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Abstract. We develop an extension theory for analytic valuation rings in

order to establish Ax-Kochen-Ersov type results for these structures. New

is that we can add in salient cases lifts of the residue field and the value
group and show that the induced structure on the lifted residue field is just its

field structure, and on the lifted value group is just its ordered abelian group

structure. This restores an analogy with the non-analytic AKE-setting that
was missing in earlier treatments of analytic AKE-theory.
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1. Introduction

In the 1960s Ax and Kochen [2, 3, 4], and Ersov [16, 17, 18, 19] independently,
developed a model theory for henselian valuation rings with significant applications
to p-adic number theory. Since then there have been many generalizations and
refinements, and AKE-theory remains a very active area of research. For example,
in the 1980s Denef and van den Dries [11, 12] treated the ring of p-adic integers
with analytic structure given by (restricted) power series. This led to the solution
of a problem posed by Serre [27], and to a theory of p-adic subanalytic sets. Using
“separated” power series this was upgraded to a theory of rigid subanalytic sets over
henselian valuation rings equipped with a richer analytic structure, by L. Lipshitz,
Z. Robinson, R. Cluckers, see [24, 25, 9, 7, 8].

1The authors thank the Fields Institute and the Simons Laufer Mathematical Institute for hospi-
tality during the preparation of the paper.
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An interesting part of the original AKE-theory has so far not been extended to
this analytic setting: in the equal characteristic 0 case one can add a predicate
for a coefficient field (a lift of the residue field to the ambient field), and then the
structure induced on this coefficient field can be shown to be just its pure field
structure; likewise for a monomial group, that is, a lift of the value group.

In the analytic setting, there is only a partial result in this direction by Binyamini,
Cluckers and Novikov [6, Proposition 2], and the usual approaches to analytic AKE-
theory—based on direct reductions to ordinary AKE-theory by Weierstrass division
“with parameters”—cannot be adapted to cover fully the induced structure aspect,
as far as we know. Their partial result inspired us to try another approach.

We do indeed obtain the expected induced structure results in an analytic setting
by developing a theory of analytic valuation rings in closer analogy with ordinary
valuation theory. Weierstrass division is still key, as in [11, 12], but now in a
different way. In an earlier version of the present paper, now in [5], this was
done by elaborating, generalizing, and cleaning up substantial parts of [15]. The
cleaning up was necessary because we noticed problems with [15, Lemma 3.1], and
to remedy it we had to pass to finite extensions, with additional complications. We
found subsequently that a somewhat different and more general approach to similar
issues was already available in [9, 7]. So in our Section 9 we quote and slightly adapt
instead relevant results from those sources, saving some 15 pages compared to this
earlier version. Much of our analytic valuation theory is characteristic-free, but
for the analytic AKE-results in Section 10 we require that the valued field be of
equicharacteristic 0.

More on induced structure. Here we state in detail a typical case of our result
on induced structure. First we say what it is in the classical (non-analytic) setting.
Let C be a (coefficient) field. This yields the valuation ring C[[t]] of formal power
series in one variable t over C. We now expand the ring C[[t]] to the structure(
C[[t]], C

)
: a ring with a distinguished subset. Then a classical “induced structure”

result is that if charC = 0, any set X ⊆ Cn which is definable in
(
C[[t]], C

)
is even

definable in the field C. (This can be proved along familiar lines, so we consider it
as folklore knowledge, though we do not know an explicit reference. It seems this
is still open for charC > 0.) Here and below, n ranges over N = {0, 1, 2, . . . } and
“definable” means “definable with parameters from the ambient structure”.

We now equip C[[t]] with analytic structure as follows: for each n we have the
(Tate) ring A⟨Y1, . . . , Yn⟩ of restricted power series in the distinct indeterminates
Y1, . . . , Yn over A = C[[t]]: it consists of the formal power series

f = f(Y1, . . . , Yn) =
∑
ν

aνY
ν1
1 · · ·Y νn , ν = (ν1, . . . , νn) ranging over Nn,

with all aν ∈ A such that aν → 0, t-adically, as |ν| = ν1+ · · ·+νn → ∞. Each such
f gives rise to an n-ary operation on C[[t]], namely

y = (y1, . . . , yn) 7→ f(y1, . . . , yn) : C[[t]]n → C[[t]].

We expand the ring C[[t]] to C[[t]]an by taking each such f as a new n-ary function
symbol that names the above n-ary operation on C[[t]]. Further expansion yields
the structure

(
C[[t]]an, C

)
, and now our new induced structure result says that any

set X ⊆ Cn which is definable in
(
C[[t]]an, C

)
is even definable in the field C. (For

example, any subset of C definable in
(
C[[t]]an,C

)
is finite or its complement in C
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is finite.) In fact, our induced structure result, Corollary 10.5, is stronger and more
general in several ways, for example in also allowing tN as a distinguished subset of
C[[t]]. For various reasons it is more convenient to take the fraction field C((t)) of
C[[t]] as the ambient ring, equipped with its natural valuation to recover C[[t]]. For
C = C we obtain [6, Proposition 2] as a special case, as explained in Section 10.

Contents of Sections 2–11. We begin with a brief section on henselianity. Next
a section on ultranormed rings and restricted power series over them, including the
Weierstrass theorems. At the beginning of Section 4 we define for any complete
ultranormed ring A subject to mild conditions the notion of A-analytic ring: each
n-variable restricted power series over A yields an n-ary operation on any A-analytic
ring. Starting in Section 5 we specialize to the case that A is noetherian with an
ideal O(A) ̸= A, such that

⋂
n O(A)n = {0} and A is O(A)-adically complete.

In Section 6 we define A-analytic valuation rings and establish basic facts about
them. In Section 7 we treat immediate extensions and prove an analytic version of
Kaplansky’s embedding theorem. In Section 8 (not needed for “induced structure”
results, but included for its independent interest) we apply this to show that various
extension procedures preserve truncation closedness. Section 9 uses [7, 9] to describe
the function given by a univariate term in the language of analytic valued fields as
analytic on the annuli of a suitable finite covering of the valuation ring. This allows
us to complete the full array of extension results. Then we can prove in Section 10
an analytic AKE-type equivalence theorem, with an induced structure result for
“coefficient field + monomial group” as a consequence. Together with our work on
immediate extensions in Section 7, this yields NIP transfer in our analytic context.
Section 11 proves a “separation of variables” result.

Notational and terminological conventions. Throughout d,m, n range over
N = {0, 1, 2, . . .}; ring means commutative ring with 1. From Section 6 onwards we
consider valued fields. Let K be a valued field; it is specified by a valuation ring R
of the field K. Let v : K× → Γ be a valuation on K with R = {a ∈ K : va ⩾ 0}.
Here Γ = v(K×) is the (ordered) value group, and we extend v to a function
v : K → Γ∞ = Γ ∪ {∞} by setting v(0) := ∞ and we extend the total ordering of
Γ to a total ordering on Γ∞ by Γ <∞. It will be convenient to let ≼, ≍, ≺, ≽, ≻,
and ∼ denote the binary relations on K given for x, y ∈ K by

x ≼ y :⇔ vx ⩾ vy ⇔ x = yz for some z ∈ R,

x ≍ y :⇔ x ≼ y and y ≼ x, x ≺ y :⇔ x ≼ y and x ̸≍ y,

x ≽ y :⇔ y ≼ x, x ≻ y :⇔ y ≺ x, x ∼ y ⇔ x− y ≺ x.

We let O(R) be the maximal ideal of R, and let resK := R/O(R) be the residue
field. For a ∈ R we let res a be the residue class of a in resK. If we need to indicate
dependence on K we write RK , vK , ΓK instead of R, v,Γ. The reason we use the
letter R here instead of the more common O is that in Section 9 we follow [20]
in denoting the algebra of analytic functions on a suitable set F by O(F ); see the
start of Section 9 for context and definitions of these notions.

Model theoretic arguments become important in Sections 9 and 10, although in
earlier sections we already construe various mathematical structures as L-structures
for various first-order languages L. We deal only with one-sorted structures, and
“M ⊆ N” indicates that M is a substructure of N , for L-structures M and N .
(One exception: we refer to a 3-sorted structure from [6] in Section 11.)
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We cite many results of classical AKE-theory from the exposition [13]. We do so
for convenience and do not suggest that the cited facts originate with [13].1

2. Henselianity

There are a few places where we need “henselianity” outside the usual pattern of
a henselian local ring. Accordingly, this section proves basic facts about henselian
pairs (which generalize henselian local rings). These facts are well-known, but our
treatment is more elementary than we have seen in the literature.

Given a ring R we let R× denote the multiplicative group of units of R. The
Jacobson radical of a ring R is the intersection of the maximal ideals of R. For the
Jacobson radical J of R, if a ∈ R and a+J ∈ (R/J)×, then a ∈ R×. In this section
X and Y are distinct indeterminates and I is an ideal of the ring R.

Lemma 2.1. Let I be contained in the Jacobson radical of R and let P (X) ∈ R[X]
and a ∈ R be such that P ′(a) ∈ R×. Then P (b) = 0 for at most one b ∈ a+ I.

Proof. Let b ∈ a+ I and P (b) = 0. Then for ϵ ∈ I we have r ∈ R such that

P (b+ ϵ) = P (b) + P ′(b)ϵ+ rϵ2 = P ′(b)ϵ+ rϵ2 = P ′(b)ϵ
(
1 + rP ′(b)−1ϵ

)
= 0,

and P ′(b), 1 + rP ′(b)−1ϵ ∈ R×, so ϵ = 0. □

The pair (R, I) is henselian means:

• I is contained in the Jacobson radical of R, equivalently, 1 + I ⊆ R×;
• for all polynomials P (X) ∈ R[X] and a ∈ R with P (a) ∈ I and P ′(a) ∈ R×

there exists b ∈ R such that P (b) = 0 and a− b ∈ I.

Thus given a maximal ideal m of the ring R, the pair (R,m) is henselian iff R is a
henselian local ring in the usual sense.

Lemma 2.2. Assume 1 + I ⊆ R×. Then the following conditions are equivalent:

(i) (R, I) is henselian;
(ii) each polynomial 1 + X + ea2X

2 + · · · + eanX
n with n ⩾ 2, e ∈ I, and

a2, . . . , an ∈ R has a zero in R (obviously, such a zero lies in −1 + I);
(iii) each polynomial Y n + Y n−1 + ea2Y

n−2 + · · ·+ ean with n ⩾ 2, e ∈ I, and
a2, . . . , an ∈ R has a zero in R×;

(iv) given any polynomial P (X) ∈ R[X] and a ∈ R, e ∈ I such that P (a) =
eP ′(a)2 there exists b ∈ R such that P (b) = 0 and b− a ∈ eP ′(a)R.

Proof. (i)⇒(ii) is clear. For (ii)⇔ (iii): use that for x ∈ R× and y := x−1, x is
a zero in (ii) iff y is a zero in (iii). Now assume (ii) and let P, a, e be as in the
hypothesis of (iv). Let x ∈ R and consider the expansion:

P (a+ x) = P (a) + P ′(a)x+
∑
i⩾2

P(i)(a)x
i

= eP ′(a)2 + P ′(a)x+
∑
i⩾2

P(i)(a)x
i.

1We take the opportunity to mention that the Chinese Remainder Theorem on [13, p. 86] is stated
there in too great a generality. But it holds for ideals in a ring, which is how it gets applied.
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Set x = eP ′(a)y where y ∈ R. Then

P (a+ x) = eP ′(a)2

1 + y +
∑
i⩾2

eaiy
i


where the ai ∈ R do not depend on y. From (ii) we obtain y ∈ R such that

1 + y +
∑
i⩾2

eaiy
i = 0.

This yields an element b = a+x = a+ eP ′(a)y as required. This shows (ii) ⇒ (iv),
and (iv) ⇒ (i) is clear. □

Lemma 2.3. Suppose every element of I is nilpotent. Then (R, I) is henselian.

Proof. Consider a polynomial P (X) = a+X +
∑n

i=2 eaiX
i where n ⩾ 2 and

a, e, a2, . . . , an ∈ R, em = 0, m ⩾ 1.

By induction on m we show that P (X) has a zero in R. The case m = 1 being
trivial, let m ⩾ 2. Then

P (−a+ eY ) = a+ (−a+ eY ) +

n∑
i=2

eai(−a+ eY )i = e
(
Y +

n∑
i=2

ai(−a+ eY )i
)
.

An easy computation gives f, b, b2, . . . , bn ∈ R such that

Y +

n∑
i=2

ai(−a+ eY )i = b+ Y (1 + ef) +

n∑
i=2

e2biY
i.

Now use that 1 + ef ∈ R× and (e2)m−1 = 0. □

Lemma 2.4. Let J be an ideal of R with I ⊆ J . Then the following are equivalent:

(i) (R, I) and (R/I, J/I) are henselian;
(ii) (R, J) is henselian.

Proof. The condition 1+ J ⊆ R× is easily seen to be equivalent to the conjunction
of 1 + I ⊆ R× and 1 + (J/I) ⊆ (R/I)×. This gives (ii)⇒(i). Now assume (i), and
let P (X) ∈ R[X] and a ∈ R with P (a) ∈ J, P ′(a) ∈ R×. Working modulo I this
gives b ∈ R such that P (b) ∈ I and a− b ∈ J . Hence P ′(b)− P ′(a) ∈ J , and thus
P ′(b) ∈ R×, giving c ∈ R with P (c) = 0 and b− c ∈ I. Hence a− c ∈ J . □

Corollary 2.5. Suppose (R, I) is henselian and J is an ideal of R contained in the

nilradical
√
I of I. Then (R, J) is henselian.

Proof. Every element of
√
I/I is nilpotent in R/I, so by Lemmas 2.3 and 2.4 the

pair (R,
√
I) is henselian, and so is (R, J). □

Recall also that a local ring R is said to be henselian if the pair (R,m) is henselian,
where m is the maximal ideal of R.
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3. Complete Ultranormed Rings and Restricted Power Series

We introduce here the restricted power series that will define operations on the
valuation rings considered in later sections, where we develop an AKE-theory for
these valuation rings with these extra operations. The coefficients of these restricted
power series will be from a fixed coefficient ring A which is complete with respect
to an ultranorm. We begin with defining ultranorms.

Ultranormed abelian groups. Let A be an additively written abelian group.
An ultranorm on A is a function a 7→ |a| : A→ R⩾ such that for all a, b ∈ A,

• |a| = 0 ⇔ a = 0;
• | − a| = |a|;
• |a+ b| ⩽ max(|a|, |b|).

Let A be equipped with the ultranorm | · | on A. We make A a metric space with
metric (a, b) 7→ |a− b|. Then A is a topological group with respect to the topology
on A induced by this metric. The ultranorm | · | : A→ R and the group operations
− : A→ A and + : A×A→ A are uniformly continuous.

In the rest of this subsection A is complete with respect to its ultranorm, that
is, complete with respect to the metric above. We now discuss convergence of series
with terms in A. Let (ai) = (ai)i∈I be a family in A (that is, all ai ∈ A). We say
(ai) is summable if for every ϵ we have |ai| < ϵ for all but finitely many i ∈ I. In
that case the set of i ∈ I with ai ̸= 0 is countable, and there is a unique a ∈ A such
that for every ϵ ∈ R> there is a finite I(ϵ) ⊆ I with |a−

∑
i∈J ai| < ϵ for all finite

J ⊆ I with I(ϵ) ⊆ J ; this a is then denoted by
∑

i∈I ai (or
∑

i ai if I is understood
from the context). Instead of saying that (ai) is summable we also say that

∑
i ai

exists, or that
∑

i ai converges. Of course, if I is finite, then
∑

i ai exists and is the
usual sum. Here are simple rules, used throughout, for dealing with such (possibly
infinite) sums, where (ai)i∈I is a summable family in A:

• if c ∈ R> and |ai| ⩽ c for all i, then |
∑

i ai| ⩽ c;
• (−ai) is summable with

∑
i −ai = −

∑
i ai;

• if (bi)i∈I is also a summable family in A, then so is (ai + bi) with∑
i

ai + bi =
∑
i

ai +
∑
i

bi;

• if i 7→ λ(i) : I → Λ is a bijection and (bλ)λ∈Λ is a family in A with ai = bλ(i)
for all i ∈ I, then

∑
λ bλ exists and equals

∑
i ai;

• if the family (aj)j∈J in A is also summable with I ∩ J = ∅, then (ak)k∈I∪J

is summable with
∑

k ak =
∑

i ai +
∑

j aj ;

• if I =
⋃̇

λ∈ΛIλ (disjoint union), then
∑

i∈Iλ
ai exists for all λ ∈ Λ, and∑

λ

(∑
i∈Iλ

ai
)
exists and equals

∑
i∈I ai.

Suppose E is a closed subgroup of A. Then

|a+ E| := inf
e∈E

|a+ e| (a ∈ A)

yields an ultranorm on the quotient group A/E with respect to which A/E is
complete; we call it the quotient norm of A/E. If the family (ai) in A is summable,
then so is the family (ai + E) in A/E with its quotient norm, and(∑

i

ai
)
+ E =

∑
i

(ai + E).
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Ultranormed rings. Let A be a ring. An ultranorm on A is a function

a 7→ |a| : A→ R⩾

such that for all a, b ∈ A,

• |a| = 0 ⇔ a = 0, |1| = | − 1| = 1;
• |a+ b| ⩽ max(|a|, |b|);
• |ab| ⩽ |a| · |b|.

Let A be equipped with the ultranorm | · | on A. Then | − a| = |a| for all a ∈
A, so | · | is an ultranorm on the underlying additive group of A. The function
· : A × A → A is continuous. If A is complete with respect to its ultranorm and
(ai)i∈I and (bj)j∈J are summable families in A, then (aibj)(i,j)∈I×J is summable,
with (

∑
i ai)(

∑
j bj) =

∑
(i,j) aibj .

From now on in this paper A is a ring with 1 ̸= 0, equipped with an
ultranorm | · | such that |a| ⩽ 1 for all a ∈ A, and A is complete with
respect to its ultranorm.

It follows that if a ∈ A and |a| < 1, then
∑

n a
n exists, with

(1− a)
∑
n

an = 1.

We have the ideal O(A) := {a ∈ A : |a| < 1}, and set A := A/O(A), with the
canonical ring morphism a 7→ a = a+O(A) : A→ A. We saw that 1+O(A) consists
entirely of units of A. Thus a ∈ A is a unit of A iff a is a unit of A. In particular,
O(A) is contained in the Jacobson radical of A. The completeness assumption now
yields Hensel’s Lemma as stated in [13, Section 2.2]: the pair (A, O(A)) is henselian.

It follows that (A,
√

O(A)) is also henselian.

Passing to A/I. Suppose the proper ideal I of A is closed. Then the quotient
norm of the quotient group A/I is an ultranorm on the ring A/I. Equipping A/I
with the quotient norm, the canonical map A → A/I is norm decreasing, and
O(A/I) is the image of O(A) under this canonical map.

If A is noetherian, then by [26, Theorem 8.14] every ideal of A is closed.

Restricted power series over an ultranormed ring. For distinct indetermi-
nates Y1, . . . , Yn we let A⟨Y ⟩ = A⟨Y1, . . . , Yn⟩ be the subalgebra of the A-algebra
A[[Y1, . . . , Yn]] consisting of the series

∑
ν aνY

ν with aν → 0 as |ν| → ∞. Here and
below, when using an expression like

∑
ν aνY

ν for a series in A⟨Y ⟩ it is assumed
that aν → 0 as |ν| → ∞. We extend | · | on A to an ultranorm on the ring A⟨Y ⟩ by

|
∑
ν

aνY
ν | := max

ν
|aν |,

so with respect to this ultranorm, A⟨Y ⟩ is complete and A[Y ] is dense in it. Note
that for a1, . . . , an ∈ O(A) we have |a1Y1+ · · ·+anYn| < 1, so 1+a1Y1+ · · ·+anYn
is a unit of the ring A⟨Y ⟩.

For f =
∑

ν aνY
ν ∈ A⟨Y ⟩, the family (aνY

ν) in A⟨Y ⟩ is in fact summable with
sum f . If |ab| = |a| · |b| for all a, b ∈ A, then |fg| = |f | · |g| for all f, g ∈ A⟨Y ⟩. For
any y = (y1, . . . , yn) ∈ An we have the evaluation map

f =
∑
ν

aνY
ν 7→ f(y) :=

∑
ν

aνy
ν : A⟨Y ⟩ → A,
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which is an A-algebra morphism with |f(y)| ⩽ |f | for all y ∈ An. If (fi)i∈I is
a summable family in A⟨Y ⟩ and y ∈ An, then

∑
i fi(y) exists in A and equals

(
∑

i fi)(y). The obvious inclusion of A[[Y1, . . . , Ym]] in A[[Y1, . . . , Yn]] for m ⩽ n
restricts to an inclusion of A⟨Y1, . . . , Ym⟩ in A⟨Y1, . . . , Yn⟩. For f = f(Y ) ∈ A⟨Y ⟩
we have unique fj ∈ A⟨Y1, . . . , Yj⟩ for j = 0, . . . , n such that

f(Y ) = f0 + Y1f1 + · · ·+ Ynfn.

Substitution. Besides Y = (Y1, . . . , Yn), let X = (X1, . . . , Xm) also be a tuple of
distinct indeterminates. Let f =

∑
µ aµX

µ ∈ A⟨X⟩ with µ = (µ1, . . . , µm) ranging

over Nm, and g1, . . . , gm ∈ A⟨Y ⟩. Then |aµgµ1

1 · · · gµm
m | ⩽ |aµ| → 0 as |µ| → ∞, so

f(g1, . . . , gm) :=
∑
µ

aµg
µ1

1 · · · gµm
m ∈ A⟨Y ⟩,

and for fixed g = (g1, . . . , gm) ∈ A⟨Y ⟩m the map f 7→ f(g) : A⟨X⟩ → A⟨Y ⟩ is an
A-algebra morphism with |f(g)| ⩽ |f | and f(g)(y) = f(g(y)) for y ∈ An. Moreover,
if (fi) is a summable family in A⟨X⟩ and g ∈ A⟨Y ⟩m, then

∑
i fi(g) exists in A⟨Y ⟩

and equals (
∑

i fi)(g). It follows that the above kind of composition is associative in
the following sense: let Z = (Z1, . . . , Zp) be a third tuple of distinct indeterminates,
p ∈ N, and h = (h1, . . . , hn) ∈ A⟨Z⟩n. Then(

f(g)
)
(h) = f

(
g1(h), . . . , gm(h)

)
in A⟨Z⟩.

