselian, then the extension (K2|K1, v) is defectless.
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6) We have that (L|Ld, v)i = Li and (L|Ld, v)r = (L|Li, v)r = Lr .

7) If K ⊆ L′ ⊆ L, then (L|L′, v)d = L′.Ld , (L|L′, v)i = L′.Li and
(L|L′, v)r = L′.Lr .

8) Whenever F |K is an arbitrary extension and the valuation v is fixed
on some field containing the algebraic closure of F , then Kd ⊆ F d,
Ki ⊆ F i and Kr ⊆ F r.

9) If K ⊆ K1 ⊆ Kd, then Kd
1 = Kd. If K ⊆ K1 ⊆ Ki, then Ki

1 = Ki.
If K ⊆ K1 ⊆ Kr, then Kr

1 = Kr.

Corollary 7. If K ⊆ K1 ⊆ K ′1 ⊆ Lr, (K ′1|K1, v) is immediate and
(K1, v) (and thus also (K ′1, v) ) is henselian, then K1 = K ′1 .

Proof. Take K2|K1 to be any finite subextension of K ′1|K1 . Since
(K ′1|K1, v) is immediate by assumption, the same holds for (K2|K1, v).
As this extension is also defectless by part 5) of Theorem 6, we have
that [K2 : K1] = (vK2 : vK1)[K2v : K1v] = 1, whence K1 = K2 . It
follows that K1 = K ′1 . �

Here is a crucial lemma for the proof of Theorems 3 and 4:

Lemma 8. Take any extension (L, v) of (K, v), elements β ∈ vL,
c ∈ K and a positive integer n such that nβ = vc. Suppose that p does
not divide n. Then the polynomial Xn− c splits in the absolute inertia
field Li of (L, v) and β ∈ vLi.

Proof. Take some b ∈ L such that vb = β. Then vcb−n = 0 and
therefore, cb−nv 6= 0. Since p does not divide n, the polynomial Xn −
cb−nv has n distinct roots in (Lv)sep = Liv. By Hensel’s Lemma, it
follows that the polynomial Xn−cb−n splits completely in the henselian
field (Li, v). Hence, so does Xn − c. �

Further, we will need the fundamental inequality, of which we
state only a simple form here: for every finite extension (L|K, v),

(1) [L : K] ≥ (vL : vK)[Lv : Kv] .

Finally, we will need:

Proposition 9. Take any prime p and an arbitrary extension F |K
and a normal algebraic extension L|K. If the maximal separable subex-
tension of L|K is a p-extension, then the same holds for L.F |F .

Proof. Let Ls|K be the maximal separable subextension of L|K and
set E := Ls ∩F . Then both Ls|K and Ls|E are normal and separable,
and AutLs|E is a subgroup of AutLs|K. Since the latter is a p-group
by assumption, so is the former.
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Since Ls ∩ F = E and Ls|E is normal and separable, F and Ls are
linearly disjoint over E and it follows that AutLs.F |F = AutLs|E,
which shows that Ls.F |F is a p-extension. Since L|Ls is purely insep-
arable, also L.(Ls.F ) = L.F is a purely inseparable extension of Ls.F ,
so Ls.F |F is the maximal separable subextension of L.F |F . �

3. Proof of Theorem 3

In this and the next two sections, we will freely use the facts collected
in Theorem 6 as well as the fundamental inequality (1) without citing
them.

We assume the extensions (F |K, v) and (L|K, v) to be as in the
introduction. Since L|K is algebraic, vL/vK is a torsion group.

Let us first assume that vL ⊆ vF and that (L, v) is contained in
the absolute ramification field Kr of (K, v), so vL ⊆ vKr. Take any
set {βj | j ∈ J} of generators of vL over vK, and let nj be positive
integers such that njβj ∈ vK for each j ∈ J . Since charKv does not
divide the order of any element in vKr/vK, the same holds for vL/vK.
Therefore, we can assume that charKv does not divide any of the nj .
Applying Lemma 8, we can find elements bj ∈ Li such that vbj = βj
and cj := b

nj

j ∈ K. Since Ki ⊆ Li, we obtain that

vL ⊆ vKi(bj | j ∈ J) ⊆ vLi = vL ,

showing that equality must hold everywhere. Since Lv|Kv is separable
by condition (TE2), we have that Kiv = (Kv)sep = (Lv)sep = Liv and
thus,

