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Abstract.The defect (also called ramification deficiency) of valued field extensions is a
major stumbling block in deep open problems of valuation theory in positive character-
istic. For a detailed analysis, we define and investigate two weaker notions of defect: the
completion defect and the defect quotient. We define all three defects for finite valued field
extensions as well as for certain valued function fields (those with Abhyankar valuations
that are allowed to be nontrivial on the ground field). These defects of valued function
fields have played an important role in genus reduction formulas that were presented
by several authors. We prove the most general known form of the Finiteness and Inde-
pendence Theorem for the defect of valued function fields. Further, we investigate the
completion defect and the defect quotient in detail and present analogues of the results
that hold for the usual defect.
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1. Introduction

For a valued field (K, v) we denote its value group by vK and its residue field
by Kv; for a ∈ K, va denotes its value, and av its residue. We denote the
algebraic closure of K by K̃ and the perfect hull by K1/p∞

. By (L|K, v) we mean
an extension of valued fields where v is a valuation on L and its subfield K is
endowed with the restriction of v. Throughout, function field will always mean
an algebraic function field.

In what follows, we fix an extension of the valuation v from K to its algebraic
closure. All algebraic extensions of K will be endowed with the restriction of this
valuation. All of these valuations will again be denoted by v. This also determines
uniquely the henselizations of all algebraic extensions of K (cf. Section 2.1). An
algebraic extension (L|K, v) is called h-finite if (Lh|Kh, v) is finite, where Kh is
the unique henselization of K inside the henselization Lh of L. The (henselian)
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defect of an h-finite extension (L|K, v) is the natural number

d(L|K, v) :=
[Lh : Kh]

(vLh : vKh)[Lhv : Khv]
=

[Lh : Kh]

(vL : vK)[Lv : Kv]
; (1)

the second equation holds since henselizations are immediate extensions (see Sec-
tion 2.1). By the Lemma of Ostrowski (see Section 2.2), this quotient is always 1 if
Kv has characteristic 0, and it is a non-negative power of p if Kv has characteristic
p > 0.

1.1. The defect of valued function fields. Matignon [M] and later Green,
Matignon and Pop [GMP] defined a “vector space defect” of certain valued func-
tion fields and used it for the formulation and the proof of important genus reduc-
tion inequalities. These inequalities connect the genus of a function field F |K of
transcendence degree 1 (where K is the exact constant field) with the genera of
the reduced function fields

Fvi |Kv (1 ≤ i ≤ s)

where the valuations vi are distinct extensions of a given valuation v on K such
that all extensions Fvi |Kv are transcendental, hence finitely generated of tran-
scendence degree 1.

Also for function fields of higher transcendence degree, the studies arising from
the questions of genus reduction and good reduction assume that the transcendence
degree of the function field is equal to the transcendence degree of the residue field
extension (which by Corollary 2.18 implies that the residue field extension is also an
algebraic function field). Problems like local uniformization and the investigation
of the model theoretic properties of valued fields force us to consider a more general
situation. A valued field extension (F |K, v) of finite transcendence degree is called
without transcendence defect if equality holds in the Abhyankar Inequality

trdegF |K ≥ trdegFv|Kv + rr vF/vK . (2)

Here, for any ordered abelian group G, rr G := dimQ G ⊗ Q denotes the maxi-
mal number of rationally independent elements in G; this is called the rational
rank of G. In particular in the case where v is trivial on K, valuations without
transcendence defect are also called Abhyankar valuations.

Every extension (F |K, v) without transcendence defect admits a standard
valuation transcendence basis, that is, a transcendence basis {xi, yj | i ∈
I, j ∈ J} such that

the values vxi , i ∈ I, are rationally independent over vK,
the residues yjv, j ∈ J , are algebraically independent over Kv.

}
(3)

(The second condition implicitly says that vyj = 0 for all j ∈ J .) Indeed, if the
elements xi are chosen such that their values form a maximal set of elements in vF
rationally independent modulo vK, and the elements yj are chosen such that their
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residues form a transcendence basis of Fv|Kv, then by Lemma 2.17, the elements
xi, yj , i ∈ I, j ∈ J , are algebraically independent over K. If equality holds in the
Abhyankar Inequality, then their number equals the transcendence degree, and so
they form a standard valuation transcendence basis.

As for h-finite extensions, a notion of defect can be defined for every valued
function field (F |K, v) without transcendence defect. More generally, we consider
subhenselian function fields, that is, extensions (F |K, v) for which (F, v)h is
the henselization of some valued function field (F0|K, v). Note that in this case,
F |K(T ) is an h-finite extension for every transcendence basis T of F |K and hence
we may consider the defect d(F |K(T ), v). For subhenselian function fields without
transcendence defect, the defect can be introduced as:

d(F |K, v) := sup
T

d(F |K(T ), v) (4)

where the supremum is taken over all transcendence bases of (F |K, v). In the case
of a henselian ground field (K, v) and trdegF |K = trdegFv|Kv, this (“henselian”)
defect coincides with the “vector space defect” defined by Green, Matignon and
Pop (see Section 2 of [GMP] for details).

The following theorem shows the finiteness of the defect, as it is equal to
d(F |K(T ), v) for a standard valuation transcendence basis T , and its indepen-
dence of the choice of this standard valuation transcendence basis.

Theorem 1.1 (Finiteness and Independence Theorem). Take a subhenselian func-
tion field (F |K, v) without transcendence defect. Then for every standard valuation
transcendence basis T of F |K,

d(F |K, v) = d(F |K(T ), v) < ∞ . (5)

Moreover, there exists a finite extension K ′ of K such that for every algebraic
extension L of K containing K ′ we have:

(1) for every standard valuation transcendence basis T of (F |K, v),
the extension (L.F |L(T ), v) is defectless,

(2) d(F |K, v) =
d(L|K, v)

d(L.F |F, v)
= max

N |K finite

d(N |K, v)

d(N.F |F, v)
.

The proof of this theorem is given in Section 2.5. It heavily depends on the
following result proved in [K1] and [K4]:

Theorem 1.2 (Generalized Stability Theorem). Let (F |K, v) be a valued function
field without transcendence defect. If (K, v) is a defectless field, then also (F, v) is a
defectless field. The same holds for “inseparably defectless” in place of “defectless”.
If vK is cofinal in vF , then it also holds for “separably defectless” in place of
“defectless”.

This theorem is a generalization of a result of Grauert and Remmert [G-R]
which is restricted to the case of algebraically closed complete ground fields of rank
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1 (i.e., with archimedean value group, meaning that it is a subgroup of the reals).
A first generalization of their result was given by Gruson [GRU]; an improved
presentation of it can be found in the book [BGR] of Bosch, Güntzer and Remmert.
Further generalizations are due to M. Matignon and J. Ohm; see also [GMP]. In
[O], Ohm arrived at a version of Theorem 1.2 with the already discussed restriction
that trdegF |K = trdegFv|Kv. The work of all authors mentioned above is based
on methods of nonarchimedean analysis. In contrast, the proofs given in [K1] and
[K4] are purely valuation theoretic.

Theorem 1.1 was independently obtained by Ohm [O] in the case of trdegF |K =
trdegFv|Kv by using his version of the stability theorem. The name Independence
Theorem was coined by him. Another special case was proved by Sudesh Khanduja
in [Kh]. She considered simple transcendental extensions (K(x)|K, v) satisfying the
condition rr vK(x)|vK = 1 = trdegK(x)|K.

1.2. Completion defect and defect quotient. Matignon and Ohm (cf. [M],
[O]) used a completion defect which measures the defect, for valuations of rank
1, using completions instead of henselizations. The notion of completion defect
played a key role in the proof of Matignon’s genus reduction inequality for valued
function fields. This inequality was first proved by Matignon in [M] for valued
function fields of transcendence degree 1 and rank 1. It was extended in [GMP]
to an arbitrary finite family of valuations coinciding on the constant field, now
passing from the completion defect to the henselian defect or vector space defect
for the case of higher rank. The proof still depends on the rank 1 case with its use
of the completion defect.

Although in [GMP] a completion defect was neither introduced nor used in
the case of higher rank, it is worthwile to study its generalization to arbitrary
rank. This allows us to explore the defect in more precise detail. The process
of passing to the completion cuts out a special type of defect which appears to
be less malicious than the remaining completion defect. The fact that even for
valuations of higher rank, completions play a role in the study of the defect is
indicated by results such as Theorems 1.11, 5.1 and 5.2 and Corollary 6.8 in [K5];
the assertion of Corollary 6.8 was originally presented by F. Delon in [D]. The
assertion of Theorem 5.1 will reappear in this paper in Theorem 1.6, in a different
formulation and with a different proof.

Since for valuations of arbitrary rank, the completion is in general not henselian,
we measure the defect over the completion of the henselization. This defect then
coincides with Matignon’s and Ohm’s completion defect for valuations of rank 1.