From now on X1, X2, X3, . . . , Y1, Y2, Y3, . . . (two infinite sequences) are distinct
indeterminates, and unless specified otherwise,

X := (X1, . . . , Xm), Y := (Y1, . . . , Yn).

The natural A[[X]]-algebra isomorphism A[[X]][[Y ]] → A[[X,Y ]] restricts to the
norm preserving A⟨X⟩-algebra isomorphism A⟨X⟩⟨Y ⟩ → A⟨X,Y ⟩ given by∑

ν

fνY
ν 7→

∑
ν

fνY
ν

where fν ∈ A⟨X⟩ for all ν and fν → 0 as |ν| → ∞, with righthand and lefthand side
interpreted naturally in A⟨X⟩⟨Y ⟩ and A⟨X,Y ⟩ respectively. We identify A⟨X⟩⟨Y ⟩
and A⟨X,Y ⟩ via this isomorphism.

Polynomials as restricted power series. Let p = p(T ) ∈ A[T ] be a monic
polynomial of degree d ⩾ 1 over A, so |p| = 1 as an element of A⟨T ⟩.

Lemma 3.1. For all f ∈ A⟨T ⟩ we have |pf | = |f |. Moreover, pA⟨T ⟩ is a proper
ideal of A⟨T ⟩ and is closed in A⟨T ⟩.

Proof. For f =
∑

n anT
n ∈ A[T ]̸=, take n maximal with |an| = |f |, and note that

then the coefficient of T d+n in pf is an + b with |b| < |an|, so |an + b| = |an| = |f |.
The rest follows easily. □

Lemma 3.2. Let f ∈ A⟨T ⟩. Then there are unique q ∈ A⟨T ⟩ and r ∈ A[T ] with
deg r < d such that f = qp+ r; moreover, |f | = max(|q|, |r|) for these q, r.

Proof. For each n we have Tn = qnp+ rn with qn, rn ∈ A[T ] and deg rn < d. Thus
for f =

∑
n anT

n ∈ A⟨T ⟩ we have f = qp + r with q =
∑

n anqn ∈ A⟨T ⟩ and
r =

∑
n anrn ∈ A[T ] with deg r < d, and |f | = max(|q|, |r|) for these q, r.

Uniqueness holds because for g ∈ A⟨T ⟩ with gp ∈ A[T ], deg gp < d, we have
g = 0 by the proof of Lemma 3.1. □
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Corollary 3.3. The composition A[T ] → A⟨T ⟩ → A⟨T ⟩/pA⟨T ⟩, with inclusion on
the left and the canonical map on the right, is surjective and has kernel pA[T ], so
induces an A-algebra isomorphism A[T ]/pA[T ] → A⟨T ⟩/pA⟨T ⟩.

Proof. Lemma 3.2 gives surjectivity. The uniqueness in that lemma and division
with remainder in A[T ] (by p) yields kernel pA[T ]. □

Division with Remainder. Let n ⩾ 1, set Y ′ := (Y1, . . . , Yn−1). The inclusion
A⟨Y ′⟩[Yn] ⊆ A⟨Y ′⟩⟨Yn⟩ = A⟨Y ⟩ makes A⟨Y ′⟩[Yn] a subring of A⟨Y ⟩.

Lemma 3.4. Let f ∈ A⟨Y ′⟩[Yn] be monic of degree d ≥ 1 and g ∈ A⟨Y ⟩. Then
there are unique q ∈ A⟨Y ⟩ and r ∈ A⟨Y ′⟩[Yn] with degYn

r < d such that g = qf+r.
Moreover, |g| = max(|q|, |r|) for these q, r.

Proof. This is Lemma 3.2 applied to A⟨Y ′⟩ in the role of A. □

Consider A⟨X,Y1, . . . , Yj−1⟩[Yj ] likewise as a subring of A⟨X,Y ⟩ for j = 1, . . . , n.
By a straightforward induction on n the previous lemma gives:

Lemma 3.5. Let fj ∈ A⟨X,Y1, . . . , Yj−1⟩[Yj ] be monic of degree dj in Yj for j =
1, . . . , n. Then

A⟨X,Y ⟩ = (f1, . . . , fn)A⟨X,Y ⟩+
⊕

(j1,...,jn)

A⟨X⟩Y j1
1 · · ·Y jn

n

where (j1, . . . , jn) ranges over the elements of Nn with j1 < d1, . . . , jn < dn.

Corollary 3.6. Let m = n and f(X) ∈ A⟨X⟩. Then

f(X)− f(Y ) ∈ (X1 − Y1, . . . , Xn − Yn)A⟨X,Y ⟩.

Proof. By Lemma 3.5 we have f(X)− f(Y ) =
∑n

j=1(Xj − Yj)qj + r with all qj in

A⟨X,Y ⟩ and r ∈ A⟨X⟩. Substituting Xj for Yj gives 0 = r. □

We extend a 7→ a : A→ A to the ring morphism

f =
∑
ν

aνY
ν 7→ f :=

∑
ν

aνY
ν : A⟨Y ⟩ → A[Y ],

whose kernel is O(A⟨Y ⟩) := {f ∈ A⟨Y ⟩ : |f | < 1}. Moreover,

f(g1, . . . , gm) = f
(
g1, . . . , gm

)
, (f ∈ A⟨X⟩, g1, . . . , gm ∈ A⟨Y ⟩).

For d ∈ N, call f ∈ A⟨Y ⟩ regular in Yn of degree d if f = f0 + f1Yn + · · · + fdY
d
n

with f0, . . . , fd ∈ A[Y ′] and fd a unit in A[Y ′]. We now extend Lemma 3.4:

Proposition 3.7 (Weierstrass Division). Suppose f ∈ A⟨Y ⟩ is regular in Yn of
degree d and g ∈ A⟨Y ⟩. Then there are q ∈ A⟨Y ⟩ and r ∈ A⟨Y ′⟩[Yn] with

g = qf + r, degYn
r < d, |g| = max(|q|, |r|).

Proof. Multiplying f by a unit of A⟨Y ′⟩ we arrange that f ∈ A[Y ] is monic in Yn
of degree d. Hence f = f0 + E where f0 ∈ A⟨Y ′⟩[Yn] is monic of degree d in Yn
and E ∈ A⟨Y ⟩, |E| < 1. Now g = q0f0 + r0 with q0 ∈ A⟨Y ⟩ and r0 ∈ A⟨Y ′⟩[Yn],
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degYn
r0 < d and |g| = max(|q0|, |r0|), so g = q0f + r0 + g1 with g1 = −Eq0, and

thus |g1| ⩽ |E||g|. With g1 in the role of g and iterating:

g = q0f + r0 + g1, g1 = −Eq0, |g1| ⩽ |E||g|,
g1 = q1f + r1 + g2, g2 = −Eq1, |g2| ⩽ |E|2|g|,
. . . = . . .

. . . = . . .

gk = qkf + rk + gk+1, gk+1 = −Eqk, |gk+1| ⩽ |E|k+1|g|,
. . . = . . .

where qk ∈ A⟨Y ⟩, rk ∈ A⟨Y ′⟩[Yn], degYn
rk < d and |gk| = max(|qk|, |rk|). It

follows that gk, qk, rk → 0 as k → ∞. Thus we can add the right and left-hand
sides in the equalities above to obtain g = qf + r where q :=

∑
k qk ∈ A⟨Y ⟩ and

r :=
∑

k rk ∈ A⟨Y ′⟩[Yn], degYn
r < d, so |g| = max(|q|, |r|). □

Corollary 3.8 (Weierstrass Preparation). Suppose f ∈ A⟨Y ⟩ is regular in Yn of
degree d. Then for some unit u of A⟨Y ⟩ we have: uf ∈ A⟨Y ′⟩[Yn], and uf is monic
of degree d in Yn.

Proof. We have Y d
n = qf + r with q ∈ A⟨Y ⟩ and r ∈ A⟨Y ′⟩[Yn], degYn

r < d. Hence

Y d
n − r = qf in A[Y ], so q is a unit of A[Y ′], hence q is a unit of A⟨Y ⟩, and thus
u := q has the desired property. □

A somewhat twisted argument also gives uniqueness in the last two results:

Corollary 3.9. Let f ∈ A⟨Y ⟩ be regular in Yn of degree d. Then there is only one
pair (q, r) with q ∈ A⟨Y ⟩ and r ∈ A⟨Y ′⟩[Yn] with g = qf + r and degYn

r < d.
There is also only one unit u of A⟨Y ⟩ such that uf ∈ A⟨Y ′⟩[Yn], and uf is monic
of degree d in Yn.

Proof. By Corollary 3.8 (just the existence of u), the uniqueness of (q, r) follows
from the uniqueness in Lemma 3.4. Next, the uniqueness of u follows from the
proof of Corollary 3.8 and the uniqueness in Proposition 3.7. □

Besides n ⩾ 1 we now also assume d ⩾ 1. Under an extra assumption on A (see
Lemma 3.10) we can apply automorphisms to arrange regularity in Yn. Set

Td(Y ) :=
(
Y1 + Y dn−1

n , . . . , Yn−1 + Y d
n , Yn

)
,

which gives a norm preserving automorphism f(Y ) 7→ f
(
Td(Y )

)
of the A-algebra

A⟨Y ⟩ with inverse g(Y ) 7→ g
(
T−1
d (Y )

)
, where

T−1
d (Y ) :=

(
Y1 − Y dn−1

n , . . . , Yn−1 − Y d
n , Yn

)
.

Lemma 3.10. Assume A is a field. Let f ∈ A⟨Y ⟩ be such that f ̸= 0 in A[Y ], and
d > deg f . Then f

(
Td(Y )

)
is regular in Yn of some degree.

Proof. With f =
∑

ν aνY
ν , let (µ1, . . . , µn) be lexicographically largest among the

ν ∈ Nn for which aν ̸= 0. A straightforward computation shows that then for
ℓ := µ1d

n−1 + · · ·+ µn−1d+ µn we have

f
(
Td(Y )

)
= aµY

ℓ
n + terms in A[Y ] of degree < ℓ in Yn.

Thus f
(
Td(Y )

)
is regular in Yn of degree ℓ. □
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4. Rings with A-analytic Structure

Given a ring R and a set E we have the ring RE of R-valued functions on E, where
the ring operations are given pointwise. A ring with A-analytic structure is a ring
R together with a ring morphism

ιn : A⟨Y1, . . . , Yn⟩ → ring of R-valued functions on Rn

for every n, such that the following conditions are satisfied:

(A1) ιn(Yk)(y1, . . . , yn) = yk, for k = 1, . . . , n and y = (y1, . . . , yn) ∈ Rn;
(A2) for f ∈ A⟨Y1, . . . , Yn⟩ ⊆ A⟨Y1, . . . , Yn, Yn+1⟩ and (y1, . . . , yn, yn+1) ∈ Rn+1

we have ιn(f)(y1, . . . , yn) = ιn+1(f)(y1, . . . , yn, yn+1);
(A3) for n ⩾ 1, f ∈ A⟨Y1, . . . , Yn⟩, g := f(Yn+1, . . . , Y2n) ∈ A⟨Y1, . . . , Y2n⟩, and

(y1, . . . , y2n) ∈ R2n we have: ιn(f)(yn+1, . . . , y2n) = ι2n(g)(y1, . . . , y2n).

Let R be a ring with A-analytic structure as above. We set h(y) := ιn(h)(y) for
h ∈ A⟨Y ⟩ and y ∈ Rn, a notational convention that will be in force from now on.
In other words, each h ∈ A⟨Y ⟩ defines a function Rn → R that we also denote
by h. For n = 0 the above gives the ring morphism ι0 : A → R upon identifying
a function R0 → R with its only value, and so R is an A-algebra with structural
morphism ι0. Accordingly we denote for a ∈ A the element ι0(a) of R also by a
when no confusion is likely. Simple example of a ring with A-analytic structure: A
itself with ιn(f)(y) := f(y) for f ∈ A⟨Y ⟩ and y ∈ An and below we consider A to
be equipped with this A-analytic structure.

Lemma 4.1. Let f, g1, . . . , gn ∈ A⟨Y ⟩ and y ∈ Rn. Then

f(g1, . . . , gn)(y) = f
(
g1(y), . . . , gn(y)

)
.

Proof. The case n = 0 is trivial. Let n ⩾ 1 and set B := A⟨Y1, . . . , Y2n⟩. In
A⟨Y ⟩ we have f(g1, . . . , gn)(Y ) = f

(
g1(Y ), . . . , gn(Y )

)
, trivially. Also A⟨Y ⟩ ⊆ B,

f(Yn+1, . . . , Y2n) ∈ B, and by Corollary 3.6,

f(g1, . . . , gn)(Y )− f(Yn+1, . . . , Y2n) ∈
(
g1(Y )− Yn+1, . . . , gn(Y )− Y2n

)
B.

Now apply ι2n to this, and use (A1), (A2), (A3) to evaluate at the point(
y1, . . . , yn, g1(y), . . . , gn(y)

)
∈ R2n. □

We abbreviate the expression ring with A-analytic structure to A-analytic ring,
or just A-ring. A good feature of the above is that the A-rings naturally form
an equational class (which is not the case for the narrower notion of rings with
analytic A-structure defined in [12].) To back this up, we introduce the language
LA of A-rings: it is the language {0, 1,−,+, ·} of rings augmented by an n-ary
function symbol for each f ∈ A⟨Y ⟩ = A⟨Y1, . . . , Yn⟩, to be denoted also by f . We
construe any A-ring R in the obvious way as an LA-structure, with f as above
naming the function y 7→ f(y) : Rn → R, so the A-rings are exactly the models of
an equational LA-theory, and for any LA-term t(Z1, . . . , Zn) there is an f ∈ A⟨Y ⟩
such that t(z) = f(z) for every A-ring R and z ∈ Rn.

The A-ring A is initial in this equational class:

Lemma 4.2. Given any A-ring R there is a unique morphism A→ R of A-rings,
namely ι0 : A→ R.



12 BHARDWAJ AND VAN DEN DRIES

Proof. If j : A→ R is an A-ring morphism, then clearly j(a) = ι0(a) for a ∈ A. It
remains to check that for n ⩾ 1, f ∈ A⟨Y ⟩, Y = (Y1, . . . , Yn), and a1, . . . , an ∈ A,

ι0
(
f(a1, . . . , an)

)
= f

(
ι0(a1), . . . , ι0(an)

)
.

Take a1, . . . , an as elements of A⟨Y ⟩ and f(a1, . . . , an) ∈ A accordingly also as an
element of A⟨Y ⟩. Fixing any y ∈ Rn we obtain from (A2) that

ι0
(
f(a1, . . . , an)

)
= ιn

(
f(a1, . . . , an)

)
(y),

which by Lemma 4.1 equals f
(
ιn(a1)(y), . . . , ιn(an)(y)

)
, and by (A2) again this

equals f
(
ι0(a1), . . . , ι0(an)

)
, as promised. □

Example. Let A0 be a ring with 1 ̸= 0 and A := A0[[t]], the power series ring
in one variable t over A0, with the (complete) ultranorm given by |f | = 2−n for
f ∈ tnA \ tn+1A. Let ι : A0 → k be a ring morphism into a field k, let Γ be an
ordered abelian group with a distinguished element 1 > 0. We identify Z with its
image in Γ via k 7→ k · 1, which makes Z an ordered subgroup of Γ. (We do not
assume here that 1 is the least positive element of Γ.) This yields the Hahn field

K = k((tΓ)) with its valuation ring k[[tΓ
⩾
]] ⊇ k[[t]]. Now ι extends to the ring

morphism A→ k[[tΓ
⩾
]],∑

n

cnt
n 7→

∑
n

ι(cn)t
n ∈ k[[t]] (with all cn ∈ A0).

We have a natural A-analytic structure (ιn) on k[[tΓ
⩾
]], where ι0 is the above

ring morphism A → k[[tΓ
⩾
]], and more generally, for f =

∑
aνY

ν in A⟨Y ⟩ and

y ∈ (k[[tΓ
⩾
]])n,

ιn(f)(y) :=
∑
ν

ι0(aν)y
ν ∈ k[[tΓ

⩾

]].

Note that ι0(A) is the subring ι(A0)[[t]] of k[[t]].

Returning to the general setting, let R be an A-ring. Among its units are clearly
the elements 1 + a1y1 + · · ·+ anyn for a1, . . . , an ∈ O(A) and y1, . . . , yn ∈ R.

Any ideal I of R yields a congruence relation for the A-analytic structure of R.
This means: for any f ∈ A⟨Y ⟩ and any x, y ∈ Rn with x ≡ y mod I (that is,
x1 − y1, . . . , xn − yn ∈ I), we have f(x) ≡ f(y) mod I, an immediate consequence
of Corollary 3.6. Thus R/I is an A-ring, given by

f(y1 + I, . . . , yn + I) := f(y1, . . . , yn) + I (f ∈ A⟨Y ⟩, (y1, . . . , yn) ∈ Rn).

This construal of R/I as an A-ring is part of our goal of developing some algebra
for A-rings analogous to ordinary facts about rings. But we need some extra nota-
tional flexibility in dealing with indeterminates, as we already tacitly used in this
argument about R/I: we do not want to be tied down to the particular sequence
of indeterminates Y1, Y2, . . . used in the definition of A-analytic structure. Namely,
for any tuple Z = (Z1, . . . , Zn) of distinct indeterminates, not necessarily among
the X1, X2, . . . , Y1, Y2, . . . , any f = f(Z) =

∑
ν aνZ

ν ∈ A⟨Z⟩ and z ∈ Rn we set

f(z) :=
(
ιnf(Y )

)
(z), where f(Y ) :=

∑
ν aνY

ν ∈ A⟨Y ⟩.
This is in harmony with other notational conventions: Let V,Z1, . . . , Zn be

distinct variables. Identifying A⟨Z⟩ = A⟨Z1, . . . , Zn⟩ as usual with a subring of
A⟨V,Z⟩, this harmony means that for f ∈ A⟨Z⟩ and (v, z1, . . . , zn) in Rn+1 we
have f(z1, . . . , zn) = f(v, z1, . . . , zn), where the last f refers to the image of the
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series f ∈ A⟨Z⟩ in A⟨V,Z⟩. Thus we can add dummy variables on the left.
We can also add them at other places: identifying f ∈ A⟨Z⟩ with its image in
A⟨Z1, . . . , Zi, V, Zi+1, . . . , Zn⟩ as usual, where 1 ⩽ i ⩽ n, we have likewise

f(z1, . . . , zn) = f(z1, . . . , zi, v, zi+1, . . . , zn)

for (z1, . . . , zi, v, zi+1, . . . , zn) ∈ Rn+1. We shall tacitly use these facts.

Henselianity Again. Let R be an A-ring. Note that O(A)R, that is, the ideal
of R generated by ι0

(
O(A)

)
, is contained in the Jacobson radical of R, because for

a1, . . . , an ∈ O(A) the series 1+a1Y1+ · · ·+anYn is a unit of A⟨Y ⟩. In later sections

we consider the case that R is a valuation ring whose maximal ideal is
√

O(A)R,
and then the following is relevant:

Lemma 4.3. The pair (R, O(A)R) is henselian, hence so is (R,
√

O(A)R).

Proof. Let n = 1, so Y = Y1. We show that any polynomial

f(Y ) = 1 + Y + z2Y
2 + · · ·+ zNY

N ∈ R[Y ], (N ∈ N⩾2)

with z2, . . . , zN ∈ O(A)R has a zero in R. Take m and x ∈ Rm such that

z2 = g2(x), . . . , zN = gN (x), g2, . . . , gN ∈ O(A)A[X] ⊆ O(A)A⟨X⟩.

Then F (X,Y ) := 1 + Y + g2(X)Y 2 + · · · + gN (X)Y N ∈ A[X,Y ] = A⟨X,Y ⟩ is
regular in Y of degree 1, so F (X,Y ) = E · (Y − c) for a unit E of A⟨X,Y ⟩ and
c ∈ A⟨X⟩. Thus f(Y ) has a zero c(x) in R. □

Extensions of A-rings. Let R be an A-ring. When referring to an A-ring R∗ as
extending R this means of course that R is a subring of R∗, but also includes the
requirement that the A-analytic structure of R∗ extends that of R.

A set S ⊆ R is said to be A-closed (in R) if for all m, f ∈ A⟨X⟩ and x1, . . . , xm
in S we have f(x1, . . . , xm) ∈ S. Then S is a subring of R and the A-analytic
structure of R restricts to an A-analytic structure on S. We view such S as an
A-ring so as to make the A-ring R extend S. For S ⊆ R, the A-closure of S in R
is the smallest (with respect to inclusion) A-closed subset of R that contains S.

Lemma 4.4. Let R∗ be an A-ring extending R, and y = (y1, . . . , yn) ∈ (R∗)n. Let
R⟨y⟩ be the A-closure of R ∪ {y1, . . . , yn} in R∗. Then

R⟨y⟩ =
⋃
m

{g(x, y) : x ∈ Rm, g ∈ A⟨X,Y ⟩}.

Here is a consequence of Lemma 3.5:

Lemma 4.5. Suppose R∗ is an A-ring that extends R. Let f ∈ A⟨X,Y1, . . . , Yn⟩
and x ∈ Rm, and assume y1, . . . , yn ∈ R∗ are integral over R. Then

f(x, y1, . . . , yn) ∈ R[y1, . . . , yn].

Proof. By increasing m and accordingly extending x with extra coordinates we
arrange that for j = 1, . . . , n we have a polynomial fj(X,Yj) ∈ A[X,Yj ], monic in
Yj , with fj(x, yj) = 0. Now apply Lemma 3.5. □

Lemma 4.6. Let R∗ be a ring extension of R with z ∈ R∗ integral over R. Then
at most one A-analytic structure on R[z] makes R[z] an A-ring extending R.
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Proof. We can assume R∗ = R[z]. Take a monic polynomial ϕ ∈ R[Z], say of degree
d ⩾ 1, with ϕ(z) = 0. Let R∗ be equipped with an A-analytic structure extending
that of R, and let g ∈ A⟨Y1, . . . , Yn⟩, n ⩾ 1, and let y1, . . . , yn ∈ R∗; we have
to show that then the element g(y1, . . . , yn) ∈ R∗ does not depend on the given
A-analytic structure on R∗. We have ϕ(Z) = x00 + x01Z + · · ·+ x0,d−1Z

d−1 + Zd

with x00, . . . , x0,d−1 ∈ R and yj = xj0+xj1z+ · · ·+xj,d−1z
d−1, xj0, . . . , xj,d−1 ∈ R,

for j = 1, . . . , n. We now set m := (1 + n)d and

x := (x00, . . . , x0,d−1, x10, . . . , x1,d−1, . . . , xn0, . . . , xn,d−1) ∈ Rm,

X = (X1, . . . , Xm) :=
(
X00, . . . , X0,d−1, . . . , Xn0, . . . , Xn,d−1

)
,

so ϕ(Z) = F (x, Z), F (X,Z) := X00 + X01Z + · · · + X0,d−1Z
d−1 + Zd ∈ A[X,Z].

