
INFINITE TOWERS OF ARTIN-SCHREIER DEFECT
EXTENSIONS OF RATIONAL FUNCTION FIELDS

ANNA BLASZCZOK

Abstract. We consider Artin-Scheier defect extensions of rational function
fields in two variables over fields of positive characteristic. We study the

problem of constructing infinite towers of such extensions. We classify Artin-

Schreier defect extensions into “dependent” and “independent” ones, according
to whether they are connected with purely inseparable defect extensions, or

not. To understand the meaning of the classification for the issue of local uni-

formization, we consider various valuations of the rational function field and
investigate for which it admits an infinite tower of dependent or independent

Artin-Schreier defect extensions. We give also a criterion for a valued field of

positive characteristic p with p-divisible value group and perfect residue field
to admit infnitely many parallel dependent Artin-Schreier defect extensions or

an infinite tower of such extensions.

1. Introduction

We denote by (K, v) a field K equipped with a (Krull) valuation v. Its value
group will be denoted by vK and its residue field by Kv. Writing (L|K, v) we mean
an extension of valued fields, where v is a valuation of L and K is equipped with
the restriction of this valuation. If the canonical embedings of vK in vL and of Kv
in Lv are surjective (which will be expressed by writing vL = vK and Lv = Kv)
then the extension is called immediate.

Take a valued field (K, v). Every finite extension L of K satisfies the funda-
mental inequality (cf. [ZS], [E]):

n ≥
g∑
i=1

eifi,

where n = [L : K] is the degree of the extension, v1, . . . , vg are all distinct extensions
of the valuation v from K to L, ei = (viL : vK) are the respective ramification
indices and fi = [Lvi : Kv] are the respective inertia degrees. If the valuation v of
K admits a unique extension to the algebraic closure K̃ of K, which holds if g = 1
for every finite extension L|K, then K is called henselian. There is a minimal
separable-algebraic extension of (K, v) which is henselian. This extension is unique
up to isomorphism over K. It is called the henselisation of (K, v) and denoted
by (K, v)h or, if v is fixed, by Kh.
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Take a finite extension L of a valued field (K, v). Then the extension of v to L
is unique if and only if L|K is linearly disjoint from some henselization of (K, v).
In this case, by the Lemma of Ostrowski,

[L : K] = (vL : vK)[Lv : Kv] · pν ,
where ν is a nonnegative integer and p the characteristic exponent of Kv, that is,
p = charKv if it is positive and p = 1 otherwise. The factor d(L|K, v) = pν is
called the defect of the extension (L|K, v). If it is nontrivial, that is, if ν > 0,
then we call L|K a defect extension. If d(L|K, v) = 1 we speak of a defectless
extension.

The phenomenon of nontrivial defect, appearing only if the residue characteristic
of the valued field is positive, plays often an essential role in problems in algebraic
geometry or the model theory of valued fields (see, e.g. [Kn-Ku1], [Kn-Ku2] and
[Ku5]). In Section 4.1 we prove the following fact which is a generalization of
Theorem 1.2 of [Ku1]. It shows that even if the field seems to be simple it may
admit defect extensions.

Theorem 1.1. Take a field K of positive characteristic p and assume that it admits
a perfect subfield of cardinality κ. Then there is a valuation v on the rational
function field K(x, y)|K whose restriction to K is trivial, such that (K(x, y), v)
admits κ many pairwise linearly disjoint infinite towers of Galois extensions of
degree and defect p.

The structure of defect extensions of rational function fields is especially interest-
ing in connection with problems related to resolution of singularities. The nontrivial
defect is one of the hurdles for the attempt to prove local uniformization in positive
characteristic. In particular, in the case of two dimensional algebraic function fields
of positive characteristic, a strong relative form of local uniformization presented in
Theorem 7.35 of [CP] may not hold if positive defect appears. This can be shown
by an example which consists of a tower of two Artin-Schreier defect extensions of
a rational function field in two variables (cf. Theorem 7.38 of [CP]). Recall that an
Artin-Schreier extension of a field K of positive characteristic p is an extension
of degree p generated by a root ϑ of a polynomial Xp − X − a with a ∈ K. In
this case, ϑ is called an Artin-Schreier generator of the extension. Since the
other roots of the polynomial Xp−X − a are of the form ϑ+ 1, . . . , ϑ+ p− 1, such
an extension is always normal and hence Galois. On the other hand, every Galois
extension of K of degree p is an Artin-Schreier extension (see, e.g., [L]). Therefore,
Theorem 1.1 states that there is a valuation v on K(x, y)|K such that the field
(K(x, y), v) admits infinite towers of Artin-Schreier defect extensions.

The importance of studying the structure of such extensions comes from the fact
that towers of Artin-Schreier defect extensions play a central role in the issue of
defect extensions. Take a valued field (K, v) of positive characteristic p. Denote by
Kr the absolute ramification field of K, i.e., the ramification field of the extension
Ksep|K with respect to a fixed extension of v to the separable-algebraic closure
Ksep of K. Take any finite extension (L|K, v) such that the extension of the
valuation v of K to L is unique. If L.Kr is the field compositum of L and Kr,
then the extension L.Kr|Kr has the same defect as L|K (cf. Proposition 2.8 of
[Ku3]). On the other hand, L.Kr|Kr is a tower of normal extensions of degree p
(cf., e.g., Lemma 2.9 of [Ku3]). Thus, if L|K is separable, L.Kr|Kr is a tower of
Artin-Schreier extensions and if (L|K, v) is a defect extension, then so are some of
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these Artin-Schreier extensions. Because of this representative role of Artin-Schreier
defect extensions, one would like to understand better their structure. In particular,
one would like to know if all of the extensions behave in a similar way in relation to
a given problem, like local uniformization. A classification of Artin-Schreier defect
extensions presented in [Ku3] considers their connection with purely inseparable
extensions. More precisely, if for a given Artin-Schreier defect extension K(ϑ)|K
with ϑp−ϑ ∈ K there is an immediate purely inseparable extension K(η)|K, where
η ∈ K1/p \K, such that

v(ϑ− c) = v(η − c)

for every c ∈ K then K(ϑ)|K is called a dependent Artin-Schreier defect
extension. Otherwise we speak of an independent Artin-Schreier defect ex-
tension.

There are indications that considering this classification in connection with the
problem of local uniformization is meaningful. Temkin’s work (especially [T]) shows
that the dependent Artin-Schreier defect extensions may be more harmful. The
conjecture seems to be affirmed by the mentioned example of Cutkosky and Piltant.
Work in progress of Ghezzi, ElHitti and Kuhlmann indicates that the tower of two
Artin-Schreier defect extensions considered in the example consist of dependent
extensions.

To better understand the meaning of the classification for the problem of local
uniformization, it can therefore be helpful to study possible constructions and the
structure of towers of dependent and independent Artin-Schreier defect extensions
of rational function fields. A hurdle for that is the use of different languages in the
constructions and in the description of properties of the extensions. Namely, the
language used by algebraic geometers in the constructions of valuations and defect
extensions of rational function fields is essentially different from the language used
(so far) in the characterizations of dependent and independent Artin-Schreier defect
extensions. For instance, the difficulty of proving that the extension in the example
of Cutkosky and Piltant consists of two dependent Artin-Schreier defect extensions
is connected with the fact that the valuation is given there by means of generating
sequences, whereas the criterion for dependence or independence (see Proposition
2.19 ) is closer to Kaplansky’s notion of pseudo Cauchy sequences (cf. [Ka], Sec-
tion 2). The classification of Artin-Schreier defect extensions is also reflected in
higher ramification groups of the extensions, which will be worked out in [Ku-P].
The problem in this case is finding an efficient algorithm that converts between
generating sequences, higher ramification groups and pseudo Cauchy sequences.

In this paper we will present examples of towers of both dependent and inde-
pendent Artin-Schreier defect extensions of rational function fields in two variables
using pseudo Cauchy sequences to describe valuations of fields. We show that
all infinite towers of Artin-Schreier defect extensions constructed in the proof of
Theorem 1.1 consist of independent extensions. Therefore we obtain the following
theorem:

Theorem 1.2. Take a field K of positive characteristic and assume that it admits
a perfect subfield of cardinality κ. Then there is a valuation v of the rational func-
tion field K(x, y)|K, trivial on K, such that (K(x, y), v) admits κ many pairwise
linearly disjoint infinite towers of independent Artin-Schreier defect extensions.
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Due to the possible importance of the classification of Artin-Schreier defect ex-
tensions for the problems related to local uniformization, an interesting question is
whether such constructions are also possible with dependent in the place of inde-
pendent Artin-Schreier defect extensions. The following theorem gives an answer:

Theorem 1.3. If K is a perfect field of positive characteristic, then there is a valu-
ation v of the rational function field K(x, y)|K, trivial on K, such that (K(x, y), v)
admits max{|K|,ℵ0} many pairwise linearly disjoint infinite towers of dependent
Artin-Schreier defect extensions.

On the other hand, in Section 4.2 we give an example of a valuation v on the field
K(x, y) satisfying the assumptions of the above theorem, such that (K(x, y), v) ad-
mits no dependent, but admits infinite towers of independent Artin-Schreier defect
extensions.

In all of these cases we consider valued rational function fields of positive char-
acteristic p with p-divisible value groups. We cannot answer yet whether similar
constructions are possible in the non-p-divisible case. More precisely, we are not
yet able to show that the Artin-Schreier extensions we can construct with the use
of pseudo Cauchy sequences are linearly disjoint from the henselization.

In Section 3 we give a criterion for a valued field (K, v) of positive characteristic p
with p-divisible value group and perfect residue field to admit an infinite tower of
dependent Artin-Schreier defect extensions.

Theorem 1.4. Take a valued field (K, v) of positive characteristic p with perfect
residue field and p-divisible value group. If there is a purely inseparable extension
of K which does not lie in the completion of the field, then K admits an infinite
tower of dependent Artin-Schreier defect extensions. If every purely inseparable
extension of degree p lies in the completion of K, then the field admits no dependent
Artin-Schreier defect extensions.

We prove that the same condition implies that the field admits infinitely many
parallel dependent Artin-Schreier defect extensions, such that the compositum
of any n of the extensions is a Galois extension of degree and defect pn (see
Proposition 3.2).

In Section 5 we show that a simple generalization of the technique used in the
proof of Theorem 1.1 enables us to construct infinite towers of Artin-Schreier defect
extensions of rational function fields, using Galois extensions of degree pn generated
by roots of polynomials of the form Xpn−X−a. We give an example that a similar
extension of the techniques used for the construction of dependent Artin-Schreier
defect extensions may not lead to towers of Artin-Schreier defect extensions. More
precisely, Theorem 2.21 states that by a certain deformation of a polynomial in-
ducing an immediate purely inseparable extension of prime degree not contained in
the completion of the field we obtain an Artin-Schreier defect extension. Example
5.5 shows that for purely inseparable extensions of higher degrees such deforma-
tion may lead to extensions not disjoint from the henselization. The same example
shows also that we cannot generalize Theorem 2.14 replacing the condition “a lies
in Kh” by “K(a)|K is not linearly disjoint from Kh|K”.
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2. Preliminaries

For the next results and basic facts of valuation theory we refer the reader to [E],
[R], [W] and [ZS]. We assume some familiarity with the theory of pseudo Cauchy
sequences as presented in [Ka], called there “pseudo convergent sets”. We will also
use the name of “pseudo limit” in place of limit of a pseudo Cauchy sequence.

Take a valued field (K, v). Then any extension of v to the algebraic closure K̃
of K has residue field K̃v and value group ṽK, that is, the divisible hull of vK.

2.1. Linearly disjoint and algebraically disjoint extensions.
In this section we recall a few properties of linearly and algebraically disjoint

extensions. For the proofs and details see for instance [L] and [Ku6].

Lemma 2.1. Take L|K and F ⊇ E ⊇ K to be field extensions contained in
a common extension field Ω. Then L|K is linearly disjoint from F |K if and only
if L|K is linearly disjoint from E|K and L.E|E is linearly disjoint from F |E.

The next lemma gives a useful criterion for linear disjointness if at least one of
the extensions is Galois.

Lemma 2.2. Suppose L|K is a Galois and F |K an arbitrary field extension. Then
L and F are linearly disjoint over K if and only if L ∩ F = K.

Using this Lemma and properties of Galois extensions one can show the following
fact.

Corollary 2.3. Take an arbitrary field extension K ′|K and a Galois extension
L|K, linearly disjoint from K ′|K. Then the extension L.K ′|K ′ is also Galois and
the restriction of the automorphisms of L.K ′|K ′ to the field L is a topological iso-
morphism of Gal(L.K ′|K ′) and Gal(L|K).

A field extension L|K will be called separable if it is linearly disjoint from
K1/p∞ |K, or equivalently, from K1/p|K. Note that in the case of algebraic ex-
tensions the definition coincides with the standard notion of separable extensions.
Such extensions will be called separable-algebraic.