Let Khc denote the completion of (Kh, v). Take any h-finite extension (L|K, v).
We define the completion defect dc(L|K, v) as follows:

dc(L|K, v) :=
[Lhc : Khc]

(vL : vK)[Lv : Kv]
= d(Lhc|Khc, v) ;

this is well-defined and the second equation holds because completions are im-
mediate extensions and (Lhc|Khc, v) is a finite extension of henselian fields (see
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Section 2.1, in particular Lemma 2.3 and Lemma 2.4). This is why we have chosen
to work with the completion of the henselization. Instead, we could have chosen
to work with

d(Lc|Kc, v) =
[Lch : Kch]

(vLc : vKc)[Lcv : Kcv]
=

[Lch : Kch]

(vL : vK)[Lv : Kv]
,

where Kch is the henselization of the completion of K (which is not necessarily
complete). In fact, we will prove:

Proposition 1.3. For every h-finite extension (L|K, v),

d(Lc|Kc, v) = dc(L|K, v) ,

and for every h-finite separable extension (L|K, v),

dc(L|K, v) = d(L|K, v) .

In order to characterize those extensions for which the completion defect is
equal to the ordinary defect we compute the defect quotient:

dq(L|K, v) :=
d(L|K, v)

dc(L|K, v)
=

[Lh : Kh]

[Lhc : Khc]
.

We denote by [L : K]insep the inseparable degree of a finite extension L|K, that
is, the degree of L|K divided by the degree of the maximal separable subextension
Ls|K.

Proposition 1.4. For every finite extension (L|K, v),

dq(L|K) =
[L : K]insep
[Lc : Kc]insep

.

An h-finite extension (L|K, v) is called c-defectless if dc(L|K, v) = 1 and q-
defectless if dq(L|K, v) = 1. A valued field (K, v) will be called a c-defectless
field or q-defectless field if every finite extension (L|K, v) is c-defectless or q-
defectless, respectively. The properties of being “c-defectless” or “q-defectless” are
weaker than “defectless” (cf. Section 2.2 for the latter notion). Another pair of
weaker properties are inseparably defectless and separably defectless (again, see
Section 2.2 for these notions).

In Section 3.1, we prove the following characterizations:

Theorem 1.5. A valued field (K, v) is a c-defectless field if and only if it is a
separably defectless field.

Theorem 1.6. A valued field (K, v) is q-defectless if and only if its completion is
a separable extension (that is, linearly disjoint from the perfect hull K1/p∞

over
K). In particular, every complete field and every valued field of characteristic 0 is
q-defectless.
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The completion defect and defect quotient of valued function fields without
transcendence defect may be defined similarly as it was done for the defect. For a
subhenselian function field (F |K, v) without transcendence defect we set

dc(F |K, v) := sup
T

dc(F |K(T ), v) and dq(F |K, v) := sup
T

dq(F |K(T ), v) ,

where the supremum is taken over all transcendence bases of (F |K, v). The same
finiteness and independence as for the defect (Theorem 1.1) also hold for the com-
pletion defect and defect quotient:

Theorem 1.7. Take a subhenselian function field (F |K, v) without transcendence
defect over K. Then for every standard valuation transcendence basis T of F |K,

dc(F |K, v) = dc(F |K(T ), v) and dq(F |K, v) = dq(F |K(T ), v) . (6)

Further,

d(F |K, v) = dc(F |K, v) · dq(F |K, v) . (7)

Assume in addition that vK is cofinal in vF . If K ′ is chosen as in the assertion
of Theorem 1.1, then for every finite extension L of K containing K ′,

dc(F |K, v) =
dc(L|K, v)

dc(L.F |F, v)
= max

N |K finite

dc(N |K, v)

dc(N.F |F, v)
(8)

dq(F |K, v) =
dq(L|K, v)

dq(L.F |F, v)
= max

N |K finite

dq(N |K, v)

dq(N.F |F, v)
. (9)

We will prove Theorem 1.7 in Section 3.2, together with the following “q-
defectless and c-defectless versions” of Theorem 1.2.

Theorem 1.8. Take a subhenselian function field (F |K, v) without transcendence
defect.

a) If (K, v) is a q-defectless field or vK is not cofinal in vF , then dq(F |K, v) = 1
and (F, v) is a q-defectless field.

b) If vK is cofinal in vF and (K, v) is a c-defectless field, then dc(F |K, v) = 1
and (F, v) is a c-defectless field.

We will use d(F |K), dc(F |K) and dq(F |K) for defect, completion defect and
quotient defect of (F |K, v), respectively, when there is no ambiguity for the valu-
ation v.

2. Valuation theoretic preliminaries

For the basic facts of valuation theory, we refer the reader to [E], [EP], [R], [W]
and [Z-S].
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2.1. Henselization and completion. Every finite extension L of (K, v) satisfies
the fundamental inequality (cf. [E]):

[L : K] ≥
g∑

i=1

eifi, (10)

where v1, . . . , vg are the distinct extensions of v from K to L, ei = (viL : vK)
are the respective ramification indices and fi = [Lvi : Kv] are the respective
inertia degrees. If g = 1 for every finite extension L|K then (K, v) is called
henselian. This means that (K, v) is henselian if and only if v extends uniquely
to each algebraic extension of K. Therefore, every algebraically closed valued field
is trivially henselian.

Every valued field (K, v) admits a henselization, that is, a separable-algebraic
extension field which is henselian and has the universal property that it admits
a unique embedding in every henselian extension field of (K, v). In particular, if
(L,w) is a henselian extension field of (K, v), then (K, v) has a unique henselization
in (L,w), which we will denote by Kh(w). Further, all henselizations of (K, v) are
isomorphic over K, so we often talk of the henselization of (K, v) and just write
Kh. We can also fix the henselizations by consistently working inside a large
algebraically closed field. A valued field is henselian if and only if it is equal to
any (and thus all) of its henselizations.

An extension (L|K, v) is immediate if the canonical embeddings vK ↪→ vL
and Kv ↪→ Lv are onto, which we also express by the less precise assertion that
vK = vL and Kv = Lv. The henselization is an immediate extension.

If L is a finite extension of K and v1, . . . , vg are the distinct extensions of v
from K to L, then (K, v) has a henselization Kh(vi) in each henselization Lh(vi) of
(L, vi), and

[L : K] =
∑

1≤i≤g

[Lh(vi) : Kh(vi)]. (11)

We have:

Lemma 2.1. An algebraic extension of a henselian field is again henselian. If
(L|K, v) is algebraic, then (L.Kh, v) is the henselization of (L, v).

Let (K, v) be any valued field. A valuation w on K is a coarsening of v if its
valuation ring Ow contains the valuation ring Ov of v. If H is a convex subgroup
of vK, then it gives rise to a coarsening w with valuation ring Ow := {x ∈ K |
∃α ∈ H, α ≤ vx}. Then v induces a valuation w on Kw with valuation ring
Ow := {xw | x ∈ Ov}, and there are canonical isomorphisms wK ∼= vK/H and
w(Kw) ∼= H. If (K,w) is any valued field and if w′ is any valuation on the residue
field Kw, then w ◦ w′, called the composition of w and w′, will denote the
valuation whose valuation ring is the subring of the valuation ring of w consisting
of all elements whose w-residues lie in the valuation ring of w′. In our above
situation, v is the composition of w and w.

The following fact is well known:
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Lemma 2.2. Take a valued field (K, v) and a composition v = w ◦w. Then (K, v)
is henselian if and only if (K,w) and (Kw,w) are henselian.

We conclude this section with a few results about the completion Kc of K.
Like the henselization, also the completion is an immediate extension.

Lemma 2.3. If (L|K, v) is finite, then the extension of v from Kc to L.Kc is
unique, and (L.Kc, v) is the completion of (L, v).

Proof. A finite extension of a complete valued field is again complete, so (L.Kc, v)
is complete for each extension of v from Kc to L.Kc. On the other hand, since
(L|K, v) is finite, the value group vK is cofinal in vL, which implies that the
completion of (L, v) must contain the completion of (K, v). As it also contains L,
it contains L.Kc. Thus, (L.Kc, v) is the completion of (L, v), which also implies
that the extension of v from Kc to L.Kc is unique.

A proof of the following theorem can be found in [W] (Theorem 32.19):

Lemma 2.4. The completion of a henselian field is henselian too. Consequently,

(Khc)hc = Khc.

Moreover, a henselian field is separable-algebraically closed in its completion.