Let G(X,Z) ∈ A⟨X,Z⟩ be the following substitution instance of g:

g
(
X10 +X11Z + · · ·+X1,d−1Z

d−1, . . . , Xn0 +Xn1Z + · · ·+Xn,d−1Z
d−1

)
.

Lemma 3.4 gives G(X,Z) = Q(X,Z)F (X,Z) + R0 + R1Z + · · ·+ Rd−1Z
d−1 with

R0, . . . , Rd−1 ∈ A⟨X⟩, and so g(y) = G(x, z) = R0(x)+R1(x)z+ · · ·+Rd−1(x)z
d−1,

which uses only the A-analytic structure on R, not that on R∗. □

Proposition 4.7. Let R∗ be a ring extension of R and integral over R. Then some
A-analytic structure on R∗ makes R∗ an A-ring extending R.

Proof. In view of Lemmas 4.5 and 4.6 this reduces to the case R∗ = R[z] where
z ∈ R∗ is integral over R. Let ϕ(Z) ∈ R[Z] be as in the proof of Lemma 4.6, in
particular monic of degree d ⩾ 1 in Z. If the ring extension R[Z]/ϕ(Z)R[Z] of
R can be given an A-analytic structure extending that of R, then this is also the
case for its image R[z] under the R-algebra morphism R[Z] → R[z] sending Z to
z. Thus replacing R[z] by R[Z]/ϕ(Z)R[Z] if necessary we arrange that R[z] is free
as an R-module with basis 1, z, . . . , zd−1. We now adopt other notation from the
proof above, where n ⩾ 1 and where we introduced a tuple

X = (X1, . . . , Xm) = (X00, . . . , Xn,d−1)

of m = (n + 1)d distinct variables, the polynomial F (X,Z) ∈ A[X,Z], and for
any g ∈ A⟨Y ⟩ = A⟨Y1, . . . , Yn⟩ the series G = G(X,Z) ∈ A⟨X,Z⟩, and the series
R0, . . . , Rd−1 ∈ A⟨X⟩. To indicate their dependence on g we set

Gg := G, Rg,0 := R0, . . . , Rg,d−1 := Rd−1,

Rg := Rg,0 +Rg,1Z + · · ·+Rg,d−1Z
d−1 ∈ A⟨X⟩[Z].

We claim that setting g(y) := Rg(x, z) for any n ⩾ 1 and g ∈ A⟨Y ⟩ yields an
A-analytic structure on R[z] extending that on R. We just verify two items that
are part of this claim: let f, g, h, g1, . . . , gn ∈ A⟨Y ⟩ and y ∈ Rn; then

(1) gh(y) = g(y)h(y);
(2) f(g1, . . . , gn)(y) = f

(
g1(y), . . . , gn(y)

)
.

As to (1), we have Ggh = GgGh, so Rgh ≡ RgRh mod F in A⟨X,Z⟩. We also have
R ∈ A⟨X⟩[Z] of degree < d in Z such that RgRh ≡ R mod F in A⟨X⟩[Z]. Hence
Rgh = R, and thus gh(y) = R(x, z) = Rg(x, z)Rh(x, z) = g(y)h(y). As to (2), by
Corollary 3.6 we have in A⟨X,Z⟩,

Gf(g1,...,gn) = f
(
Gg1 , . . . , Ggn

)
≡ f(Rg1 , . . . , Rgn) mod F.
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Note that f(Rg1 , . . . , Rgn) is obtained by substituting Rgj ,i for Xji in Gf , for
j = 1, . . . , n and i = 0, . . . , d− 1 (and Z for Z), that is,

f(Rg1 , . . . , Rgn) = Gf

(
Rg1,0, . . . , Rg1,d−1, . . . , Rgn,0, . . . , Rgn,d−1, Z

)
.

Making the same substitution in the congruence Gf ≡ Rf mod F , using that the
variables Xji with j = 1, . . . , n and i = 0, . . . , d− 1 do not occur in F , we obtain

Gf

(
Rg1,0, . . . , Rg1,d−1, . . . , Rgn,0, . . . , Rgn,d−1, Z

)
is congruent in A⟨X,Z⟩ modulo F to

Rf (X00, . . . , X0,d−1, Rg1,0, . . . , Rg1,d−1, . . . , Rgn,0, . . . , Rgn,d−1, Z
)
,

which is in A⟨X⟩[Z] of degree < d in Z, and thus equals Rf(g1,...,gn). Since

f
(
g1(y), . . . , gn(y)

)
= Rf

(
x00, . . . , x0,d−1, Rg1,0(x), . . . , Rgn,d−1(x), z

)
,

this yields f
(
g1(y), . . . , gn(y)

)
= f(g1, . . . , gn)(y), as required. □

Corollary 4.8. If R∗ is a ring extension of R and integral over R, then there is a
unique A-analytic structure on R∗ that makes R∗ an A-ring extending R.

Corollary 4.9. Let R1 and R2 be A-rings extending R and let ϕ : R1 → R2 be an
R-algebra morphism such that ϕ(R1) is integral over R. Then ϕ is a morphism of
A-rings (that is, a homomorphism in the sense of LA-structures).

Proof. The kernel of ϕ is a congruence relation on R as A-ring, so ϕ(R1) has an
A-analytic structure making ϕ : R1 → ϕ(R1) a morphism of A-rings. Since ϕ(R1)
is A-closed as a subset of R2 it follows from Corollary 4.8 that this A-analytic
structure on ϕ(R1) coincides with the one that makes the inclusion ϕ(R1) → R2 a
morphism of A-rings. Thus ϕ is a morphism of A-rings. □

Corollary 4.10. Suppose the A-ring R∗ extends R, and zi ∈ R∗ for i ∈ I is
integral over R. Then R[zi : i ∈ I] is A-closed in R∗.

Proof. Let f(Y ) ∈ A⟨Y ⟩ and suppose y1, . . . , yn ∈ R∗ are integral over R; it suffices
to show that then f(y) ∈ R[y] where y = (y1, . . . , yn). Take x ∈ Rm and monic
fj ∈ A⟨X⟩[Yj ] such that fj(x, yj) = 0 for j = 0, . . . , n, and apply Lemma 3.5. □

Defining R⟨Y ⟩. Let R be an A-ring. To define a ring R⟨Y ⟩ analogous to the
polynomial ring R[Y ], observe that polynomials over R arise from polynomials over
Z by specializing: for f(X,Y ) ∈ Z[X,Y ] and x ∈ Rm we have f(x, Y ) ∈ R[Y ]. We
take this as a hint and with A instead of Z, we define for f(X,Y ) ∈ A⟨X,Y ⟩ and
x ∈ Rm the power series f(x, Y ) ∈ R[[Y ]] as follows: f(X,Y ) =

∑
ν fν(X)Y ν with

all fν ∈ A⟨X⟩, and then

f(x, Y ) :=
∑
ν

fν(x)Y
ν .

Thus for fixed x ∈ Rm the map f(X,Y ) 7→ f(x, Y ) : A⟨X,Y ⟩ → R[[Y ]] is an
A-algebra morphism. We define

R⟨Y ⟩ :=
⋃
m

{f(x, Y ) : f = f(X,Y ) ∈ A⟨X,Y ⟩, x ∈ Rm} ⊆ R[[Y ]].

An easy consequence is that inside the ambient ring R[[Y ]] we have for i ⩽ n:

R⟨Y1, . . . , Yi⟩ = R⟨Y ⟩ ∩R[[Y1, . . . , Yi]].
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Lemma 4.11. Given any g1, . . . , gk ∈ R⟨Y ⟩, k ∈ N, there exists m, x ∈ Rm, and
f1, . . . , fk ∈ A⟨X,Y ⟩, such that g1 = f1(x, Y ), . . . , gk = fk(x, Y ).

Proof. Let m1, . . . ,mk ∈ N and x1 ∈ Rm1 , . . . , xk ∈ Rmk be such that

g1 = f1(x1, Y ), . . . , gk = fk(xk, Y ), f1 ∈ A⟨X1, Y ⟩, . . . , fk ∈ A⟨Xk, Y ⟩,

x1 = (x11, . . . , x1m1
), . . . , xk = (xk1, . . . , xkmk

),

X1 : = (X11, . . . , X1m1
), . . . , Xk := (Xk1, . . . , Xkmk

).

We can also arrange for m := m1 + · · ·+mk that

X = (X1, . . . , Xm) = (X1, . . . , Xk).

For f1(X,Y ) := f1(X1, Y ) ∈ A⟨X,Y ⟩, . . . , fk(X,Y ) := fk(Xk, Y ) ∈ A⟨X,Y ⟩ we
then have f1(x, Y ) = g1, . . . , fk(x, Y ) = gk for x = (x1, . . . , xk) ∈ Rm. □

Corollary 4.12. R⟨Y ⟩ is a subring of R[[Y ]] with R[Y ] ⊆ R⟨Y ⟩. If R is a domain,
then so is R⟨Y ⟩; if R has no nilpotents other than 0, then neither does R⟨Y ⟩. For
an A-ring R∗ extending R the inclusion R[[Y ]] → R∗[[Y ]] maps R⟨Y ⟩ into R∗⟨Y ⟩,
so R⟨Y ⟩ is a subring of R∗⟨Y ⟩.

Proof. The claim about domains holds because it holds with R[[Y ]] in place of
R⟨Y ⟩. Suppose R has no nilpotents. With p ranging over the prime ideals of R this
yields an injective “diagonal” ring morphism R[[Y ]] →

∏
p(R/p)[[Y ]] into a ring

with no nilpotents other than 0, so R[[Y ]] has no such nilpotents either. □

By the remark following the definition of R⟨Y ⟩ we have for i ⩽ n the subring
R⟨Y1, . . . , Yi⟩ of R⟨Y ⟩. The ring A⟨Y ⟩ as defined in Section 3 is the same as the
ring A⟨Y ⟩ as defined just now for R = A viewed as an A-ring.

Corollary 4.13. Suppose the A-ring R∗ extends R and is integral over R. Then
R∗⟨Y ⟩ is generated as a ring over its subring R⟨Y ⟩ by R∗.

Proof. Using Corollary 4.10 it suffices to consider the case R∗ = R[z] where z ∈ R∗

is integral over R and to show R∗⟨Y ⟩ = R⟨Y ⟩[z]. Let f(X,Y ) ∈ A⟨X,Y ⟩ and
x ∈ (R∗)m. Towards proving f(x, Y ) ∈ R⟨Y ⟩[z], let ϕ(z) = 0 where

ϕ(Z) = Zd + u0,d−1Z
d−1 + · · ·+ u0,0, d ⩾ 1, u0,0, . . . , u0,d−1 ∈ R.

Then for i = 1, . . . ,m we have xi = ui0 + ui1z + · · ·+ ui,d−1z
d−1 with all uij ∈ R.

Let U = (Uij)0⩽i⩽m,j<d be a tuple of distinct variables different also from the Yj
and Z and set u := (uij). Then f(x, Y ) = g(u, z, Y ) where

g(U,Z, Y ) = f
(∑
j<d

U1jZ
i, . . . ,

∑
j<d

UmjZ
i, Y

)
∈ A⟨U,Z, Y ⟩.

In the ring A⟨U,Z, Y ⟩, g(U,Z, Y ) is congruent modulo Zd+U0,d−1Z
d−1+ · · ·+U0,0

to g0(U, Y )+g1(U, Y )Z+ · · ·+gd−1(U, Y )Zd−1 for suitable g0, . . . , gd−1 ∈ A⟨U, Y ⟩,
by Lemma 3.4, and for such gj we have

g(u, z, Y ) = g0(u, Y ) + g1(u, Y )z + · · ·+ gd−1(u, Y )zd−1 ∈ R⟨Y ⟩[z]. □

Let x ∈ Rm. Then we equip R with the A⟨X⟩-analytic structure (ιn,x) given for
f(X,Y ) ∈ A⟨X⟩⟨Y ⟩ = A⟨X,Y ⟩ by

ιn,xf : Rn → R, y 7→ f(x, y).
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We refer to R with this A⟨X⟩-analytic structure as the (A, x)-ring R. Construing
R as an (A, x)-ring gives the same subring R⟨Y ⟩ of R[[Y ]] as when considering R
as an A-ring.

R⟨Z⟩ as an A-ring. Let Z1, . . . , ZN with N ∈ N be distinct variables different
from X1, X2, . . . , and set Z := (Z1, . . . , ZN ). We define R⟨Z⟩ = R⟨Z1, . . . , ZN ⟩ in
the same way as R⟨Y1, . . . , YN ⟩, with Z1, . . . , ZN in the role of Y1, . . . , YN . We make
R⟨Z⟩ an A-ring extending R as follows. Let f ∈ A⟨Y ⟩ and u1(x, Z), . . . , un(x, Z)
in R⟨Z⟩, where u1(X,Z), . . . , un(X,Z) ∈ A⟨X,Z⟩ and x ∈ Rm. Set

g(X,Z) := f
(
u1(X,Z), . . . , un(X,Z)

)
∈ A⟨X,Z⟩.

Our aim is to define f(u1(x, Z), . . . , un(x, Z)) := g(x, Z) ∈ R⟨Z⟩. In order for this
to make sense as a definition we first show:

Lemma 4.14. Suppose vj(X,Z) ∈ A⟨X,Z⟩ and uj(x, Z) = vj(x, Z) for j =
1, . . . , n. Set h(X,Z) := f

(
v1(X,Z), . . . , vn(X,Z)

)
∈ A⟨X,Z⟩. Then

g(x, Z) = h(x, Z).

Proof. By Corollary 3.6 we have for distinct variables U1, . . . , Un, V1, . . . , Vn,

f(U1, . . . , Un)− f(V1, . . . , Vn) ∈ (U1 − V1, . . . , Un − Vn)A⟨U, V ⟩.

Substituting uj(X,Z) and vj(X,Z) for Uj and Vj gives

g(X,Z)− h(X,Z) ∈
(
u1(X,Z)− v1(X,Z), . . . , un(X,Z)− vn(X,Z)

)
A⟨X,Z⟩

from which we obtain the desired result by substituting x for X. □

Now the next lemma shows the above does define f
(
u1(x, Z), . . . , un(x, Z)

)
:

Lemma 4.15. Let m1,m2 ∈ N, m := m1 +m2, and

X1 := (X1, . . . , Xm1), X2 := (Xm1+1, . . . , Xm),

x1 = (x1, . . . , xm1
) ∈ Rm1 , x2 = (xm1+1, . . . , xm) ∈ Rm2 .

Suppose that the series

u1(X1, Z), . . . , un(X1, Z) ∈ A⟨X1, Z⟩, v1(X2, Z), . . . , vn(X2, Z) ∈ A⟨X2, Z⟩

are such that u1(x1, Z) = v1(x2, Z), . . . , un(x1, Z) = vn(x2, Z). Then for

g1(X1, Z) := f
(
u1(X1, Z), . . . , un(X1, Z)

)
∈ A⟨X1, Z⟩,

g2(X2, Z) := f
(
v1(X2, Z), . . . , vn(X2, Z)

)
∈ A⟨X2, Z⟩

we have g1(x1, Z) = g2(x2, Z) in R⟨Z⟩.

Proof. Set X := (X1, X2) = (X1, . . . , Xm), and for j = 1, . . . , n,

uj(X,Z) := uj(X1, Z) ∈ A⟨X,Z⟩, vj(X,Z) := vj(X2, Z) ∈ A⟨X,Z⟩,
g(X,Z) := f

(
u1(X,Z), . . . , un(X,Z)

)
= g1(X1, Z) ∈ A⟨X,Z⟩,

h(X,Z) := f
(
v1(X,Z), . . . , vn(X,Z)

)
= g2(X2, Z) ∈ A⟨X,Z⟩.

Then for x = (x1, . . . , xm) we have uj(x, Z) = vj(x, Z) for j = 1, . . . , n, so g(x, Z) =
h(x, Z) by Lemma 4.14, and thus g1(x1, Z) = g2(x2, Z). □
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We have now defined for f ∈ A⟨Y ⟩ a corresponding operation

(u1, . . . , un) 7→ f(u1, . . . , un) : R⟨Z⟩n → R⟨Z⟩.

This makes R⟨Z⟩ an A-ring extending R. For f ∈ A⟨X,Z⟩ and x ∈ Rm we can
interpret f(x, Z) on the one hand as the element of R[[Z]] defined in the beginning
of this subsection (with Y instead of Z), but also as the element of R⟨Z⟩ obtained by
evaluating f at the point (x, Z) ∈ R⟨Z⟩m+N according to the A-analytic structure
we gave R⟨Z⟩; one checks easily that these two interpretations give the same element
of R⟨Z⟩, so there is no conflict of notation. This also shows that R⟨Z⟩ is generated
as an A-ring by its subset R ∪ {Z1, . . . , ZN}.

For R = A as an A-ring the above yields the A-ring A⟨Z⟩ extending A. Let
f = f(Y ) =

∑
ν aνY

ν ∈ A⟨Y ⟩. One checks easily that for (g1, . . . , gn) ∈ A⟨Z⟩n
the convergent sum f(g1, . . . , gn) =

∑
ν aνg

ν1
1 · · · gνn

n ∈ A⟨Z⟩ equals f(g1, . . . , gn)
as defined above for R = A, so this causes no conflict of notation. It is routine to
check that for any A-ring R and z ∈ RN the evaluation map g 7→ g(z) : A⟨Z⟩ → R
is a morphism of A-rings. For N = 0 this is just ι0 : A→ R.

Corollary 4.16. Let J :=
√

O(A)R. Then
(
R⟨Z⟩, JR⟨Z⟩

)
is henselian.

Proof. Applying Lemma 4.3 to the A-ring R⟨Z⟩, the pair
(
R⟨Z⟩,

√
O(A)R⟨Z⟩

)
is

henselian. Now use that JR⟨Z⟩ ⊆
√

O(A)R⟨Z⟩. □

Our next goal is to define for z ∈ RN an evaluation map g 7→ g(z) : R⟨Z⟩ → R.
We do this in the next section under a further noetherian assumption on A.

5. The case of noetherian A

Let A be a noetherian ring with an ideal O(A) ̸= A such that
⋂

e O(A)e = {0} (with e
ranging here and below over N) and A is O(A)-adically complete. Taking 0 < δ < 1
and defining |a| := δn if a ∈ O(A)n \ O(A)n+1 for a ∈ A ̸= and |0| := 0 gives an
ultranorm on A with respect to which A is complete, with O(A) = {a ∈ A : |a| < 1}.
Then the O(A)-adic topology is the norm-topology. Take t1, . . . , tr ∈ A, r ∈ N, such
that O(A) = (t1, . . . , tr). Below, n ⩾ 1 and Y = (Y1, . . . , Yn) as before, and λ, µ, ν
range over Nn.

Lemma 5.1. Let f =
∑

ν aνY
ν ∈ A⟨Y ⟩. Then there is d ∈ N⩾1 such that for all ν

with |ν| ⩾ d we have aν =
∑

|µ|<d aµbµν where the bµν ∈ O(A) can be chosen such

that bµν → 0 as |ν| → ∞ for each fixed µ with |µ| < d.

Proof. Since aν → 0 as |ν| → ∞, we have aν ∈ O(A)e(ν) with e(ν) ∈ N, e(ν) → ∞
as |ν| → ∞. So aν = Pν(t1, . . . , tr) with Pν ∈ A[T1, . . . , Tr] homogeneous of
degree e(ν). Take d0 ∈ N such that the ideal of A[T1, . . . , Tr] generated by the
Pν is already generated by the Pµ with |µ| < d0. Next take d ⩾ d0 in N⩾1

so large that e(ν) > e(µ) for all µ, ν with |µ| < d0 and |ν| ⩾ d. Let |ν| ⩾ d.
Then Pν =

∑
|µ|<d0

PµQµν with each Qµν ∈ A[T1, . . . , Tr] homogeneous of degree

e(ν)− e(µ). Hence

aν =
∑

|µ|<d0

aµbµν , bµν := Qµν(t1, . . . , tr) ∈ O(A),

which yields the desired result. □
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Let f , d, and the bµν be as in the lemma. For µ with |µ| < d we set

fµ := Y µ +
∑
|ν|⩾d

bµνY
ν ∈ A⟨Y ⟩, so f =

∑
|µ|<d

aµfµ.

Therefore O(A⟨Y ⟩) = (t1, . . . , tr)A⟨Y ⟩ and the ultranorm on A⟨Y ⟩ induced by the
above ultranorm on A has the property that for all f ∈ A⟨Y ⟩ and n,

|f | ⩽ δn ⇐⇒ f ∈ O(A⟨Y ⟩)n,

so the norm-topology of A⟨Y ⟩ is the same as its O(A⟨Y ⟩)-adic topology. Moreover,

A[Y ] ∩ O(A⟨Y ⟩)n = O(A)nA[Y ], for all n,

so A⟨Y ⟩ with the O(A⟨Y ⟩)-adic topology is a completion of its noetherian subring
A[Y ] with the O(A)A[Y ]-adic topology. Then A⟨Y ⟩ is noetherian by [26, Theorem
8.12], so A⟨Y ⟩ inherits the conditions we imposed on A at the beginning of this
section.

Passing to A/I. Let I be a proper ideal of A. Since A is noetherian, I is closed in
A by [26, Theorem 8.14]. We equip A/I with its quotient norm, and observe that
the ring morphism

A⟨Y ⟩ → (A/I)⟨Y ⟩, f :=
∑
ν

aνY
ν 7→ f/I :=

∑
ν

(aν + I)Y ν

is surjective and that its kernel contains IA⟨Y ⟩. Moreover:

Lemma 5.2. The ring morphism A⟨Y ⟩ → (A/I)⟨Y ⟩ has the following properties:

(i) its kernel is IA⟨Y ⟩, a closed proper ideal of A⟨Y ⟩;
(ii) the induced ring isomorphism

A⟨Y ⟩/IA⟨Y ⟩ → (A/I)⟨Y ⟩

is norm preserving, with the quotient norm on A⟨Y ⟩/IA⟨Y ⟩;
(iii) for f, g1, . . . , gn ∈ A⟨Y ⟩ we have (f/I)(g1/I, . . . , gn/I) = f(g1, . . . , gn)/I.