Lemma 2.4. If F |K is an arbitrary extension such that K is relatively algebraically
closed in F , then F |K is linearly disjoint form every separable-algebraic extension
of K.

Using the properties of linearly disjoint extensions we can give an easy proof of
the amalgamation property of valued field extensions in the case of simple algebraic
and simple transcendental extensions.

Lemma 2.5. Take a valued field (L, v). If (L(b), v1) is an algebraic extension and
(L(x), v2) a transcendental extension of the field (L, v), then there is an extension
w of the valuation v to the field L(x, b) such that the restrictions of w to the fields
L(b) and L(x) coincide with v1 and v2 respectively.

Proof. Let F be an algebraic extension of L(b) such that F |L is normal. Take
an extension v′1 of the valuation v1 to the field F and an extension v′2 of v2 to the
field L(x).F = F (x). Since v′1 and v′2 coincide on L, the valuations v′1 and v′2|F are
conjugate. Take σ ∈ Gal(F |L) such that v′1 = v′2|F ◦ σ.

If b is purely inseparable over L, one can choose F = L(b) and F (x)|L(x) is purely
inseparable. Then σ = idL(b). Hence v′2 is the unique extension of v2 to L(x, b) and



6 ANNA BLASZCZOK

v′2|L(b) = v1. Suppose that the element b is separable over L. Then one can take
F to be separable extension of L and thus by Lemma 2.4, the extensions F |L and
L(x)|L are linearly disjoint. Since F |L is a Galois extension, from Corollary 2.3 it
follows that σ can be extended to the automorphism σ̃ ∈ Gal(F (x)|L(x)). Setting
w := v′2 ◦ σ̃|L(x,b) we obtain an extension of the valuations v1 and v2 to the field
L(x, b). �

Take a field K and let L|K, F |K be subextensions of some field extension Ω
of the field K. The extension L|K is called algebraically disjoint from F |K if
for very n ∈ N, any a1, . . . , an ∈ L algebraically independent over K will also be
algebraically independent over F . Hence, L|K is algebraically disjoint from F |K
if every finitely generated subextension E|K of L|K satisfies trdeg E|K =trdeg
E.F |F . As in the case of linear disjointness, the definition of algebraic disjointness
is symmetrical. Thus if L|K is algebraically disjoint from F |K we will also say that
L and F are K-algebraically disjoint. It is easy to check that if L|K is linearly
disjoint from F |K then it is also algebraically disjoint from F |K. The converse
holds only under additional assumptions. We will use the following case:

Lemma 2.6. Let L|K and F |K be field extensions algebraically disjoint in a com-
mon extension field Ω. If K is relatively algebraically closed in L and F |K is
separable then L|K and F |K are also linearly disjoint.

The above properties of linearly disjoint extensions enable us to prove the fol-
lowing lemmas, useful in our constructions.

Lemma 2.7. Take a field K of positive characteristic p and a rational function
field K(x, y)|K. For any a ∈ K take La|K(y + a

x ) to be a separable algebraic
extension such that K is relatively algebraically closed in La. Then for any two
distinct elements a, b ∈ K the extensions La(x) and Lb(x) are linearly disjoint over
K(x, y).

Proof. Take two distinct elements a and b of K. Since K(y + a
x , y + b

x ) = K(x, y),
the elements y + a

x and y + b
x are algebraically independent over K. Thus the

extensions K(y + a
x )|K and K(y + b

x )|K are algebraically disjoint. Furthermore,
La|K(y+ a

x ) and Lb|K(y + b
x ) are algebraic extensions, hence also La|K and Lb|K

are algebraically disjoint. Since K is relatively algebraically closed in La and Lb|K
is a separable extension, Lemma 2.6 implies that La and Lb are K-linearly disjoint.

Applying Lemma 2.1 to the tower K ⊆ K(y + a
x ) ⊆ La and the extension Lb|K

we deduce that La and Lb.K(y + a
x ) = Lb(x) are linearly disjoint over K(y + a

x ).
Again, since K(y + a

x ) ⊆ K(x, y) ⊆ Lb(x), from the same lemma it follows that
Lb(x) and La.K(x, y) = La(x) are linearly disjoint over K(x, y). �

Lemma 2.8. Take a field K of characteristic p > 0 and a rational function field
K(x, y)|K. For any nonnegative integer r take Lr|K( yxr ) to be a (possibly in-
finite) tower of Artin-Schreier extensions such that K is relatively algebraically
closed in Lr. Then for every two distinct nonnegative integers r, s the extensions
Lr(x)|K(x, y) and Ls(x)|K(x, y) are linearly disjoint.

Proof. Take r and s to be two distinct nonnegative integers. Without loss of gener-
ality we may assume that t := r−s > 0. Elements y

xs and y
xs are algebraically inde-

pendent over K, thus the extensions K( yxs )|K, K( yxr )|K are algebraically disjoint.
Since moreover Lr|K( yxr ) and Ls|K( yxs ) are algebraic extensions, K is relatively
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algebraically closed in Lr and Ls|K is separable, we can deduce as in the proof of
the previous lemma that Lr|K and Ls|K are linearly disjoint.

Applying Lemma 2.1 to the tower K ⊆ K( yxs ) ⊆ Ls and the extension Lr|K
we obtain that Ls and Lr.K( yxs ) = Lr(xt) are linearly disjoint over K( yxs ). Using
again Lemma 2.1 for the tower K( yxs ) ⊆ K( yxr ,

y
xs ) ⊆ Lr(xt) and the extension

Ls|K( yxs ) we deduce that Lr(xt) and Ls.K( yxr ,
y
xs ) = Ls(xt) are linearly disjoint

over K( yxr ,
y
xs ) = K( yxr , x

t).
We show that the extensions Ls(xt) andK(x, y) are linearly disjoint overK( yxs , x

t).
By assumption, Ls =

⋃
i∈I Ls,i, where Ls,i|Ls,i−1 is a nontrivial Artin-Schreier ex-

tension for every i ∈ I, Ls,0 := K( yxs ) and I = {0, . . . , n} for some natural num-
ber n or I = N. We prove, by induction on i, that each of the the extensions
L′s,i := Ls,i(xt) is linearly disjoint from K(x, y) over K( yxs , x

t). Write t = pkl,
where k is a nonnegative integer and l ∈ N is coprime with p. Since xt is transcen-
dental over Ls, also Ls,i(xt)|Ls,i−1(xt) is a nontrivial Artin-Schreier extension for
very i ∈ I. In the case of i = 1, L′s,1|K( yxs , x

t) is an Arin-Schreier extension, hence
Galois extension of degree p. Suppose that L′s,1 and K(x, y) were not linearly dis-
joint over K( yxs , x

t). Then by Lemma 2.2, there would exist a ∈ L′s,1∩K(x, y) such
that a /∈ K( yxs , x

t). Since a ∈ L′s,1 \K( yxs , x
t), we would have K( yxs , x

t, a) = L′s,1.
On the other hand a ∈ K(x, y), hence K(x, y)|K( yxs , x

t) would contain a separable
subextension of degree p. But K(x, y) = K( yxs , x

t)(x) is a radical extension of
degree t of the field K( yxs , x

t) and the separable degree of the extension is equal
to l, which is not divisible by p, a contradiction.

Take i ∈ I, i ≥ 1 and assume that L′s,i and K(x, y) are linearly disjoint over
K( yxs , x

t). Hence, in particular, L′s,i.K(x, y) = L′s,i(x) is an extension of L′s,i of
degree t. Suppose that L′s,i+1 and K(x, y) were not linearly disjoint over K( yxs , x

t).
Then by Lemma 2.1, also the extensions L′s,i+1 and L′s,i.K(x, y) would not be
linearly disjoint over L′s,i. However, L′s,i.K(x, y) is a radical extension of L′s,i of
degree t and L′s,i+1|L′s,i is a nontrivial Artin-Schreier extension. The same argument
as in the case of i = 1 leads to a contradiction.

Therefore, Ls(xt) is linearly disjoint from K(x, y) over K( yxs , x
t). It follows

that Ls(x)|Ls(xt) is a radical extension of degree t. Since Lr(xt)|K( yxs , x
t) and

Ls(xt)|K( yxs , x
t) are linearly disjoint, Ls(xt).Lr(xt) = Ls(xt).Lr is a separable-

algebraic extension of Ls(xt), being a tower of Artin-Schreier extensions. Repeating
the above reasoning we deduce that the extensions Ls(x) and Ls(xt).Lr(xt) are
linearly disjoint over Ls(xt). As we have shown, the extensions Lr(xt) and Ls(xt)
are linearly disjoint over K( yxr , x

t). Thus from Lemma 2.1 it follows that also
Lr(xt) and Ls(x) are linearly disjoint over K( yxr , x

t).
Finally, applying Lemma 2.1 to the tower K( yxs , x

t) ⊆ K(x, y) ⊆ Ls(x) and the
extension Lr(xt)|K( yxs , x

t), we obtain that Ls(x) and Lr(xt).K(x, y) = Lr(x) are
linearly disjoint over K(x, y). �

2.2. Defect and immediate extensions.
Take finite field extensions L|K and M |L. Since degree of field extension, rami-

fication index and inertia degree are multiplicative, also the defect is multiplicative.
Namely, if a valuation v of K has a unique extension to the field M , then

d(M |K, v) = d(M |L, v) · d(L|K, v).
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Note that for a finite extension (L|K, v) of valued fields the defect of the extension is
equal to its degree if and only if (L|K, v) is an immediate extension and it is linearly
disjoint from some henselization of (K, v). An infinite extension of valued fields is
immediate if and only if every finite subextension of the extension is immediate.

If (L|K, v) is an extension of valued fields such that for every element a ∈ L and
α ∈ vL there is c ∈ K such that v(a− c) > α then we say that (K, v) is dense in
(L, v). If this holds, the extension (L|K, v) is immediate. A maximal extension in
which (K, v) is dense is unique up to valuation preserving isomorphism over K and
called the completion of (K, v). We will denote it by (K, v)c, or Kc if v is fixed.
For a finite extension F of K, the valued field (F.Kc, v) is the completion of (F, v),
hence we can write F c = F.Kc. If v is a valuation of rank one, then the completion
of K is henselian, hence contains a henselization of K.

Take a valued field (K, v). For a valuation v of any rank, Kh|K is an immediate
extension. Fix the extension of v to K̃ and take any algebraic extension L of K.
Then Lh must contain Kh and L, hence Kh.L ⊆ Lh. Conversely, since every
algebraic extension of a henselian field is henselian, Kh.L contains Lh . Therefore
Lh = Kh.L.

By Theorem 1 of [Ka], every element a of an immediate extension (L|K, v) which
does not lie in K is a pseudo limit of a pseudo Cauchy sequence in (K, v) without
a limit in K. Take a pseudo Cauchy sequence (aν)ν<λ (where λ is a limit ordinal) of
elements of K. Recall that (aν)ν<λ is of transcendental type if for every g ∈ K[X]
the sequence fixes the value of g, i.e., there is ν0 < λ such that

vg(aν) = vg(aν0) for all ν ≥ ν0, ν < λ.

Otherwise, the sequence (aν)ν<λ is of algebraic type. In our constructions we
will use the following facts about extensions generated by pseudo limits of pseudo
Cauchy sequences (cf. Theorem 2, Theorem 3 of [Ka]):

Theorem 2.9. Take a valued field (K, v) and an element x in some valued field
extension of K. If x is a pseudo limit of a pseudo Cauchy sequence in (K, v) of
transcendental type, then (K(x)|K, v) is an immediate transcendental extension.

Theorem 2.10. Take a pseudo Cauchy sequence (aν)ν<λ in (K, v) of algebraic type
and a polynomial f of minimal degree such that (aν)ν<λ does not fix the value of f .
If a is a root of f , then there is an extension of v to K(a) such that (K(a)|K, v) is
an immediate extension and a is a pseudo limit of (aν)ν<λ.

The following is a special case of Lemma 3.7 of [Ku1]:

Lemma 2.11. Take an extension (K(x)|K, v) of valued fields and choose any ex-
tension of v to K̃(x). Take Kh and K(x)h to be the henselizations of K and K(x)
respectively in (K̃(x), v). If the element x is a pseudo limit of a pseudo Cauchy
sequence in (K, v) of transcendental type, then Kh is relatively algebraically closed
in K(x)h.

2.3. Cuts and distances.
We will recall only basic notions and facts connected with cuts of ordered abelian

groups and distances of elements of valued field extensions. For the details and
proofs see Section 2.3 of [Ku3] and Section 3 of [Ku-V].

Take a totally ordered set (T,<). For a nonempty subset S of T and an element
a ∈ T we will write S < a if s < a for every s ∈ S. A set ΛL ⊆ T is called an initial
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segment of T if for each α ∈ ΛL every β < α also lies in ΛL. A pair (ΛL,ΛR) of
subsets of T is called a cut in T if ΛL is an initial segment of T and ΛR = T \ΛL.
To compare cuts in (T,<) we will use the lower cut sets comparison. That is, for
two cuts Λ1 = (ΛL1 ,Λ

R
1 ), Λ2 = (ΛL2 ,Λ

R
2 ) in T we will write Λ1 < Λ2 if ΛL1  ΛL2 ,

and Λ1 ≤ Λ2 if ΛL1 ⊆ ΛL2 .
For any s ∈ T define

s− := ({t ∈ T | t < s}, {t ∈ T | t ≥ s}),
s+ := ({t ∈ T | t ≤ s}, {t ∈ T | t > s}).