Kiv ⊆ Ki(bj | j ∈ J)v ⊆ Liv = Kiv ,

showing again that equality must hold everywhere. We have proved
that

(Li|Ki(bj | j ∈ J), v)

is an immediate extension.
By assumption, (L, v) is an extension of (K, v) within the absolute

ramification field (Kr, v) of (K, v). Hence also (Li, v) is contained in
(Kr, v). Therefore, we can apply Corollary 7 to find that

Li = Ki(bj | j ∈ J) .

Since K ⊆ F , it follows that Ki ⊆ F i. Since βj ∈ vL ⊆ vF , we know
from Lemma 8 that the polynomials Xnj − cj split completely over F i.
Consequently, we also have bj ∈ F i for each j ∈ J . This yields that

L ⊆ Li = Ki(bj | j ∈ J) ⊆ F i .
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We conclude that

L.F ⊆ F i ,

so the extension (L.F |F, v) is unramified.
Now we prove the assertion in the general case, where vL is not

necessarily a subgroup of vF . We construct an extension (F1, v) of
(F, v) within its absolute ramification field (F r, v) such that vF1 =
vL + vF . Take (F1, v) to be a maximal extension of (F, v) within
(F r, v) such that vF1 ⊆ vL + vF ; this exists by Zorn’s Lemma. We
have to show that vF1 = vL + vF . Suppose otherwise and take an
element β ∈ vL \ vF1 . Let n be the order of β over vF1 ; as it must
be a divisor of the order of β over vK and (L, v) lies in the absolute
ramification field of (K, v), it is not divisible by charKv. It follows
that β ∈ vF r

1 . Take an element c ∈ F1 such that vc = nβ. Then by
Lemma 8 there is some b ∈ (F r

1 )i = F r
1 = F r such that bn = c and

therefore, vb = β. We compute:

n = (vF1 + Zβ : vF1) ≤ (vF1(b) : vF1) ≤ [F1(b) : F1] ≤ n ,

so equality holds everywhere and we find that vF1(b) = vF1 + Zβ ⊆
vL+ vF . Since b /∈ F1 , this contradicts the maximality of F1 , showing
that vF1 = vL+ vF .

Now we apply what we have shown already to F1 in place of F . Since
now vL ⊆ vF1 , we find that L.F1 ⊆ F i

1 ⊆ F r
1 = F r and

v(L.F ) ⊆ v(L.F1) ⊆ vF i
1 = vF1 = vL+ vF ⊆ v(L.F ) ,

whence v(L.F ) = vL+ vF .

Assume that vL is not a subgroup of vF . Then vF ( vL + vF =
v(L.F ), so the extension (L.F |F, v) is not unramified. We have now
proved part 1) of Theorem 3.

For the proof of part 2) of Theorem 3, we proceed in a similar way
as for part 1), but on a “lower level”. By hypothesis, L ⊆ Ki. First,
we assume that Lv ⊆ Fv. We take a set of generators {ζj | j ∈ J} of
the separable-algebraic field extension Lv|Kv. Then we choose monic
polynomials fj ∈ K[X] such that the reduction f j of fj modulo v is
the minimal polynomial of ζj over Kv, for each j ∈ J . Since ζj is a

simple root of f j, we can use Hensel’s Lemma to find a root bj ∈ Lh

whose residue is ζj . Since Kh ⊆ Lh, we have that Kh(bj | j ∈ J) ⊆ Lh

and

Lv ⊆ Kh(bj | j ∈ J)v ⊆ Lhv = Lv ,

showing that equality must hold. We also have that

vL ⊆ vKi = vK ⊆ vKh(bj | j ∈ J) ⊆ vLh = vL ,
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showing again that equality must hold. Thus, (Lh|Kh(bj | j ∈ J), v) is
an immediate extension of henselian fields inside of the absolute inertia
field of (K, v). Hence by Corollary 7 we obtain that

Lh = Kh(bj | j ∈ J) .