Proof. Suppose f(Y ) =
∑

ν aνY
ν ∈ A⟨Y ⟩ is in the kernel. Then all aν ∈ I. For

some d ⩾ 1 we have an equality f(Y ) =
∑

|µ|<d aµfµ(Y ) with µ ranging over Nn

and all fµ(Y ) ∈ A⟨Y ⟩, hence f(Y ) ∈ IA⟨Y ⟩. Verifying (ii) is routine using the
definitions of the norms involved. Item (iii) is an easy consequence of (ii). □

The effect on A-rings. Our noetherian assumption on A has consequences for
A-rings. In the rest of this section R is an A-ring, and Z = (Z1, . . . , ZN ) as before.
With (ιn) the A-analytic structure of R, here is a corollary of Lemma 5.2(i):

Corollary 5.3. Suppose the proper ideal I of A is contained in the kernel of ι0.
Then we have an (A/I)-analytic structure (ιn/I)n on R given by

(ιn/I)(f/I) := ιn(f) for f ∈ A⟨Y ⟩.

Lemma 5.4. Let f =
∑

ν aν(X)Y ν ∈ A⟨X⟩⟨Y ⟩ = A⟨X,Y ⟩. Suppose x ∈ Rm and
f(x, Y ) = 0, that is, aν(x) = 0 for all ν. Then f(x, y) = 0 for all y ∈ Rn.

Proof. With A⟨X⟩ in the role of A, the above gives a finite sum decomposition
f =

∑
|µ|<d aµfµ with the fµ ∈ A⟨X,Y ⟩, which yields the desired conclusion. □

We can now prove the following key universal property of the A-ring R⟨Z⟩:
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Theorem 5.5. Let ϕ : R → R∗ be an A-ring morphism and z = (z1, . . . , zN ) ∈
(R∗)N . Then ϕ extends uniquely to an A-ring morphism R⟨Z⟩ → R∗ sending
Z1, . . . , ZN to z1, . . . , zN , respectively.

Proof. Let g(Z) ∈ R⟨Z⟩. Take f(X,Z) ∈ A⟨X,Z⟩ and x ∈ Rm such that g(Z) =
f(x, Z), and set g(z) := f(ϕ(x), z) ∈ R∗. By Lemma 5.4 (with Z instead of Y ) and
the usual arguments with dummy variables, this element ofR∗ depends only on g(Z)
and z, not on the choice of m, f, x. Moreover, the map g(Z) 7→ g(z) : R⟨Z⟩ → R∗

is a ring morphism that extends ϕ and sends Zj to zj for j = 1, . . . , N . One also
verifies easily that for F ∈ A⟨Y ⟩ and g1, . . . , gn ∈ R⟨Z⟩ we have

F (g1, . . . , gn)(z) = F
(
g1(z), . . . , gn(z)

)
,

so this map R⟨Z⟩ → R∗ is an A-ring morphism. □

We retain the notation g(z) introduced in the proof above. In Theorem 5.5, g ∈
R⟨Z1, . . . , Zi⟩ with i ⩽ N gives g(z1, . . . , zi) = g(z1, . . . , zN ) where on the right we
take g as an element of R⟨Z⟩. For R = R∗ and ϕ the identity on R this theorem
gives the evaluation map g 7→ g(z) : R⟨Z⟩ → R promised earlier as a morphism of
A-rings. It is also a morphism of R-algebras.

Lemma 5.6. Let z ∈ RN . Then the kernel of the morphism g 7→ g(z) : R⟨Z⟩ → R
of R-algebras is the ideal (Z1 − z1, . . . , ZN − zN )R⟨Z⟩ of R⟨Z⟩.

Proof. For N ⩾ 1, Lemma 3.4 gives R⟨Z⟩ = (ZN − zN )R⟨Z⟩ + R⟨Z1, . . . , ZN−1⟩.
Proceeding inductively we obtain R⟨Z⟩ = (Z1 − z1, . . . , ZN − zN )R⟨Z⟩+R, which
gives the desired result. □

Note also that the map

R⟨Z⟩ → ring of R-valued functions on RN

assigning to each g ∈ R⟨Z⟩ the function z 7→ g(z) is an R-algebra morphism.

Another special case of Theorem 5.5: let R∗ be an A-ring extending R, let ϕ be
the resulting inclusion R → R∗⟨Z⟩, and zj := Zj ∈ R∗⟨Z⟩ for j = 1, . . . , N . Then
the corresponding A-ring morphism R⟨Z⟩ → R∗⟨Z⟩ is a restriction of the inclusion
R[[Z]] → R∗[[Z]] and sends f(x, Z) ∈ R⟨Z⟩ for f ∈ A⟨X,Z⟩ and x ∈ Rm to
f(x, Z) ∈ R∗⟨Z⟩. We identify R⟨Z⟩ with an A-subring of R∗⟨Z⟩ via this morphism.
Thus in the situation of Lemma 4.4 we have

R⟨y⟩ = {g(y) : g ∈ R⟨Y ⟩}.
Let I be an ideal of R. Then the canonical map R→ R/I extends to the morphism
R⟨Z⟩ → (R/I)⟨Z⟩ of A-rings sending Zj to Zj for j = 1, . . . , N , and we have:

Lemma 5.7. The kernel of the above morphism R⟨Z⟩ → (R/I)⟨Z⟩ is IR⟨Z⟩.

Proof. With β ranging over NN , this morphism is a restriction of the ring morphism∑
β

cβZ
β 7→

∑
α

(cβ + I)Zβ : R[[Z]] → (R/I)[[Z]] ( all cβ ∈ R),

so IR⟨Z⟩ is contained in the kernel. Suppose f(x, Z) is in the kernel where x ∈ Rm

and f(X,Z) =
∑

β aβ(X)Zβ ∈ A⟨X,Z⟩. Then all aβ(x) ∈ I, and since for some

d ⩾ 1 we have an equality f(X,Z) =
∑

|α|<d aα(X)fα(X,Z) with α ranging over

NN and all fα(X,Z) ∈ A⟨X,Z⟩, substitution of x for X gives f(x, Z) ∈ IR⟨Z⟩. □
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Corollary 5.8. Let J :=
√

O(A)R. Then JR⟨Z⟩ =
√

O(A)R⟨Z⟩.

Proof. We have O(A)R⟨Z⟩ ⊆ JR⟨Z⟩ ⊆
√

O(A)R⟨Z⟩. It remains to note that JR⟨Z⟩
is a radical ideal of R⟨Z⟩, by Lemma 5.7 and a part of Corollary 4.12. □

Let x ∈ Rm, construe R as an (A, x)-ring, so R is equipped with a certain A⟨X⟩-
analytic structure, and let ϕ : R → R∗ be an A-ring morphism. Then ϕ : R → R∗

is also an A⟨X⟩-ring morphism where we construe R∗ as an (A, ϕ(x))-ring, with
ϕ(x) :=

(
ϕ(x1), . . . , ϕ(xm)

)
. For z ∈ (R∗)N the unique extension of ϕ to an A-

ring morphism R⟨Z⟩ → R∗ sending Z1, . . . , ZN to z1, . . . , zN is also an A⟨X⟩-ring
morphism. In other words, for g ∈ R⟨Z⟩ and z ∈ (R∗)N the two ways of interpreting
g(z) give the same element of R∗, and so this raises no conflict of notation.

Substituting elements of R⟨Z⟩ in elements of R⟨Y ⟩. Here is another case of
Theorem 5.5: let g1, . . . , gn ∈ R⟨Z⟩ and ϕ : R → R⟨Z⟩ the inclusion map. Then ϕ
extends uniquely to the A-ring morphism

f 7→ f(g1, . . . , gn) : R⟨Y ⟩ → R⟨Z⟩

that sends Y1, . . . , Yn to g1, . . . , gn. For z ∈ RN we have

f(g1, . . . , gn)(z) = f
(
g1(z), . . . , gn(z)

)
.

This follows for example from the uniqueness in Theorem 5.5.
Let now n, d ⩾ 1. For N = n and Y = Z this yields the automorphism

f(Y ) 7→ f
(
Td(Y )

)
of the A-ring R⟨Y ⟩ and the R-algebra R⟨Y ⟩, with inverse g(Y ) 7→ g

(
T−1
d (Y )

)
.

Let f ∈ A⟨X,Z⟩, g1(X,Z), . . . , gN (X,Z) ∈ A⟨X,Z⟩, and set

h(X,Z) := f
(
X, g1(X,Z), . . . , gN (X,Z)

)
∈ A⟨X,Z⟩.

Then for x ∈ Rm we can interpret f
(
x, g1(x, Z), . . . , gN (x, Z)

)
on the one hand

as h(x, Z) ∈ R⟨Z⟩, and on the other hand as the element of R⟨Z⟩ obtained by
evaluating f at the point

(
x, g1(x, Z), . . . , gN (x, Z)

)
∈ R⟨Z⟩m+N according to the

A-analytic structure we gave R⟨Z⟩. By the uniqueness in Theorem 5.5 these two
elements of R⟨Z⟩ are equal, so this raises no conflict of notation.

Introducing K⟨Y ⟩. Let the A-ring R be a domain with fraction field K. Set

K⟨Y ⟩ := {c−1g(Y ) : c ∈ R ̸=, g(Y ) ∈ R⟨Y ⟩ ⊆ K[[Y ]]}.

Thus K⟨Y ⟩ is a subring of K[[Y ]] and contains R⟨Y ⟩ as a subring. For n, d ⩾ 1
the automorphism g(Y ) 7→ g

(
Td(Y )

)
of the A-ring R⟨Y ⟩ extends (uniquely) to an

automorphism of the K-algebra K⟨Y ⟩, also to be indicated by g 7→ g
(
Td(Y )

)
.

Lemma 5.9. K⟨Y ⟩ ∩R[[Y ]] = R⟨Y ⟩, inside the ambient ring K[[Y ]].

Proof. The inclusion ⊇ is clear. For the reverse inclusion, let g ∈ K⟨Y ⟩ ∩ R[[Y ]].
Now g = c−1

∑
ν aν(x)Y

ν with c ∈ R ̸= and
∑

ν aν(X)Y ν ∈ A⟨X,Y ⟩, x ∈ Rm.
By Lemma 5.1 applied to A⟨X⟩ instead of A we have d ∈ N⩾1 such that for all
ν with |ν| ⩾ d we have aν(X) =

∑
|µ|<d aµ(X)bµν(X) where the bµν ∈ O(A⟨X⟩)

are chosen such that bµν → 0 as |ν| → ∞ for each fixed µ with |µ| < d. Put
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uµ := c−1aµ(x) ∈ R for |µ| < d. Then with a tuple U = (Uµ)|µ|<d of new variables
and setting

F (X,U, Y ) :=
∑
|µ|<d

UµY
ν +

∑
|ν|⩾d

( ∑
|µ|<d

bµν(X)Uµ

)
Y ν ∈ A⟨X,U, Y ⟩

we have g(Y ) = F (x, u, Y ) ∈ R⟨Y ⟩. □

For y ∈ Rn and f(Y ) = c−1g(Y ) ∈ K⟨Y ⟩ with c ∈ R ̸=, g(Y ) ∈ R⟨Y ⟩, the element
c−1g(y) ∈ K depends only on f, y, not on c, g, and so we can define f(y) := c−1g(y).
The map f 7→ f(y) : K⟨Y ⟩ → K is aK-algebra morphism, extending the evaluation
maps K[Y ] → K and R[Y ] → R sending Y1, . . . , Yn to y1, . . . , yn, respectively. By
Lemma 5.6 its kernel is the maximal ideal (Y1 − y1, . . . , Yn − yn)K⟨Y ⟩ of K⟨Y ⟩.

Suppose the A-ring S extends R, and is a domain with fraction field L taken as
a field extension of K. Then L[[Y ]] has subrings R⟨Y ⟩, K⟨Y ⟩, S⟨Y ⟩, L⟨Y ⟩ with
K⟨Y ⟩ ⊆ L⟨Y ⟩. In this situation we have:

Lemma 5.10. Assume S is integral over R and b1, . . . , bm is a basis of the K-linear
space L. Then L⟨Y ⟩ is a free K⟨Y ⟩-module with basis b1, . . . , bm.

Proof. Let g ∈ L⟨Y ⟩ and take c ∈ L× such that cg ∈ S⟨Y ⟩. Corollary 4.13 tells us
that S⟨Y ⟩ is generated as a ring over its subring R⟨Y ⟩ by S, so cg =

∑
j∈J ajgj with

finite J , and aj ∈ S, gj ∈ R⟨Y ⟩ for all j ∈ J , so g =
∑

j c
−1ajgj . Each c

−1aj is aK-

linear combination of b1, . . . , bm, so g = b1f1+ · · ·+ bmfm with f1, . . . , fm ∈ K⟨Y ⟩.
Moreover, if f1, . . . , fm ∈ K⟨Y ⟩ are not all zero, then b1f1 + · · · + bmfm ̸= 0, by
considering a monomial Y ν for which one of the fi has a nonzero coefficient. □

6. Valuation rings with A-analytic structure

We begin with generalities that do not require A to be noetherian. A valuation
A-ring is an A-ring whose underlying ring is a valuation ring. An A-field is a
valued field whose valuation ring is equipped with an A-analytic structure making
it a valuation A-ring. The language LA

≼,D is the language LA of A-rings augmented

with a binary relation symbol ≼ (to encode the valuation) and a binary function
symbol D (for restricted division). We construe an A-field K as an LA

≼,D-structure
as follows, where R is the valuation A-ring of K:

• any f ∈ A⟨Y ⟩ is interpreted as the n-ary operation on K giving f(y) its
A-ring value in R for y ∈ Rn, and f(y) := 0 for y /∈ Rn;

• y1 ≼ y2 ⇔ y1 ∈ y2R;
• D(y1, y2) = y1/y2 if y1 ≼ y2 ̸= 0, and D(y1, y2) := 0 otherwise.

This makes R an LA
≼,D-substructure of K. We define an A-extension of K to be

a valued field extension of K whose valuation ring is equipped with an A-analytic
structure that makes it an extension of the A-ring R. Thus any A-extension L of
K is an A-field and naturally an LA

≼,D-structure so that K is a substructure of L.

Lemma 6.1. Let K be an A-field with valuation A-ring R. Suppose E is an LA
≼,D-

substructure of K. Then:

(i) RE := {a ∈ E : a ≼ 1} is an A-subring of R and is a valuation ring
dominated by R;

(ii) E ⊆ Frac(RE) ⊆ K, and E is a valuation ring.
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Proof. It is clear that RE is an A-subring of R. For a, b ∈ RE , either a ≼ b, and
then a = D(a, b)b, D(a, b) ∈ RE , so a ∈ REb, or b ≼ a, and then likewise b ∈ REa.
Thus RE is a valuation ring. It is also clear that R dominates RE . For a ∈ E, if
a ≼ 1, then a ∈ RE , so a ∈ Frac(RE), and if a ≻ 1, then D(1, a) = a−1 ∈ RE , and
so again a ∈ Frac(RE). Since RE is a valuation ring of Frac(RE), so is E. □

The A-extension generated over K by an element z. The language LA,K
≼,D is

LA
≼,D augmented by names (constant symbols), one for each element of K, and we

construe K and any A-extension of it accordingly as an LA,K
≼,D-structure. Let L be

an A-extension of K. Let Z be an indeterminate and z ∈ L. Then any LA,K
≼,D-term

τ(Z) yields an element τ(z) ∈ L. The set {τ(z) : τ(Z) is an LA,K
≼,D-term} underlies

a substructure of the LA
≼,D-structure L, namely the smallest substructure of the

LA
≼,D-structure L that contains K ∪ {z}; we do not claim this set is the underlying

set of a subfield of L. Instead we call attention to the A-closed subring Rz of RL

with underlying set

{τ(z) : τ(Z) is an LA,K
≼,D-term and τ(z) ≼ 1}.

Note: R ⊆ Rz; if z ≼ 1, then z ∈ Rz; if z ≻ 1, then z−1 ∈ Rz.

Lemma 6.2. Rz is a valuation ring dominated by RL.

Proof. For L in the role of K this is a special case of Lemma 6.1(i). □

Let Kz be the fraction field of Rz inside L, equipped with the valuation A-ring Rz.
This makes Kz into an A-extension of K, and an LA

≼,D-substructure of L. Thus

τ(z) ∈ Kz for every LA,K
≼,D-term τ(Z).

Corollary 6.3. Kz is the smallest substructure of the LA
≼,D-structure L that con-

tains K ∪ {z} and whose underlying ring is a field. As a consequence, if z ≼ 1,
then Rz is the smallest A-closed subring of RL that contains R ∪ {z} and whose
underlying ring is a valuation ring dominated by RL.

In the rest of this section, A is noetherian with an ideal O(A) ̸= A, such that⋂
e O(A)e = {0} and A is O(A)-adically complete. Also, R is always a valuation

A-ring, and we let O(R) denote the maximal ideal of R. Thus O(A)R = tR for some
t ∈ O(A). We let k = R/O(R) denote the residue field of R, and K its fraction field.
We construe the A-field K as an LA

≼,D-structure as described earlier.

Viability. We define R to be viable if O(A)R = O(R) ̸= {0} (so R is not a field).
(This notion of viability is simpler and stricter than in [5], where extra flexibility
was needed to be able to pass to A-extensions of K of finite degree. In the present
set-up we we don’t need to do that.) In order to make our Weierstrass preparation
and division theorems useful for the model theory of R as a valuation A-ring we
assume in the rest of this section:

R is viable.

Thus we have t ∈ O(A) with ι0(t) ̸= 0 and O(R) = tR, and then vt := v
(
ι0(t)

)
is the

smallest positive element of Γ. Below we fix such t and identify Z with its image
in Γ via k 7→ k · vt, so vt = 1 and Z is a convex subgroup of Γ. It is clear that
viability is inherited by A-subfields:
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Lemma 6.4. Suppose K0 is a valued subfield of K and its valuation ring R0 =
R ∩K0 is an A-subring of R. Then the valuation A-ring R0 is viable.

Note that R is henselian, by Lemma 4.3, so for any field extension F of K which
is algebraic over K there is a unique valuation ring of F lying over R, and this
valuation ring is the integral closure of R in F . Thus by Corollary 4.8:

Corollary 6.5. If L is a valued field extension of K and is algebraic over K, then
L has a unique expansion to an A-extension of K.

In this corollary L might be an algebraic closure of K, in which case its valuation
ring is the integral closure of R in L, and unlike the maximal ideal of R, the maximal
ideal of this integral closure is not principal.

Corollary 6.6. If z is algebraic over K, then K(z) is the underlying field of Kz.

Proof. Suppose z is algebraic over K. Then the valued subfield K(z) of L expands
uniquely to an A-extension of K by Lemma 6.5. This A-extension is then an LA

≼,D-
substructure of L by Corollary 4.8. Now use Corollary 6.3. □

By the viability assumption on R the model theoretic results at the end of this paper
do not apply to algebraically closed valued fields whose valuation ring is equipped
with an A-analytic structure. To avoid this viability assumption one could replace
the restricted power series rings over A with rings of separated power series over A
where some variables range as before over the valuation ring and the other (formal)
variables only over its maximal ideal. This is the direction taken by Lipshitz [24];
see also Lipshitz and Robinson [25]. Our treatment can probably be extended in
this direction as well, but this will not be done here.

An A-extension of K is said to be viable if its valuation A-ring is viable.

Weierstrass preparation and division with parameters. Let

f =
∑
ν

aν(X)Y ν ∈ A⟨X,Y ⟩, n ⩾ 1.

We now study how Weierstrass preparation applies to f(x, Y ) for x ∈ Rm, and
how this depends on x. Lemma 5.1 with A⟨X⟩ in the role of A gives d ⩾ 1 and
bµν ∈ O(A⟨X⟩) for |µ| < d and |ν| ⩾ d. As before we set for |µ| < d,

fµ := Y µ +
∑
|ν|⩾d

bµνY
ν ∈ A⟨X,Y ⟩, f =

∑
|µ|<d

aµfµ.

We order Nn lexicographically and for µ with |µ| < d we set

I(µ) := {λ : |λ| < d, λ < µ}, J(µ) := {λ : |λ| < d, λ > µ}, so

(∗) f =
∑

λ∈I(µ)

aλfλ + aµfµ +
∑

λ∈J(µ)

aλfλ.

Now fix µ with |µ| < d and introduce tuples

Uµ :=
(
Uλµ : λ ∈ I(µ)

)
, Vµ :=

(
Vλµ : λ ∈ J(µ)

)
of indeterminates, different from each other and from the Xi and Yj . Set

F̃µ :=
∑

λ∈I(µ)

Uλµfλ + fµ +
∑

λ∈J(µ)

tVλµfλ ∈ A⟨Uµ, Vµ, X, Y ⟩,

Fµ := F̃µ

(
Uµ, Vµ, X, Td(Y )

)
∈ A⟨Uµ, Vµ, X, Y ⟩.
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Note that for n = 1 we have Td(Y ) = Y , so Fµ = F̃µ.

Lemma 6.7. Fµ is regular of degree ℓ := µ1d
n−1 + · · ·+ µn in Yn, and so

Fµ = E · (Y ℓ
n +G1Y

ℓ−1
n + · · ·+Gℓ)

for a unit E of A⟨Uµ, Vµ, X, Y ⟩ and suitable G1, . . . , Gℓ ∈ A⟨Uµ, Vµ, X, Y
′⟩.

Here is a consequence of Lemma 6.7 for n = 1 (so Y = Y1):

Corollary 6.8. Let n = 1 and g(Y ) =
∑∞

j=0 cjY
j ∈ K⟨Y ⟩, g ̸= 0. Then:

(i) there is µ ∈ N with ci ≼ cµ ≻ cj whenever i ⩽ µ < j;
(ii) for the unique µ in (i) we have g(Y ) = c · r(Y ) · (Y µ + g1Y

µ−1 + · · ·+ gµ)
with c = cµ ∈ K×, r(Y ) ∈ R⟨Y ⟩×, and g1, . . . , gµ ∈ R.

Proof. We multiply g by an element of K× to arrange g ∈ R⟨Y ⟩. Then g(Y ) =
f(x, Y ) with x ∈ Rm and f = f(X,Y ) =

∑
j aj(X)Y j in A⟨X,Y ⟩, so cj = aj(x)

for all j. Lemma 5.1 with A⟨X⟩ in the role of A gives d ⩾ 1 and bij ∈ O(A⟨X⟩) for
i < d ⩽ j such that aj =

∑
i<d aibij for all j ⩾ d. Set

γ := min
i<d

v(ci), µ := max{i < d : v(ci) = γ}.