We identify the element s with s+. Therefore, for a cut Λ = (ΛL,ΛR) in T and
an element s ∈ T the inequality Λ < s means that for every element β ∈ ΛL we
have β < s. Similarly, for any subset M of T we define M+ to be a cut (ΛL,ΛR)
in T such that ΛL is the least initial segment containing M , that is,

M+ = ({t ∈ T | ∃m ∈M t ≤ m}, {t ∈ T | t > M}).
We denote also by M− the cut (ΛL,ΛR) in T such that ΛL is the largest initial
segment disjoint with M , i.e.,

M− = ({t ∈ T | t < M}, {t ∈ T | ∃m ∈M t ≥ m}).
For every extension (L|K, v) of valued fields and z ∈ L define

v(z −K) := {v(z − c) | c ∈ K}.
The set v(z − K) ∩ vK is an initial segment of vK and thus the lower cut set of
a cut in vK. However, it is more convenient to work with the cut

dist (z,K) := (v(z −K) ∩ vK)+ in the divisible hull ṽK of vK.

We call this cut the distance of z from K. The lower cut set of dist (z,K) is the
smallest initial segment of ṽK containing v(z−K)∩vK. If (F |K, v) is an algebraic
subextension of (L|K, v) then ṽF = ṽK. Thus dist (z,K) and dist (z, F ) are cuts
in the same group and we can compare these cuts by set inclusion of the lower cut
sets. Since v(z −K) ⊆ v(z − F ) we deduce that

dist (z,K) ≤ dist (z, F ).

If dist (z,K) = (ΛL,ΛR), then for any natural number n we denote by ndist (z,K)
the cut in ṽK with the lower cut set

nΛL := {nγ | γ ∈ ΛL}.

Since dist (z,K) is a cut in the divisible group ṽK, the set nΛL is again an initial
segment of ṽK. We say that the distance dist (z,K) is idempotent if

n dist (z,K) = dist (z,K)

for some natural number n ≥ 2. From Lemma 2.14 of [Ku3] it follows that this
condition holds if and only if dist (z,K) = H+ or dist (z,K) = H− for some convex
subgroup H of ṽK.

If y is another element of L then we define z ∼K y to mean that

v(z − y) > dist (z,K).

If this holds, then v(z − c) = v(y − c) for all c ∈ K such that v(z − c) ∈ vK and
thus, dist (z,K) = dist (y,K). The next lemma was proven by Kuhlmann in [Ku3].
It shows that the converse holds under an additional assumption.
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Lemma 2.12. Take a valued field extension (L|K, v) and elements z, y ∈ L. If
v(z−K)∩vK has no maximal element then z ∼K y if and only if v(z−c) = v(y−c)
for every c ∈ K such that v(z − c) ∈ K.

The following theorem enables us to deduce an important information about the
distance of an Artin-Schreier generator ϑ of a defect extension K(ϑ)|K from the
field K (see Section 2.4).

Theorem 2.13. If (L|K, v) is an immediate extension of valued fields, then for
every element z ∈ L \K it follows that v(z −K) ⊆ vK and that v(z −K) has no
maximal element. In particular, vz < dist (z,K).

Using the next property of the relation ∼K one can show that the dependent
Artin-Schreier defect extensions can be derived from immediate purely inseparable
extensions of degree p (cf. Theorem 2.21 and Section 5). The theorem was proven
by Kuhlmann in [Ku4].

Theorem 2.14. Take a valued field (K, v) and the henselization Kh of K with
respect to some extension of the valuation v to K̃. Assume that a, z ∈ K̃ are such
that

a ∼K z.

If a lies in Kh, then the extensions K(z) and Kh are not linearly disjoint over K.
In particular, the extension K(z)|K is not purely inseparable.

For any α ∈ vK and each cut Λ in vK we set α + Λ := (α + ΛL, α + ΛR).
An immediate consequence of the above definitions is the following lemma:

Lemma 2.15. Take an extension (L|K, v) of valued fields. Then for every element
c ∈ K and y, z ∈ L,
a) dist (z + c,K) = dist (z,K),
b) dist (cz,K) = vc+ dist (z,K),
c) if z ∼K y, then z + c ∼K y + c,
d) if c 6= 0 and z ∼K y, then cz ∼K cy.

2.4. Artin-Schreier defect extensions.
We recall a few facts about Artin-Schreier defect extensions of valued fields and

their classification presented in detail in [Ku3]. Throughout this section we assume
that (K, v) is a valued field of positive characteristic p andK(ϑ)|K an Artin-Schreier
extension of degree p with ϑp − ϑ− a = 0 for some a ∈ K.

Lemma 2.16. If va ≤ 0, then vϑ = 1
pva. If va > 0, then exactly one of the

conjugates ϑ, ϑ+ 1, . . . , ϑ+ p− 1 has value va and the others have value 0.

We will frequently use the following consequence of Hensel’s Lemma:

Lemma 2.17. Assume that va > 0 or that va = 0 and the polynomial Xp−X−av
has root in Kv. Then the Artin-Schreier generator ϑ lies in the henselization of K
with respect to every extension of v to K̃ and the valuation v of K has exactly
p many distinct extensions to K(ϑ). Therefore equality holds in the fundamental
inequality. If va = 0 and Xp − X − av has no root in Kv, then the residue field
extension K(ϑ)v|Kv is a separable extension of degree p. Hence (K(ϑ)|K, v) is
defectless.
If (K(ϑ)|K, v) is a defect extension, then va < 0.
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Take a field L. A polynomial g ∈ L[X] is called additive if g(b+c) = g(b)+g(c)
for all b, c in every extension field L′ of L. Since charK = p, the Artin-Schreier
polynomial Xp −X is additive. Hence for any c ∈ K the element ϑ− c is a root of
the Artin-Schreier polynomial Xp−X − a+ cp− c. It follows that this polynomial
induces the same extension K(ϑ)|K as the polynomial Xp−X − a. Using this fact
one can easily show a consequence of the above lemma:

Corollary 2.18. If (K(ϑ)|K, v) has nontrivial defect, then v(ϑ− c) < 0 for every
c ∈ K and consequently dist (ϑ−K) ≤ 0−.

Assume that (K(ϑ)|K, v) is a defect extension. Then the defect is equal to the
degree of the extension, hence (K(ϑ)|K, v) is immediate. By Theorem 2.13 it follows
that v(ϑ−K) ∩ vK = v(ϑ−K), and that v(ϑ−K) has no maximal element.

Take ϑ′ ∈ K(ϑ) to be another Artin-Schreier generator of the extension K(ϑ)|K.
One can show that the element ϑ′ is of the form iϑ+ c for some i ∈ F×p and c ∈ K
(cf. Lemma 2.26 of [Ku3]). Hence from Lemma 2.15 it follows that δ := dist (ϑ,K)
does not depend on the choice of the Artin-Schreier generator. We call δ the
distance of the Artin-Schreier extension (K(ϑ)|K, v). Corollary 2.18 implies
that δ ≤ 0−.

In Section 1, we have introduced a classification of Artin-Schreier defect ex-
tensions into “dependent” and “independent” ones. If (K(ϑ)|K, v) is a defect ex-
tension, then from Lemma 2.12 it follows that (K(ϑ)|K, v) is a dependent Artin-
Schreier defect extension if and only if there is an immediate purely inseparable
extension K(η)|K of degree p such that

η ∼k ϑ.
The next proposition gives us a useful characterization of independent Artin-Schreier
defect extension by idempotent cuts.

Proposition 2.19. Assume that the extension (K(ϑ)|K, v) has nontrivial defect.
Then K(ϑ)|K is an independent Artin-Schreier defect extension if and only if its
distance is idempotent.

If δ is idempotent, then δ = H+ or δ = H− for some convex subgroup H of
ṽK. If moreover K(ϑ)|K is a defect extension, then δ ≤ 0−, hence δ = H−. In
particular, if the value group of (K, v) is archimedean, then the unique proper
convex subgroup of ṽK is {0}.

Corollary 2.20. Assume that (K(ϑ)|K, v) has nontrivial defect and the valuation v
is of rank one. Then the Artin-Schreier defect extension (K(ϑ)|K, v) is independent
if and only if dist (ϑ,K) = 0−

Suppose that the field K admits an immediate purely inseparable extension
K(η)|K of degree p such that η ∈ K1/p \ Kc. For any element b ∈ K consider
the polynomial

fb = Y p − bp−1Y − ηp.
With each of the polynomials fb we can associate through the transformation

Y = bX the Artin-Schreier polynomial

gb(X) = Xp −X −
(η
b

)p
.

Note that ϑb is a root of the polynomial gp if and only if bϑb is a root of fb. The next
theorem shows when such deformation of a polynomial Y p−ηp generating a purely
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inseparable extension into an Artin-Schreier polynomial leads to a dependent Artin-
Schreier defect extension.

Theorem 2.21. Suppose that the polynomial Xp−ηp ∈ K[X] induces an immediate
extension of (K, v) which does not lie in the completion of K. Then for each b ∈ K×
such that

(p− 1)vb > pdist (η,K)− vη(1)

the polynomial gb = Xp − X − (ηb )p induces a dependent Artin-Schreier defect
extension. Moreover, every root ϑb of gb satisfies

ϑb ∼K
η

b
.

3. Dependent Artin-Schreier defect extensions of valued fields

In this section we prove Theorem 1.4. We show that under the assumptions of
the theorem the valued field (K, v) admits infinitely many parallel dependent Artin-
Schreier defect extensions, such that the compositum of any n of the extensions is
a Galois extension of degree and defect pn. Throughout this section we assume
that (K, v) is a valued field of positive characteristic p with perfect residue
field and p-divisible value group.
Proof of Theorem 1.4: Suppose there is an element a ∈ K such that a1/pn

does
not lie in the completion Kc of K. Take

k := min{i ∈ N | a1/pi

/∈ Kc}.

Since a1/pk

/∈ Kc, there is γ ∈ vK such that v(a1/pk −K) < γ. By definition of k,
the element a1/pk−1

lies in the completion of K. Hence, v(a1/pk−1 − d) > pγ for
some d ∈ K. Thus

v(a1/pk

−K) < γ < v(a1/pk

− d1/p).

It follows that also v(d1/p −K) < γ and consequently d1/p /∈ Kc.
Since the value group of the field K is p-divisible and its residue field is perfect,

d1/p generates an immediate purely inseparable extension of K which does not lie
in the completion of K. By Theorem 2.21, we can choose an element b1 ∈ K× of
large enough value, such that a root ϑ1 of the polynomial

f1 = Y p − Y − d

bp1

generates a dependent Artin-Schreier defect extension K1 = K0(ϑ1) of K0 := K.
Take a natural number n and assume that we have chosen K1, . . . ,Kn to be

algebraic extensions of K such that each Ki = Ki−1(ϑi) is a dependent Artin-
Schreier defect extension of Ki−1, where ϑi is a root of the polynomial

fi = Y p − Y − 1
bpi
ϑi−1

for some bi ∈ K×. Assume in addition that ϑ1/p
i /∈ Kc

i for every i ≤ n − 1. Note
that then also ϑ

1/p
n does not lie in the completion of Kn. Indeed, suppose that

ϑ
1/p
n ∈ Kc

n = Kc
n−1(ϑn). Since ϑpn−ϑn = 1

bp
n
ϑn−1, we have that ϑn − ϑ1/p

n = 1
bn
ϑ

1/p
n−1.

Therefore,
ϑ

1/p
n−1 = bn(ϑn − ϑ1/p

n ) ∈ Kc
n−1(ϑn).
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By assumption ϑ1/p
n−1 /∈ Kc

n−1, thus we would obtain that Kc
n−1(ϑ1/p

n−1) = Kc
n−1(ϑn),

but Kc
n−1(ϑ1/p

n−1) is a nontrivial purely inseparable and Kc
n−1(ϑn) a separable ex-

tension of Kc
n−1, a contradiction.

Then, using the same argument as before, we can choose an element bn+1 ∈ K×
such that the polynomial

fn+1 = Y p − Y − 1
bpn+1

ϑn

induces a dependent Artin-Schreier defect extension Kn(ϑn+1)|Kn, where ϑn+1 is
a root of the polynomial fn+1. By induction we obtain an infinite chain Kn|Kn−1

of dependent Artin-Schreier defect extensions.
Assume now that every purely inseparable extension of (K, v) lies in the com-

pletion of K. Suppose there were a dependent Artin-Schreier defect extension
(K(ϑ)|K, v). Then there would be η ∈ K1/p such that η ∼K ϑ, that is,

v(ϑ− η) > v(η −K).