2.2. Defect and defectless fields. Assume that (L|K, v) is a finite extension
such that v extends uniquely from K to L. Then the Lemma of Ostrowski (cf.
[EN], [R]) says that

[L : K] = pν(vL : vK)[Lv : Kv] , for some integer ν ≥ 0

where p = charLv if it is positive and p = 1 otherwise. The factor d(L|K, v) := pν

is called the defect of the extension (L|K, v). If d(L|K, v) = 1, then L|K is
called a defectless extension. More generally (i.e., for g ≥ 1), a finite extension
(L|K, v) is called defectless if equality holds in (10). A valued field (K, v) is said
to be a defectless, separably defectless or inseparably defectless field if
every finite, finite separable or finite purely inseparable, respectively, extension of
K satisfies equality in the fundamental inequality (10). One can trace this back
to the case of unique extensions of the valuation; for the proof of the following
theorem, see [K2] (a partial proof was already given in [E]):

Lemma 2.5. A valued field is defectless if and only if its henselization is defectless.
The same holds for “separably defectless” and “inseparably defectless” in place of
“defectless”.

Therefore, the Lemma of Ostrowski shows that:

Corollary 2.6. Every valued field (K, v) with charKv = 0 is a defectless field.

The following lemma shows that the defect is multiplicative. This is a conse-
quence of the multiplicativity of the degree of a field extension and of ramification
index and inertia degree.
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Lemma 2.7. Let K ⊂ L ⊂ M be fields and v extends uniquely from K to M .
Then

d(M |K, v) = d(M |L, v) · d(L|K, v) .

In particular, (M |K, v) is defectless if and only if (M |L, v) and (L|K, v) are de-
fectless.

Using this lemma together with Lemma 2.5, one easily shows:

Lemma 2.8. Every finite extension of a defectless field is again a defectless field.

The following theorem is proved in [K5], where it is stated with the additional
hypothesis “charK = p > 0”. For our purpose in this paper, we state it in general
and include the proof.

Lemma 2.9. Let (K, v) be a henselian valued field. Then K is separably defectless
if and only if Kc is defectless.

Proof. In view of Corollary 2.6, we may assume that charKv = p > 0. Since K is
a henselian field, the same holds for Kc (Lemma 2.4). The field Kc is defectless if
and only if it is separably defectless, indeed, this is trivially true when charK = 0,
and in the case of positive characteristic it is implied by Theorem 5.1 of [K5]. Thus
it suffices to prove that Kc is a separably defectless field if and only if K is.

Let L|K be an arbitrary finite separable extension. The henselian field K
is separable-algebraically closed in Kc (Lemma 2.4). Consequently, every finite
separable extension of K is linearly disjoint from Kc over K, whence

[L.Kc : Kc] = [L : K].

On the other hand, L.Kc = Lc by Lemma 2.3. Consequently,

(v(L.Kc) : vKc)[(L.Kc)v : Kcv] = (vL : vK)[Lv : Kv].

Assume that Kc is a separably defectless field. Then (L.Kc|Kc, v) is defectless,
i.e., [L.Kc : Kc] = (v(L.Kc) : vKc)[(L.Kc)v : Kcv]. Hence, [L : K] = (vL :
vK)[Lv : Kv], showing that L|K is defectless. We have shown that K is separably
defectless if Kc is.

Now assume that Kc is not a separably defectless field. Then there exists a
finite Galois extension L′|Kc with nontrivial defect. In view of Lemma 2.7, we may
assume that the extension is Galois (after passing to the normal hull if necessary).
We take an irreducible polynomial f = Xn + cn−1X

n−1 + · · · + c0 ∈ Kc[X] of
which L′ is the splitting field. For every α ∈ vK there are dn−1, . . . , d0 ∈ K such
that v(ci − di) ≥ α. If α is large enough, then by Theorem 32.20 of [W], the
splitting fields of f and g = Xn + dn−1X

n−1 + · · · + d0 over the henselian field
Kc are the same. Consequently, if L denotes the splitting field of g over K, then
L′ = L.Kc = Lc. We obtain

[L : K] ≥ [L.Kc : Kc] = [L′ : Kc]

> (vL′ : vKc)[L′v : Kcv] = (vLc : vKc)[Lcv : Kcv]

= (vL : vK)[Lv : Kv].
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That is, the separable extension L|K is not defectless. Hence, K is not a separably
defectless field.

The following lemma describes the behaviour of the defect under composition
of valuations:

Lemma 2.10. Take a finite extension (L|K, v) of henselian fields and a coarsening
w of v on L. Then

d(L|K, v) = d(L|K,w) · d(Lw|Kw,w) .

In particular, if d(L|K, v) = 1, then d(L|K,w) = 1 for every coarsening w of v.

Proof. Since (L, v) and (K, v) are henselian by assumption, also (L,w), (K,w),
(Lw,w) and (Kw,w) are henselian by Lemma 2.2. Therefore, we can compute:

d(L|K, v) =
[L : K]

(vL : vK)[Lv : Kv]

=
[L : K]

(wL : wK)(w(Lw) : w(Kw))[(Lw)w : (Kw)w]

=
[L : K]

(wL : wK)[Lw : Kw]
· [Lw : Kw]

(w(Lw) : w(Kw))[(Lw)w : (Kw)w]

= d(L|K, v) · d(Lw|Kw,w) .

In the next lemma, the relation between immediate and defectless extensions
is studied.

Lemma 2.11. Take an arbitrary immediate extension (F |K, v) of valued fields,
and (L|K, v) a finite extension such that [L : K] = (vL : vK)[Lv : Kv]. Then
F |K and L|K are linearly disjoint, the extension of v from F to L.F is unique,
(L.F |F, v) is defectless, and (L.F |L, v) is immediate. Moreover,

[L.F : F ] = [L : K] ,

i.e., F is linearly disjoint from L over K.

Proof. v(L.F ) contains vL and (L.F )v contains Lv. On the other hand, we have
vF = vK and Fv = Kv by hypothesis. Therefore,

[L.F : F ] ≥ (v(L.F ) : vF ) · [(L.F )v : Fv]

≥ (vL : vK) · [Lv : Kv] = [L : K] ≥ [L.F : F ]

hence equality holds everywhere. This shows that [L.F : F ] = [L : K] and that
L.F |F is defectless with unique extension of the valuation. Furthermore, it follows
that v(L.F ) = vL and (L.F )v = Lv, i.e., L.F |L is immediate.
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The reader should note that if the finite extension L|K is not normal and there
are more than one extension of v from K to L, then d(L|K, v) = 1 does not imply
that equality holds in (10). It may happen that for one extension of v the henselian
defect is 1 while for another extension it is > 1. In this case, the henselian defect
depends on the chosen extension of v from K to L. On the other hand, this will
not happen when L|K is normal.

Applying the lemma to purely inseparable extensions L|K, we obtain:

Corollary 2.12. Every immediate extension of an inseparably defectless field is
separable.

Proof. If (K, v) is an inseparably defectless field and (F |K, v) an immediate ex-
tension, then every finite purely inseparable extension (L|K, v) satisfies [L : K] =
(vL : vK)[Lv : Kv], and L is therefore linearly disjoint from F over K by the
previous lemma. It follows that also K1/p∞

is linearly disjoint from F over K.

In the following we give two basic examples for extensions with defect > 1
(one can find more nasty examples in [K5] and [K7]). The following is due to
F. K. Schmidt.

Example 2.13. We consider Fp((t)) with its canonical valuation v = vt . Since
Fp((t))|Fp(t) has infinite transcendence degree, we can choose some element s ∈
Fp((t)) which is transcendental over Fp(t). Since (Fp((t))|Fp(t), v) is an immediate
extension, the same holds for the extension (Fp(t, s)|Fp(t), v) and thus also for
(Fp(t, s)|Fp(t, s

p), v). The latter extension is purely inseparable of degree p (since
s, t are algebraically independent over Fp , the extension Fp(s)|Fp(s

p) is linearly
disjoint from Fp(t, s

p)|Fp(s
p) ). Hence, there is only one extension of the valuation

v from Fp(t, s
p) to Fp(t, s). So we have e = f = g = 1 for this extension and

consequently, its defect is p.

A defect can appear “out of nothing” when a finite extension is lifted through
another finite extension:

Example 2.14. In the foregoing example, we can choose s such that vs > 1 = vt.
Now we consider the extensions

(Fp(t, s
p)|Fp(t

p, sp), v) and (Fp(t+ s, sp)|Fp(t
p, sp), v)

of degree p. Both are defectless: since vFp(t
p, sp) = pZ and v(t + s) = vt = 1,

the index of vFp(t
p, sp) in vFp(t, s

p) and in vFp(t + s, sp) must be (at least) p.
But Fp(t, s

p).Fp(t + s, sp) = Fp(t, s), which shows that the defectless extension
(Fp(t, s

p)|Fp(t
p, sp), v) does not remain defectless if lifted up to Fp(t+ s, sp) (and

vice versa).