Since K ⊆ F , it follows that Kh ⊆ F h. Since ζj ∈ Fv and ζj is a

simple root of f j , it follows from Hensel’s Lemma that fj has a root

in F h with residue ζj ; this root must be bj . Consequently,

L ⊆ Lh = Kh(bj | j ∈ J) ⊆ F h .

We conclude that

L.F ⊆ F h ,

which implies that the extension (L.F |F, v) is immediate.

Next, we prove the assertion in the general case, where Lv is not
necessarily a subfield of Fv. We construct an extension (F1, v) of (F, v)
within its absolute inertia field (F i, v) such that F1v = Lv.Fv. Take
(F1, v) to be a maximal extension of (F, v) within (F i, v) such that
F1v ⊆ Lv.Fv; this exists by Zorn’s Lemma. We have to show that
F1v = Lv.Fv. Suppose otherwise and take an element ζ ∈ Lv \ F1v.
Since (L, v) lies in the absolute inertia field of (K, v) by hypothesis,
ζ is separable-algebraic over Kv and hence also over F1v. It follows
that ζ ∈ F i

1v. Take a monic polynomial f ∈ F1[X] whose reduction fv
modulo v is the minimal polynomial of ζ over F1v and note that ζ is
a simple root of fv. By Hensel’s Lemma there is a root z of f in the
henselian field (F i

1, v) such that zv = ζ. We compute:

deg f = deg fv = [F1v(ζ) : F1v] ≤ [F1(z)v : F1v] ≤ [F1(z) : F1] ≤ deg f,

so equality holds everywhere and we find that F1(z)v = F1v(ζ) ⊆
Lv.Fv. Since z /∈ F1 , this contradicts the maximality of F1 , showing
that F1v = Lv.Fv.

Now we apply what we have shown already to F1 in place of F . Since
now Lv ⊆ F1v , we find that L.F1 ⊆ F h

1 ⊆ F i
1 = F i and

(L.F )v ⊆ (L.F1)v = F h
1 v = F1v = Lv.Fv ⊆ (L.F )v ,

whence (L.F )v = F1v = Lv.Fv.
Finally, assume that Lv is not a subfield of Fv. Then Fv ( Lv.Fv =

(L.F )v, so the extension (L.F |F, v) is not immediate. We have now
proved part 2) of Theorem 3.
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4. Proof of Theorem 4

By assumption, charKv = p > 0. We let Li, Lr and Ls be as intro-
duced before Theorem 6. Since vL/vLr is a p-group and no element of
vLr/vK has order divisible by p, we have that vLr = (vL)p′ . Further,
Li = L.Ki is a normal extension of Ki and Li

s = Ls.K
i is a Galois

extension of Ki, with ramification field Li
r = Lr.K

i; thus, Li
s|Li

r is a
p-extension.

We know that Ls|Lr is a p-extension. By Proposition 9, this implies
that also Ls.F |Lr.F is a p-extension. Since L|Ls is purely inseparable,
it follows that also L.F |Ls.F is purely inseparable. These two facts
imply that v(L.F )/v(Lr.F ) is a p-group, and that (L.F )v/(Lr.F )v is
a normal extension with its maximal separable subextension being a
p-extension. Since v(Lr.F ) = (vL)p′ +vF by part 1) of Theorem 3, the
former proves part 1) of Theorem 4.

Now assume that (vL)p′ = vK. This implies that Lr = Li and
Lr.F = Li.F . Hence from part 2) of Theorem 3 it follows that (Lr.F )v =
(Li.F )v = (Lv)s.Fv. Together with the facts about (L.F )v/(Lr.F )v
that we showed above, this proves part 2) of Theorem 4.

5. A closer analysis of the relevant ramification theory

Throughout this section we will assume that L|K is a (not necessarily
finite) Galois extension. Then also L.F |F is a Galois extension, and
we denote by res the restriction of automorphisms in AutL.F |F to L.
The following is a consequence of [10] (see also [8]).

Proposition 10. In the above situation, we have:

resGd(L.F |F, v) ⊆ Gd(L|K, v) ,
resGi(L.F |F, v) ⊆ Gi(L|K, v) ,
resGr(L.F |F, v) ⊆ Gr(L|K, v) .