Since η ∈ K1/p ⊆ Kc we would obtain η = ϑ, a contradiction. �

An immediate consequence of the theorem is the following:

Corollary 3.1. If (K, v) admits at least one dependent Artin-Schreier defect ex-
tension, then it admits an infinite tower of such extensions.

Proof. Assume that (K, v) admits a dependent Artin-Schreier defect extension
(K(ϑ)|K, v). Then, from the definition of dependent extension, K admits a purely
inseparable extension K(η) of degree p such that ϑ ∼K η. From the proof of the
above theorem if follows that η does not lie in the completion of the field K. There-
fore, from Theorem 1.4 we obtain that K admits an infinite tower of dependent
Artin-Schreier defect extensions. �

We modify now the above construction to obtain infinitely many parallel depen-
dent Artin-Schreier defect extensions of the field K. Set L0 := K. As before, we
choose an element d ∈ K whose p-th root does not lie in the completion of K and
take c1 ∈ K× such that a root η1 of the polynomial

h1 = Y p − Y − d

cp1

generates a dependent Artin-Schreier defect extension L1 = L0(η1) of L0 := K.
Take n ∈ N and assume that we have chosen L1, . . . , Ln to be algebraic extensions
of K such that Li = Li−1(ηi) is a dependent Artin-Schreier defect extension of Li−1

generated by a root ηi of the polynomial

hi = Y p − Y − d

cpi

for some ci ∈ K×. Assume in addition that d1/p /∈ Lci for every i ≤ n − 1.
Suppose that d1/p ∈ Lcn = Lcn−1(ηn). Since d1/p does not lie in the comple-
tion of Ln−1, we have that [Lcn−1(d1/p) : Lcn−1] = p. Therefore we would obtain
Lcn−1(d1/p) = Lcn−1(ηn), but Lcn−1(d1/p) is a nontrivial purely inseparable exten-

sion of Lcn−1 and the extension Lcn−1(ηn)|Lcn−1 is separable, a contradiction. Con-
sequently d1/p /∈ Lcn. By Theorem 2.21, we can choose an element cn+1 ∈ K× of
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large enough value, such that a root ηn+1 of the polynomial

hn+1 = Y p − Y − d

cpn+1

generates a dependent Artin-Schreier defect extension Ln+1 = Ln(ηn+1) of Ln.
Hence we obtain an infinite chain of dependent Artin-Schreier defect extensions
Ln|Ln−1.

Take a natural number n. Since every polynomial hn has coefficients in K, the
field K(ηn) is a nontrivial Artin-Schreier extension of K. By what we have shown,
the valuation v of K has a unique extension to the field Ln and the extension Ln|K
is immediate. Since K(ηn)|K is a subextension of Ln|K, we deduce that v has
also a unique extension to K(ηn) and K(ηn)|K is immediate. Hence K(ηn)|K has
nontrivial defect. From Proposition 2.21 it follows that ηn ∼Ln−1

1
cn
d1/p. Thus

v

(
ηn −

d1/p

cn

)
> v

(
d1/p

cn
− Ln−1

)
≥ v

(
d1/p

cn
−K

)
.

It follows that ηn ∼K 1
cn
d1/p and K(ηn)|K is a dependent Artin-Schreier defect

extension. Since for every n ∈ N the extension Ln|Ln−1 is nontrivial, we deduce
that K admits infinitely many dependent Artin-Schreier extensions.

Take n ∈ N, any distinct natural numbers i1, . . . , in and consider the compositum
K(ηi1 , . . . , ηin) of the fields K(ηi1), . . . ,K(ηin). Since K(ηi1 , . . . , ηin)|K is a subex-
tension of some Lm|K, we deduce that the valuation v of K has a unique extension
to K(ηi1 , . . . , ηin) and the extension K(ηi1 , . . . , ηin)|K is immediate. Consequently,
the defect of the extension is equal to its degree. By what we have proved, Lm|K
is of degree pm. From the definition of Lm it follows that K(ηi1 , . . . , ηin)|K must
be of degree pn. Furthermore the extension is Galois, as a compositum of Galois
extensions of the field K. We have thus proved:

Proposition 3.2. If there is a purely inseparable extension of (K, v) which does not
lie in the completion of the field, then K admits infinitely many dependent Artin-
Schreier defect extensions such that the compositum of any n of the extensions is
a Galois extension of K of degree and defect pn.

Corollary 3.3. If (K, v) admits at least one dependent Artin-Schreier defect ex-
tension, then it admits infinitely many dependent Artin-Schreier defect extensions
such that the compositum of any n of the extensions is a Galois extension of K of
degree and defect pn.

From the above corollary it follows immediately that if the field (K, v) admits
only finitely many Artin-Schreier defect extensions, then all of the extensions are
independent.

4. Constructions of towers of Artin-Schreier defect extensions of
rational function fields.

This section is devoted to the proofs of Theorems 1.1, 1.2 and 1.3. Throughout
the section we will consider the following situation. We assume K to be a
field of positive characteristic p. We take (K(x)|K, v) to be the rational function
field equipped with the x-adic valuation v. We set vx = 1. The field can be
considered as a subfield of the power series field (K((xΓ)), vx) with the canonical
valuation vx and a group Γ ⊆Q.
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In the following constructions we choose the element y ∈ K((xΓ)) to be a pseudo
limit of a pseudo Cauchy sequence of transcendental type in some subfield of
K((xΓ)) containing K(x). We consider the field K(x, y) with the restriction v
of the x-adic valuation vx of K((xΓ)). By Theorem 2.9, such element y is tran-
scendental over K(x). Hence (K(x, y), v) can be viewed as a rational function field
with valuation v described by its restriction to K(x) and the choice of y.

Take y to be a power series

y =
∞∑
i=1

xnip
−ei ∈ K

((
x

1
p∞ Z

))
,(2)

where (ei)i∈N is a strictly increasing sequence of natural numbers such that

ei+1 − ei ≥ i

for every i ∈ N, and (ni)i∈N is a sequence of integers coprime with p and such that
(nip−ei)i∈N is strictly increasing.

Then (K(x, y), v) is a subfield of
(
K
((
x

1
p∞ Z

))
, vx

)
defined by the following

conditions:
K is a field of characteristic p > 0,
K(x)|K is the rational function field,
y ∈ K

((
x

1
p∞ Z

))
is of the form (2),

v is the restriction of the valuation vx to the field K(x, y).

(3)

Consequently we obtain that

K(x, y)v ⊆ K
((
x

1
p∞ Z

))
v = K and vK(x, y) ⊆ vK

((
x

1
p∞ Z

))
=

1
p∞
Z.

Moreover, since K = K(x)v ⊆ K(x, y)v, it follows that K(x, y)v = K. We show
that equality holds also for the value groups of K(x, y) and the power series field.
For any natural number j we have that

zj :=
∞∑

i=j+1

xnip
ej−ei = yp

ej −
j∑
i=1

xnip
ej−ei ∈ K(x, y),

by the assumption on (ei)i∈N. Thus vzj = nj+1p
ej−ej+1 . Since ej − ej+1 ≤ −j,

the element nj+1p
−j lies in vK(x, y). As nj+1 is coprime with p, also p−j lies in

vK(x, y). Hence 1
p∞Z ⊆ vK(x, y) and consequently

vK(x, y) =
1
p∞
Z = vxK

((
x

1
p∞ Z

))
.

Therefore in particular,
(
K
((
x

1
p∞ Z

)) ∣∣K(x, y), vx
)

is an immediate extension.

Consider the subfield L := K(xp
−i | i ∈ N) of the power series field. For every

natural number n, set

an :=
n∑
i=1

xnip
−ei ∈ L.

Then the element y is a pseudo limit of the pseudo Cauchy sequence (an)n∈N in
L. We show that the sequence is of transcendental type. Suppose the sequence
is of algebraic type. Then by Theorem 2.10, there exists an algebraic extension
(L(b)|L, v) such the element b is a pseudo limit of the sequence. Thus also the
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extension K(x, b)|K(x) is algebraic and consequently finite. On the other hand,
1
p∞Z ⊆ vK(x, b). Indeed, for every j ∈ N consider the value of the element

bp
ej − ap

ej

j = bp
ej −

j∑
i=1

xnip
ej−ei ∈ K(x, b).

Since b is a pseudo limit of (an)n∈N, we have

v(bp
ej − ap

ej

j ) = pejv(aj+1 − aj) = nj+1p
ej−ej+1 .

As before we deduce that p−j ∈ vK(x, b). Therefore, 1
p∞Z ⊆ vK(x, b) and

(vK(x, b) : vK(x)) =∞, a contradiction to the fundamental inequality. Hence the
pseudo Cauchy sequence (an)n∈N is of transcendental type and from Theorem 2.9
it follows that y is transcendental over K(x).

Lemma 4.1. The ring K
[
x, 1

x , y
]

is dense in the field (K(x, y), v)

Proof. Take any element u ∈ K(x, y). Choose f, g ∈ K
[
x, 1

x , y
]

such that u = f
g .

Without loss of generality we may assume that vg = 0. Indeed, suppose that
vg = a

pk , where a, k are integers and k ≥ 0, a 6= 0. Choose m, d ∈ Z such that d ≥ 0
and a

pk = m+ d
pk . Take j = ek+1 − ek − k ≥ 0 and set

w̃ :=

(
yp

ek −
k∑
i=1

xnip
ek−ei

)pj

= xnk+1p
−k

+
∞∑

i=k+2

xnip
ek−ei+j

.

Then vw̃ = nk+1p
−k. Since by assumption nk+1 is coprime with p, there are

integers l and t > 0 such that

lpk + tnk+1 = −1.

Then for w :=
(
xlw̃t

)d ∈ K [x, 1
x , y
]

we obtain

vw = d(l + tnk+1p
−k) = − d

pk
.

Hence u = x−mwf
x−mwg , where vx−mwg = 0.

Therefore, g is of the form ∑
q∈ 1

p∞ Z, q≥0

aqx
q

with aq ∈ K and a0 6= 0. Set f̃ := a−1
0 f and h = −a−1

0 (g − a0). Then f̃ and h are
elements of K

[
x, 1

x , y
]

such that vh > 0 and

u =
f

g
=

f̃

1− h
.

Take any α ∈ vK(x, y). Since vh > 0, there is a natural number N such that
vf̃ + (N + 1)vh > α. Hence for

uN := f̃

N∑
j=0

hj ∈ K
[
x,

1
x
, y

]
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we obtain that

v(u− uN ) = v

 f̃

1− h
− f̃

N∑
j=0

hj

 = vf̃ + v

(
hN+1

1− h

)
= vf̃ + (N + 1)vh > α.

This shows that K
[
x, 1

x , y
]

is dense in K(x, y). �

4.1. Towers of independent and dependent Artin-Schreier defect exten-
sions of rational function fields.

This section is devoted to the proofs of Theorems 1.1, 1.2 and 1.3. Throughout
the section we take (K(x, y), v) to be a valued rational function field satisfying the
assumptions (3).

To prove Theorem 1.1, we will need the following lemma:

Lemma 4.2. Take an element

u =
∞∑
i=m

aix
−p−i

∈ K
((
x

1
p∞ Z

))
,

where m is an integer and the coefficients ai lie in some perfect subfield E of K.
Then for every natural number n a root η of the polynomial Y p

n − Y − u can be
chosen to be of the form

η =
∞∑

i=m+n

cix
−p−i

with ci ∈ E.

Proof. One can easily check that the element

ϑ =
∞∑

i=m+n

cix
−p−i

,

where ci ∈ E are of the form

ci = ap
−n

i−n for i = m+ n, . . . ,m+ 2n− 1,
ci = (ai−n + ci−n)p

−n

for i ≥ m+ 2n,

satisfies ϑp
n − ϑ = u. �

Now we are able to give the
Proof of Theorem 1.1: Assume that (K(x, y), v) satisfies the assumptions (3)
with ni = −1 for every i ∈ N in (2). Then the element y is of the form

y =
∞∑
i=1

x−p
−ei
.

Suppose that E is a perfect subfield of K of cardinality κ. Take any a ∈ E and
consider the field (K(y + a

x ), v). Since v(y + a
x ) = −1 and the valuation v is trivial

on K, one can easily check that vK(y+ a
x ) = Z. We show now that the element y is

a pseudo limit of a pseudo Cauchy sequence in the perfect hull Fa := K(y+ a
x )1/p∞

of K(y+ a
x ). More precisely, we construct a sequence of elements bk ∈ Fa of the form

bk = y −
∞∑

i=mk

a
(k)
i x−p

−i

,(4)
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where (mk)k∈N is a strictly increasing sequence of natural numbers and a
(k)
i ∈ K,

a
(k)
mk 6= 0. Then for every k and l such that k < l we obtain v(bk − bl) = −p−mk .

Thus (bk)k∈N is a pseudo Cauchy sequence. Since

v(y − bk) = −p−mk = v(bl − bk)

for l > k, the element y is a pseudo limit of the pseudo Cauchy sequence (bk)k∈N.
We start the construction with

b1 := a−p
−e1
(
y +

a

x

)p−e1

= x−p
−e1 + a−p

−e1
yp
−e1

.