2.3. Defect of h-finite extensions. For a finite extension (L|K, v) such that
v extends uniquely from K to L, the defect measures how far the fundamental
inequality (10) is from being an equality. More generally, this can be done for
every algebraic extension (L|K, v) such that (Lh|Kh, v) is finite, i.e., (L|K, v) is an
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h-finite extension. This requires that we work with a fixed extension of v to the
algebraic closure K̃, which in turn determines the henselizations of K and all its
algebraic extensions. We can then define the defect to be that of the extension of
the respective henselizations, as we hve done if (1).

In general, the defect can increase or decrease if an h-finite extension is lifted
up through another extension. A defectless extension may turn into an extension
with nontrivial defect after lifting up through an algebraic extension (as seen in
Example 2.14). On the other hand, every h-finite extension with nontrivial defect of
a valued field (K, v) becomes trivial and thus defectless if lifted up to the algebraic
closure K̃. At least we can show that if the defect decreases, then there is no
further descent after a suitable finitely generated extension.

As a preparation, we need the following fact which at first glance may appear
to be obvious. But a closer look reveals that proving it is more difficult than
expected. In order to get a feeling for the hidden difficulties, the reader should
note that if K(x)|K is a simple transcendental extension and we take an element
c in the henselization of K(x) which is algebraic over K, it may not lie in the
henselization of K (cf. Theorem 1.3 of [K3]).

Lemma 2.15. Take an arbitrary extension (L|K, v) and elements c1, . . . , cm ∈ Lh.
Then there exist elements d1, . . . , dn ∈ L such that c1, . . . , cm ∈ K(d1, . . . , dn)

h.

This lemma is proved in [K8]. Now we are ready to prove the following result.

Lemma 2.16. Let (L|K, v) and (F |K, v) be subextensions of a valued field exten-
sion (Ω|K, v) such that F |K is finitely generated and L.F |L is h-finite. Then there
exists a finitely generated subextension L0|K of L|K such that for every subfield
L1 of L containing L0, the following holds:

(1) [(L.F )h : Lh] = [(L1.F )h : Lh
1 ],

(2) (v(L.F ) : vL) ≤ (v(L1.F ) : vL1),

(3) [(L.F )v : Lv] ≤ [(L1.F )v : L1v],

(4) d(L.F |L, v) ≥ d(L1.F |L1, v).

Proof. Since [(L.F )h : Lh] is finite, the fundamental inequality (10) shows that
(v(L.F ) : vL) and [(L.F )v : Lv] are finite too. Hence there exist a1, . . . , ar ∈ L.F
such that

v(L.F ) = vL+ Zva1 + . . .+ Zvar ,

and there exist b1, . . . , bs ∈ L.F such that

(L.F )v = Lv(b1v, . . . , bsv) .

In order to write out a1, . . . , ar, b1, . . . , bs as elements of the compositum L.F , we
need finitely many elements a′1, . . . , a

′
k, b

′
1, . . . , b

′
ℓ ∈ L. Whenever L1 ⊆ L is an
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extension of K which contains these elements, then a1, . . . , ar, b1, . . . , bs ∈ L1.F
and it follows that

(v(L1.F ) : vL1) ≥ (v(L.F ) : vL) , (12)

[(L1.F )v : L1v] ≥ [(L.F )v : Lv] , (13)

the left hand sides not necessarily being finite.

Now if L1 satisfies assertion 1 of our lemma, then the left hand sides of (12)
and (13) have to be finite, and we will have that

d(L1.F |L1, v) =
[(L1.F )h : Lh

1 ]

(v(L1.F ) : vL1) · [(L1.F )v : L1v]

≤ [(L.F )h : Lh]

(v(L.F ) : vL) · [(L.F )v : Lv]
= d(L.F |L, v) .

Since F |K is finitely generated by assumption, we can write F = K(z1, . . . , zt).
Then z1, . . . , zt are algebraic over Lh, and we take c1, . . . , cm ∈ Lh to be all of the
coefficients appearing in their minimal polynomials. By Lemma 2.15 there exist
elements d1, . . . , dn ∈ L such that c1, . . . , cm ∈ K(d1, . . . , dn)

h. Hence as soon
as d1, . . . , dn ∈ L1, z1, . . . , zt are algebraic over Lh

1 with [Lh
1 (z1, . . . , zt) : Lh

1 ] =
[Lh(z1, . . . , zt) : L

h]. It then follows that F |L1 is algebraic, so that (L1.F )h = Lh
1 .F

by Lemma 2.1 (where we take L = L1.F and K = L1). This yields the equalities

[(L1.F )h : Lh
1 ] = [L1.F

h : Lh
1 ] = [Lh

1 (z1, . . . , zt) : L
h
1 ] = [Lh(z1, . . . , zt) : L

h]

= [Lh.F : Lh] = [(L.F )h : Lh] ,

so that assertion 1 is satisfied. Hence if we set

L0 := K(a′1, . . . , a
′
k, b

′
1, . . . , b

′
ℓ, d1, . . . , dn) ,

then all assertions of our lemma will be satisfied by every subfield L1 ⊆ L that
contains L0 .

2.4. Transcendence bases of valued function fields. For the easy proof of
the following lemma, see [B], chapter VI, §10.3, Theorem 1.

Lemma 2.17. Let (L|K, v) be an extension of valued fields. Take elements xi, yj ∈
L, i ∈ I, j ∈ J , such that the values vxi , i ∈ I, are rationally independent over
vK, and the residues yjv, j ∈ J , are algebraically independent over Kv. Then the
elements xi, yj, i ∈ I, j ∈ J , are algebraically independent over K.

Moreover, if we write

f =
∑
k

ck
∏
i∈I

x
µk,i

i

∏
j∈J

y
νk,j

j ∈ K[xi, yj | i ∈ I, j ∈ J ]

in such a way that for every k ̸= ℓ there is some i s.t. µk,i ̸= µℓ,i or some j s.t.
νk,j ̸= νℓ,j , then

vf = min
k

v ck
∏
i∈I

x
µk,i

i

∏
j∈J

y
νk,j

j = min
k

vck +
∑
i∈I

µk,ivxi . (14)
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That is, the value of the polynomial f is equal to the least of the values of its
monomials. In particular, this implies:

vK(xi, yj | i ∈ I, j ∈ J) = vK ⊕
⊕
i∈I

Zvxi

K(xi, yj | i ∈ I, j ∈ J)v = Kv (yjv | j ∈ J) .

Moreover, the valuation v on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined by its
restriction to K, the values vxi and the residues yjv.

Conversely, if (K, v) is any valued field and we assign to the elements vxi

any values in an ordered abelian group extension of vK which are rationally in-
dependent, then (14) defines a valuation on F , and the residues yjv, j ∈ J , are
algebraically independent over Kv.

As a consequence of the above lemma and the fundamental inequality (10), we
have:

Corollary 2.18. Let (F |K, v) be an extension of valued fields of finite transcen-
dence degree. Then the Abhyankar Inequality (2) holds. If in addition F |K is a
function field and if equality holds in (2), then the extensions vF |vK and Fv|Kv
are finitely generated.

The following is Lemma 2.8 of [K4]:

Lemma 2.19. Let (F |K, v) be a valued function field without transcendence defect
and v = w ◦ w, then (F |K,w) and (Fw|Kw,w) are valued function fields without
transcendence defect.

A transcendence basis T of an extension (L|K, v) is called valuation transcen-
dence basis, if for every choice of finitely many distinct elements t1, . . . , tn ∈ T ,
the value of every polynomial f in K[t1, . . . , tn] is equal to the value of a summand
of f of minimal value, i.e.,

v(
∑
ν

cνt
ν1
1 · · · tνn

n ) = min
ν

v(cνt
ν1
1 · · · tνn

n ). (15)

By Lemma 2.17, every standard valuation transcendence basis is a valuation tran-
scendence basis.

Lemma 2.20. Let (L|K, v) be an extension of valued fields of finite transcendence
degree. Then the following assertions are equivalent:

(1) (L|K, v) is an extension without transcendence defect.

(2) (L|K, v) admits a standard valuation transcendence basis,

(3) (L|K, v) admits a valuation transcendence basis.
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Proof. 1.⇒ 2. was shown in the Introduction.

2.⇒ 3. follows from our remark preceding the lemma.

3.⇒ 1.: Let T = {t1, . . . , tn} be a valuation transcendence basis of (L|K, v). Hence
n = trdegL|K. We can assume that the numbering is such that for some r ≥ 0,
the values vt1, . . . , vtr are rationally independent over vK and the values of every
r + 1 elements in T are rationally dependent over vK. That is, for every j such
that 0 < j ≤ s := n − r, there are integers νj > 0 and νij , 1 ≤ i ≤ r, and a
constant cj ∈ K such that the element

t′j := cjt
νj

r+j

r∏
i=1

t
νij

i

has value 0. Observe that r ≤ rr vL/vK and that r+ s = trdegL|K. Now assume
that (L|K, v) has nontrivial transcendence defect. Then

s = trdegL|K − r ≥ trdegL|K − rr vL|vK > trdegLv|Kv.