We set E := L.F , let Ld, Li and Lr be as introduced before Theo-
rem 6, and correspondingly denote by Ed , Ei , Er the decomposition,
inertia and ramification field, respectively, of (E|F, v). As a conse-
quence of Proposition 10, we obtain:

Proposition 11. With the above assumptions and notation, we have
that

Ld ⊆ Ed ∩ L , Li ⊆ Ei ∩ L , Lr ⊆ Er ∩ L
and

Ld.F ⊆ Ed , Li.F ⊆ Ei , Lr.F ⊆ Er .
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We wish to give examples that show that the inclusion may be strict,
even if F |K is finite. In fact, this phenomenon occurs in all instances
of elimination of tame or wild ramification.

Example 12. We build on a famous example for an extension with
nontrivial defect (see, e.g., [7]). We take (K, v) to be the perfect hull of
the Laurent series field Fp((t)) over the field Fp with p elements. We let
ϑ be a root of the Artin-Schreier polynomial Xp−X−1/t. As (K, v) is
henselian, there is a unique extension of v to K(ϑ). Then (K(ϑ)|K, v) is
an immediate Galois extension of degree p, hence has nontrivial defect.
The same is true for the extension (K(ϑ + a)|K, v) where a is a root
of Xp −X − 1. We set L = K(ϑ) and F = K(ϑ+ a). We obtain that
L.F = F (a). Since Fp(a)|Fp is a separable extension of degree p, we
see that L.F = (L.F |F, v)i. But as (K(ϑ)|K, v) has nontrivial defect,
(K(ϑ), v) does not lie in Kr, and consequently, Lr = K. With the
notation introduced above, we conclude that K = Ld = Li = Lr ( L ,
but F = Ed ( Ei = Er = E and therefore, F = Li.F ( Ei and
F = Lr.F ( Er . ♦

This example shows that the p-extension mentioned in part 2) of Theo-
rem 4 can be nontrivial even if Lv = (Lv)s = Kv and hence (Lv)s.Fv =
Fv. In this example, we have in fact eliminated wild ramification, since
Er = E; the wild ramification was turned into a tame unramified exten-
sion. It should be noted at this point that eliminating wild ramification
cannot increase tame ramification:

Remark 13. If Er = E, then vE = (vL)p′ + vF . This follows from
part 1) of Theorem 4 which states that vE/((vL)p′ + vF ) is a p-group.
But as no element in vEr/vF has a order divisible by p, the group
vE/((vL)p′ + vF ) must be trivial.

The next example is a basic example of the elimination of tame
ramification:

Example 14. We take K = k(t, x) and v to be the t-adic valuation
on K. Then vK = Z and Kv = k(x). We choose an integer n > 1
which is not divisible by char k, and n-th roots t1/n and x1/n of t and x,
respectively. We assume that k contains a primitive n-th root of unity
and set L = K(t1/n) and F = K(t1/nx1/n), so that L.F = F (x1/n) =
(L.F |F, v)i. In this situation, we have that K = Ld = Li ( Lr = L ,
but F = Ed ( Ei = Er = E and therefore, F = Li.F ( Ei and
F ( Lr.F = Ei . ♦
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Finally, we give an example where a separable extension of the
residue field is eliminated. This corresponds to a well known proce-
dure using Hensel’s Lemma within the henselization of (F, v).

Example 15. We take (K, v) to be as in the previous example, as-
suming in addition that charKv = p > 0. We let a be a root of the
Artin-Schreier polynomial Xp−X −x, and b a root of Xp−X −x− t.
We set L = K(a) and F = K(b). We obtain that L.F = F (b−a). Since
b−a is a root of the polynomial Xp−X− t and vt > 0, b−a lies in the
henselization of (F, v) and it follows that L.F = Ed . In this situation,
we have that K = Ld ( Li = Lr = L , but F ( Ed = Ei = Er = E
and therefore, F ( Li.F = Ed = E . ♦

6. Examples with rational function fields F = K(x)

Example 16. We take a valued field extension (K(a)|K, v) such that
an ∈ K, the order of va modulo vK is n and n is not divisible by
charKv. It follows that vK(a) = vK + Zva and K(a)v = Kv. We set
L := K(a). Further, we consider the Gauß valuation v on the rational
function field L(y), that is,

v
k∑

i=0

aiy
i := min{vai | 0 ≤ i ≤ k} .