Then, using the fact that (ei)i∈N is a strictly increasing sequence of natural numbers
we obtain that

y − b1 =
∞∑
i=1

x−p
−ei − x−p

−e1 − a−p
−e1

∞∑
i=1

x−p
−ei−e1

=
∞∑
i=2

x−p
−ei − a−p

−e1
∞∑
i=1

x−p
−ei−e1 =

∞∑
i=m2

a
(2)
i x−p

−i

,

where m2 ≥ 2 and a
(2)
m2 6= 0. Assume that we have constructed b1, . . . , bj ∈ Fa of

the form (4) for every k ≤ j. Set

bj+1 := bj +a−p
−mj

a(j)
mj

(
y +

a

x

)p−mj

= bj +a−p
−mj

a(j)
mj
yp
−mj +a(j)

mj
x−p

−mj ∈ Fa.

Then we have

y − bj+1 = y − bj − a−p
−mj

a(j)
mj
yp
−mj − a(j)

mj
xp
−mj

=
∞∑

i=mj+1

a
(j)
i x−p

−i

− a−p
−mj

a(j)
mj

∞∑
i=1

x−p
−ei−mj =

∞∑
i=mj+1

a
(j+1)
i x−p

−i

,

for some a
(j+1)
i ∈ K and a natural number mj+1 such that amj+1 6= 0. Since

e1 +mj ≥ mj + 1 we have that mj+1 > mj .
We now use a similar argument as before to show that the pseudo Cauchy se-

quence (bk)k∈N is of transcendental type. Suppose the sequence were of algebraic
type. Then, by Theorem 2.10 there would exist an algebraic extension (Fa(b)|Fa, v)
with b a pseudo limit of the sequence. Then the element b would be also algebraic
over K(y + a

x ). Thus the extension K(y + a
x , b)|K(y + a

x ) would be finite. On the
other hand, vK(y + a

x , b) = 1
p∞Z. Indeed, for any j ∈ N consider the value of the

element

uj := bp
ej −

j∑
i=1

(
a−1

(
y +

a

x
− b
))pej−ei

= bp
ej −

j∑
i=1

x−p
ej−ei −

j∑
i=1

(
a−1(y − b)

)pej−ei

.

Using Lemma 2.5 for the field L = K(y + a
x ) we can extend the valuations of

K(y + a
x , b) and K(x, y) to a valuation of K(x, y, b). Denote this extension again
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by v. Then

vuj = v

(
(b− y)p

ej + yp
ej −

j∑
i=1

x−p
ej−ei −

j∑
i=1

(
a−1(y − b)

)pej−ei

)
.

Since v(b − bk) = v(y − bk) = v(bk+1 − bk) = −p−mk , by the ultrametric triangle
law we have that

v(b− y) = v(b− bk + bk − y) ≥ −p−mk ≥ −p−k

for every natural number k. Hence v(b− y) ≥ 0. Moreover,

v

(
yp

ej −
j∑
i=1

x−p
ej−ei

)
= v

 ∞∑
i=j+1

x−p
ej−ei

 = −pej−ej+1

and thus vuj = −pej−ej+1 , where ej−ej+1 ≤ −j. It follows that p−j ∈ vK(y+ a
x , b)

and the value group is p-divisible. This contradicts the fundamental inequality,
since K(y + a

x , b)|K(y + a
x ) was finite and v(K(y + a

x ) = Z. Therefore, the pseudo
Cauchy sequence bk must be of transcendental type.

Using Lemma 2.11, we conclude that the field Fha is relatively algebraically closed
in Fa(y)h. Since K(x, y)h|K(y+ a

x ) is separable and therefore linearly disjoint from

Fa|K(y+ a
x ), Lemma 2.1 shows that K(x, y)h and K(y+ a

x )h.Fa =
(
K(y + a

x )h
)1/p∞

are linearly disjoint over K(y + a
x )h. Hence the extension K(x, y)h|K(y + a

x )h is
separable. We show that from these facts follows that K(y+ a

x )h is relatively alge-
braically closed inK(x, y)h. Suppose there were an element z ∈ K(x, y)h \K(y + a

x )h

algebraic over K(y + a
x )h. Then z would be separable over K(y + a

x )h. Since
K(x, y)h ⊆ Fa(y)h and Fha = K(y + a

x )h.Fa is a purely inseparable extension,
we would obtain that Fha (z)|Fha is a nontrivial separable-algebraic subextension of
Fa(y)h|Fha . This contradicts the fact that Fha is relatively algebraically closed in
Fa(y)h.

Set ηa,0 := y+ a
x . By induction on i ∈ N choose ηa,i to be a root of the polynomial

Y p − Y − ηa,i−1.

Since v(y + a
x ) = −1 we obtain v(ηa,i) = − 1

pi for every i ∈ N. Furthermore,
vK(y+ a

x )h = vK(y+ a
x ) = Z, hence the extension K(y+ a

x )h(ηa,i)|K(y+ a
x )h has

ramification index at lest pi. On the other hand, the degree of this extension is at
most pi. Thus the fundamental inequality shows that it has degree and ramification
index pi. Therefore,[

K
(
y +

a

x
, ηa,i

)
: K

(
y +

a

x

)]
=
[
K
(
y +

a

x

)h
(ηa,i) : K

(
y +

a

x

)h]
and the chain of the extensions K(y + a

x , ηa,i) is linearly disjoint from K(y + a
x )h

over K(y+ a
x ). Moreover, K(y+ a

x )h(ηa,i | i ∈ N) is a separable-algebraic extension
of K(y + a

x )h. Since K(y + a
x )h is relatively algebraically closed in K(x, y)h, from

Lemma 2.4 we deduce that K(y+ a
x )h(ηa,i | i ∈ N) and K(x, y)h are linearly disjoint

over K(y + a
x )h. Hence, by Lemma 2.1 the extensions K(y + a

x )(ηa,i | i ∈ N) and
K(x, y)h are linearly disjoint over K(y + a

x ). Using again Lemma 2.1 we deduce
finally that K(x, y)(ηa,i | i ∈ N) is linearly disjoint from K(x, y)h over K(x, y).
Since y is transcendental over K(y+ a

x ) and K(y+ a
x , y) = K(x, y), the extensions

K(x, y, ηa,j)|K(x, y, ηa,j−1) remain nontrivial. We therefore obtain an infinite tower
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of Arin-Schreier extensions K(x, y, ηa,j)|K(x, y, ηa,j−1) such that for every j the
valuation v of K(x, y, ηa,j−1) has unique extension to K(x, y, ηa,j).

Since

ηa,0 = ax−1 +
∞∑
i=1

x−p
−ei
,

from Lemma 4.2 by induction on i, if follows that each of the Artin-Schreier gener-
ators ηa,j can be chosen to be of the form

ηa,j =
∞∑
i=j

c
(i)
a,jx

−p−i

(5)

with c(i)a,j ∈ K. Therefore (K(x, y, ηa,j)|K(x, y), v) is a subextension of the immedi-

ate extension (K
((
x

1
p∞ Z

)) ∣∣K(x, y), vx), hence it is also immediate. It follows that

K(x, y, ηa,j)|K(x, y, ηa,j−1) is an Artin-Schreier defect extension for every j ∈ N.
Setting La := K(y + a

x )(ηa,i | i ∈ N), by Lemma 2.7 we obtain that for every
two distinct elements a, b ∈ E the infinite towers of Artin-Schreier defect extensions
K(x, y)(ηa,i | i ∈ N)|K(x, y) and K(x, y)(ηb,i | i ∈ N)|K(x, y) are linearly disjoint.

�

Lemma 4.3. Assume that ni = −1 for every i ∈ N in (2). For every power series

η =
∞∑
i=1

aix
−p−i

∈ K
((
x

1
p∞ Z

))
(6)

there is a sequence (ζn)n∈N of elements of K(x, y) such that v(η− ζn) ≥ − 1
pn+1 for

every natural number n.

Proof. Assume that η is of the form 6. We construct a sequence (ζn)n∈N of elements
of K(x, y) such that

η − ζn =
∞∑

i=n+1

b
(n)
i x−p

−i

,(7)

where b(n)
i ∈ K for i ≥ n + 1. Then, in particular, v(η − ζn) ≥ − 1

pn+1 for every
natural number n. Set

ζ1 := a1y
pe1−1 = a1

∞∑
i=1

x−p
−ei+e1−1

= a1x
−p−1

+
∞∑
i=2

a1x
−p−ei+e1−1

.

By the assumption on (ei)i∈N we have −e2 + e1 − 1 ≤ −2. Hence,

η − ζ1 =
∞∑
i=2

aix
−p−i

−
∞∑
i=2

a1x
−p−ei+e1−1

=
∞∑
i=2

b
(1)
i x−p

−i

for some b(1)
i ∈ K. Assume now that ζn is an element of K(x, y) such that equality

(7) holds for some b(n)
i ∈ K. Take jn+1 := en+2−en+1−(n+1). It is a nonnegative

integer, since en+2 − en+1 ≥ (n+ 1). Putting

ζ̃n+1 :=

(
yp

en+1 −
n+1∑
i=1

x−p
en+1−ei

)pjn+1

∈ K(x, y)
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we obtain that

ζ̃n+1 =

( ∞∑
i=n+2

x−p
en+1−ei

)pjn+1

= x−p
−(n+1)

+
∞∑

i=n+3

x−p
en+1−ei+jn+1

.

Set ζn+1 := ζn + b
(n)
n+1ζ̃n+1. Then

η − ζn+1 =
∞∑

i=n+1

b
(n)
i x−p

−i

− b(n)
n+1x

−p−(n+1)
−

∞∑
i=n+3

b
(n)
n+1x

−pen+1−ei+jn+1

=
∞∑

i=n+2

b
(n)
i x−p

−i

−
∞∑

i=n+3

b
(n)
n+1x

−pen+1−ei+jn+1
.

Since en+1− en+2 + jn+1 = −(n+ 1) and the sequence (ei)i∈N is strictly increasing,
en+1 − ei + jn+1 ≤ −(n+ 2) for i ≥ n+ 3. Therefore,

η − ζn+1 =
∞∑

i=n+2

b
(n+1)
i x−p

−i

,

where b(n+1)
i ∈ K for i ≥ n+ 2.

�

By this simple observation one can easily show that each of the towers of Artin-
Schreier defect extensions constructed in the proof of Theorem 1.1 consist of inde-
pendent extensions.
Proof of Theorem 1.2: Take the rational function field (K(x, y), v), the subfield

E of K and elements ηa,j ∈ K̃(x, y) as in the proof of Theorem 1.1. Since for
every a ∈ E and i ∈ N the Artin-Schreier extension K(x, y, ηa,j)|K(x, y, ηa,j−1) has
nontrivial defect, from Corollary 2.18 it follows that dist (ηa,j ,K(x, y, ηa,j−1)) ≤ 0−.

On the other hand, since ηa,j can be chosen to be of the form (5), from the
above lemma we deduce that the set ( 1

p∞Z)<0 of all negative elements of vK(x, y)
is contained in the initial segment v(ηa,j −K(x, y, ηa,j−1)). Consequently,

dist (ηa,j ,K(x, y, ηa,j−1)) = 0−.

By Corollary 2.20, this implies that K(x, y, ηa,j)|K(x, y, ηa,j−1) is an independent
Artin-Schreier defect extension. �

For the construction of towers of dependent extensions we use the idea of the
transformation of purely inseparable polynomials into Artin-Schreier polynomials
(cf. Theorem 1.4).

Lemma 4.4. Assume that the field K is perfect and the sequence (nip−ei)i∈N of
exponents of y is bounded from above. Then for every a ∈ K and every nonnegative
integer r the element ( yxr + a

x )1/p does not lie in the completion of (K(x, y), v).

Proof. Set
γ := sup{nip−ei | i ∈ N}.

Take a ∈ K and a nonnegative integer r. We show first that

v

(( y
xr

+
a

x

)1/p

− f
)
<

1
p
γ
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for every f ∈ K
[
x, 1

x , y
]
. Every such f can be written in a form

f =
∑

−n≤i≤m
0≤j≤l

aijx
iyj ,

for some aij ∈ K and m,n, l ∈ N0. For every i ∈ {−n, . . . ,m} and j ∈ {0, . . . , l},
set

hij := aijx
iyj =

∑
(m1,...,mj)∈Nj

aijx
i+nm1p

−em1 +...+nmj
p
−emj

.

Take any j ∈ {0, . . . , l}. We show that there is Nj ∈ N such that for every
i ∈ {−n . . . ,m} and N ≥ Nj we have

i+ nm1p
−em1 + . . .+ nmjp

−emj 6= nNp
−eN−1 − p−1r

for every (m1, . . . ,mj) ∈ Nj and consequently nNp−eN−1− p−1r /∈ supp hij . Since( y
xr

+
a

x

)1/p

= ap
−1
x−p

−1
+
∞∑
i=1

xnip
−ei−1−p−1r,

the condition means that supp
(
y
xr + a

x

)1/p and supp hij have at most finitely many
common elements.