Then (i) holds for this µ: for µ < j, distinguish the cases j < d and j ⩾ d.
For (ii) we use the identities above for n = 1 and our f . The identity (∗) yields

f =
∑

i<µ aifi + aµfµ +
∑

µ<i<d aifi. Substituting x for X and factoring out

c := cµ = aµ(x) (possible because c ̸= 0) gives

c−1g(Y ) =
∑
i<µ

(ci/c)fi(x, Y ) + fµ(x, Y ) +
∑

µ<i<d

(ci/c)fi(x, Y ),

so for u :=
(
ci/c : i < µ

)
∈ Rµ and v :=

(
ci/tc : µ < i < d

)
∈ Rd−1−µ we have

c−1g(Y ) = Fµ(u, v, x, Y ). Now applying Lemma 6.7 for n = 1 shows that (ii) holds
with r(Y ) = E(u, v, x, Y ) and gi = Gi(u, v, x) for i = 1, . . . , µ. □

Note that the proof above uses in a crucial way that O(R) = tR.

Corollary 6.9. Let R∗ be an A-ring extending R, and suppose y ∈ R∗ is not
integral over R. Then R⟨y⟩ has the following properties, with n = 1 in (i):

(i) the morphism g(Y ) 7→ g(y) : R⟨Y ⟩ → R⟨y⟩ of A-rings is an isomorphism;
(ii) R⟨y⟩ is a domain but not a valuation ring;
(iii) inside the ambient field Frac(R⟨y⟩) we have R⟨y⟩ ⊈ K(y).

Proof. For (ii), use that Y /∈ tR⟨Y ⟩ and t /∈ Y R⟨Y ⟩. For (iii), if chark ̸= 2, then
the polynomial Z2 − (1 + ty) has a zero in R⟨y⟩ by Corollary 4.16, but has no zero
in K(y). If chark = 2, use instead the polynomial Z3 − (1 + ty). □

We return to our f(X,Y ) ∈ A⟨X,Y ⟩ with n ⩾ 1. To find out how Weierstrass
preparation for f(x, Y ) depends on x ∈ Rm, we now introduce the quantifier-free
LA
≼-formulas Z(X) and Sµ(X) (for |µ| < d) in the variables X:

Z(X) :=
∧

|µ|<d

aµ(X) = 0,

Sµ(X) := aµ(X) ̸= 0 ∧
( ∧
λ∈I(µ)

aλ(X) ≼ aµ(X)
)
∧
( ∧
µ∈J(µ)

aλ(X) ≺ aµ(X)
)
.
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Lemma 6.10. For the LA
≼-structure R we have the following:

(i) for all x ∈ Rm, Z(x) holds or Sµ(x) holds for some µ with |µ| < d;
(ii) suppose x ∈ Rm, |µ| < d, and Sµ(x) holds; so uλµ := aλ(x)/aµ(x) ∈ R for

λ ∈ I(µ) and vλµ := aλ(x)/taµ(x) ∈ R for λ ∈ J(µ). Then with

uµ :=
(
uλµ : λ ∈ I(µ)

)
, vµ :=

(
vλµ : λ ∈ J(µ)

)
,

and E,G1, . . . , Gℓ as in Lemma 6.7 we have

f
(
x, Td(Y )

)
= aµ(x)Fµ(uµ, vµ, x, Y ) in R⟨Y ⟩

and Fµ(uµ, vµ, x, Y ) equals, in R⟨Y ⟩, the product

E(uµ, vµ, x, Y ) ·
(
Y ℓ
n +G1(uµ, vµ, x, Y

′)Y ℓ−1
n + · · ·+Gℓ(uµ, vµ, x, Y

′)
)
.

We can now prove a converse of Lemma 5.4:

Lemma 6.11. Suppose x ∈ Rm and f(x, y) = 0 for all y ∈ Rn. Then f(x, Y ) = 0.

Proof. If Z(x) holds, then aν(x) = 0 for all ν, that is, f(x, Y ) = 0. Next assume
|µ| < d and Sµ(x) ̸= 0. Then by (ii) of Lemma 6.10 we have a monic polynomial
in R[Yn] vanishing identically on R. This is impossible as R is infinite. □

Corollary 6.12. If g ∈ R⟨Y ⟩ and g(y) = 0 for all y ∈ Rn, then g = 0.

By the last corollary, the map

K⟨Y ⟩ → ring of K-valued functions on Rn

that assigns to each g ∈ K⟨Y ⟩ the function y 7→ g(y) on Rn is an injective morphism
of K-algebras.

Consequences for K⟨Y ⟩ of Weierstrass division. For an algebraic closureKalg

of K, the integral closure Ralg of R in Kalg is the unique valuation ring of Kalg

dominating R, and has a unique A-analytic structure extending that of R.
More generally, we fix below an algebraically closed valued field extension Ka of

K (not necessarily an algebraic closure of K), whose valuation ring Ra is equipped
with an A-analytic structure extending that of R. This gives rise to K⟨Y ⟩ ⊆ Ka⟨Y ⟩
and for y ∈ (Ra)n we have the evaluation map g 7→ g(y) : Ka⟨Y ⟩ → Ka, which for
y ∈ Rn extends the previous evaluation map K⟨Y ⟩ → K.

Lemma 6.13. If E is a unit of R⟨Y ⟩, then E(y) ≍ 1 for all y ∈ (Ra)n.

This is clear. The next two lemmas follow easily from (∗) and Lemma 6.10.

Lemma 6.14. Let g(Y ) =
∑

ν cνY
ν ∈ R⟨Y ⟩, g ̸= 0. Then:

(i) there is a d ⩾ 1 and an index µ ∈ Nn with |µ| < d such that

cν ≼ cµ whenever |ν| < d, cν ≺ cµ whenever |ν| ⩾ d;
(ii) if cν ≺ 1 for all ν, then g(y) ≺ 1 for all y ∈ (Ra)n.

Lemma 6.15. Let g(Y ) ∈ K⟨Y ⟩̸=, n ⩾ 1. Then for some d ∈ N⩾1 and ℓ ∈ N,
(i) g

(
Td(Y )

)
= c · E(Y ) ·

(
Y ℓ
n + c1(Y

′)Y ℓ−1
n + · · ·+ cl(Y

′)
)

where c ∈ K×, E(Y ) ∈ R⟨Y ⟩ is a unit, and c1(Y
′), . . . , cℓ(Y

′) ∈ R⟨Y ′⟩.
(ii) R⟨Y ⟩ =

(
Y ℓ
n + c1(Y

′)Y ℓ−1
n + · · ·+ cl(Y

′)
)
R⟨Y ⟩+

∑
i<ℓR⟨Y ′⟩Y i

n and

K⟨Y ⟩ = g
(
Td(Y )

)
K⟨Y ⟩+

∑
i<ℓ

K⟨Y ′⟩Y i
n.
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Proof. For (ii), use a reduction to A⟨X,Y ⟩ and appeal to Lemma 3.4. □

Weierstrass division leads in the usual way to noetherianity of K⟨Y ⟩ and more:

Theorem 6.16. The integral domain K⟨Y ⟩ has the following properties:

(i) K⟨Y ⟩ is noetherian,

and for every proper ideal I of K⟨Y ⟩:
(ii) there is an injective K-algebra morphism K⟨Y1, . . . , Ym⟩ → K⟨Y ⟩/I with

m ⩽ n, making K⟨Y ⟩/I into a finitely generated K⟨Y1, . . . , Ym⟩-module;
(iii) there is y ∈ (Ra)n such that f(y) = 0 for all f ∈ I.

Proof. By induction on n. The case n = 0 being obvious, let n ⩾ 1. Recall that
for d ∈ N⩾1 we have the automorphism g(Y ) 7→ g

(
Td(Y )

)
of the K-algebra K⟨Y ⟩.

Let I be an ideal of K⟨Y ⟩, I ̸= {0}. Take a nonzero g ∈ I. To show I is finitely
generated we apply an automorphism as above and use Lemma 6.15 to arrange
g = Y ℓ

n + c1(Y
′)Y ℓ−1

n + · · ·+ cℓ(Y
′) with ℓ ∈ N, c1, . . . , cℓ ∈ R⟨Y ′⟩, and

R⟨Y ⟩ = gR⟨Y ⟩+
∑
i<ℓ

R⟨Y ′⟩Y i
n, K⟨Y ⟩ = gK⟨Y ⟩+

∑
i<ℓ

K⟨Y ′⟩Y i
n.

For ℓ = 0 this means g = 1, and we are done, so assume ℓ ⩾ 1. Then the in-
clusion K⟨Y ′⟩ → K⟨Y ⟩ followed by the canonical map K⟨Y ⟩ → K⟨Y ⟩/(g) makes
K⟨Y ⟩/(g) a K⟨Y ′⟩-module that is generated by the images of the Y i

n with i < ℓ.
Assuming inductively that K⟨Y ′⟩ is noetherian, it follows that K⟨Y ⟩/(g) is noe-
therian as a K⟨Y ′⟩-module, and thus as a ring. Hence the image of I in K⟨Y ⟩/(g)
is finitely generated, say by the images of g1, . . . , gk ∈ I, k ∈ N. Then I is gen-
erated by g, g1, . . . , gk. This proves noetherianity of K⟨Y ⟩. Let now I also be
proper, that is, 1 /∈ I, and set I ′ := I ∩ K⟨Y ′⟩. The natural K-algebra embed-
ding K⟨Y ′⟩/I ′ → K⟨Y ⟩/I makes K⟨Y ⟩/I a finitely generated K⟨Y ′⟩/I ′-module by
the above. Assuming inductively that (ii) holds for n − 1, K⟨Y ′⟩, I ′ instead of
n,K⟨Y ⟩, I yields (ii). For (iii) we can arrange that I is a maximal ideal of K⟨Y ⟩.
Then in (ii) we have m = 0, so K⟨Y ⟩/I is finite-dimensional as a vector space
over K, hence algebraic over K as a field extension of K. This gives a K-algebra
morphism ϕ : K⟨Y ⟩ → Ka with kernel I and ϕ(K⟨Y ⟩) algebraic over K. We set
y := (y1, . . . , yn) =

(
ϕ(Y1), . . . , ϕ(Yn)

)
∈ (Ka)n. We claim that ϕ(R⟨Y ⟩) ⊆ Ra (and

thus ϕ(R⟨Y ⟩) is integral over R).
Using ϕ(g) = 0 gives ϕ(R⟨Y ⟩) =

∑
i<ℓ ϕ(R⟨Y ′⟩)yin. Since I ′ is a maximal ideal of

K⟨Y ′⟩ we can assume inductively that ϕ(R⟨Y ′⟩) ⊆ Ra, so ϕ(R⟨Y ⟩) ⊆
∑

i<ℓR
ayin.

Now ϕ(g) = 0 means

yℓn + ϕ
(
c1(Y

′)
)
yℓ−1
n + · · ·+ ϕ

(
cℓ(Y

′)
)

= 0,

with ϕ
(
cj(Y

′)
)
∈ Ra for j = 1, . . . , ℓ. Hence yn ∈ Ra, which proves the claim.

Therefore y ∈ (Ra)n, and by Corollary 4.9 the restriction of ϕ to a map R⟨Y ⟩ → Ra

is a morphism of A-rings. Thus for f(Y ) ∈ R⟨Y ⟩ we have ϕ
(
f(Y )

)
= f(y), in

particular, f(y) = 0 for all f ∈ I. □

7. Immediate A-Extensions

The study of immediate extensions of valued fields plays a key role in proving AKE-
results via model theory and valuation theory. We try to follow this pattern. By
Lemma 4.3 and Corollary 6.5, the case of algebraic immediate extensions is under
control (at least in the equicharacteristic 0 case), so we are left with proving that a
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pseudocauchy sequence of transcendental type “generates” an immediate extension.
The problem is that the valuation ring of such an extension should now be an A-
ring, and thus closed under many more operations than in the non-analytic setting.
In this section we show how to overcome this problem. This section uses only the
material of Section 6 that precedes Lemma 6.10.

Below we assume some familiarity with [13, Section 4]; when using a result from
those lecture notes we shall indicate the specific reference.

We continue with the previously set assumptions on A and R: A is noetherian
with an ideal O(A) ̸= A such that

⋂
e O(A)e = {0} and A is O(A)-adically complete;

R is a viable valuation A-ring. We fix t ∈ O(A) with O(R) = tR, and adopt the
notations and terminology concerning R and its fraction field K from Section 6,
with the valuation v : K× → Γ on K such that R = {a ∈ K : va ⩾ 0}, so vt is the
least positive element of Γ. For any valued field extension L of K we let ΓL ⊇ Γ be
the value group of L and denote the valuation of L also by v, so that v : L× → ΓL

extends v : K× → Γ.
By [13, Lemma 4.3] and the remark following its proof, any pc-sequence in K

has a pseudolimit in some elementary LA
≼-extension of K; any such extension is an

A-extension of K whose valuation A-ring inherits the conditions we imposed on R.

Immediate A-extensions generated by a pseudocauchy sequence. In this
subsection L is an A-extension of K. Thus the valuation A-ring S of L extends the
A-ring R and dominates R. We also view any subfield F of L as a valued subfield
of L, and thus as a valued field extension of K if K ⊆ F .

With pc abbreviating pseudocauchy, let (aρ) be a pc-sequence in K of transcen-
dental type over K, with all aρ ∈ R, and with pseudolimit a ∈ L. Then a ∈ S, a is
transcendental over K, and the valued subfield K(a) of L is an immediate extension
of K, by [13, Theorem 4.9]. But the valuation ring of K(a) does not contain R⟨a⟩
by Corollary 6.9, and so is not A-closed in S.

Is there a valued subfield Ka ⊇ K(a) of L that is an immediate extension of K
and whose valuation ring Ra is A-closed in S? Such Ra must contain R⟨a⟩, but
has to be strictly larger, since R⟨a⟩ is not a valuation ring, by Corollary 6.9.

To answer the question above affirmatively we proceed as follows. Take an index
ρ0 such that for ρ > ρ0,

a = aρ + tρuρ, tρ ∈ K×, tρ ≺ 1, uρ ∈ K(a), uρ ≍ 1,

and v(tρ) is strictly increasing as a function of ρ > ρ0. Then for indices σ > ρ > ρ0
we have R[uρ] ⊆ R[uσ], and thus

R⟨a⟩ ⊆ R⟨uρ⟩ ⊆ R⟨uσ⟩.

This yields an A-closed subring Ra :=
⋃

ρ>ρ0
R⟨uρ⟩ of S. Note that Ra does not

change upon increasing ρ0, and the next proposition shows more: as the notation
suggests, Ra depends only on R and a, not on (aρ).

Proposition 7.1. The subring Ra of S has the following properties:

(i) the valued subfield Ka := Frac(Ra) of L is an immediate extension of K;
(ii) Ra is the least A-closed subring of S, with respect to inclusion, that contains

R[a] and is a valuation ring dominated by S;
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Proof. Let P ∈ K[Y ] \ K where n = 1, so Y = Y1. Let I be the set of i in
{1, . . . ,degP} with P(i)(Y ) ̸= 0. Then I ̸= ∅ and for all ρ > ρ0,

P (a) = P (aρ) +
∑
i∈I

P(i)(aρ)(a− aρ)
i = P (aρ) +

∑
i∈I

tiρP(i)(aρ)u
i
ρ.

The proof of [13, Proposition 4.7] gives i0 ∈ I such that, eventually,

for all i ∈ I \ {i0}, ti0ρ P(i0)(aρ) ≻ tiρP(i)(aρ),

P (a)− P (aρ) ∼ ti0ρ P(i0)(aρ),

and v
(
ti0ρ P(i0)(aρ)

)
= v

(
P (a) − P (aρ)

)
is eventually strictly increasing. Now (aρ)

is of transcendental type over K, so v
(
P (aρ)

)
is eventually constant, and thus

P (aρ) ≻ P (a)− P (aρ), eventually. Thus eventually,

P (a) = P (aρ) ·
(
1 +

∑
i∈I

tiρP(i)(aρ)

P (aρ)
uiρ

)
∈ P (aρ) · (1 + tR⟨uρ⟩).

Now suppose Q(Y ) ∈ K[Y ]̸=. Then likewise we have for j = 1, . . . ,degQ that
eventually 0 ̸= Q(aρ) ≻ tjρQ(j)(aρ), so eventually

Q(a) = Q(aρ) ·
(
1 +

degQ∑
j=1

tjρQ(j)(aρ)

Q(aρ)
ujρ

)
∈ Q(aρ) · (1 + tR⟨uρ⟩).

Therefore, if P (a) ≼ Q(a), then eventually
P (aρ)
Q(aρ)

∈ R, and so eventually

P (a)

Q(a)
∈ P (aρ)

Q(aρ)
· (1 + tR⟨uρ⟩) ⊆ R · (1 + tR⟨uρ⟩) ⊆ R⟨uρ⟩.

Thus the valuation ring of the valued subfield K(a) of L is contained in Ra. Now
we use the reduction to polynomials from Corollary 6.8(ii) to the effect that for g, h
in R⟨Y ⟩ with h ̸= 0, if g(a) ≼ h(a), then g(a)/h(a) ∈ Ra. Thus the valuation ring
of the valued subfield Frac(R⟨a⟩) of L is contained in Ra, and it also follows from
the last display that Frac(R⟨a⟩) is an immediate extension of K.

Next, fix ρ > ρ0 and note that for σ > ρ we have

uρ = aσρ + tσρuσ, aσρ :=
aσ − aρ
tρ

∈ R, tσρ :=
tσ
tρ
,

and (aσρ)σ>ρ is a pc-sequence in K and of transcendental type over K such that

aσρ ⇝
a−aρ

tρ
= uρ. Hence the above arguments applied to uρ instead of a show that

Frac(R⟨uρ⟩) as a valued subfield of L is an immediate extension of K, and that the
valuation ring of Frac(R⟨uρ⟩) is contained in

⋃
σ>ρR⟨uσ⟩ = Ra. Taking the union

over all ρ > ρ0 and using Ra ⊆ S yields that Ra is the valuation ring of the valued
subfield Ka := Frac(Ra) of L, and that Ka is an immediate extension of K. This
proves (i) and also shows that S dominates Ra.

As to (ii), let R∗ be any A-closed subring of S containing R[a] such that R∗ is
a valuation ring dominated by S. Then clearly uρ ∈ R∗ for all ρ > ρ0, and thus
Ra ⊆ R∗. □

We keep (aρ) for now, and show that Ka is essentially unique:
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Corollary 7.2. Let L′ be an A-extension of K with valuation A-ring S′. Suppose
aρ ⇝ a′ ∈ S′, thus giving rise to Ra′ ⊆ Ka′ ⊆ L′. Then there is a unique isomor-
phism Ra → Ra′ of A-rings that is the identity on R and sends a to a′. It extends
to a valued field isomorphism Ka → Ka′ .

Proof. Using notations from the proof of Proposition 7.1 we have a′ = aρ + tρu
′
ρ

with u′ρ ∈ K(a′), u′ρ ≍ 1 for ρ > ρ0. That same proof and Corollary 6.9 yields for
all ρ > ρ0 a unique isomorphism R⟨uρ⟩ → R⟨u′ρ⟩ of A-rings that is the identity on
R and sends uρ to u′ρ. Moreover, for σ > ρ > ρ0 we have

uρ = aσρ + tσρuσ, u′ρ = aσρ + tσρu
′
σ,

and so the above isomorphism R⟨uσ⟩ → R⟨u′σ⟩ extends the above isomorphism
R⟨uρ⟩ → R⟨u′ρ⟩. Taking the union over all ρ > ρ0 yields an isomorphism Ra → Ra′

of A-rings that is the identity on R and sends a to a′. Any such isomorphism sends
uρ to u′ρ for ρ > ρ0, and this gives uniqueness. Now Ra and Ra′ are the valuation
rings of Ka and Ka′ , so this isomorphism Ra → Ra′ extends to an isomorphism
Ka → Ka′ of valued fields. □

Uniqueness of maximal immediate extensions over A. The results in this
subsection about maximal immediate A-extensions will not be used later, but are
included for their intrinsic interest. So far we did not restrict the characteristic of
k or K, but now we also assume:

Either char(k) = 0 (the equicharacteristic 0 case), or K as a valued field is finitely
ramified of mixed characteristic.

This is a well-known sufficient condition for an ordinary valued field to have an
essentially unique maximal immediate extension; see [13, 4.29]. We now adapt this
to our A-setting. A first consequence of the present assumptions is that K has
no proper algebraic immediate A-extension, by [13, Corollary 4.22]. Note that any
immediate A-extension of K inherits all the conditions we imposed so far on K. By
a maximal immediate A-extension of K we mean an immediate A-extension L of
K such that L has no proper immediate A-extension. The previous subsection, the
nonexistence of proper algebraic immediate A-extensions of K, and [13, Section 4]
yield for an immediate A-extension L of K that the following are equivalent:

(1) L is a maximal immediate A-extension of K,
(2) L is maximal as a valued field,
(3) L is spherically complete.

Corollary 7.3. K has a maximal immediate A-extension, and such an extension
is unique up to LA

≼-isomorphism over K.

Proof. This goes along the same lines as the proof for ordinary valued fields: First,
existence of a maximal immediate A-extension of K follows by Zorn and Krull’s
cardinality bound, like [13, Corollary 4.14]. As to uniqueness, using Corollary 7.2
this goes as in the proof of [13, Corollary 4.29]. □

Using Corollary 7.2 we obtain in the same way:

Corollary 7.4. Any maximal immediate A-extension of K can be embedded, as an
LA
≼-structure, into any |Γ|+-saturated A-extension of K.
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8. Truncation

The aim of this section is to prove an A-version of Kaplansky’s embedding theorem
from [23] “with truncation”. This section is not needed for the later AKE-results,
but is included for its independent interest. Returning to the Hahn field example
from the beginning of Section 4 we are given:

(1) a ring A0 with 1 ̸= 0,
(2) A = A0[[t]] with the norm specified there,
(3) a ring morphism ι : A0 → k into a field k,
(4) an ordered abelian group Γ with a distinguished element 1 > 0 (allowing

the possibility that there are γ ∈ Γ with 0 < γ < 1).

As in the example mentioned we use this to make the valuation ring k[[tΓ
⩾
]] of the

Hahn field K := k((tΓ)) into an A-ring.

Preserving truncation closedness. We refer to [14] for notations and termi-
nology concerning truncation in K. The A-closed subrings ι0(A) = ι(A0)[[t]] and

k[[t]] of k[[tΓ
⩾
]] are also truncation closed. This subsection uses the “Hahn field

example” from Section 4, but little else from the present paper.