This yields that the residues t′1v, . . . , t
′
sv are not Kv-algebraically independent.

Hence, there is a nontrivial polynomial g(X1, . . . , Xs) ∈ OK [X1, . . . , Xs] such that
g(t′1, . . . , t

′
s)v = 0. Hence vg(t′1, . . . , t

′
s) > 0. After multiplying with sufficiently

high powers of every element ti, 1 ≤ i ≤ r, we obtain a polynomial f in t1, . . . , tn
which violates (15). But this contradicts our assumption that T be a valuation
transcendence basis. Consequently, (L|K, v) can not have a nontrivial transcen-
dence defect.

2.5. The defect of valued function fields. Let (F |K, v) be a subhenselian
function field without transcendence defect. In the following we will show that
the defect d(F |K, v), defined in (4), is finite and equal to the henselian defect
d(F |K(T ), v) for every standard valuation transcendence basis T of (F |K, v).

Lemma 2.21. Take an extension (K(T )|K, v), where T = {xi, yj | i ∈ I, j ∈ J}
satisfies (3). Let v1, . . . , vg be the extensions of v from K(T ) to L(T ). Then
v1, . . . , vg are uniquely determined by their restrictions to L, and these restrictions
are precisely the extensions of v from K to L. Moreover, for 1 ≤ i ≤ g,

d(L(T )|K(T ), vi) = d(L|K, vi) , (16)

e(L(T )|K(T ), vi) = e(L|K, vi) , (17)

f(L(T )|K(T ), vi) = f(L|K, vi) , (18)

viL(T ) = viL+ vK(T ) and L(T )vi = Lvi .K(T )v . (19)

Proof. The first two assertions follow from Lemma 2.17, which also shows that
vK(T ) = vK ⊕

⊕
i∈I Zvxi and viL(T ) = viL⊕

⊕
i∈I Zvxi. Hence, viL(T )/vK(T )

is isomorphic to viL/vK, which proves equation (17). Again by Lemma 2.17,
K(T )v = Kv(yjv | j ∈ J) and L(T )vi = Lvi(yjv | j ∈ J). Since the elements yjv
are algebraically independent overKv and Lvi|Kv is algebraic, Kv(yjv | j ∈ J)|Kv
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is linearly disjoint from Lvi|Kv, which yields (18). Also, (19) follows immediately
from the above described form of the value groups and residue fields.

Since the elements of T are algebraically independent over K, the extension
K(T )|K is linearly disjoint from K̃|K and thus, [L(T ) : K(T )] = [L : K]. In view
of Lemma 2.1, we have that

[L(T )h(vi) : K(T )h(vi)] = [Lh(vi).K(T )h(vi) : Kh(vi).K(T )h(vi)]

≤ [Lh(vi) : Kh(vi)] .
(20)

But from (11) we obtain that∑
1≤i≤g

[L(T )h(vi) : K(T )h(vi)] = [L(T ) : K(T )] = [L : K] =
∑

1≤i≤g

[Lh(vi) : Kh(vi)]

which shows that equality must hold in (20). Now (16) follows from the definition
of the henselian defect.

To facilitate notation, we will from now on assume that all valued field exten-
sions of (K, v) are contained in a large algebraically closed valued field extension
of (K, v) and their henselizations are taken within this extension. This enables us
to suppress the mentioning of the valuation.

Lemma 2.22. Let F |K be a subhenselian function field without transcendence
defect. Then for every standard valuation transcendence basis T of F |K there
exists a finite extension KT of K such that for every algebraic extension L of K
containing KT , the following holds:

(1) the extension L.F |L(T ) is defectless

(2) if L|K is h-finite, then d(L.F |K(T )) = d(L(T )|K(T )) = d(L|K).

Proof. Assume that L|K is an h-finite extension such that L.F |L(T ) is defectless.
Then

d(L.F |K(T )) = d(L.F |L(T )) · d(L(T )|K(T )) = d(L(T )|K(T )) = d(L|K) ,

where the last equation holds by Lemma 2.21. Hence we may restrict our attention
to the fulfillment of assertion 1.

The extension K̃.F |K̃(T ) is defectless by Theorem 1.2 and Lemma 2.5. By
Lemma 2.16 there exists a finitely generated subextension L0|K(T ) of K̃(T )|K(T )
such that

d(L1.F |L1) ≤ d(K̃.F |K̃(T )) = 1

whenever L0 ⊂ L1 ⊂ K̃(T ). Let KT be a finitely generated algebraic (and hence fi-
nite) extension of K such that L0 ⊂ KT (T ). Then d(L.F |L(T )) ≤ d(K̃.F |K̃(T )) =
1 for every algebraic extension L of K which contains KT .
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Proof of Theorem 1.1:
Take any transcendence basis T0 of F |K. Then also K(T0)|K is without transcen-
dence defect because it has the same transcendence degree as F |K, vF/vK(T0)
is a torsion group, and Fv|K(T0)v is algebraic. Hence K(T0) admits a standard
valuation transcendence basis T over K. We compute:

d(F |K(T0)) ≤ d(F |K(T0)) · d(K(T0)|K(T )) = d(F |K(T )) .

This shows that
d(F |K) = sup

T
d(F |K(T )) ,

where T runs over standard valuation transcendence bases only. Since F is a
subhenselian function field, every d(F |K(T )) is a finite number. It remains to
show that for any two standard valuation transcendence bases T1 and T2,

d(F |K(T1)) = d(F |K(T2)) .

We choose finite extensions KT1 and KT2 according to Lemma 2.22. Putting
L0 = KT1 .KT2 we get by Lemma 2.22:

d(L0.F |K(T1)) = d(L0|K) = d(L0.F |K(T2))

and from this we deduce

d(F |K(T1)) =
d(L0.F |K(T1))

d(L0.F |F )
=

d(L0.F |K(T2))

d(L0.F |F )
= d(F |K(T2)) .

This proves (5) and that the defect is independent of the chosen standard valuation
transcendence basis.

Furthermore, using Lemmas 2.21 and 2.22, for any finite extension L of K
containing KT1 we observe the following:

d(L(T2)|K(T2)) = d(L|K) = d(L.F |K(T1)) = d(L.F |F ) · d(F |K(T1))

= d(L.F |F ) · d(F |K(T2)) = d(L.F |K(T2))

showing that

d(L.F |L(T2)) = d(L.F |K(T2))/d(L(T2)|K(T2)) = 1 .

Hence every algebraic extension L of KT1 satisfies assertion 1 and also the first
part of assertion 2, because

d(F |K) = d(F |K(T1)) =
d(L.F |K(T1))

d(L.F |F )
=

d(L|K)

d(L.F |F )

where the last equation holds by Lemma 2.22. The second part of assertion 2
follows from

d(N |K) = d(N(T1)|K(T1))

≤ d(N.F |K(T1)) = d(N.F |F ) · d(F |K(T1)) = d(N.F |F ) · d(F |K)

and the fact that equality holds for the finite extension KT1 of K. 2
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3. Completion Defect and Defect Quotient

This section contains our results on completion defect and defect quotients for finite
(and more generally, h-finite) extensions as well as for valued algebraic function
fields (and more generally, subhenselian function fields).

3.1. The case of h-finite extensions. The following observations are immedi-
ate from the definitions. We have that

d(L|K) = dc(L|K) · dq(L|K) . (21)

Thus for h-finite extensions of q-defectless fields, the completion defect equals the
ordinary defect. Every h-finite extension L|K satisfies:

dc(L|K) = dc(L
h|Kh) and dq(L|K) = dq(L

h|Kh) .

Hence, K is a c-defectless or q-defectless field if and only if its henselization Kh

is a c-defectless or q-defectless field, respectively. If also M |L is h-finite, then we
have that [Mhc : Khc] = [Mhc : Lhc] · [Lhc : Khc], and from the multiplicativ-
ity of ramification index and inertia degree we obtain the following analogue of
Lemma 2.7:

dc(M |K) = dc(M |L) · dc(L|K) and dq(M |K) = dq(M |L) · dq(L|K) . (22)

From this multiplicativity, one derives:

Lemma 3.1. Let (L|K, v) be an h-finite extension. Then (K, v) is a q-defectless
field if and only if (L|K, v) is q-defectless and (L, v) is a q-defectless field. The
same holds for “c-defectless” instead of “q-defectless”.

In passing, we make the following observation, which we will not need further
in this paper.

Lemma 3.2. If L|K is a c-defectless and immediate h-finite extension, then Lh

is a purely inseparable extension of Kh included in its completion Khc.