If j = 0 then we can choose Nj = 1. Let 0 < j ≤ l and suppose that

i+ nm1p
−em1 + . . .+ nmjp

−emj = nNp
−eN−1 − rp−1(8)

for some natural numbers m1, . . . ,mj and N . Without loss of generality we may
assume that m1 ≤ . . . ≤ mj . Then, comparing denominators of both sides of the
above inequality, we obtain that emj

≥ eN + 1 and consequently, emj
≥ eN+1.

Set d := min{i | 1 ≤ i < j and mi = mj} and k := j − d + 1. Multiplying both
sides of equality (8) by pemj we thus obtain

knmj
= nNp

emj
−eN−1 − rpemj

−1 − ipemj −
d−1∑
t=1

nmt
pemj

−emt .

Moreover, since eN+1 − eN ≥ N , we have emj − eN − 1 ≥ N − 1 and

emj − ems ≥ emj − emj−1 ≥ eN+1 − eN ≥ N

for every 1 ≤ s < d. By assumption, nmj
is coprime with p. Therefore, pN−1

divides k. Choose Nj such that j < pNj−1 and take N ≥ Nj . Then, since k ≤ j, we
have that k is not divisible by pN−1 and consequently, equality (8) does not hold
for any m1, . . . ,mj ∈ N.

Hence, setting Nf to be the maximum of the Nj for 0 ≤ j ≤ l, we have that
nNp

−eN−1 − rp−1 is not an element of supp f for any N ≥ Nf . Therefore,

v

(( y
xr

+
a

x

) 1
p − f

)
≤ nNf

p−eNf
−1 − rp−1 <

1
p
γ.

By Lemma 4.1, for every element u of K(x, y) there is f ∈ K
[
x, 1

x , y
]

such that
v(f − u) > 1

pγ. Then

v

(( y
xr

+
a

x

) 1
p − u

)
= min

{
v

(( y
xr

+
a

x

) 1
p − f

)
, v(f − u)

}
<

1
p
γ.

It follows that
(
y
xr + a

x

) 1
p /∈ K(x, y)c. �
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Proof of Theorem 1.3: With the general assumptions (3) on (K(x, y), v), take
K to be a perfect field and suppose that the sequence (nip−ei)i∈N of exponents of y
is bounded from above.

Take any a ∈ K. Define Ka,0 := K(x, y) and ϑa,0 := y + a
x . By the above

lemma, ϑ1/p
a,0 /∈ Kc

a,0. Since the value group of Ka,0 is p-divisible and the residue
field Ka,0v = K is perfect, the polynomial Y p−ϑa,0 induces an immediate extension
which does not lie in the completion of Ka,0. Thus, from Theorem 1.4 we obtain
that Ka,0 admits an infinite tower of dependent Artin-Schreier defect extensions
Ka,n|Ka,n−1, n ∈ N.

From the proof of Theorem 1.4 it follows that the tower can be constructed
in the following way. By induction on n we choose ϑa,n ∈ K̃a,0 to be a root of
the polynomial

fa,n = Y p − Y − 1
bpa,n

ϑa,n−1

with ba,n ∈ K(y+ a
x )× of large enough value. We set Ka,n := Ka,n−1(ϑa,n). Then,

for every natural number n we obtain a dependent Artin-Schreier defect extension
Ka,n|Ka,n−1.

We thus have an immediate algebraic extension Fa :=
⋃
n∈NKa,n of K(x, y),

which is an infinite tower of dependent Artin-Schreier defect extensions. By the
choice of ba,n, the field La = K(y + a

x )(ϑa,n |n ∈ N) is an algebraic extension of
K(y + a

x ). From Lemma 2.7 we deduce that for two distinct elements a, b ∈ K the
extensions Fa|K(x, y) and Fb|K(x, y) are linearly disjoint. Hence (K(x, y), v) ad-
mits |K| many pairwise linearly disjoint infinite towers of dependent Artin-Schreier
defect extensions. This proves the theorem in the case of an infinite field K.

IfK is finite, then repeating the above construction for ϑr,0 = y
xr with r ∈ N ∪ {0},

we obtain an immediate extension

Fr := K(x, y)(ϑr,i | i ∈ N)

of K(x, y) being an infinite tower of dependent Artin-Schreier defect extensions
K(x, y, ϑr,1, . . . , ϑr,i)|K(x, y, ϑr,1, . . . , ϑr,i−1), where ϑr,i is a root of the polynomial

Y p − Y − 1
bpr,i

ϑr,i−1

with br,i ∈ K( yxr )×. From Lemma 2.8 it follows that for any two distinct r, s ∈ N ∪ {0}
the extensions Fr|K(x, y) and Fs|K(x, y) are linearly disjoint. Hence (K(x, y), v)
admits ℵ0 many pairwise linearly disjoint infinite towers of dependent Artin-Schreier
defect extensions. �

Putting, as in the proofs of the previous theorems, ni = −1 for i ∈ N we obtain
the series

y =
∞∑
i=1

x−p
−ei

with the sequence of exponents bounded from above by 0. Theorems 1.2 and 1.3
imply that if K is perfect, then the field (K(x, y), v) admits infinite towers of both
types of Artin-Schreier defect extensions. More precisely, from the theorems we
obtain:
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Corollary 4.5. Assume that K is a perfect field and

y =
∞∑
i=1

x−p
−ei
.

Then the valued field (K(x, y), v) admits |K| many pairwise linearly disjoint infinite
towers of independent and max{|K|,ℵ0} many pairwise linearly disjoint infinite
towers of dependent Artin-Schreier defect extensions.

4.2. Valued rational function fields admitting no dependent Artin-Schreier
defect extensions.

As in the previous section we take (K(x, y), v) to be a field satisfying the as-
sumptions (3). In the foregoing constructions of Artin-Schreier defect extensions
we chose y to be a series with a bounded sequence of exponents nip−ei . We show
that in the case of a perfect field K this assumption is necessary for the existence
of dependent Artin-Schreier defect extensions. Throughout this section, we
assume that the sequence (nip−ei)i∈N is unbounded.

Under this additional condition we obtain:

Lemma 4.6. For every natural number n the elements xp
−n

and y1/p lie in the
completion of K(x, y).

Proof. We show first that xp
−N ∈ K(x, y)c for every natural number N . Take

N, j ∈ N with j ≥ N . Set sj := ej+1 − ej −N . By assumption, ej+1 − ej ≥ j, thus
sj is a nonnegative integer. Set

ξ̃j :=

(
yp

ej −
j∑
i=1

xnip
ej−ei

)psj

=

 ∞∑
i=j+1

xnip
ej−ei

psj

= xnj+1p
−N

+
∞∑

i=j+2

xnip
sj+ej−ei

.

Since p and nj+1 are coprime, there are integers l and k > 0 such that

knj+1 + lpN = 1.

Hence, putting ξj := xl(ξ̃j)k we obtain

ξj = xl

xnj+1p
−N

+
∞∑

i=j+2

xnip
sj+ej−ei

k

= xl+knj+1p
−N

+ . . . = xp
−N

+ . . . ,

where

v
(
ξj − xp

−N
)

= l + (k − 1)nj+1p
−N + nj+2p

ej+sj−ej+2

= p−N − nj+1p
−N + nj+2p

−N−ej+2+ej+1

= p−N + p−N+ej+1
(
−nj+1p

−ej+1 + nj+2p
−ej+2

)
.

Note that −nj+1p
−ej+1 + nj+2p

−ej+2 > p−j for infinitely many j ≥ N . Indeed,
suppose −nj+1p

−ej+1 +nj+2p
−ej+2 ≤ p−j for all but finitely many j. Then the fact

that −nj+1p
−ej+1 +nj+2p

−ej+2 > 0 and the series
∞∑
j=1

p−j is convergent contradicts
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the assumption that the sequence (njp−ej )j∈N is unbounded. Therefore,

v
(
ξj − xp

−N
)
≥ p−N + p−Npej+1−j ≥ p−N + p−Npej

for infinitely many j ≥ N . By assumption (ej)j∈N is a strictly increasing sequence
of natural numbers, hence for arbitrary large elements γ ∈ 1

p∞Z we can choose

j ≥ N such that v
(
xp
−N − ξj

)
> γ. Thus xp

−N ∈ K(x, y)c.

Consider now the element y1/p. Since (njp−ej )j∈N is a strictly increasing un-
bounded sequence and

v

(
y1/p −

k∑
i=1

xnip
−ei−1

)
= nk+1p

−ek+1−1 = p−1(nk+1p
−ek+1)

for every k ∈ N, the values are cofinal in 1
p∞Z. By what we have shown,

k∑
i=1

xnip
−ei−1

∈ K(x, y)c.

Therefore also y1/p lies in the completion of K(x, y).
�

Proposition 4.7. If the field K is perfect then (K(x, y), v) admits no dependent
Artin-Schreier defect extensions.

Proof. Since K is perfect, by the above lemma K(x, y)1/p ⊆ K(x, y)c. Then, from
Theorem 1.4 if follows that K(x, y) admits no dependent Artin-Schreier defect
extensions. �

Nevertheless, the next proposition shows that the field (K(x, y), v) can still admit
independent Artin-Schreier defect extensions.

Proposition 4.8. Assume that the element y is of positive value. If K admits
a perfect subfield of cardinality κ then (K(x, y), v) admits κ many pairwise linearly
disjoint infinite towers of independent Artin-Schreier defect extensions.

Proof. Take an extension of the valuation v to the algebraic closure of K(x, y) and
denote it again by v. Since y is a pseudo limit of a pseudo Cauchy sequence of
transcendental type in L := K(xp

−i | i ∈ N), then by Lemma 2.11 the field Lh is
relatively algebraically closed in L(y)h. Furthermore, Lh = K(x)h.L is a purely
inseparable extension of K(x) and K(x, y)h|K(x)h is separable. Hence, using the
fact that K(x, y)h ⊆ L(y)h we deduce that K(x)h is relatively algebraically closed
in K(x, y)h. Indeed, if there were an element z ∈ K(x, y)h \K(x)h algebraic over
K(x)h, then z would be separable over K(x)h. Thus Lh(z)|Lh would be a nontrivial
separable-algebraic subextension of L(y)h|Lh, a contradiction.

Assume that E is a perfect subfield of cardinality κ and take a ∈ E. De-
fine Ka,0 := K(x, y), ξa,0 := a

x and by induction on n choose ξa,n to be a root of
the polynomial

Y p − Y − ξa,n−1.

Set Ka,n := Ka,n−1(ξa,n) = K(x, y, ξa,n). Since v
(
a
x

)
= −1, for every natural

number n we obtain v(ξa,n) = − 1
pn . Therefore, from the fact that vK(x)h = Z we

obtain
(vK(x)h(ξa,n) : vK(x)h) ≥ pi.
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On the other hand, the degree of the extension K(x)h(ξa,n)|K(x)h is at most pi.
Hence the fundamental inequality shows that it has degree and ramification index
pi. Consequently, chain of the extensions K(x, ξa,i) is linearly disjoint from K(x)h

over K(x). Furthermore, K(x)h(ξa,i | i ∈ N) is a separable-algebraic extension of
K(x)h. As we have shown, K(x)h is relatively algebraically closed in K(x, y)h.
Thus from Lemma 2.4 we deduce that K(x)h(ξa,i | i ∈ N) and K(x, y)h are linearly
disjoint over K(x)h. Hence, by Lemma 2.1 the extensions K(x)(ξa,i | i ∈ N)|K(x)
and K(x, y)h|K(x) are linearly disjoint. Using again Lemma 2.1 we deduce finally
that K(x, y)(ξa,i | i ∈ N) is linearly disjoint from K(x, y)h over K(x, y). Since y is
transcendental over K(x) and [K(x, ξa,n) : K(x)] = pn, we obtain that also each
of the extensions Ka,n|K(x, y) has degree pn and, as we have shown, is linearly
disjoint from K(x, y)h|K(x, y).

As ξa,0 = ax−1, from Lemma 4.2 by induction on n it follows that each of the
Artin-Schreier generators ξa,n can be chosen to be of the form

ξa,n =
∞∑
i=n

d(i)
a,nx

−p−i

.

Hence K(x, y) ⊆ Ka,n ⊆ K
((
x

1
p∞ Z

))
. The fact that

(
K
((
x

1
p∞ Z

))
|K(x, y), vx

)
is an immediate extension implies that also (Ka,n|K(x, y), v) is immediate.

Set now ηa,0 := y + a
x . Since vηa,0 = −1 we deduce that vK(ηa,0) = Z. By

induction on n we choose ηa,n to be a root of the polynomial

Y p − Y − ηa,n−1.