We choose some d ∈ K such that vd > va and set x := a + dy, so
K(x) is a rational function field contained in L(y). We consider K(x)
equipped with the restriction of the valuation v of L(y).

We wish to prove that L ⊂ K(x)h. We observe that x/a and xn/an

are 1-units and that x/a is a root of the polynomial

(2) Xn − xn

an
∈ K(x)[X]

whose reduction modulo v is Xn−1. Since n is not divisible by charKv,
1 is a simple root of this polynomial and Hensel’s Lemma shows that
K(x)h contains a unique root z of (2) with residue 1. Consequently,
z = x/a, whence a = x/z ∈ K(x)h. This proves that L ⊂ K(x)h. ♦

Modifications of this example can be obtained by choosing different
extensions of v from L to L(y). For example, one can define

(3) v

k∑
i=0

aiy
i := min{vai + ivd | 0 ≤ i ≤ k} .
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where again d ∈ K with vd > va. In this case we set x := a + y and
proceed as in the example. Note that in both constructions, K(x)v
is transcendental over Kv; in this case the extensions (K(x)|K, v) are
called residue transcendental. In the example, we have that L(y)v =
Lv(yv) = Kv(yv) is transcendental over Kv and since L(x)|K(x) is al-
gebraic, the same must be true for K(x)v. In the modified construction
we have that L(y)v = Lv((y/d)v) = Kv((y/d)v).

A similar example can be produced with a value transcendental
extension (K(x)|K, v) where vK(x)/vK has rational rank 1. To achieve
this, one replaces vd in definition (3) by some value α > va which
is non-torsion over vK. A particular case of this is obtained when
one takes vy to be the y-adic valuation on L(y) and then sets the
composition vy ◦ v to be the extension of v from L to L(y).

In all of the above examples the extension (K(a)|K, v) was such
that vK(a) = vK + Zva and K(a)v = Kv. However, the examples
work in exactly the same way when we assume that an ∈ K, va = 0,
[Kv(av) : Kv] = n and n is not divisible by charKv. It then follows
that vK(a) = vK and K(a)v = Kv(av). In this case it is not tame
ramification that is eliminated, but a separable-algebraic extension of
the residue field instead.

7. Abhyankar’s Lemma using ramification indices

Theorem 1 is a consequence of the more general version of Ab-
hyankar’s Lemma stated in Lemma 15.102.4 [Tag 0EXT] of [13]. In-
deed, in the setup of Lemma 15.102.4 [Tag 0EXT] and Remark 15.102.1
[Tag 0EXT], we note that the assumptions that gcd(e, p) = 1 and
κB/κA is separable still hold when the valued field extension L/K is
tamely ramified. Further, A1 is a discrete valuation ring of rank 1 by
(4) of Remark 15.102.1 [Tag 0EXT]. Finally, from Definition 15.109.1
[Tag 0ASF] and Lemma 15.99.5 [Tag 09E7], it follows that the for-
mally smooth conclusion in Lemma 15.102.4 [Tag 0EXT] implies that
the extension is unramified.

We will now show how Theorem 2 can be deduced from Theorem 3.
We will need the following preparation. If ∆ is a torsion free abelian
group and e > 0 is an integer, then 1

e
∆ will denote the abelian group

consisting of all α in the divisible hull of ∆ such that eα ∈ ∆.

Lemma 17. Take an integer e > 0, a torsion free abelian group ∆ of
rational rank 1, and a subgroup Γ of its divisible hull such that ∆ ⊆ Γ
and (Γ : ∆) = e. Then Γ = 1

e
∆.

https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0ASF
https://stacks.math.columbia.edu/tag/09E7
https://stacks.math.columbia.edu/tag/0EXT
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Proof. As ∆ of rational rank 1, it can be embedded in Q by sending any
nonzero element in ∆ to 1, and the divisible hull of ∆ can be identified
with Q. As (Γ : ∆) = e, we have that Γ ⊆ 1

e
∆. We wish to show that

(1
e
∆ : ∆) = e, which then yields that Γ = 1

e
∆. It suffices to show that

(1
e
∆ : ∆) ≤ e.