Proof. If L|K is an immediate h-finite extension, then (vL : vK)[Lv : Kv] = 1
and therefore, dc(L|K) = [Lhc : Khc]. If in addition L|K is c-defectless, then
Khc = Lhc = Lh.Khc, which implies that Lh ⊆ Khc. Since Kh is separable-
algebraically closed in its completion Khc by Lemma 2.4, the extension Lh|Kh

must be purely inseparable.

The completion defect dc(L|K) and the defect quotient dq(L|K) are integers
dividing d(L|K) and hence are powers of p. To see this, we use that [Lhc : Khc] =
[L.Khc : Khc] ≤ [L.Kh : Kh] = [Lh : Kh] . This gives:

dc(L|K) =
[Lhc : Khc]

(vL : vK) · [Lv : Kv]
≤ [Lh : Kh]

(vL : vK) · [Lv : Kv]
= d(L|K) . (23)
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Since on the other hand, dc(L|K) is the defect of the extension Lhc|Khc, it is a
power of p and consequently a divisor of d(L|K). This yields that also dq(L|K) =
d(L|K)dc(L|K)−1 is an integer dividing d(L|K) and a power of p.

In (23), equality holds if and only if

[Lhc : Khc] = [Lh : Kh] , (24)

which in view of Lhc = Lh.Khc means that Lh is linearly disjoint from Khc over
Kh. Since the henselian field Kh is relatively separable-algebraically closed in its
completion, equation (24) holds whenever Lh|Kh is separable-algebraic; hence it
holds for every h-finite separable extension L|K. This proves:

Lemma 3.3. Every h-finite separable extension is q-defectless. In general, an
h-finite extension L|K is q-defectless if and only if Equation (24) holds.

We deduce:

Proof of Theorem 1.5:

Let K be a c-defectless field. By Lemma 3.3, we know that every h-finite separable
extension of K is q-defectless, i.e., its completion defect equals the ordinary defect.
Thus every finite separable extension of K is defectless and consequently, K is a
separably defectless field.

For the converse, assume that K is separably defectless. Then by Lemma 2.5,
also its henselization is separably defectless. Now Lemma 2.9 shows that Khc is
defectless. By virtue of the definition of the completion defect, this proves K to
be c-defectless. 2

We will need the following theorem from [K6]:

Theorem 3.4. Take z ∈ K̃ \K such that

v(a− z) > {v(a− c) | c ∈ K}

for some a ∈ Kh. Then Kh and K(z) are not linearly disjoint over K, that is,

[Kh(z) : Kh] < [K(z) : K]

and in particular, K(z)|K is not purely inseparable.

With this theorem, we are able to prove:

Lemma 3.5. For every finite purely inseparable extension L|K, Lc is linearly
disjoint from Khc over Kc, and

[Lhc : Khc] = [Lch : Kch] = [Lc : Kc] .

The first equation holds more generally whenever L|K is h-finite.
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Proof. Take a finite purely inseparable extension L|K and assume that Lc is not
linearly disjoint from Khc over Kc. Then there exists an intermediate field N
between L and K and an element z ∈ L \N , zp ∈ N , such that

z /∈ N.Kc but z ∈ N.Khc .

Since z ̸∈ N.Kc = N c, the set {z − c | c ∈ N} is bounded from above. Since
z ∈ N.Khc = Nhc, there exists an element a ∈ Nh such that v(a− z) = v(z−a) >
v(z − c) for all c ∈ N . This implies v(a− c) = min{v(a− z), v(z − c)} = v(z − c),
so that v(a − z) > {v(a − c) | c ∈ N}. Now Theorem 3.4, with N in place of K,
proves that Nh and N(z) are not linearly disjoint over N , which is a contradiction
since N(z)|N is purely inseparable, while the henselization of a valued field is a
separable extension.

We have proved that Lc is linearly disjoint from Khc over Kc. Since Lc ⊆ Lhc

and L.Khc = Lhc, we also have that Lc.Khc = Lhc. This together with the fact
we have just proved implies that [Lhc : Khc] = [Lc : Kc].

Now we observe that Kc ⊆ Kch ⊆ Kch and Lc.Kch = Lch, which yields that

[Lhc : Khc] ≤ [Lch : Kch] ≤ [Lc : Kc] = [Lhc : Khc] ,

so equality holds everywhere.

Now take an arbitrary h-finite extension L|K, and take Ls|K to be its maximal
separable subextension. By what we have seen earlier, the finite extension Lh

s is
linearly disjoint from Khc over Kh. Since L|K is h-finite, the subextension Lh

s |Kh

is finite, and since Lh
s .K

hc = Lhc
s , we obtain that [Lhc

s : Khc] = [Lh
s : Kh]. Since

Kh ⊆ Kch ⊆ Kch and Lh.Kch = Lch, we find that

[Lhc
s : Khc] ≤ [Lch

s : Kch] ≤ [Lh
s : Kh] = [Lhc

s : Khc] ,

so equality holds everywhere.
We observe that [Ls : L] must be finite since Lh|Kh is finite by assumption and

the purely inseparable extension L is linearly disjoint from the separable extension
Lh
s over Ls. Thus, applying what we have shown in the first part of the proof,

with Ls in place of K, we obtain that [Lhc : Lhc
s ] = [Lch : Lch

s ]. Therefore,
[Lhc : Khc] = [Lhc : Lhc

s ] · [Lhc
s : Khc] = [Lch : Lch

s ] · [Lch
s : Kch] = [Lch : Kch].

Proof of Proposition 1.3:
Take an h-finite extension L|K. We have:

d(Lc|Kc) =
[Lch : Kch]

(vLc : vKc) · [Lcv : Kcv]
=

[Lch : Kch]

(vL : vK) · [Lv : Kv]

=
[Lhc : Khc]

(vL : vK) · [Lv : Kv]
= dc(L|K) ,

where the second equality holds since the completion is an immediate extension,
and the third equality is taken from the previous lemma.
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The second assertion of the proposition has been proven in Lemma 3.3. 2

Proof of Proposition 1.4:
Take a finite extension L|K, and Ls|K its the maximal separable subextension
of L|K. Then L|Ls is purely inseparable, and as we have see in the proof of
Lemma 3.5, it must be finite. By Lemma 3.3, dq(Ls|K) = 1 and

dq(L|K) = dq(L|Ls) · dq(Ls|K) = dq(L|Ls) =
[Lh : Lh

s ]

[Lhc : Lhc
s ]

.

Since L is linearly disjoint from Lh
s over Ls , we find that

[Lh : Lh
s ] = [L.Lh

s : Lh
s ] = [L : Ls] = [L : K]insep .

Further, Lc = L.Lc
s is a purely inseparable extension of Lc

s and therefore linearly
disjoint from Lch

s over Lc
s. Using in addition the first equation from Lemma 3.5

and the fact that Lc
s = Ls.K

c is a separable extension, we obtain that

[Lhc : Lhc
s ] = [Lch : Lch

s ] = [Lc.Lch
s : Lch

s ] = [Lc : Lc
s] = [Lc : Kc]insep .

This proves the proposition. 2

Proof of Theorem 1.6:
K is q-defectless if and only if every finite extension L|K is q-defectless. In view
of the multiplicativity (22) of the defect quotient and the fact that every finite ex-
tension is contained in a finite normal extension, it follows that K is q-defectless if
and only if every finite normal extension L|K is q-defectless. Again by multiplica-
tivity, and by the fact that a normal extension L|K admits an intermediate field
N such that N |K is purely inseparable and L|N is separable and thus q-defectless
(Lemma 3.3), it follows that K is q-defectless if and only if every finite purely
inseparable extension L|K is q-defectless. By Proposition 1.4, this is the case if
and only if [L : K] = [Lc : Kc] = [L.Kc : Kc], i.e., L is linearly disjoint from Kc

over Kc, for every finite purely inseparable extension L|K. This holds if and only
if Kc|K is separable. 2

We will now consider the behaviour of the defects under coarsenings of the
valuation.

Lemma 3.6. Take a finite extension (L|K, v) and a decomposition v = w ◦ w of
v with nontrivial w. Then

dq(L|K, v) = dq(L|K,w) (25)

dc(L|K, v) = dc(L|K,w) · d(Lw|Kw,w) . (26)

Proof. To prove the equation for the defect quotient, we use Proposition 1.4 to-
gether with the fact that for every nontrivial coarsening w of the valuation v, the
completion Kc(w) of K with respect to w coincides with the completion Kc with
respect to v. We obtain:

dq(L|K, v) =
[L : K]

[Lc(v) : Kc(v)]
=

[L : K]

[Lc(w) : Kc(w)]
= dq(L|K,w) .
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This proves equation (25). Using this result, we compute:

dc(L|K, v) =
d(L|K, v)

dq(L|K, v)
=

d(L|K,w) · d(Lw|Kw,w)

dq(L|K,w)
= dc(L|K,w)·d(Lw|Kw,w),

proving equation (26).