Then we obtain vηa,n = − 1
pn and as in the proof of Theorem 1.1 we deduce that

(K(y + a
x , ηa,n)|K(y + a

x , ηa,n−1), v) is an Artin-Schreier extension of ramification
index p. Since y is transcendental over K(y + a

x ) and K(y + a
x , y) = K(x, y), the

extension K(x, y, ηa,n)|K(x, y, ηa,n−1) remain nontrivial.
We use now the properties of the constructed extensions Ka,n|Ka,n−1 to show

thatK(x, y, ηa,n)|K(x, y, ηa,n−1) form an infinite tower of independent Artin-Schreier
defect extensions. By the additivity of Artin-Schreier polynomials, for every n ∈ N
we can choose ηa,n to be of the form

ηa,n = ξn + ξa,n,

where ξn is a root of the polynomial Y p − Y − ξn−1 with ξ0 = y. Since vξ0 > 0
from Lemma 2.16 if follows that we can choose the Artin-Schreier generators ξn
in such a way that vξn > 0 for every n ∈ N. Consider the henselizations of
K(x, y, ξn) with respect to the fixed extension of the valuation v of K(x, y) to

K̃(x, y). Then K(x, y, ξn)h = K(x, y)h for every natural number n. Indeed, since
vξ0 > 0, by Lemma 2.17 the Artin-Schreier generator ξ1 lies in the henselization
of K(x, y). Thus K(x, y, ξ1)h = K(x, y)h. Take any n ∈ N and assume that
K(x, y, ξn)h = K(x, y)h. By our choice, vξn > 0 hence using again Lemma 2.17 we
deduce that

K(x, y, ξn+1)h = K(x, y, ξn)h(ξn+1) = K(x, y, ξn)h = K(x, y)h.

Set La,0 := K(x, y) and La,n := La,n−1(ηa,n) for every n ∈ N. We show
that for every natural number n the extension La,n|La,n−1 is linearly disjoint from
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Lha,n−1|La,n−1. Since ξ1 ∈ K(x, y)h we obtain that

Lha,1 = K(x, y)h(ξ1 + ξa,1) = K(x, y)h(ξa,1) = Kh
a,1.

Take a natural number n and assume that Lha,n = Kh
a,n. As we have shown

ξn+1 ∈ K(x, y)h ⊆ Lha,n, hence

Lha,n+1 = Lha,n(ξn+1 + ξa,n+1) = Lha,n(ξa,n+1) = Kh
a,n(ξa,n+1) = Kh

a,n+1.

Therefore, by induction we obtain the equality Lha,n = Kh
a,n for every n ∈ N.

Suppose the Artin-Schreier extension La,n|La,n−1 was not linearly disjoint from
Lha,n−1|La,n−1 for some n ∈ N. Then ηa,n ∈ Lha,n−1. Since ηa,n = ξn + ξa,n and
ξn ∈ K(x, y)h ⊆ Lha,n−1, we would have that ξa,n ∈ Lha,n−1 = Kh

a,n−1. On the other
hand, we have proved that the valuation v of Ka,n−1 has a unique extension to the
field Ka,n = Ka,n−1(ξa,n), a contradiction. Therefore the valuation v of La,n−1 has
a unique extension to the field La,n for every n ∈ N.

Since the value group of K(x, y) is p-divisible, each of the extensions La,n|La,n−1

has ramification index equal to 1. Take a natural number n. Using the fact that
the henselization is an immediate field extension, we obtain that

La,nv = Lha,nv = Kh
a,nv = Ka,nv = K.

Therefore the extension La,n|La,n−1 is immediate. Consequently, each of the Artin-
Schreier extensions La,n|La,n−1 has nontrivial defect.

Take a natural number n. From Lemma 2.18 it follows that dist (ηa,n, La,n−1) ≤ 0−.
Note that

ηa,n =
∞∑
i=n

d(i)
a,nx

−p−i

+ ξn

with vξn > 0. By Lemma 4.6, for every j ≥ n we have that
j∑
i=n

d(i)
a,nx

−p−i

∈ K(x, y)c.

Thus there is un,j ∈ K(x, y) such that v
(

j∑
i=n

d
(i)
a,nx−p

−i − un,j
)
> 0. Then

v(ηa,n−un,j) = v

( j∑
i=n

d(i)
a,nx

−p−i

− un,j + ξn

)
+

∞∑
i=j+1

d(i)
a,nx

−p−i

 ≥ −p−(j+1).

Therefore the set of values v(ηa,n − un,j) is cofinal in
(

1
p∞Z

)<0

. Consequently

dist (ηa,n, La,n−1) = 0−. From Corollary 2.20 it follows that La,n|La,n−1 is an
independent Artin-Schreier defect extension.

Using Lemma 2.7 we obtain that for any two distinct elements a, b ∈ E the
extensions

⋃
n∈N

La,n|K(x, y) and
⋃
n∈N

Lb,n|K(x, y) are linearly disjoint. �

Assume that the field K is perfect and vy > 0. Then from Proposition 4.7
it follows that (K(x, y), v) admits no dependent Artin-Schreier defect extensions.
However, by Proposition 4.8 the field admits |K| many pairwise linearly disjoint
infinite towers of independent Artin-Schreier defect extensions.

Note also that the above construction of towers
⋃
n∈N La,n|K(x, y) of Artin-

Schreier defect extensions does not depend on the fact that the sequence (nip−ei)i∈N
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of exponents of y is unbounded. We use the assumption only to show that all of the
Artin-Schreier defect extensions in the towers are independent. If the sequence of
exponents of y is bounded from above, we are not yet able to classify the constructed
Artin-Schreier extensions. Nevertheless, we obtain the following corollary to the
proof of Proposition 4.8:

Corollary 4.9. Take a valued rational function field (K(x, y), v) satisfying condi-
tions (3). We assume that the element y is of positive value, but not necessarily
that its exponents are unbounded. If K admits a perfect subfield of cardinality κ,
then (K(x, y), v) admits κ many pairwise linearly disjoint infinite towers of Artin-
Schreier defect extensions.

Therefore, the construction of towers of Artin-Schreier defect extensions as in
the proof of Proposition 4.8 gives us another proof of Theorem 1.1.

5. p-elementary extensions of rational function fields

Take a field L of characteristic p > 0. A polynomial f ∈ L[X] is called
a p-polynomial if f = A+c, whereA is an additive polynomial and c is a constant.
An important example of p-polynomials are Artin-Schreier polynomials Xp−X− c
with c ∈ L. If an Artin-Schreier polynomial is irreducible, each of its roots generates
a Galois extension of degree p.

We consider now a more general class of Galois extensions of degree a power of p.
An algebraic extension L′|L is called a p-elementary extension if it is a finite
Galois extension and its Galois group Gal(L′|L) is an elementary-abelian p-group,
that is, Gal(L′|L) is an abelian p-group such that every nonzero element of the group
has order p; if [L′ : L] = pn, then the group is a direct sum of n cyclic subgroups
of order p. Hence L′|L is a compositum of n many parallel Galois extensions of
degree p, thus a tower of Artin-Schreier extensions. Every Artin-Schreier extension
is generated by a root of a p-polynomial of degree p over L. More generally, one can
show that every p-elementary extension is generated by a root of some irreducible
p-polynomial (cf. Theorem 34 of [Ku2]).

Take any natural number n and assume that Fpn ⊆ L. Consider the polynomial

f = Xpn

−X − a ∈ L[X].

Note that for n = 1 we obtain an Artin-Schreier polynomial. Assume that f is
irreducible over L and consider the extension L(ϑ)|L generated by a root ϑ of f .
Since the elements ϑ+ c with c ∈ Fpn form the set of all roots of f , the extension
L(ϑ)|L is normal, hence Galois. Furthermore,

Gal(L(ϑ)|L) = {σc | c ∈ Fpn},

where σc(ϑ) = ϑ + c. Thus the Galois group of L(ϑ)|L is an elementary-abelian
p-group. Consequently, L(ϑ)|L is a p-elementary extension of degree pn. As in the
case of Artin-Schreier extensions, for the extensions of valued fields generated by
roots of polynomials Xpn −X − a we obtain the following facts.

Lemma 5.1. Assume that (L, v) is a valued field and ϑ a root of the polynomial
f = Xpn −X − a ∈ L[X]. If va ≤ 0, then vϑ = 1

pn va. If va > 0, then exactly one
of the conjugates of ϑ has value va and the other roots of f have value 0.
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Proof. If vϑ 6= 0 then vϑp
n 6= ϑ. Thus from equality ϑp

n − ϑ = a it follows that
va = min{vϑ, pnvϑ}. Therefore, if va = 0, we have that vϑ = 0. Assume that
va < 0. Then also vϑ < 0 and consequently va = pnvϑ. Thus vϑ = 1

pn va. Note
that

a = ϑp
n

− ϑ =
∏
c∈Fpn

(ϑ+ c).

Thus, if va > 0, there must be a conjugative ϑ′ of ϑ of positive value. Since
v(ϑ′ + c) = 0 for every c ∈ F∗pn , the other roots of f have value 0. �

Lemma 5.2. Assume that (L, v) is a valued field of positive characteristic p and
Fpn ⊆ Lv for some n ∈ N. Take a polynomial f = Xpn −X − a ∈ L[X]. If va > 0
or va = 0 and Xpn − X − av has a root in Lv then every root of f lies in the
henselization of L (with respect to every extension of v to L̃).

Proof. If va > 0, then the polynomial Xpn − X is the reduction of f modulo v.
Since Fpn ⊆ Lv, the polynomial Xpn − X splits completely in Lv. Assume that
va = 0 and Xpn−X−av has a root ϑ in Lv. Since all other roots of the polynomial
are of the form ϑ + c with c ∈ Fpn , also in this case the reduction of f modulo v
splits completely in Lv. Therefore, in both cases it follows from Hensel’s Lemma
that Xpn −X − a splits completely in every henselization of (L, v). �

The similarities between the Artin-Schreier extensions and the more general class
of p-elementary extensions generated by roots of polynomials Xpn −X−a give rise
to the question if we can use the techniques from Theorems 1.1 and 1.3 to construct
towers of p-elementary extensions of degree and defect pn. The next theorem shows
that in the case of constructions from the proof of Theorem 1.1 such generalization
is possible.

Theorem 5.3. Take a field K of positive characteristic p and a natural number
n such that Fpn ⊆ K. Assume that K contains a perfect subfield of cardinality κ.
Then there is a valuation v of the rational function field K(x, y)|K, trivial on K,
such that (K(x, y), v) admits κ many pairwise linearly disjoint infinite towers of
p-elementary extensions of degree and defect pn.

Proof. Take (K(x, y), v) to be the valued rational function field defined as in the
proof of Theorem 1.1. Namely, we assume that (K(x, y), v) satisfies assumptions
(3) with ni = −1 for every i ∈ N in (2). Then y is of the form

y =
∞∑
i=1

x−p
−ei
.

Take a natural number n such that Fpn ⊆ K. Suppose that E is a perfect subfield
of K of cardinality κ and choose a ∈ E. From the proof of Theorem 1.1 we know
that y is a pseudo limit of a pseudo Cauchy sequence of transcendental type in
the perfect hull Fa = K(y + a

x )1/p∞ of K(y + a
x ) and consequently, K(y + a

x )h is
relatively algebraically closed in K(x, y)h.

Set η(n)
a,0 := y + a

x . By induction on i ∈ N choose η
(n)
a,i to be a root of the

polynomial

Y p
n

− Y − η(n)
a,i−1.
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Since v(y+ a
x ) = −1 we obtain that vK(y+ a

x )h = vK(y+ a
x ) = Z and vη(n)

a,i = − 1
pin

for every i ∈ N. Therefore, using similar arguments as in the proof of Theorem 1.1
we deduce that [

K
(
y +

a

x

)h (
η

(n)
a,i

)
: K

(
y +

a

x

)h]
= pin

and consequently K(x, y, η(n)
a,i )|K(x, y, η(n)

a,i−1) is an extension of degree pn such that

the valuation v of K(x, y, η(n)
a,i−1) has a unique extension to the field K(x, y, η(n)

a,i )

for every i ∈ N. Since [K(x, y, η(n)
a,i ) : K(x, y, η(n)

a,i−1)] = pn, the polynomial

Y p
n − Y − η(n)

a,i−1 is irreducible. Thus, K(x, y, η(n)
a,i )|K(x, y, η(n)

a,i−1) is a p-elementary
extension for every i ∈ N.

Note that the element η(n)
a,0 is of the form

η
(n)
a,0 = ax−1 +

∞∑
i=1

x−p
−ei
,

thus from Lemma 4.2 by induction on i, it follows that each of the generators η(n)
a,j

can be chosen to be of the form

η
(n)
a,j =

∞∑
i=nj

c
(n)
a,j (i)x−p

−i

with c
(n)
a,j (i) ∈ K. Therefore (K(x, y, η(n)

a,j )|K(x, y), v), as a subextension of the im-

mediate extension (K
((
x

1
p∞ Z

)) ∣∣K(x, y), vx), is also immediate. Hence we obtain

an infinite tower of p-elementary extensions K(x, y, η(n)
a,j )|K(x, y, η(n)

a,j−1) of degree
and defect pn.