Lemma 8.1. Let E be a truncation closed subring of k[[tΓ
⩾
]]. Then the A-closure

R of E in k[[tΓ
⩾
]] is also truncation closed.

Proof. We have ι0(A) = ι(A0)[[t]] ⊆ R, so E[ι0(A)] ⊆ R. Now ι0(A) is truncation
closed, hence E ∪ ι0(A) is as well, and so is E[ι0(A)] by [14, Corollary 2.5]. Thus
replacing E by E[ι0(A)] we arrange ι0(A) ⊆ E. Let F be a truncation closed subring
of R containing E such that F ̸= R; in view of [14, Corollary 2.6] and Zorn it suffices
to show that then some element of R \ F has all its proper truncations in F . Let
n be minimal such that there are y ∈ Fn and f ∈ A⟨Y ⟩ with f(y) /∈ F . Because of
ι0(A) ⊆ F we have n ⩾ 1. With the lexicographic ordering on n-tuples (λ1, . . . , λn)
of ordinals we take y ∈ Fn with minimal

(
o(y1), . . . , o(yn)

)
such that f(y) /∈ F for

some f ∈ A⟨Y ⟩. Fix such f ; it suffices to show that then all proper truncations of
f(y) lie in F . Minimality of n gives y1, . . . , yn ̸= 0, so o(y1), . . . , o(yn) ⩾ 1.

Let c be a proper truncation of f(y). Take γ ∈ {1} ∪ supp y1 ∪ · · · ∪ supp yn
and a positive integer N such that Nγ > supp c. We first consider the case γ = 1.
Then f(Y ) = P (Y ) + tNQ(Y ) with P (Y ) ∈ A[Y ] and Q(Y ) ∈ A⟨Y ⟩. Hence
f(y) = P (y) + tNQ(y) with v

(
tNQ(y)

)
⩾ Nγ, so c is a truncation of P (y), and as

P (y) ∈ F and F is truncation closed, this gives c ∈ F .
Next assume γ ∈ supp yn. (For any j ∈ {1, . . . , n − 1} the case γ ∈ supp yj is

similar.) Then yn = yn0 + z with yn0, z ∈ F and supp yn0 < γ, v(z) = γ. We have
f0, . . . , fN−1 ∈ A⟨Y ⟩, g(Y,Z) ∈ A⟨Y,Z⟩ such that

f(Y1, . . . , Yn−1, Yn + Z) =
∑
i<N

fi(Y )Zi + g(Y,Z)ZN , so

f(y) =
∑
i<N

fi(y1, . . . , yn−1, yn0)z
i + ε, v(ε) ⩾ Nγ.

Thus c is a truncation of d :=
∑

i<N fi(y1, . . . , yn−1, yn0)z
i. Since o(yn0) < o(yn),

the minimality of
(
o(y1), . . . , o(yn)

)
gives fi(y1, . . . , yn−1, yn0) ∈ F for all i < N ,

so d ∈ F . Since F is truncation closed, this gives c ∈ F . □
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Corollary 8.2. Let R be an A-closed subring of k[[tΓ
⩾
]] that is also truncation

closed, and let B ⊆ k[[tΓ
⩾
]] be such that all proper truncations of all b ∈ B lie in

R. Then the A-closure R⟨B⟩ of R ∪B in k[[tΓ
⩾
]] is truncation closed.

Proof. By [14, Corollary 2.6] the subring R[B] is truncation closed, so Lemma 8.1
applied to E := R[B] gives the desired result. □

A-embedding with truncation. In addition to (1)–(4) above we now assume:

(5) the ring A0 is noetherian;
(6) chark = 0;
(7) there is no γ ∈ Γ with 0 < γ < 1.

By (5) and [26, Theorem 3.3]) the ring A = A0[[t]] is noetherian. The assumptions
on A and K made in Section 7 are thus satisfied, with t := t1. In Section 6 we
considered A-extensions of the “base” structure K, but below K plays the opposite
role of an ambient structure.

In the next lemma and corollary E ⊇ k is a truncation closed valued subfield of

K whose valuation ring RE is A-closed in k[[tΓ
⩾
]]. Thus k[t] ⊆ E, and E is an

LA
≼-substructure of K. Note also that t∆ ⊆ E with ∆ := v(E×) ⊆ Γ.

Let (aρ) be a divergent pc-sequence in E with all aρ ∈ RE . Since char(k) = 0,
E is algebraically maximal by [13, 4.22] and Lemma 4.3. Hence (aρ) is of transcen-

dental type over E. Since K is spherically complete, aρ ⇝ a for some a ∈ k[[tΓ
⩾
]];

we choose such a so that o(a) is minimal. With E,K in the role of K,L earlier
in this section we obtain the valued subfield Ea ⊇ E(a) of K whose valuation ring

REa
= (RE)a is uniquely determined by RE and a within k[[tΓ

⩾
]], as described in

Proposition 7.1(ii). Recall also that Ea is an immediate extension of E.

Lemma 8.3. Ea is truncation closed.

Proof. We first show that all proper truncations of a lie in E. We have a =
∑

λ cλt
γλ

where λ ranges over all ordinals < o(a), all cλ ∈ k× and (γλ) is a strictly increasing
enumeration of supp a. Consider a proper truncation a|γ of a, with γ ∈ supp a.
Then γ = v(a− a|γ) < v(a− aρ) for some ρ, so a|γ is a truncation of such aρ, and
therefore a|γ ∈ RE , as claimed.

It follows that supp a has no largest element: if γ = γµ were the largest element,
then a|γ ∈ E and a − a|γ = cµt

γ ∈ Ea, so γ ∈ v(E×
a ) = v(E×), hence cµt

γ ∈
E, contradicting a /∈ E. This yields a divergent pc-sequence (a|γλ

)λ in E with
pseudolimit a, and we now use it instead of (aρ) to describe Ea (which after all
does not depend on the particular approximating pc-sequence). We have

a = a|γλ
+ tγλuλ, uλ :=

∑
µ⩾λ

cµt
γµ−γλ .

All proper truncations of all uλ lie clearly in RE , so all RE⟨uλ⟩ are truncation
closed by Corollary 8.2, hence so is REa

=
⋃

λRE⟨uλ⟩, and thus Ea as well. □

Corollary 8.4. Let F be an immediate A-extension of E. Then there exists an
LA
≼-embedding F → K over E with truncation closed image.

Proof. Let RF be the valuation ring of F and f ∈ RF \ RE . Take a divergent
pc-sequence (aρ) in E with all aρ ∈ RE such that aρ ⇝ f . Then (aρ) is of transcen-
dental type over E. Thus with E,F, f in the role of K,L, a earlier in this section
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we obtain the valued subfield Ef ⊇ E(f) of F whose valuation ring REf
is A-closed

in RF . Using Zorn it suffices to show that then there is an LA
≼-embedding Ef → K

over E with truncation closed image.

Lemma 8.3 and the remarks preceding it provide a pseudolimit a ∈ k[[tΓ
⩾
]]

of (aρ) and a truncation closed valued subfield Ea ⊇ E(a) of K whose valuation

ring REa
is A-closed in k[[tΓ

⩾
]]. By Corollary 7.2 this gives a unique isomorphism

REf
→ REa of A-rings that is the identity on RE sending f to a. It extends to an

LA
≼-embedding F → K over E with truncation closed image Ea. □

9. Quantifier-free 1-types

Functions given by one-variable terms in the language LA,K
≼,D are piecewise given

by analytic functions on annuli. A precise statement of this is Proposition 9.10,
which is essential for all that follows. The requisite notions of “separated A-analytic
structure” and “annulus” come from [9, 7] from which we also borrow results.

We keep the assumptions from Section 6 on A, R, t, K, so R is a viable A-valuation
ring, t ∈ ι0(A), O(R) = tR. For now we fix an algebraically closed A-extension Ka

ofK with A-valuation ringRa. ThusR, K, Ra, Ka are LA
≼,D-structures as specified

earlier. Let Kalg be the algebraic closure of K in Ka. With Corollary 6.5 we make
Kalg an A-extension of K by taking as its A-valuation ring the integral closure Ralg

of R in Kalg; note that Ralg = Ra ∩Kalg.

Recall the language LA,K
≼,D introduced in Section 6 and the sublanguage L≼ (for

valued fields) of LA
≼,D; augmenting L≼ with names for the elements of K gives the

sublanguage LK
≼ of LA,K

≼,D . The L≼-theory of algebraically closed valued fields with

nontrivial valuation has quantifier elimination [13, Theorem 3.29], so

(⋆) Kalg is an elementary L≼-substructure of Ka.

Separated A-analytic structures. A separated A-analytic structure on R is a
family (ιm,n) of ring morphisms

ιm,n : A⟨X1, . . . , Xm⟩[[Y1, . . . , Yn]] → ring of R-valued functions on Rm × O(R)n

indexed by the pairs (m,n) ∈ N× N, such that:

(S1) for (x1, . . . , xm, y1, . . . , yn) ∈ Rm × O(R)n,

ιm,n(Xk)(x1, . . . , xm, y1, . . . , yn) = xk for k = 1, . . . ,m,

ιm,n(Yl)(x1, . . . , xm, y1, . . . , yn) = yl for l = 1, . . . , n;

(S2) for f ∈ A⟨X1, . . . , Xm⟩[[Y1, . . . , Yn]] ⊆ A⟨X1, . . . , Xm, Xm+1⟩[[Y1, . . . , Yn]]
and (x1, . . . , xm, xm+1, y1, . . . , yn) ∈ Rm+1 × O(R)n we have

ιm,n(f)(x1, . . . , xm, y1, . . . , yn) = ιm+1,n(f)(x1, . . . , xm, xm+1, y1, . . . , yn),

and similarly with the Y -variables;
(S3) for m ⩾ 1, f ∈ A⟨X1, . . . , Xm⟩[[Y1, . . . , Yn]],

g := f(Xm+1, . . . , X2m, Y1, . . . , Yn) ∈ A⟨X1, . . . , X2m⟩[[Y1, . . . , Yn]],

and (x1, . . . , x2m, y1, . . . , yn) ∈ R2m × O(R)n we have:

ιm,n(f)(xm+1, . . . , x2m, y1, . . . , yn) = ι2m,n(g)(x1, . . . , x2m, y1, . . . , yn),

and similarly with the Y -variables.
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Remark. Since R is viable, a separated A-analytic structure on R gives a separated
analytic A-structure on K in the sense of [9, Definition 2.7]. Compared to [9], we
include an extra axiom (S3), parallel to (A3) from Section 4. We believe (S3) is
needed for a proof of [9, Proposition 2.8], just as (A3) in proving Lemma 4.1.

Annuli and the corresponding rings of analytic functions. The A-analytic
structure of R induces a separated A-analytic structure on R as follows. For
f(X,Y ) ∈ A⟨X⟩[[Y ]] we have

f̃(X,Y ) := f(X, tY ) ∈ A⟨X,Y ⟩,

and we associate to the series f the function f : Rm × O(R)n → R given by

f(x, ty) := f̃(x, y) (x ∈ Rm, y ∈ Rn).

It is straightforward to check that the axioms (S1), (S2), (S3) are satisfied. Hence
by the remark above, [9, 7] applies to our setting; see [7, 4.4(1)].

In the rest of this section we borrow terminology and results from [9, 7]. At
the start of [7, Section 5] the authors impose a condition that in our setting would
correspond to ker(ι0) = {0}. Nevertheless, we can use their work by replacing
A with A/ker(ιo) in view of Corollary 5.3 for I = ker(ι0). A more important
difference is that [7] takes Ka := Kalg as the ambient structure, whereas for later
model-theoretic use we allow Ka to be any algebraically closed A-extension of K.
Fortunately, the results we need from [7] about Kalg will readily transfer to our Ka:
it helps that Ka as a valued field is an elementary extension of Kalg. In the rest
of this section we fix an indeterminate Z, also to be used as a syntactic variable in

LA,K
≼,D-formulas.

Adopting [7, Definition 5.1.1], an R-annulus in Ka, or just R-annulus if Ka is
clear from the context, is a set F ⊆ Ka given by monic polynomials p0, . . . , pn in
R[Z], irreducible in K[Z], l0, . . . , ln ∈ N⩾1, and π0, . . . , πn ∈ R \ {0}, as follows:

F = {z ∈ Ka : pl00 (z) ≼ π0, p
l1
1 (z) ≽ π1 . . . , p

ln
n (z) ≽ πn}

where the “holes” {z ∈ Ka : plii (z) ≺ πi}, 1 ⩽ i ⩽ n, are pairwise disjoint

and contained in {z ∈ Ka : pl00 (z) ≼ π0}. Such F is said to be given by

(pl00 , . . . , p
ln
n ;π0, . . . , πn). Thus Ra is an R-annulus given by (Z; 1) (with n = 0).

With respect to the valuation topology on Ka, every R-annulus is a nonempty
open-and-closed subset of Ra, and so infinite without any isolated point. Note also
that every R-annulus is defined in Ka by a quantifier-free LK

≼ -formula ϕ(Z).

Remark. In [7, Definition 5.1.1], with Ka = Kalg, the above notion of R-annulus
is less general than that of K-annulus; there our R-annuli, for Ka = Kalg, would
be among closed K-annuli.

In what follows we deviate from the convention that Y = (Y1, . . . , Yn), and instead
use Y = (Y0, . . . , Yn) with an extra indeterminate Y0. Let the R-annulus F be given

by (pl00 , . . . , p
ln
n ;π0, . . . , πn) as above, and consider the ideal

I(F ) :=
(
pl00 (Z)− π0Y0, p

l1
1 (Z)Y1 − π1, . . . , p

ln
n (Z)Yn − πn

)
of K⟨Z, Y ⟩. Define ψ : F → (Ra)2+n by

ψ(z) :=
(
z,

pl00 (z)

π0
,

π1

pl11 (z)
, . . . ,

πn

plnn (z)

)
.
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It is routine to verify that

ψ(F ) = Z
(
I(F )

)
:= {(z, y) ∈ (Ra)2+n : g(z, y) = 0 for all g ∈ I(F )}.

Let R(F ) be the K-algebra of Ka-valued functions on F . Then

ψ∗ : K⟨Z, Y ⟩ → R(F ), ψ∗(g)(z) := g
(
ψ(z)

)
for g ∈ K⟨Z, Y ⟩, z ∈ F,

is a K-algebra morphism. We set O(F ) := ψ∗(K⟨Z, Y ⟩
)
, a K-subalgebra of R(F ).

We refer to O(F ) as the ring of analytic functions on F . Clearly, I(F ) ⊆ ker(ψ∗),
and if Ka = Kalg, then I(F ) = ker(ψ∗) by [7, Corollary 5.6.6], so

K⟨Z, Y ⟩/I(F ) ∼= O(F ) as K-algebras.

(For Ka = Kalg the K-algebras K⟨Z, Y ⟩/I(F ) and O(F ) are denoted by O†
K(F )

and Oσ
K(F ) in [7, Definition 5.1.4].)

Of course, I(F ) depends on how F is given. However, O(F ) is independent of

the choice of the tuple (pl00 , . . . , p
lL
L ;π0, . . . , πL) that gives F , by [7, 5.3.3]. Strictly

speaking, we don’t need this rather subtle fact, since any R-annulus F below is
assumed to come with a tuple that gives F , with O(F ) defined accordingly.

Example. For the R-annulus F = Ra given by (Z; 1) we have O(F ) = K⟨Z⟩ where
g ∈ K⟨Z⟩ is identified with the function z 7→ g(z) : Ra → Ka.

Univariate functions given by terms involving restricted division. For
our AKE-theory for valuation A-rings we need to understand what data about
z ∈ Ka determine the isomorphism type of the A-extension Kz over K. Section 7
basically settles this issue for the case when Kz is an immediate A-extension. For
the general case we exploit below results from [7]. Let F be an R-annulus given

by (pl00 , . . . , p
ln
n ;π0, . . . , πn) with corresponding map ψ : F → (Ra)2+n. We can

represent any function f ∈ O(F ) by an LA,K
≼,D-term τ(Z): Let f = ψ∗(g) with

g ∈ K⟨Z, Y ⟩. Take c ∈ K×, x ∈ Rm, and G ∈ A⟨X,Z, Y ⟩, X = (X1, . . . , Xm),
such that g = g(Z, Y ) = c · G(x, Z, Y ), and thus g(z, y) = c · G(x, z, y) for all
(z, y) ∈ (Ra)2+n. Then for all z ∈ F ,

f(z) = g
(
ψ(z)

)
= c ·G

(
x, z,D

(
pl00 (z), π0

)
, D

(
π1, p

l1
1 (z)

)
, . . . , D

(
πL, p

ln
n (z)

))
.

Lemma 9.1. For each polynomial p(Z) ∈ K[Z] the function z 7→ p(z) : F → Ka

belongs to O(F ). If f ∈ O(F ) and f(z) ̸= 0 for all z ∈ F , then f is a unit in the
ring O(F ). If r(Z) ∈ K(Z) has no pole in F , then the function

z 7→ r(z) : F → Ka

belongs to O(F ).

Proof. The first claim follows from K[Z] ⊆ K⟨Z⟩. For the second claim, suppose
f ∈ O(F ) and f(z) ̸= 0 for all z ∈ F . Take g ∈ K⟨Z, Y ⟩ such that f = ψ∗(g). Then
g has no zero on ψ(F ) = Z(I(F )). Hence 1 ∈ gK⟨Z, Y ⟩+I(F ) by Theorem 6.16(iii).
Take h ∈ K⟨Z, Y ⟩ with 1 ∈ gh+I(F ). Then fψ∗(h) = 1 in O(F ). The claim about
r(Z) ∈ K(Z) follows from the first claim and the second claim. □

Next we transfer facts from [7], where Kalg is the ambient A-extension, to our Ka.
For LK

≼,D-definable P ⊆ Ka, let Palg ⊆ Kalg be the corresponding definable subset of

Kalg: any LK
≼,D-formula defining P inKa defines Palg inKalg (and P ∩Kalg = Palg).

To apply this to annuli, note that Falg is the R-annulus in Kalg given by the

same tuple (pl00 , . . . , p
ln
n ;π0, . . . , πn), with I(F ) = I(Falg), and the corresponding
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map ψalg : Falg → R2+n
alg is the restriction of ψ to Falg. This also yields the K-

algebra O(Falg) of analytic functions on Falg (in the sense of Kalg as the ambient
A-extension of K).

Lemma 9.2. For f ∈ O(F ), let falg : Falg → Kalg be defined by falg(z) = f(z) for
z ∈ Falg. This yields an isomorphism of K-algebras:

f 7→ falg : O(F ) → O(Falg).

Proof. Let f ∈ O(F ) and take g ∈ K⟨Z, Y ⟩ such that f = ψ∗(g). Then for z ∈ Falg

we have falg(z) = f(z) = g(ψ(z)) = g(ψalg(z)), so falg = ψ∗
alg(g) ∈ O(Falg). This

also shows surjectivity of f 7→ falg : O(F ) → O(Falg). With f = ψ∗(g) as above,
if falg = 0, then ψ∗

alg(g) = 0, so g ∈ ker(ψ∗
alg) = I(F ) ⊆ ker(ψ), hence f = 0. □

The proof of this lemma yields I(F ) = ker(ψ∗) (without assuming Ka = Kalg).

Lemma 9.3. For g ∈ K⟨Z, Y ⟩ and f = ψ∗(g) ∈ O(F ) the following are equivalent:

(i) f(z) ≼ 1 for all z ∈ F ;
(ii) f(z) ≼ 1 for all z ∈ Falg;
(iii) for some d ∈ N⩾1 and h1, . . . , hd ∈ R⟨Z, Y ⟩ we have

gd + h1g
d−1 + h2g

d−2 + · · ·+ hd ∈ I(F ).

Proof. The implications (i)⇒(ii) and (iii)⇒(i) are clear. As to (ii)⇒(iii), this holds
if Ka = Kalg by Proposition 6.16(ii) and [7, Proposition 5.2.12(b)]. Hence it holds
for our Ka by Lemma 9.2. □

By a very strong unit on F we mean a function f ∈ O(F ) such that f(z) ∼ 1 for
all z ∈ F ; cf. [7, Definition 5.1.4].

Lemma 9.4. Let f ∈ O(F ). Then there is a very strong unit u on F and a rational
function r ∈ K(Z) without pole in F such that f(z) = u(z)r(z) for all z ∈ F . In
particular, if f ̸= 0, then f has only finitely many zeros in F .

Proof. IfKa = Kalg, this is a consequence of the Mittag-Leffler Decomposition from
[7, Theorem 5.5.2]. By Lemma 9.2 this yields u ∈ O(F ) and r ∈ K(Z) without
pole in F such that ualg is a very strong unit on Falg and f(z) = u(z)r(z) for all
z ∈ Falg, and thus for all z ∈ F by Lemma 9.1. It remains to show that u is a very
strong unit on F . Applying the above to u − 1 instead of f we have u∗ ∈ O(F )
and r∗ ∈ K(Z) without pole in F such that u∗alg is a very strong unit on Falg and

ualg(z) − 1 = u∗alg(z)r
∗(z) for all z ∈ Falg. Then r∗(z) ≺ 1 for all z ∈ Falg, hence

for all z ∈ F . Lemma 9.2 gives u(z)− 1 = u∗(z)r∗(z) for all z ∈ F , and Lemma 9.3
yields u∗(z) ≼ 1 for all z ∈ F , hence u(z) ∼ 1 for all z ∈ F . □

The proof above also yields another useful fact:

Corollary 9.5. For u ∈ O(F ) we have the following equivalence:

u is a very strong unit on F ⇐⇒ ualg is a very strong unit on Falg.

Lemma 9.6. Let f1, . . . , fm ∈ O(F ) be such that f1(z), . . . , fm(z) ≼ 1 for all
z ∈ F . Then for G ∈ R⟨X⟩, X = (X1, . . . , Xm), the function

z 7→ G
(
f1(z), . . . , fm(z)

)
: F → Ra

belongs to O(F ).
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Proof. For i = 1, . . . ,m, take gi ∈ K⟨Z, Y ⟩ such that fi(z) = gi
(
ψ(z)

)
for all z ∈ F .

Lemma 9.3 gives for i = 1, . . . ,m a polynomial Pi = Pi(Z, Y,Xi) ∈ R⟨Z, Y ⟩[Xi]
over R⟨Z, Y ⟩, monic and of degree di ⩾ 1 inXi, such that Pi

(
Z, Y, gi(Z, Y )

)
∈ I(F ),

and thus Pi

(
z, y, gi(z, y)

)
= 0 for all (z, y) ∈ ψ(F ). Since elements of R⟨Z, Y,X⟩

are specializations of restricted power series over A, Lemma 3.5 gives in R⟨Z, Y,X⟩
an equality

G(X) =

m∑
i=1

qiPi + r, with q1, . . . , qm ∈ R⟨Z, Y,X⟩, r ∈ R⟨Z, Y ⟩[X].