Lemma 3.7. Let (L|K, v) be a finite extension of henselian fields and assume that
v admits no coarsest nontrivial coarsening. Then there is a nontrivial coarsening
w such that

dc(L|K,w) = 1 .

If in addition the extension L|K is separable, this means that

d(L|K,w) = 1 and d(L|K, v) = d(Lw|Kw,w) ,

where w is the valuation induced by v on Lw.

Proof. First, we note that if L|K is a finite separable extension with dc(L|K,w) =
1, then d(L|K,w) = 1 by Proposition 1.3; in view of Lemma 2.10, this implies that
d(L|K, v) = d(Lw|Kw,w).

Next, we prove the first assertion of our lemma in two special cases:

Case 1: L = K(a) is separable. Let f(X) ∈ K[X] be the minimal polynomial of
a over K and let ci, 0 ≤ i ≤ n be the coefficients of f . Then by our hypothesis
on the rank of v there exists a nontrivial coarsening w of v such that w is trivial
on k(c0, . . . , cn), where k denotes the prime field of K. This shows that fw is a
separable polynomial over Kw of the same degree as f ; moreover it is irreducible
since if it were reducible, then the same would follow for f by Hensel’s Lemma (as
(K,w) is henselian by our hypothesis on (K, v) and Lemma 2.2). Hence in this
case, [L : K] = [Lw : Kw] and consequently d(L|K,w) = 1 and dc(L|K,w) = 1.

Case 2: L|K is a purely inseparable extension of degree p. If dq(L|K, v) = p, we
are done because then dc(L|K, v) = 1 and we take w = v. So we assume that
dq(L|K, v) = 1. Then by Proposition 1.4, [L : K]insep = [Lc : Kc]insep, showing
that a cannot be an element of Kc. Consequently, there is an element α ∈ vK
such that v(a − b) < α for all b ∈ K. By our hypothesis on the coarsenings of v
there exists a nontrivial coarsening w of v such that w(a− b) = 0, hence aw ̸= bw
for all b ∈ K (this is satisfied if the coarsening corresponds to any proper convex
subgroup of vK which includes α). This shows aw /∈ Kw and thus [Lw : Kw] = p,
which yields that d(L|K,w) = 1 and dc(L|K,w) = 1.

It remains to treat the case where the extension L|K is not simple. We then
write L = K(a1, . . . , an) with n > 1 and such that for every i < n, the extension
K(a1, . . . , ai+1)|K(a1, . . . , ai) is of degree p if it is inseparable. Now we proceed
by induction on n. Suppose that we have already found a nontrivial coarsening
w′ of w such that dc(K(a1, . . . , an−1)|K,w′) = 1. Applying what we have proved
above, with K(a1, . . . , an−1) in place of K and w′ in place of v, we find a nontrivial
coarsening w of w′ such that dc(L|K(a1, . . . , an−1), w) = 1. From Lemma 3.6 we
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know that also dc(K(a1, . . . , an−1)|K,w) = 1 since w is a coarsening of w′. By
the multiplicativity of the completion defect, we obtain that dc(L|K,w) = 1. This
completes the proof of our Lemma.

3.2. The case of subhenselian function fields. Let us introduce some useful
notions. Take an element z in some valued field extension of (K, v). Then z is
called value transcendental over (K, v) if vz is not a torsion element modulo
vK, and it is called residue transcendental over (K, v) if vz = 0 and zv is
transcendental. If either is the case, we call z valuation transcendental over
(K, v). For example, the elements xi from (3) are value transcendental, and the
elements yj are residue transcendental over (K, v).

Lemma 3.8. Let K(T )|K be an extension of valued fields with standard valuation
transcendence basis T . Then for every element b ∈ K(T ) \K, there exist elements
c′, c ∈ K such that c′(b− c) is valuation transcendental.

Proof. Take b = f/g ∈ K(T ) with f, g ∈ K[T ]. By Lemma 2.17, the value of the
polynomials f, g is equal to the minimum of the values of the monomials in f resp.
g, and these monomials are uniquely determined; we will call them f0 and g0. If
f0 differs from g0 just by a constant factor c ∈ K, then we set h = f − cg and
observe that the monomial h0 of least value in h will not anymore lie in Kg0. If
already f0 /∈ Kg0, then we put c = 0, h = f and h0 = f0. Note that h ̸= 0 and
thus h0 ̸= 0 since by hypothesis, f/g /∈ K. We have that

b− c =
f

g
− c =

h

g
with v

h

g
= v

h0

g0
,

and we know that in the quotient h0/g0, at least one element of T appears with a
nonzero (integer) exponent. If at least one of these appearing elements from T is
value transcendental, then h0/g0 and thus also b − c is value transcendental over
K. In this case, we set c′ = 1.

In the remaining case, we write

h0

g0
= d · ye11 · . . . · yess , e1, . . . , es ∈ Z ,

where d ∈ K, and y1, . . . , ys are different residue transcendental elements from
T . Since the residues y1v, . . . , ysv are algebraically independent over Kv, this
shows that h0/dg0 and thus also h/dg are residue transcendental over K. Putting
c′ = d−1, we obtain that c′(b− c) is residue transcendental over K.

The following proposition is a part of the assertion of Theorem 1.8.

Proposition 3.9. Take a subhenselian function field F |K without transcendence
defect. If K is a q-defectless field or vK is not cofinal in vF , then F is a q-defectless
field.
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Proof. Take a standard valuation transcendence basis T of F |K. In view of
Lemma 3.1 we only have to show that K(T ) is a q-defectless field (hence we may
assume F = K(T )). This will follow from Theorem 1.6 if we can show that the
completion of F is a separable extension.

As the first case, let us assume that K is a q-defectless field and that vK is
cofinal in vF . Then the completion F c of F contains the completion Kc of K. By
our hypothesis on K and Theorem 1.6, K1/p∞

is linearly disjoint from Kc over K.
We want to show now that K1/p∞

is even linearly disjoint from F c over K. This
will follow if we prove that K1/p∞

.Kc is linearly disjoint from F c over Kc.

F

F c

K

K1/p∞

F.K1/p∞

F c.K1/p∞
F 1/p∞

K1/p∞
(T )c
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imm.

imm.

= K1/p∞
(T )

Assume the contrary. Then there is a finite purely inseparable extension N of
K and an element a ∈ K1/p∞

such that a ∈ N.F c \N.Kc. Since a /∈ N.Kc = N c,
the set v(a−N) must be bounded from above. Now N.F c = (N.F )c, hence there
exists an element b ∈ N.F = N(T ) such that v(a−b) > v(a−N). But according to
the preceding Lemma, there exist elements c, c′ ∈ N such that c′(b−c) is valuation
transcendental. As a is algebraic over N , this yields that

v(c′(a− c)− c′(b− c)) = min{vc′(a− c), vc′(b− c)} ≤ vc′(a− c)

and consequently,

v(a− b) = v(c′a− c′b)− vc′ = v(c′(a− c)− c′(b− c))− vc′

≤ vc′(a− c)− vc′ = v(a− c) ,
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a contradiction as v(a − b) > v(a − N). We have shown that K1/p∞
is linearly

disjoint from F c over K. Consequently, F.K1/p∞
is linearly disjoint from F c over

F .
By Theorem 1.2, F.K1/p∞

= K1/p∞
(T ) is an inseparably defectless field. On

the other hand, the extension F c.K1/p∞ |F.K1/p∞
is immediate since F c.K1/p∞

is included in K1/p∞
(T )c. Now Corollary 2.12 shows that F 1/p∞

= K(T )1/p
∞

is
linearly disjoint from F c.K1/p∞

over F.K1/p∞
. Putting this result together with

what we have already proved, we see that F 1/p∞
is linearly disjoint from F c over

F . Hence by Theorem 1.6, F is q-defectless. This completes our proof in the first
case.

In the remaining second case, vK is not cofinal in vF , i.e., the convex hull of vK
in vF is a proper convex subgroup of vF . Consequently, there exists a nontrivial
coarsening w of the valuation v on F which is trivial on K. Trivially, (K,w) is a
defectless field, and so is (F,w) according to Theorem 1.2 since by Lemma 2.19
it is a function field without transcendence defect over (K,w). Thus any finite
purely inseparable extension is defectless and thereby linearly disjoint from the
w-completion F c(w) of F since this is an immediate extension of F . On the other
hand, the topology induced by v equals the topology induced by any nontrivial
coarsening of v, whence F c(w) = F c. Consequently, F 1/p∞

is linearly disjoint from
F c. By virtue of Theorem 1.6, this completes our proof.

On the basis of Proposition 3.9, we are able to prove the following lemma:

Lemma 3.10. Let K(T )|K be an extension of valued fields with standard valuation
transcendence basis T . Let L be a finite extension of K. If vK is cofinal in
v(K(T )), then

dc(L(T )|K(T )) = dc(L|K)

dq(L(T )|K(T )) = dq(L|K) .