Take any e + 1 many elements α1, . . . , αe+1 ∈ 1
e
∆; we have to show

that at least two of them have the same coset modulo ∆. As these
elements are rational numbers, we can multiply them by a common de-
nominator s to obtain integers sα1, . . . , sαe+1 . The ideal they generate
in Z is principal, equal to, say, rZ. We know that (Z : eZ) = e and
hence also (rZ : erZ) = e. Thus there are distinct i, j ∈ {1, . . . , e+ 1}
such that sαi−sαj ∈ erZ. This implies that αi−αj ∈ e rsZ. Since the el-
ements sα1, . . . , sαe+1 generate the group rZ, the elements α1, . . . , αe+1

generate the group r
s
Z, which shows that r

s
Z ⊆ 1

e
∆, whence αi − αj ∈

e r
s
Z ⊆ ∆. Therefore, αi and αj have the same coset modulo ∆. �

As mentioned in the introduction, the assumption that (L.Kh|Kh, v)
is tame yields that (L.Kh, v) lies in the absolute ramification field of
(Kh, v), which is equal to the absolute ramification field of (K, v). Since
vK has rational rank 1, Lemma 17 shows that the value group of (L, v)
is 1

(vL:vK)
vK, and likewise, the value group of (F, v) is 1

(vF :vK)
vK. Now

we infer from Theorem 3 that

v(L.F ) =
1

(vL : vK)
vK +

1

(vF : vK)
vK .

If ` is the least common multiple of (vL : vK) and (vF : vK), then the
right hand side is equal to 1

`
vK. This proves Theorem 2.

We wish to investigate how far Theorem 1 can be generalized while
keeping the use of ramification indices. We note that if q is a prime and
a, b ∈ Kac such that aq, bq ∈ K, then va, vb ∈ 1

q
vK, and that 1

q
vK/vK

is an Fq-vector space.

Lemma 18. Take a valued field (K, v) and an extension of v to the
algebraic closure Kac of K. Assume that there are a, b ∈ Kac with
va, vb /∈ vK and a prime q such that aq, bq ∈ K and va + vK and
vb + vK are Fq-linearly independent elements in 1

q
vK/vK. Then we

have that (vK(a) : vK) = q = (vK(b) : K) and that

(4) (vK(a, b) : vK(a)) = q = (vK(a, b) : K(b)) .

Proof. We compute:

(vK(a) : vK) ≤ [K(a) : K] ≤ q = (vK+Zva : vK) ≤ (vK(a) : vK) .
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Thus, equality holds everywhere, showing that (vK(a) : vK) = q. In
a similar way, one shows that (vK(b) : vK) = q. Further, the equality
(vK + Zva : vK) = (vK(a) : vK) shows that vK(a) = vK + Zva.
Similarly, it is shown that vK(b) = vK + Zvb. Obviously, va, vb ∈
vK(a, b). However, since va + vK and vb + vK are Fq-linearly inde-
pendent elements in 1

q
vK/vK, we have that va /∈ vK + Zvb = vK(b)

and vb /∈ vK + Zva = vK(a). As q is a prime, we conclude that
(vK(a, b) : vK(b)) ≥ q and (vK(a, b) : vK(a)) ≥ q, and with similar
inequalities as above, one proves that (4) holds. �

This lemma shows that Theorem 1 will fail as soon as there exist a
prime q different from the residue characteristic and two values α, β ∈
vK such that both are not divisible by q in vK and α/q + vK and
β/q+ vK are Fq-linearly independent elements in 1

q
vK/vK. Then one

can pick a, b ∈ Kac such that aq, bq ∈ K with vaq = α and vbq = β.
It follows that a, b /∈ K, so these elements satisfy the assumptions of
Lemma 18.

Quick examples for the above situation are valued fields (K, v) for
which vK is isomorphic to Zn with n > 1, endowed with any ordering.
These include all generalized discretely valued fields with n > 1.
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