Let z ∈ F ; so ψ(z) = (z, y) ∈ ψ(F ), y ∈ (Ra)1+n. Substituting in the equality
above (z, y) for (Z, Y ) and fi(z) for Xi and using Pi

(
z, y, gi(z, y)

)
= 0 we obtain

G
(
f1(z), . . . , fm(z)

)
= r

(
z, y, f1(z), . . . , fm(z)

)
.

Now r =
∑

j rj(Z, Y )Xj with j = (j1, . . . , jm) ranging over a finite subset of Nm and

all rj ∈ R⟨Z, Y ⟩. So r
(
z, y, f1(z), . . . , fm(z)

)
=

∑
j ψ

∗(rj)(z)f1(z)
j1 · · · fm(z)jm ,

which exhibits this function of z ∈ F as being in O(F ). □

Lemma 9.7. For any rational function r(Z) ∈ K(Z) the set {z ∈ Ra : r(z) ≼ 1}
is a finite union of R-annuli. (Here r(z) ≼ 1 includes z not being a pole of r.)

Proof. If Ka = Kalg, this can be shown along the lines of the proof of [9, Lemma
3.16]. It then holds for our Ka by (⋆). □

Lemma 9.8. If F ′ is an R-annulus and F ′ ∩F ̸= ∅, then F ′ ∩F is an R-annulus.

Proof. If Ka = Kalg, this holds by [7, Lemma 5.1.2 (iv)]. It then holds for our Ka

by (⋆). □

Lemma 9.9. Let F1 be an R-annulus, F1 ⊆ F , and f ∈ O(F ). Then f |F1
∈ O(F1).

Proof. Let F1 be given by (qe00 , . . . , q
em
m ; ρ0, . . . , ρm) with corresponding map

ψ1 : F1 → (Ra)2+m, ψ1(z) :=
(
z,
qe00 (z)

ρ0
,

ρ1
qe11 (z)

, . . . ,
ρm

qemm (z)

)
.

This also yields the corresponding ideal I(F1) of K⟨Z, V ⟩ where we use a tuple
V = (V0, . . . , Vm) of new indeterminates V0, . . . , Vm. Accordingly, ψ1 yields the
surjective K-algebra morphism ψ∗

1 : K⟨Z, V ⟩ → O(F1) with kernel I(F1). We
now define I to be the ideal of K⟨Z, V, Y ⟩ generated by I(F1) ⊆ K⟨Z, V ⟩ and
I(F ) ⊆ K⟨Z, Y ⟩. This yields the K-algebra morphism

ι : K⟨Z, V ⟩/I(F1) → K⟨Z, V, Y ⟩/I, g + I(F1) 7→ g + I (g ∈ K⟨Z, V ⟩).
The proof of [CL, Proposition 5.3.2] shows that ι is an isomorphism. For s in
K⟨Z, V, Y ⟩ we define s∗ : F1 → (Ra)3+m+n by

s∗(z) := s
(
z,
qe00 (z)

ρ0
,

ρ1
qe11 (z)

, . . . ,
ρm

qemm (z)
,
pl00 (z)

π0
,

π1

pl11 (z)
, . . . ,

πn

plnn (z)

)
,

so s∗(z) is s evaluated at a combination of ψ1(z) and ψ(z). Using I(F1) ⊆ kerψ∗
1

and I(F ) ⊆ kerψ∗ we see that for s ∈ I we have s∗(z) = 0 for all z ∈ F1.
Take g ∈ K⟨Z, Y ⟩ with f = ψ∗(g). Surjectivity of ι gives h ∈ K⟨Z, V ⟩ with

g − h ∈ I. It follows that for z ∈ F1 we have (g − h)∗(z) = g∗(z) − h∗(z) = 0.
For z ∈ F1 we have g∗(z) = ψ∗(g)(z) and h∗(z) = ψ∗

1(h)(z), so f(z) = ψ∗(g)(z) =
ψ∗
1(h)(z). Thus f |F1

= ψ∗
1(h) ∈ O(F1). □
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The next result for Ka := Kalg is close to [7, Theorem 5.5.3]; see also [8, A.1.10].
We give a complete proof because we require R-annuli where [loc. cit.] allows more
general annuli, and because the details are used to obtain Corollary 9.12.

Proposition 9.10. Let τ(Z) be an LA,K
≼,D-term. Then there are quantifier-free LK

≼ -

formulas ϕ1(Z), . . . , ϕn(Z), R-annuli F1, . . . , Fn, and f1 ∈ O(F1), . . . , fn ∈ O(Fn),
such that:

(i) Ra = ϕ1(R
a) ∪ · · · ∪ ϕn(Ra);

(ii) ϕj(R
a) ⊆ Fj and τ(z) = fj(z) for all z ∈ ϕj(R

a), for j = 1, . . . , n.

Proof. By induction on the complexity of τ = τ(Z). For τ the name of an element
of K or just the variable Z one can take n = 1, and make the obvious choices of
ϕ1, F1, f1. Next, given ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn as in the proposition, we
only need to replace each fj by −fj to make it work for −τ instead of τ .

Suppose τ = τ1+τ2. The inductive assumption gives quantifier-free LK
≼ -formulas

ϕ11(Z), . . . , ϕ1n1
(Z) and ϕ21(Z), . . . , ϕ2n2

(Z), R-annuli

F11, . . . , F1n1 , F21, . . . , F2n2 ,

and fij ∈ O(Fij) for i = 1, 2 and j = 1, . . . , ni such that

• Ra = ϕ11(R
a) ∪ · · · ∪ ϕ1n1(R

a) = ϕ21(R
a) ∪ · · · ∪ ϕ2n2(R

a);
• ϕij(R

a) ⊆ Fij and τi(z) = fij(z) for all z ∈ ϕij(R
a).

Let 1 ⩽ j1 ⩽ n1 and 1 ⩽ j2 ⩽ n2 and set ϕj1j2 := ϕ1j1∧ϕ2j2 and Fj1j2 := F1j1∩F2j2 .
Then ϕj1j2(R

a) ⊆ Fj1j2 and τ(z) = f1j1(z) + f2j2(z) for z ∈ ϕj1j2(R
a). Thus

listing the nonempty Fj1j2 as F1, . . . , Fn, the corresponding f1j1 |Fj1j2
+f2j2 |Fj1j2

as

f1, . . . , fn, and the corresponding ϕj1j2 as ϕ1, . . . , ϕn yields (i) and (ii). (This uses
Lemmas 9.8 and 9.9.) The case τ = τ1 · τ2 is handled in the same way.

Next, suppose τ = D(τ1, τ2), and let the ϕij , Fij , fij be as before and also define
ϕj1j2 and Fj1j2 as before. Consider one such pair j = (j1, j2) with Fj1j2 ̸= ∅ and
set ϕj = ϕj1j2 and Fj = Fj1j2 . If f1j1 = 0 or f2j2 = 0, then D(τ1, τ2)(z) = 0
for all z ∈ Fj , a trivial case. Assume f1j1 ̸= 0 and f2j2 ̸= 0. Then Lemma 9.4
yields very strong units u1, u2 on Fj and rational functions r1, r2 ∈ K(Z)× without
pole in Fj such that f1j1(z) = u1(z)r1(z) and f2j2(z) = u2(z)r2(z) for all z ∈ Fj .
Set r = r1/r2 ∈ K(Z)×. If z ∈ Fj and r2(z) ̸= 0, this gives f2j2(z) ̸= 0 and
f1j1(z)/f2j2 ≍ r(z). Hence by Lemma 9.7 we have N ∈ N such that

{z ∈ Fj : f1j1(z) ≼ f2j2(z) ̸= 0} =
(
F j,1 ∪ · · · ∪ F j,N

)
\ E,

with R-annuli F j,1, . . . , F j,N ⊆ Fj , and finite E = {z ∈ Fj : r2(z) = 0}. Let
1 ⩽ ν ⩽ N . Then r has no pole in F j,ν : if z ∈ F j,ν were a pole, then there
would be z′ ∈ F j,ν \ E arbitrarily close to z with r(z′) ≻ 1, a contradiction.

Thus by setting f j,ν(z) := u1(z)
u2(z)

r(z) for z ∈ F j,ν we obtain f j,ν ∈ O(F j,ν) with

D
(
f1j1(z), f2j2(z)

)
= f j,ν(z) for all z ∈ F j,ν \E. Take a quantifier-free LK

≼ -formula

ϕj,ν(Z) such that ϕj,ν(Ra) = F j,ν \ E. Then for z ∈ (ϕj ∧ ϕj,ν)(Ra) we have
τ(z) = f j,ν(z). Lemma 9.4 also gives a quantifier-free LK

≼ -formula θj(Z) such that
for all z ∈ Ra,

Ra |= θj(z) ⇐⇒ z ∈ Fj and
(
f1j1(z) ≻ f2j2(z) or f2j2(z) = 0

)
.

Thus θj(R
a) ⊆ Fj , and for z ∈ (ϕj ∧ θj)(Ra) we have τ(z) = 0.
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Finally, suppose τ = G(τ1, . . . , τm), where G ∈ A⟨X⟩. The inductive assumption
gives for i = 1, . . . ,m quantifier-free LK

≼ -formulas ϕi1(Z), . . . , ϕini
(Z), R-annuli

Fi1, . . . , Fini , and functions fi1 ∈ O(Fi1), . . . , fini ∈ O(Fini), such that

• Ra = ϕi1(R
a) ∪ · · · ∪ ϕini

(Ra);
• ϕij(R

a) ⊆ Fij and τi(z) = fij(z), for all z ∈ ϕij(R
a) and j = 1, . . . , ni.

Let j = (j1, . . . , jm) with 1 ⩽ j1 ⩽ n1, . . . , 1 ⩽ jm ⩽ nm and set

ϕj := ϕ1j1 ∧ · · · ∧ ϕmjm , Fj := F1j1 ∩ · · · ∩ Fmjm .

Using Lemmas 9.4, 9.7, and 9.8 we get N ∈ N such that

{z ∈ Fj : f1j1(z) ≼ 1, . . . , fmjm(z) ≼ 1} = F j,1 ∪ · · · ∪ F j,N

where F j,1, . . . , F j,N are R-annuli. Let 1 ⩽ ν ⩽ N . Take a quantifier-free LK
≼ -

formula ϕj,ν(Z) such that ϕj,ν(Ra) = F j,ν . For i = 1, . . . ,m, set f j,νi := fiji |F j,ν , a

function in O(F j,ν) with |f j,νi (z)| ⩽ 1 for all z ∈ F j,ν , so by Lemma 9.6,

f j,ν := G
(
f j,ν1 , . . . , f j,νm

)
∈ O(F j,ν).

Then τ(z) = f j,ν(z) for all z ∈ (ϕj ∧ ϕj,ν)(Ra). It remains to note that τ(z) = 0
for all z ∈ (ϕj ∧ ¬ϕj,1 ∧ ¬ϕj,2 ∧ · · · ∧ ¬ϕj,N )(Ra). □

Corollary 9.11. Let z ∈ Ka. Then Kz is an immediate extension of K(z):

resKz = resK(z) ⊆ resKa, v(K×
z ) = v

(
K(z)×

)
⊆ v

(
(Ka)×

)
.

As a consequence, Γ = v(K×) and v(K×
z ) have the same cardinality, and if resK

is infinite, then resK and resKz have the same cardinality.

Proof. Replacing z by z−1 if z ≻ 1, we arrange z ∈ Ra. Consider a nonzero element

τ(z) of Kz, where τ(Z) is an LA,K
≼,D-term. Let ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn be

as in Proposition 9.10. Take j ∈ {1, . . . , n} with z ∈ ϕj(R
a). Then Lemma 9.4

applied to Fj , fj in the role of F, f yields r(Z) ∈ K(Z) without pole in F such that
τ(z) ∼ r(z). Thus Kz is an immediate extension of K(z). The rest now follows
from [13, Corollary 5.19]. □

Uniformity with respect to Ka. So far we we kept Ka fixed, but in the rest of
this section Ka ranges over arbitrary algebraically closed A-extensions of K. Let

τ(Z) be an LA,K
≼,D-term. To enable model-theoretic arguments we need to show that

ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn

in Proposition 9.10 is “independent” of Ka. To make sense of this we consider
tuples

(
ϕj ,Φj

)n
j=1

of quantifier-free LK
≼ -formulas ϕj(Z) and Φj(Z), j = 1, . . . , n.

Call such a tuple
(
ϕj ,Φj

)n
j=1

good for τ in Ka if the following hold:

(1) Fj := Φj(K
a) is an R-annulus in Ka for j = 1, . . . , n;

(2) z 7→ τ(z) : Fj → Ka is a function fj ∈ O(Fj) for j = 1, . . . , n;
(3) ϕ1, . . . , ϕn, F1, . . . , Fn, f1, . . . , fn satisfy (i) and (ii) in Proposition 9.10.

Of course, O(Fj) in (2) is meant in the sense of Ka.

Corollary 9.12. Some tuple
(
ϕj ,Φj

)n
j=1

is good for τ in all Ka.
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Proof. All Ka that are algebraic over K are isomorphic as A-extensions of K, so
any tuple that is good for one is good for all. Now, let any Ka be given, and let

Kalg be the algebraic closure of K in Ka, with Kalg as LA,K
≼,D-substructure of Ka.

Following the steps and recursive constructions in the proof of Proposition 9.10
yields a tuple that is good for τ in Kalg, as well as in Ka: to see this, use (⋆),
Lemmas 9.2, 9.3, and Corollary 9.5 to pass from Kalg to Ka. □

The quantifier-free type of an element over K. For a valued field E and an
element z in a valued field extension L of E, the quantifier-free L≼-type of z over
E is the set qftp≼(z|E) of all quantifier-free LE

≼-formulas θ(Z) such that L |= θ(z).

Likewise, for an element z in an A-extension L of K, the quantifier-free LA
≼,D-type

of z over K is the set qftpA≼,D(z|K) of all quantifier-free LA,K
≼,D-formulas θ(Z) such

that L |= θ(z).

Proposition 9.13. Let K1 and K2 be A-extensions of K, and suppose z1 ∈ K1

and z2 ∈ K2 are such that qftp≼(z1|K) = qftp≼(z2|K). Then

qftpA≼,D(z1|K) = qftpA≼,D(z2|K).

Proof. Our assumption gives an L≼-isomorphism i : K(z1) → K(z2) over K that
sends z1 to z2. If z1 is algebraic over K, then so is z2 and K(z1) and K(z2) underly
the LA

≼,D-substructures Kz1 and Kz2 of K1 and K2, respectively, by Corollary 6.6,

so i is an LA
≼,D-isomorphism over K by Corollary 4.9. Hence z1 and z2 have the

same quantifier-free LA
≼,D-type over K.

For the rest of the proof, assume that z1 and z2 are both transcendental over K.
Replacing z1, z2 by their reciprocals if necessary, we arrange z1, z2 ≼ 1. We claim

that for every LA,K
≼,D-term τ(Z),

τ(z1) = 0 ⇐⇒ τ(z2) = 0.

For c, d in any A-extension of K, c ≼ d if and only if c = 0 or D(c, d) ̸= 0. Hence,
in light of Corollary 6.3, our claim yields an LA

≼,D-isomorphism Kz1 → Kz2 over K

given by τ(z1) 7→ τ(z2), where τ(Z) ranges over LA,K
≼,D-terms. Thus a proof of the

claim will complete the proof of the proposition.
By passing to algebraic closures we arrange that K1 and K2 are algebraically

closed, with respective A-valuation rings R1 and R2. Let τ(Z) be an LA,K
≼,D-term

such that τ(z1) = 0. Take a tuple (
ϕj ,Φj

)n
j=1

as in Corollary 9.12. This gives j ∈ {1, . . . , n} with z1 ∈ ϕj(R1) and z2 ∈ ϕj(R2).
Set Fj1 := Φj(K1) ⊆ R1, and let fj1 ∈ O(Fj1) be given by fj1(z) = τ1(z), and
define Fj2 ⊆ R2 and fj2 ∈ O(Fj2) in the same way.

Then τ(z1) = fj1(z1) = 0, so fj1 = 0 by Corollary 9.4 and z1 being transcenden-
tal over K. By descending to the algebraic closures of K in K1 and K2 and using
that these algebraic closures are isomorphic A-extensions of K we obtain fj2 = 0
by Lemma 9.2. Hence τ(z2) = fj2(z2) = 0. This proves the forward direction of
our claim. The backward direction follows in the same way. □



ANALYTIC AX-KOCHEN-ERSOV THEORY 41

10. Analytic AKE-type Equivalence and Induced Structure

We begin with some terminology and conventions. A valued field will be construed
as an L≼-structure in the usual way.

Let K be a valued field. We denote its valuation ring by R (by RF if we are
dealing with a valued field F instead). Let O(R) be the maximal ideal of R and
k := R/O(R) the residue field of K. We also let v : K× → Γ with Γ = v(K×) be a
valuation on the field K such that R = {z ∈ K : v(z) ⩾ 0} (and if we are dealing
instead with a valued field F , we have likewise the residue field kF and a valuation
vF : F× → ΓF ).

A coefficient field of K is a lift of k, that is, a subfield C of K such that C ⊆ R
and C maps bijectively onto k under the residue map R → k, equivalently, a
subfield C of K such that R = C+ O(R). Likewise, a monomial group of K is a lift
of Γ, that is, a subgroup G of K× that is mapped bijectively onto Γ by v : K× → Γ.
If K is henselian (by which we mean that the local ring R is henselian) and k has
characteristic 0, then K has a coefficient field; see for example [13, Lemma 2.9]. If
K is algebraically closed or ℵ1-saturated, then K has a monomial group; see for
example [1, Lemmas 3.3.32, 3.3.39].

Throughout A is as in Section 6: A is noetherian with an ideal O(A) ̸= A, such that⋂
e O(A)e = {0} and A is O(A)-adically complete.
By an Acg-field we mean an expansion F = (F,C,G) of an A-field F where C

is (the underlying set of) a coefficient field of F and G is (the underlying set of)

a monomial group G of F . Let LAcg
≼,D be the language LA

≼,D augmented by unary

predicate symbols C and G. We construe an Acg-field as an LAcg
≼,D-structure in the

obvious way.

Example to keep in mind: F =
(
F,C, tZ

)
, where C is any field, F is the Laurent

series field C((t)) with valuation ring C[[t]], and A = C[[t]], O(A) = tC[[t]], with the
natural A-analytic structure on C[[t]]. To simplify notation we denote this Acg-field
F by

(
C((t)), C, tZ

)
.

In the rest of this section K = (K,CK, GK) is an Acg-field such that the valuation
A-ring R of K is viable; k is the residue field of K and Γ := v(K×) its value group.

Good substructures and good maps. Our aim is to establish an analogue of
the Equivalence Theorem [13, 5.21] in our analytic setting with coefficient field and
monomial group, and we follow the general setup and proof strategy there.

A good substructure of K is an LAcg
≼,D-substructure E = (E,CE , GE) of K which is

also an Acg-field. Note that then E is an LA
≼,D-substructure of K, and

CE = CK ∩ E, GE = GK ∩ E.
Below, E = (E,CE , GE) is a good substructure of K. By Lemma 6.4 the valuation
A-ring RE is viable. For a ∈ K, set Ea :=

(
Ea, CK ∩ Ea, GK ∩ Ea

)
⊆ K.

Lemma 10.1. We consider four cases for an element a ∈ CK ∪GK:

(i) a ∈ CK is algebraic over E. Then a is algebraic over CE , E[a] is the
underlying field of Ea, CK ∩ Ea = CE [a], and GK ∩ Ea = GE ;

(ii) a ∈ CK is transcendental over E. Then CK ∩ Ea = CE(a), GK ∩ Ea = GE ;
(iii) a ∈ GK is algebraic over E. Then ad ∈ GE for some d ⩾ 1, E[a] is the

underlying field of Ea, CK ∩ Ea = CE , and GK ∩ Ea = GE · aZ;
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(iv) a ∈ GK is transcendental over E. Then CK ∩Ea = CE , GK ∩Ea = GE · aZ.
In each of these four cases, Ea is a good substructure of K.

Proof. If a ∈ CK ∪ GK is algebraic over E, this follows from Corollary 6.6. In the
transcendental case, use Corollary 9.11. □

In this subsection, K′ = (K ′, CK′ , GK′) is an Acg-field like K: its valuation A-ring
R′ is viable. We also let E ′ = (E′, CE′ , GE′) be a good substructure of K′, and for
b ∈ K ′ we set E ′

b :=
(
E′

b, CK′ ∩ E′
b, GK′ ∩ E′

b

)
.

Let Lr := {0, 1,+,−, ·} be the language of rings and Lv := {1, ·,≼} the language of
(multiplicative) ordered abelian groups, taken as sublanguages of LA

≼,D; we construe
CK, CK′ as Lr-structures and GK, GK′ as Lv-structures accordingly.

A good map f : E → E ′ is an LAcg
≼,D-isomorphism E → E ′ such that:

(r) the Lr-isomorphism f |CE : CE → CE′ is a partial elementary map from the
field CK to the field CK′ ;

(v) the Lv-isomorphism f |GE : GE → GE′ is a partial elementary map from the
ordered group GK to the ordered group GK′ .

Theorem 10.2. Suppose chark = 0. Let f : E → E ′ be a good map. Then f is a
partial elementary map from K to K′.

We need chark = 0 only towards the end of the proof below to guarantee that a
certain pc-sequence (aρ) introduced there is of transcendental type.

Proof. By passing to suitable elementary extensions we arrange that the underlying
valued fields of K and K′ are κ-saturated, where κ is an uncountable cardinal greater
than the cardinalities of CE and GE . A good substructure

E1 = (E1, CE1
, GE1

)

of K is termed small if κ is greater than the cardinalities of CE1
and GE1

. We shall
prove that for any a ∈ K we can extend f to a good map with small domain F ⊇ E
such that a ∈ F . By the properties of “back-and-forth” this suffices. In addition
to Corollary 7.2, we will need the extension procedures in (1)–(4) below.

In (1) and (2) we assume a ∈ CK and extend E and E ′ to small good substructures
F of K and F ′ of K′ and our good map f to a good map g : F → F ′ such that
a ∈ CF and GE = GF . In (3) and (4) we assume that a ∈ GK, and extend E and
E ′ to small good substructures F of K and F ′ of K′ and our good map f to a good
map g : F → F ′ such that a ∈ GF and CE = CF .