If vK is not cofinal in v(K(T )), then

dc(L(T )|K(T )) = d(L(T )|K(T )) = d(L|K)

dq(L(T )|K(T )) = 1 .

Proof. If vK is not cofinal in v(K(T )), the assertion follows from Proposition 3.9
together with equations (16) and (21). Let us assume now that vK is cofinal in
v(K(T )). Again by equations (16) and (21), it suffices to prove the first equality.
Using Lemma 2.21 and that Lhc(T ) = (L.Khc)(T ) = L.(Khc(T )), we obtain that

dc(L|K) = d(Lhc|Khc) = d(Lhc(T )|Khc(T )) . (27)

The complete field Khc is q-defectless by Theorem 1.6. Hence by Proposition 3.9,
Khc(T ) is a q-defectless field too. Consequently,

d(Lhc(T )|Khc(T )) = dc(L
hc(T )|Khc(T )) = d((Lhc(T ))hc|(Khc(T ))hc)

= d(L(T )hc|K(T )hc) ,



26 Franz-Viktor Kuhlmann, Asim Naseem

K

Khc

Khc(T )

K(T )hc

L

Lhc

Lhc(T )

L(T )hc
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������

����

����

(Khc(T ))hc =

= L.K(T )hc = (Lhc(T ))hc

= L.Khc(T )

= L.Khc

where the last equation holds since (Lhc(T ))hc = L(T )hc and (Khc(T ))hc =
K(T )hc. Putting this together with equation (27), we obtain that

dc(L|K) = d(L(T )hc|K(T )hc) = dc(L(T )|K(T )) .

Proof of Theorem 1.7:
Take any transcendence basis T0 of F |K. As in the proof of Theorem 1.7 it follows
that K(T0)|K is without transcendence defect and admits a standard valuation
transcendence basis T over K. We compute:

dc(F |K(T0)) ≤ dc(F |K(T0)) · dc(K(T0)|K(T )) = dc(F |K(T )) ,

dq(F |K(T0)) ≤ ≤ dq(F |K(T0)) · dq(K(T0)|K(T )) = dq(F |K(T )) ,

showing that

dc(F |K) = sup
T

dc(F |K(T )) and dq(F |K) = sup
T

dq(F |K(T )) ,

where the supremum is only taken over all standard valuation transcendence bases
of F |K. For the proof of equations (6) it suffices now to show that dc(F |K(T )) is
equal for all standard valuation transcendence basis T , and that the same holds
for the defect quotient.

If vK is not cofinal in vF , then by virtue of Proposition 3.9,K(T ) is q-defectless.
Using Theorem 1.1, we obtain:

dq(F |K(T )) = 1 and dc(F |K(T )) = d(F |K(T )) = d(F |K) ,

independently of the standard valuation transcendence basis T .

If vK is cofinal in vF , then K(T )hc contains Khc. By Proposition 3.9, Khc(T )
is a q-defectless field. From this we deduce, using Theorem 1.1 again:

dc(F |K(T )) = d(Fhc|K(T )hc) = d((F.Khc)hc|(Khc(T ))hc)

= dc(F.K
hc|Khc(T )) = d(F.Khc|Khc(T )) = d(F.Khc|Khc) .
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For the defect quotient, this implies that

dq(F |K(T )) =
d(F |K(T ))

dc(F |K(T ))
=

d(F |K)

d(F.Khc|Khc)
.

This completes the proof of equations (6).
To prove equation (7), we take an arbitrary standard valuation transcendence

basis T and compute, using Theorem 1.1 together with what we have just proved,

d(F |K) = d(F |K(T )) = dc(F |K(T )) · dq(F |K(T )) = dc(F |K) · dq(F |K) .

For the remainder of the proof, we will assume that vK is cofinal in vF . Take
K ′ as in the assertion of Theorem 1.1, and a finite extension L of K containing
K ′. Choosing any standard valuation transcendence basis T of F |K, we know by
Theorem 1.1 that d(L.F |L(T )) = 1, whence

dc(L.F |L(T )) = 1 .

Using this and equation (6) as well as the multiplicativity of the completion defect
(see (22), we deduce:

dc(L.F |F ) · dc(F |K) = dc(L.F |F ) · dc(F |K(T )) = dc(L.F |K(T ))

= dc(L.F |L(T )) · dc(L(T )|K(T )) = dc(L(T )|K(T ))

= dc(L(T )|K(T )) ,

where the last question holds by Lemma 3.10. This proves the first equation of (8).
The proof of the first equation of (9) is obtained by just replacing the completion
defect by the defect quotient in the above argument.

The second equations in (8) and (9) are shown as it was done for the defect in
the proof of Theorem 1.1. 2

As immediate consequences we get the following corollaries.

Corollary 3.11. Assume F to be a subhenselian function field without transcen-
dence defect over a q-defectless field K. Then dq(F |K) is trivial.

Proof.

Corollary 3.12. Every subhenselian function field F |K without transcendence
defect satisfies

dc(F |K) = dc(F
h|K) = dc(F

h|Kh) ,

dq(F |K) = dq(F
h|K) = dq(F

h|Kh) .

Proof. Any standard valuation transcendence basis T of F |K is also a standard
valuation transcendence basis of Fh|K and of Fh|Kh. Hence, using Theorem 1.7,

dc(F |K) = dc(F |K(T )) = dc(F
h|K(T )h) = dc(F

h|(Kh(T ))h)

= dc((F
h)h|(Kh(T ))h) = dc(F

h|Kh(T )) = dc(F
h|Kh)
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and

dc(F
h|K(T )h) = dc((F

h)h|K(T )h) = dc(F
h|K(T )) = dc(F

h|K) .

The assertions for the defect quotient are shown by combining the above equations
with the corresponding equations for the defect, and using Theorem 1.7.

Corollary 3.13. Let E and F be subhenselian function fields over K. If E|F
is algebraic and F |K has no transcendence defect, then E|F is h-finite and the
following multiplicativity holds for the completion defect and defect quotient:

dc(E|K) = dc(E|F ) · dc(F |K) and dq(E|K) = dq(E|F ) · dq(F |K) .

Proof. First, we prove that E|F is h-finite. As E and F are subhenselian function
fields, Eh and Fh are the henselizations of valued function fields E0 and F0 over
K. Since E|F is algebraic, also Eh|Fh and E0.F0|F0 are algebraic. As E0.F0 is
also a function field over K, E0.F0|F0 is finite and the same holds for (E0.F0)

h|Fh
0 .

But Fh
0 = Fh, and since Eh = Eh

0 contains F and thus also F0, we see that
(E0.F0)

h = Eh. We have proved that Eh|Fh is finite.
Taking any standard valuation transcendence basis T of F |K (which is also a

standard valuation transcendence basis of E|K since E|F is algebraic), we compute

dc(E|K) = dc(E|K(T )) = dc(E|F ) · dc(F |K(T )) = dc(E|F ) · dc(F |K) ,

using Theorem 1.7 and the multiplicativity of the completion defect (see (22). The
proof for the defect quotient is similar.

Corollary 3.14. Let F |K be a subhenselian function field without transcendence
defect. If vK is cofinal in vF then there exists a finite extension K ′ of K such
that

dc(K
′.F |K) = dc(K

′|K) and dq(K
′.F |K) = dq(K

′|K) .

Proof. We take K ′ as in the assertion of Theorem 1.7 and apply Corollary 3.13 to
the first equations in (8) and (9), where we set L = K ′.

Now we are ready for the

Proof of Theorem 1.8:
a): The assertion that F is a q-defectless field has already been proven in Proposi-
tion 3.9. Now we take a standard valuation transcendence basis T of F |K. Again
by Proposition 3.9, K(T ) is a q-defectless field, hence in view of Theorem 1.7,

dq(F |K) = dq(F |K(T )) = 1 .

b) We assume that vK is cofinal in vF and that K is a c-defectless field. We
choose K ′ according to Corollary 3.14. Then we have:

dc(K
′.F |K) = dc(K

′|K) = 1 .
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From Corollary 3.13, where we put E = K ′.F , we get that dc(F |K) = 1. On the
other hand, if F ′ is an arbitrary finite extension of F , then it is also a subhenselian
function field without transcendence defect over K and consequently, like F it
satisfies dc(F

′|K) = 1. By Corollary 3.13, we conclude that

dc(F
′|F ) = 1 .

This shows that F is a c-defectless field. 2

The following theorem is a corollary to Theorems 1.5 and 1.8:

Theorem 3.15. Let F |K be a subhenselian function field without transcendence
defect. If K is separably defectless and vK is cofinal in vF , then F is separably
defectless.

References

[B] Bourbaki, N. : Commutative algebra, Paris, 1972
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