Finally, from Lemma 2.7 it follows that for every two distinct a, b ∈ E the ex-
tensions K(x, y)(η(n)

a,i | i ∈ N)|K(x, y) and K(x, y)(η(n)
b,i | i ∈ N)|K(x, y) are linearly

disjoint. �

Note that since every p-elementary extension is a tower of Artin-Schreier exten-
sions, K(x, y)(η(n)

a,i | i ∈ N)|K(x, y) is in particular an infinite tower of Artin-Schreier
defect extensions.

Consider now the methods used in the proof of Theorem 1.3, or more generally
in the proof of Theorem 1.4, to show the existence of infinite towers of dependent
Artin-Schreier defect extensions. The constructions of dependent extensions are
based on the deformation of purely inseparable polynomials into Artin-Schreier
polynomials. Take a valued field (L, v) of characteristic p > 0. From Theo-
rem 2.21 we know that a suitable deformation of a purely inseparable polynomial
Xp − ηp ∈ L[X] with η /∈ Lc into a polynomial Xp −X − (ηb )p yields a dependent
Artin-Schreier defect extension generated by a root ϑ of the Artin-Schreier poly-
nomial. The fact that (L(ϑ)|L, v) has nontrivial defect follows from the relation
ϑ ∼L η

b between the generators of the purely inseparable and the Artin-Schreier
extension. Indeed, if the extension of the valuation v of L to L(ϑ) were not unique,
the Artin-Schreier generator ϑ would lie in the henselization Lh of L with respect
to some extension of v to L̃. Since ϑ ∼L η

b , by Theorem 2.14 we would obtain
that η

b cannot be purely inseparable over L, a contradiction. By Lemma 2.21 of
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[Ku3] we obtain that the extension (L(ϑ)|L, v) is immediate and consequently has
nontrivial defect.

The following lemma shows that also a suitable deformation of purely insepara-
ble polynomials of higher degrees into separable p-polynomials induces a relation
between roots of the two polynomials.

Lemma 5.4. Assume that (L, v) is a valued field of positive characteristic p. Take
an immediate purely inseparable extension L(ξ)|L of degree at most pn such that
ξ /∈ Lc. Set ε := dist(ξ, L). Then for every b ∈ L× such that

(pn − 1)vb+ vξ > pnε,(9)

a root ϑ of the polynomial

gb = Xpn

−X −
(
ξ

b

)pn

satisfies the condition

ϑ ∼L
ξ

b
.(10)

Proof. Take b ∈ L× satisfying (9) and a root ϑ of the polynomial

gb = Xpn

−X −
(
ξ

b

)pn

∈ L[X].

Since L(ξ)|L is immediate, by Theorem 2.13 we have that vξ < ε and therefore,

(pn − 1)vb+ vξ > pnε > pnvξ.

Thus vb > vξ and consequently v( ξb ) < 0. Hence

vϑ =
1
pn
v

(
ξ

b

)pn

= vξ − vb.(11)

By definition of ϑ we obtain

ξp
n

+ bp
n

ϑ = = ξp
n

+ bp
n

(
ϑp

n

−
(
ξ

b

)pn)
= (bϑ)p

n

.(12)

Take any c ∈ L. By equality (11), assumption on vb and definition of ε we obtain

v(bp
n

ϑ) = pnvb+ vξ− vb = (pn− 1)vb+ vξ > pnε ≥ pnv(ξ− c) = v(ξp
n

− cp
n

).

By (12) this implies that

v(ξ − c) =
1
pn
v(ξp

n

− cp
n

) =
1
pn

min{v(ξp
n

− cp
n

), v(bp
n

ϑ)}

=
1
pn
v(ξp

n

− cp
n

+ bp
n

ϑ) =
1
pn
v((bϑ)p

n

− cp
n

) = v(bϑ− c).

Since L(ξ)|L is immediate, by Theorem 2.13 the set v(ξ − L) has no maximal
element. Hence from Lemma 2.12 we deduce that bϑ ∼L ξ and thus,

ϑ ∼L
ξ

b
.

�
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Nevertheless, the next example shows that in the case of extensions of degree
higher that the characteristic of the field, the relation (10) does not suffice to prove
that L(ϑ)|L is disjoint from the henselization. Therefore, the direct generalization of
Theorem 2.21 to the purely inseparable extensions of higher degrees is not possible.

Example 5.5. Take a perfect field K of characteristic p > 0 and consider the
valued rational function field (K(x, y), v) defined in Section 4 by the conditions (3).
Assume that ni = −1 for every i ∈ N in (2). Then

y =
∞∑
i=1

x−p
−ei
.

Take any extension of v to K (̃x, y) and denote by K(x, y)h the henselization of
K(x, y) with respect to v. We construct a p-elementary extension K(x, y, ϑ)|K(x, y)
of degree p2 generated by a root ϑ of some polynomial Xp2 − X − z such that
K(x, y, ϑ)|K(x, y) is not linearly disjoint from K(x, y)h|K(x, y), but can be derived
from an immediate purely inseparable extension of degree p2, which does not lie in
the completion of K(x, y).

Set d := y−p
e1 ∈ K(y) and consider the Artin-Schreier polynomial

h1 := Y p − Y − 1
dp
y.

Since the value group of K(x, y) is p-divisible and the residue field K(x, y)v = K
is perfect, by Lemma 4.4 the polynomial Y p − y induces an immediate purely
inseparable extension, which does not lie in the completion K(x, y)c of K(x, y).
Moreover, from the proof of Lemma 4.4 it follows that dist (y1/p,K(x, y)) ≤ 0−.
Since vy = − 1

pe1 and vd = 1 we have that

(p− 1)vd+ vy > 0 ≥ p dist (y1/p,K(x, y)).

Thus the element d satisfies the condition (1) of Theorem 2.21 and consequently the
polynomial h1 induces a dependent Artin-Schreier defect extensionK(x, y, η)|K(x, y).
Note that η is a root of the polynomial

h̃1 := Y p
2
− Y − 1

dp
y − 1

dp2
yp.

Set n = pe1+2 + 1 and take a p-polynomial

h2 := Y p
2
− Y − 1

dp2
y−n.

Since v 1
dp2 y−n = −p2 + n

pe1 = 1
pe1 > 0 and Fp2 ⊆ K = K(x, y)v, from Lemma 5.2

it follows that a root ϑ′ of the polynomial h2 generates an extension K(x, y, ϑ′) of
K(x, y) contained in the henselization K(x, y)h of K(x, y).

Define ϑ = η + ϑ′ ∈ K̃(x, y). By the additivity of the polynomial Y p
2 − Y , the

element ϑ is a root of the polynomial

f := Y p
2
− Y − 1

dp
y − 1

dp2
yp − 1

dp2
y−n.

We show that the extension K(x, y, ϑ)|K(x, y) is of degree p2. Consider the rational
function field K(y)|K with the y-adic valuation w. Then

w
1
dp2

y−n = pe1+2 − n = −1,
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and w 1
dp y, w

1
dp2 yp > 0. Hence

w

(
1
dp
y +

1
dp2

yp +
1
dp2

y−n
)

= −1 < 0

and consequently wϑ = − 1
p2 . Therefore (wK(y, ϑ) : wK(y)) ≥ p2. On the other

hand [K(y, ϑ) : K(y)] ≤ p2, hence by the fundamental inequality we obtain that
K(y, ϑ)|K(y) is of degree p2. The element x is transcendental over K(y), thus we
have also that

[K(x, y, ϑ) : K(x, y)] = p2.

SinceK(x, y, η)|K(x, y) is linearly disjoint fromK(x, y)h|K(x, y) and ϑ′ ∈ K(x, y)h,
from the equality ϑ = η + ϑ′ if follows that

[K(x, y)h(ϑ) : K(x, y)h] = [K(x, y)h(η) : K(x, y)h] = p < p2 = [K(x, y, ϑ) : K(x, y)].

Therefore K(x, y, ϑ)|K(x, y) is not linearly disjoint from K(x, y)h|K(x, y).
On the other hand, the polynomial f can be derived by a deformation of a purely

inseparable polynomial inducing an immediate extension which does not lie in the
completion of K(x, y) in the following way. Define

ξ := d1−p−1
yp
−2
− yp

−1
− y−np

−2
.

The value group of K(x, y) is p-divisible and the residue field of K(x, y) is perfect,
thus K(x, y, ξ)|K(x, y) is an immediate purely inseparable extension of degree p2.
Since dist (y1/p,K(x, y)) ≤ 0−, we have that v(y1/p − K(x, y)) < 0. The values
vd1−p−1

yp
−2

and vy−np
−2

are positive, therefore also v(ξ−K(x, y)) < 0. It follows
that

dist (ξ,K(x, y)) ≤ 0−

and consequently ξ does not lie in the completion of K(x, y). Note that

vξ = vy1/p = − 1
pe1+1

and thus

(p2 − 1)vd+ vξ = p2 − 1− 1
pe1+1

> 0 ≥ p2dist (ξ,K(x, y)).

Therefore, from Lemma 5.4 it follows that every root of the polynomial

Y p
2
− Y −

(
ξ

d

)p2
= Y p

2
− Y − 1

dp
y − 1

dp2
yp − 1

dp2
y−n = f

is in relation ∼K(x,y) with ξ
d . Thus ϑ ∼K(x,y)

ξ
d .

Hence by the deformation of the purely inseparable polynomial Y p
2 − ξp2 we ob-

tain the p-polynomial f = Y p
2−Y−( ξd )p

2
generating the extensionK(x, y, ϑ)|K(x, y)

which is not linearly disjoint from the henselization of K(x, y). The reason why this
assertion holds for the extension K(x, y, ϑ)|K(x, y) induced by the polynomial f is
that although only the element 1

dp2 yp matters for the approximation of ξ and conse-
quently of ϑ, the elements 1

dp2 y−n and 1
dp y matter for the degrees of the extensions

considered in our example.
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As we have seen, the deformation of a polynomial inducing an immediate purely
inseparable extension of prime degree not contained in the completion of the field
leads to an Artin-Schreier defect extension, because of the relation between the
generators of the purely inseparable and the Artin-Schreier extensions. From that
relation, by Theorem 2.14, it follows in particular that the Artin-Schreier exten-
sion is disjoint from the henselization. Example 5.5 shows that for extensions of
higher degrees this implication does not hold. Note that the above example also
shows that we cannot generalize Theorem 2.14 replacing the condition “a lies in
Kh” by “K(a)|K is not linearly disjoint from Kh|K”. Indeed, as we have shown,
ϑ ∼K(x,y)

ξ
d and K(x, y, ϑ)|K(x, y) is not linearly disjoint from K(x, y)h|K(x, y).

On the other hand, the element ξ
d is purely inseparable over K(x, y). It follows

that K(x, y, ξd )|K(x, y) is linearly disjoint from K(x, y)h|K(x, y).

References

[CP] Cutkosky, D. - Piltant, O.: Ramifcation of valuations, Adv. Math. 183
(2004), 1-79

[E] Endler, O. : Valuation theory, Springer, Berlin (1972)
[Ka] Kaplansky, I. : Maximal fields with valuations I, Duke Math. Journ. 9

(1942), 303–321
[Kn-Ku1] Knaf, H. - Kuhlmann, F.-V. : Abhyankar places admit local uniformiza-

tion in any characteristic, Ann. Scient. Ec. Norm. Sup. 38 (2005),
833–846

[Kn-Ku2] Knaf, H. - Kuhlmann, F.-V.: Every place admits local uniformization
in a finite extension of the function field, Adv. Math., 221, (2009),
428–453

[Ku1] Kuhlmann, F.-V.: Value groups, residue fields and bad places of rational
function fields, Trans. Amer. Math. Soc. 356 (2004), 4559-4600

[Ku2] Kuhlmann, F.-V.: Additive Polynomials and Their Role in the Model
Theory of Valued Fields, Proceedings of the Workshop and Conference
on Logic, Algebra, and Arithmetic, held October 18-22, 2003. Lecture
Notes in Logic 26 (2006), 160-203

[Ku3] Kuhlmann, F.-V.: A classification of Artin-Schreier defect extensions
and a characterization of defectless fields, Illinois J. Math. 54 (2010),
397-448

[Ku4] Kuhlmann, F.-V.: Approximation of elements in henselizations, Manuscripta
Math. 136 (2011), 461-474

[Ku5] Kuhlmann, F.-V.: The algebra and model theory of tame valued fields,
submitted

[Ku6] Kuhlmann, F.-V.: Valuation Theory, book in preparation. Preliminary
versions of several chapters are available on the web site:
http://math.usask.ca/ fvk/Fvkbook.htm.

[Ku-P] Kuhlmann, F.-V. - Piltant, O.: Higher ramification groups for Artin-
Schreier defect extensions, in preparation

[Ku-V] Kuhlmann, F.-V. - Vlahu I.: The relative approximation degree in valued
function fields, submitted

[L] Lang, S.: Algebra, Addison-Wesley, New York (1965)
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