(1) The case that a ∈ CK is algebraic over E. Then κ-saturation of K′ gives b ∈ CK′

and an Lr-isomorphism gr : CE [a] → CE′ [b] extending f |CE and sending a to b such
that gr is a partial elementary map from CK to CK′ .

Now [13, Lemma 3.21] gives an L≼-isomorphism g : E[a] → E′[b] extending
both f and gr. Then g is an LA

≼,D-isomorphism Ea → E′
b by Corollary 6.6 and

Proposition 9.13. By Lemma 10.1 (i), Ea and E ′
b are good substructures of K and

K′ respectively, and g is a good map.

(2) The case that a ∈ CK is transcendental over E. As in (1) we have b ∈ CK′ and
an Lr-isomorphism gr : CE(a) → CE′(b) extending f |CE and sending a to b such
that gr is a partial elementary map from CK to CK′ .
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Then [13, Lemma 3.22] gives an L≼-isomorphism E(a) → E′(b) extending both
f and gr. This L≼-isomorphism extends to an LA

≼,D-isomorphism g : Ea → E′
b by

Proposition 9.13. Lemma 10.1(ii) gives that Ea and E ′
b are good substructures of K

and K′ respectively, and that g is a good map.

(3) The case that a ∈ GK \GE and ap ∈ GE , where p is a prime number. As before
we get b ∈ GK′ and an Lv-isomorphism gv : GE · aZ → GE′ · bZ extending f |GE and
sending a to b such that gv is a partial elementary map from GK to GK′ . Now [13,
Lemma 5.6] gives an L≼-isomorphism g : E(a) → E′(b) extending both f and gv.
Then g is an LA

≼,D-isomorphism Ea → E′
b by Corollary 6.6 and Proposition 9.13.

By Lemma 10.1(iii), Ea and E ′
b are good substructures of K and K′ respectively,

and g is a good map.

(4) The case that a ∈ GK and ad /∈ GE for all d ⩾ 1. As before we get b ∈ GK′ and
an Lv-isomorphism

gv : GE · aZ → GE′ · bZ

extending f |GE and sending a to b such that gv is a partial elementary map from
GK to GK′ . Note that a is transcendental over E by [13, Proposition 3.19]; likewise,
b is transcendental over E′.

Now [13, Lemma 3.23] gives an L≼-isomorphism E(a) → E′(b) extending both
f and gv. This L≼-isomorphism extends to an LA

≼,D-isomorphism g : Ea → E′
b by

Proposition 9.13. By Lemma 10.1(iv), Ea and E ′
b are good substructures of K and

K′ respectively, and g is a good map.

Let now any a ∈ K be given. Let C1 be the subfield of CK such that resC1 = resEa,
and let G1 be the subgroup of GK such that v(G1) = v(E×

a ). We do not guarantee
that C1 ⊆ Ea or G1 ⊆ E×

a , but CE and C1 have the same cardinality, and so do
GE and G1, by Corollary 9.11. Thus by iterating (1)–(4), we extend E and E ′ to
small good substructures E1 = (E1, C1, G1) of K and E ′

1 = (E′
1, C

′
1, G

′
1) of K′, and

extend f to a good map f1 : E1 → E ′
1. Next, let C2 be the subfield of CK such that

resC2 = resE1,a, and let G2 be the subgroup of GK such that v(G2) = v(E×
1,a),

and obtain likewise E2 = (E2, C2, G2) with E1 ⊆ E2 ⊆ K, and an extension of f1 to
a good map f2 : E2 → E ′

2, with E ′
1 ⊆ E ′

2 ⊆ K′. Continuing this way we obtain for
each n small good substructures

En = (En, Cn, Gn) ⊆ En+1 = (En+1, Cn+1, Gn+1)

of K such that resCn+1 = resEn,a and v(Gn+1) = v(E×
n,a), and small good sub-

structures E ′
n ⊆ E ′

n+1 of K′, and good maps

fn : En → E ′
n, fn+1 : En+1 → E ′

n+1

such that fn+1 extends fn; here E0 := E , E ′
0 := E ′ and f0 := f . Then

E∞ :=
⋃
n

En = (E∞, C∞, G∞)

is a small good substructure of K, and E ′
∞ :=

⋃
n E ′

n = (E′
∞, C

′
∞, G

′
∞) is a small

good substructure of K′, and we have a good map f∞ : E∞ → E ′
∞ extending each

fn. Using E∞,a =
⋃

nEn,a we see that E∞,a is an immediate extension of E∞.
If a ∈ E∞ we have achieved our goal of extending f to a good map with small

domain containing a, so assume a /∈ E∞. Replacing a by a−1 if necessary we arrange
a ≼ 1. Take a divergent pc-sequence (aρ) in E∞ such that all aρ ≼ 1 and aρ ⇝ a.
Then (bρ) :=

(
f∞(aρ)

)
is a divergent pc-sequence in E′

∞. Since the underlying
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valued field of K′ is κ-saturated and the cardinality of the value group of E′
∞ is less

than κ we have b ∈ K ′ such that bρ ⇝ b. Note that (aρ) is of transcendental type
over E∞, by [13, 4.22, 4.16]. Hence (bρ) is of transcendental type over E′

∞, and so
E′

∞,b is an immediate extension of E′
∞ by Proposition 7.1. This yields the (small)

good substructures E∞,a :=
(
E∞,a, C∞, G∞

)
of K and E ′

∞,b :=
(
E′

∞,b, C
′
∞, G

′
∞
)
of

K′. Moreover, f∞ extends by Corollary 7.2 to a good map E∞,a → E ′
∞,b, and we

have achieved our goal. □

Corollary 10.3. Suppose chark = 0, CE ≼ C as Lr-structures, and GE ≼ G as
Lv-structures. Then E ≼ K.

Proof. Note that E is a good substructure of both K and K′ := E , and the identity
on E is a good map. Now apply Theorem 10.2. □

Induced structure on coefficient field and monomial group. In this sub-
section we assume for our Acg-field K = (K,CK, GK) that chark = 0. Our aim
here is Corollary 10.5 on the structure that K induces on CK and GK combined.
It will be derived in a familiar way from Theorem 10.2 and a fact implicit in its
proof. To state that fact we let E = (E,CE , GE) and F = (F,CF , GF ) be Acg-fields

and LAcg
≼,D-extensions of K. For a ∈ En, let tp(a|K) be the LAcg

≼,D-type of a over K,

that is, the set of LAcg,K
≼,D -formulas ϕ(Y1, . . . , Yn) such that E |= ϕ(a). Likewise, for

c ∈ Cn
E , let tp(c|CK) be the Lr-type of c over CK, and for g ∈ Gn

E , let tp(g|GK) be
the Lv-type of g over GK.

Lemma 10.4. Suppose E and F are elementary extensions of K. Let cE ∈ Cm
E ,

gE ∈ Gn
F and cF ∈ Cm

F , gF ∈ Gn
F be such that

tp(cE |CK) = tp(cF |CK), tp(gE |GK) = tp(gF |GK).

Then for the points (cE , gE) ∈ Em+n and (cF , gF ) ∈ Fm+n we have

tp
(
(cE , gE)|K

)
= tp

(
(cF , gF )|K

)
.

Proof. By our assumptions K is a good substructure of both E and F , and the iden-
tity on K is a good map. Using tp(cE |C) = tp(cF |C) and the extension procedures
(1) and (2) in the proof of Theorem 10.2 in conjunction with Lemma 10.1(i),(ii) we
obtain a good map whose domain contains the elements of K and the components
of cE and that is the identity on K and sends cE to cF , such that the monomial
group of its domain is still GE . Next we use likewise the extension procedures from
(3) and (4) in that proof to extend this good map further so that its domain now
contains the components of gE as well, and sends sends gE to gF . It remains to use
Theorem 10.2. □

Corollary 10.5. Each subset of Cm
K × Gn

K ⊆ Km+n which is definable in K is a
finite union of “rectangles” P × Q with P ⊆ Cm

K definable in the Lr-structure CK
and Q ⊆ Gn

K definable in the Lv-structure GK.

Proof. Apply Lemma 10.4 in conjunction with [13, Lemmas 5.13, 5.14]. □

Corollary 10.6. If P ⊆ Kn is definable in K, then P ∩ Cn
K is definable in the

Lr-structure CK, and P ∩Gn
K is definable in the Lv-structure GK.

In particular, the sets CK, GK ⊆ K are stably embedded and orthogonal in K. Next
an application of Corollary 10.6.
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Recovering the Binyamini-Cluckers-Novikov result. We construe C((t)) be-
low as an A-field in the usual way, with A = C[[t]], O(A) = tA. Proposition 2 in [6]
concerns the 3-sorted structure M consisting of the following:

the A-field C((t)), the field C, the ordered abelian group Z,
(each a 1-sorted structure) and two functions relating the three sorts: the obvious
t-adic valuation v : C((t))× → Z, and the “reduced angular component map” ac :
C((t)) → C that assigns to each nonzero Laurent series f =

∑
k∈Z ckt

k (all ck ∈ C)
its leading coefficient cv(f), with ac(0) := 0 by convention.

This 3-sorted M should not be confused with the 1-sorted
(
C((t)),C, tZ

)
that is

among the Acg-fields K considered in Section 10. We have a natural interpretation
of M in

(
C((t)),C, tZ

)
, which shows that if a set P ⊆ C((t))n is definable in M,

then it is definable in
(
C((t)),C, tZ

)
. The converse fails: the subsets C and tZ of

C((t)) are definable in the latter, but not in the former by [12, Theorem 3.9]; thus(
C((t)),C, tZ

)
is “richer” than M.

For d ⩾ 1 we let C[t]<d be the set of polynomials in C[t] of degree < d. Then
C[t]<d is a subset of C[[t]], and thus of C((t)). We identify C[t]<d with Cd via
the bijection c0 + c1t + · · · + cd−1t

d−1 7→ (c0, . . . , cd−1) for c0, . . . , cd−1 ∈ C. For
P ⊆ C((t))n we set P (d) := P ∩ (C[t]<d)

n, which under the identification above
becomes a subset of Cdn. Now Proposition 2 in [6] says:

if P ⊆ C((t))n is definable in M, then for each d ⩾ 1 the set P (d) ⊆ Cdn is a
constructible subset of the space Cdn with its Zariski topology.

By “Chevalley-Tarski” a subset of Cm is constructible iff it is definable in the field
C, so this proposition is for K =

(
C((t)),C, tZ

)
a special case of Corollary 10.6.

NIP. The model-theoretic condition NIP forbids certain combinatorial configura-
tions; there is a lot of information about it in [28]. Below a structure M is said
to have NIP if its theory Th(M) has NIP. By Delon [10] and Gurevich & Schmitt
[21], a henselian valued field of equicharacteristic 0 has NIP iff its residue field (as
a ring) has NIP. Jahnke & Simon [22] extend this to a criterion that also applies
to expansions of such valued fields. We apply their criterion now to our analytic
setting:

Corollary 10.7. Assume chark = 0. Then:

the LAcg
≼,D-structure K has NIP ⇐⇒ the ring k has NIP.

Proof. The direction ⇒ is obvious, and for ⇐, assume that k has NIP as a ring.
We refer to [22, Section 2] for definitions and notations used in this proof. Using
[22, Theorem 2.3], it suffices to show that Th(K) satisfies the conditions (SE) and
(Im). Condition (SE) requires that the residue field and the value group be stably
embedded in K. This condition is satisfied in our setting by Corollary 10.6.

In order that Th(K) satisfies condition (Im) it suffices to show the following:
Let E = (E, . . . ) be an elementary extension of K and a ∈ E such that K(a) is an

immediate valued field extension of K; then the LAcg
≼,D-type of a over K (in E) is

implied by instances of NIP formulas in this type. By the Delon-Gurevich-Schmitt
result the valued field reduct of E has NIP. So let F = (F, . . . ) also be an elementary
extension of K and let b ∈ F have the same L≼-type over K as a; it is enough to

show that then a and b also have the same LAcg
≼,D-type over K. Now K is a good

substructure of both E and F and the identity on K is a good map. By Corollary 7.2
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this gives a good map Ka → Kb that is the identity on K and sends a to b. Now
apply Theorem 10.2. □

Elementary Equivalence. The AKE-results are often summarized suggestively
as follows: For any henselian valued fields E and F of equicharacteristic 0,

E ≡ F ⇐⇒ resE ≡ resF as fields, and ΓE ≡ ΓF as ordered groups.

For special A we now derive a similar result in our analytic setting. Let A = C[[t]]
where C is a field and take O(A) = tA. Recall that we construe A itself as an A-ring.
In the beginning of this section we introduced the Acg-field

(
C((t)), C, tZ

)
. We try

to embed it into our Acg-field K = (K,CK, GK) (with viable valuation A-ring R).
Lemma 4.2 yields the A-ring morphism ι0 : A → R, which is injective: for a ∈ A ̸=

we have a = cte(1 + b) with c ∈ C×, e ∈ N, and b ∈ O(A), and so its image in R
is nonzero, since viability of R gives ι0(t) ̸= 0. Thus ι0 extends to an embedding
C((t)) → K of A-fields which we denote by ιK to indicate its dependence on K. It
is routine to verify the following:

Lemma 10.8. The map ιK : C((t)) → K is an embedding
(
C((t)), C, tZ

)
→ K of

Acg-fields if and only if ιK(C) ⊆ CK and ιK(t) ∈ GK.

The conditions ιK(C) ⊆ CK and ιK(t) ∈ GK are satisfied for K =
(
C((t)), C, tZ

)
.

These conditions are of a first-order nature, since for any a ∈ A the constant symbol
a of LA names the element ιK(a) ∈ K. If these conditions are satisfied, let CK,⋆

be the expansion
(
CK, (ιK(c))c∈C

)
of the field CK, and let GK,⋆ be the expansion(

GK, ιK(t)
)
of the ordered group GK.

Corollary 10.9. Assume charC = 0. Suppose ιK(C) ⊆ CK and ιK(t) ∈ GK, and
likewise for K′. Then we have the following equivalence:

K ≡ K′ ⇐⇒ CK,⋆ ≡ CK′,⋆ and GK,⋆ ≡ GK′,⋆.

Proof. The direction ⇒ is clear. For ⇐, assume the right hand side. Then by
Lemma 10.8 we have Acg-field embeddings

ιK :
(
C((t)), C, tZ

)
→ K, ιK′ :

(
C((t)), C, tZ

)
→ K′.

Identifying
(
C((t)), C, tZ

)
with its image in K and K′ via these embeddings yields

good substructures of K and K′, with the identity on
(
C((t)), C, tZ

)
as a good map.

Now use Theorem 10.2. □

11. Separating Variables

For Acg-fields of equicharacteristic 0 with viable valuation A-ring we establish here
a uniform reduction of any formula to a boolean combination of formulas whose
quantifiers range only over C and formulas whose quantifiers range only over G.
Towards this goal we extend the language by symbols for an absolute value map
and for a coefficient map. We begin by introducing these maps. Throughout k and
l range over N (as do d, m, n).

Let K be just a valued field and G a monomial group of K. Then we define the
map | · |G : K → K as follows:

|0|G := 0, |a|G := g if a ≍ g ∈ G.
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This map is 0-definable in the expansion (K,G) of the valued field K, takes values
in G ∪ {0}, and is the identity on G ∪ {0}. Moreover, a 7→ |a|G : K× → G is a
group morphism, and for all a, b ∈ K: |a|G ≼ |b|G ⇔ a ≼ b.

Let in addition C be a coefficient field of K. Then we introduce the coefficient
map co = coC,G : K → K as follows:

co(0) := 0, co(a) := c if a ̸= 0 and a/|a|G ∼ c ∈ C×.

This map is 0-definable in the expansion (K,C,G) of the valued field K, takes
values in C, is the identity on C, and co(ab) = co(a)co(b) for all a, b ∈ K.

In the rest of this section A is noetherian with an ideal O(A) ̸= A such that⋂
e O(A)e = {0} and A is O(A)-adically complete. We extend the language LA

≼,D to

LA,+
≼,D by adding unary function symbols co and | · |, and likewise we extend LAcg

≼,D

to LAcg,+
≼,D .

Below K = (K,C,G) ranges over Acg-fields whose valuation A-ring is viable. We

expand K to an LAcg,+
≼,D -structure K+ by interpreting | · | as the function | · |G and

co as the corresponding coefficient map coC,G. Note that the good substructures

of K are exactly the LAcg
≼,D-reducts of LAcg,+

≼,D -substructures of K+ whose underlying
ring is a field. Now

{τK : τ is a variable-free LA,+
≼,D-term}

underlies an LA
≼,D-substructure of K, so by Lemma 6.1,

R0 := {τK : τ is a variable-free LA,+
≼,D-term and τK ≼ 1}

is an A-subring of R and a valuation ring dominated by R. Hence

K0 := Frac(R0)

underlies the smallest LAcg,+
≼,D -substructure of K+ whose underlying ring is a field.

Thus K0 := (K0, C ∩K0, G ∩K0) is a good substructure of K.
More generally, let a = (a1, . . . , ak) ∈ Kk, and take a tuple u = (u1, . . . , uk) of

distinct variables u1, . . . , uk. Then {τK(a) : τ(u) is an LA,+
≼,D-term} underlies an

LA
≼,D-substructure of K, so by Lemma 6.1,

R0|a := {τK(a) : τ(u) is an LA,+
≼,D-term and τK(a) ≼ 1}

is an A-subring of R and a valuation ring dominated by R. Hence

K0|a := Frac(R0|a)

underlies the smallest LAcg,+
≼,D -substructure of K+ that contains a1, . . . , ak and whose

underlying ring is a field. Thus K0|a := (K0|a, C ∩K0|a, G ∩K0|a) is a good sub-
structure of K.

Towards separating variables, let Lc
r be the language Lr augmented by the unary

relation symbol C, and let Lg
v be the language Lv augmented by the unary relation

symbol G, so Lc
r and Lg

v are sublanguages of LAcg
≼,D. We define the c-relative formulas

to be the Lc
r-formulas obtained by applying the following recursive rules:

• quantifier-free Lr-formulas are c-relative formulas;
• if ϕ and ψ are c-relative formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ;
• if ϕ is a c-relative formula and u is a variable, then ∃u

(
C(u) ∧ ϕ

)
and

∀u
(
C(u) → ϕ

)
are c-relative formulas.



48 BHARDWAJ AND VAN DEN DRIES

So “c-relative” indicates that all quantifiers are relativized to C. Likewise, the
g-relative formulas are the Lg

v-formulas obtained by the following recursive rules:

• quantifier-free Lv-formulas are g-relative formulas;
• if ϕ and ψ are g-relative formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ;
• if ϕ is a g-relative formula and u is a variable, then ∃u

(
G(u) ∧ ϕ

)
and

∀u
(
G(u) → ϕ

)
are g-relative formulas.

Let x1, . . . , xm be distinct variables and x = (x1, . . . , xm). A c-formula in x is by

definition an LAcg,+
≼,D -formula

ψ(x) := ψ′(co(τ1(x)), . . . , co(τk(x)))
with ψ′(u1, . . . , uk) a c-relative formula and LA,+

≼,D-terms τ1(x), . . . , τk(x). Likewise,

a g-formula in x is an LAcg,+
≼,D -formula

θ(x) := θ′
(
|τ1(x)|, . . . , |τk(x)|

)
with θ′(u1, . . . , uk) a g-relative formula and LA,+

≼,D-terms τ1(x), . . . , τk(x).

Let k be the residue field of the Acg-field K = (K,C,G), and Γ its value group.

Let a ∈ Km, let tpK(a) denote the LAcg
≼,D-type realized by a in K, that is, the set of

LAcg
≼,D-formulas ϕ(x) such that K |= ϕ(a). Also,

tpKc (a) := {ψ(x) : K+ |= ψ(a)}, tpKg (a) := {θ(x) : K+ |= θ(a)},

where ψ(x) ranges over c-formulas in x, and θ(x) over g-formulas in x.
Next, let K′ = (K ′, C ′, G′) also be an Acg-field whose valuation A-ring is viable,

and let a′ ∈ K ′m.

Lemma 11.1. Suppose chark = 0. If tpKc (a) = tpK
′

c (a′) and tpKg (a) = tpK
′

g (a′),

then tpK(a) = tpK
′
(a′).

Proof. As at the beginning of this subsection we have the good substructures K0|a of

K, and K′
0|a′ of K′. Assume tpKc (a) = tpK

′

c (a′) and tpKg (a) = tpK
′

g (a′). Then for any

LA,+
≼,D-term τ(x), τK(a) = 0 ⇔ τK

′
(a′) = 0, since it follows from tpKc (a) = tpK

′

c (a′)
that

τK(a) = 0 ⇔ co(τ)K(a) = 0 ⇔ co(τ)K
′
(a′) = 0 ⇔ τK

′
(a′) = 0.

We also have for f, h ∈ K the equivalences

f ≼ h ⇔ f = hD(f, h), f ∈ C ⇔ co(f) = f, f ∈ G ⇔ f ̸= 0 and |f | = f,

so Lemma 6.1(ii) gives a unique LAcg+
≼,D -isomorphism σ : K+

0|a → K′+
0|a′ such that

σ(ai) = a′i for i = 1, . . . ,m; in fact, σ
(
τK(a)

)
= τK

′
(a′) for every LA,+

≼,D-term τ(x).

From tpKc (a) = tpK
′

c (a′) and tpKg (a) = tpK
′

g (a) it now follows that σ : K0|a → K′
0|a′

is a good map. Hence tpK(a) = tpK
′
(a′) by Theorem 10.2. □

Let TA be the LAcg
≼,D-theory whose models are the Acg-fields of equicharacteristic 0

whose valuation A-ring is viable. (Recall that the viability of the valuation A-ring
R of K means that O(R) = tR for some t ∈ R ̸= with t ∈ O(A)R; as O(A) is finitely
generated, this is a first-order condition.) Let T+

A be the extension by definitions
of TA whose models are the expansions K+ of models K of TA.
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Corollary 11.2. Every LAcg
≼,D-formula ϕ(x) is T+

A -equivalent to(
ψ1(x) ∧ θ1(x)

)
∨ · · · ∨

(
ψN (x) ∧ θN (x)

)
for some N ∈ N, c-formulas ψ1(x), . . . , ψN (x), and g-formulas θ1(x), . . . , θN (x).

Proof. Apply Lemma 11.1 in conjunction with [13, Lemmas 5.13, 5.14]. □
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