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Abstract. We classify cuts in (totally) ordered abelian groups Γ and compute
the coinitiality and cofinality of all cuts in case Γ is divisible, in terms of data
intrinsically associated to the invariance group of the cut. We relate cuts with small
extensions of Γ in a natural way, which leads to an explicit construction of a totally
ordered real vector space containing realizations of all cuts. This construction is
applied to the problem of classifying all extensions of the valuation from a given
valued field K to the rational function field K(x).

Introduction

Cuts in abelian ordered groups (or ordered fields) are a very useful tool to attack
certain problems in several disciplines where ordered structures play a significant role.
Many of them are briefly discussed in the survey [5], with the most important of them
arising in the theory of ordered and valued fields.

For the basic notions we use, see Sections 1 and 2. The aim of this paper is to
compute the coinitiality and cofinality of all cuts in a divisible totally ordered abelian
group, in terms of data intrinsically associated to the invariance group of the cut (see
[5] for the origins of this notion).

Let Γ be a divisible totally ordered abelian group. For every cut D in Γ, let HD ⊂ Γ
be the invariance group of D. The cut D is said to be a ball cut if D/HD is a principal
cut in the quotient group Γ/HD.

In Section 3, we exhibit a natural relationship between cuts and small extensions of
Γ. An order-preserving extension Γ ↪→ Λ of ordered groups is said to be small if Λ/Γ
is a cyclic group. Every cut D in Γ determines a natural small extension Γ ⊂ Γ(D)
where the cut has a realization, and we show that ball cuts are characterized by the
fact that the extension Γ ⊂ Γ(D) increases the rank (Theorem 3.8).

In Section 4, we use Hahn’s embedding theorem to construct a totally ordered
real vector space containing all small extensions of Γ, up to order-preserving Γ-
isomorphism. The subspace containing all rank-preserving small extensions is clearly
distinguished. These real vector spaces are explicit enough to facilitate the compu-
tation of the coinitiality and cofinality of all non-ball cuts (Theorem 4.5) and all ball
cuts (Theorem 4.8). Let us mention that for the case of ordered fields K the similar
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task of constructing a universal extension that contains the rational function fields
K(x1, . . . , xn) with all possible extensions of the ordering was dealt with in [7].

In Section 5, we apply these real models containing all small extensions, to the
problem of classifying valuations on polynomial rings K[x], up to equivalence. As
these uniquely determine their extensions to the quotient field K(x), this is a contri-
bution to the ongoing research on the extensions of the valuation from a given valued
field K to the rational function field K(x).

All methods of the paper are developed for arbitrary ordered abelian groups, and
the condition of divisibility is used only when this is strictly necessary.

1. Background on ordered abelian groups

In this section, we collect some basic facts on ordered abelian groups, mainly ex-
tracted from [6] and [8].

1.1. Ordered sets and cuts. Throughout the paper, an ordered set will be a set
equipped with a total ordering. We agree that 0 6∈ N.

Notation. Let I, J be ordered sets.

• I∞ is the ordered set obtained by adding a (new) maximal element, which is
formally denoted as ∞.
• Iopp is the ordered set obtained by reversing the ordering of I.
• For all i ∈ I, we denote I<i = {j ∈ I | j < i} ⊂ I≤i = {j ∈ I | j ≤ i}.

We attribute a similar meaning to I>i ⊂ I≥i.
• For S, T ⊂ I and i ∈ I, the following expressions

i < S, i > S, i ≤ S, i ≥ S, S < T, S ≤ T

mean that the corresponding inequality holds for all s ∈ S and all t ∈ T .
• For S ⊂ I, we denote by Sc = I \ S the complementary subset.
• I + J is the disjoint union I t J with the total ordering which respects the

orderings of I and J and satisfies I < J .

A mapping ι : I → J is an embedding if it strictly preserves the ordering. We also
say that ι : I → J is an extension of I.

An isomorphism of ordered sets is an onto embedding. The order-type of an ordered
set is the class of this set up to isomorphism.

An initial segment of I is a subset S ⊂ I such that I≤i ⊂ S for all i ∈ S. A final
segment of I is a subset T ⊂ I such that I≥i ⊂ T for all i ∈ T .

On the set Init(I) of all initial segments of I we consider the ordering determined
by ascending inclusion. It has a minimal and a maximal element:

∅ = min(Init(I)), I = max(Init(I)).

A cut in I is a pair D = (DL, DR) of subsets such that

DL < DR and DL ∪DR = I.

Clearly, DL is an initial segment of I and DR = (DL)c is a final segment.
If Cuts(I) denotes the set of all cuts in I, we have an isomorphism of ordered sets

Init(I) −→ Cuts(I), S 7−→ (S, Sc).
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In particular, Cuts(I) admits a minimal element (∅, I)and a maximal element (I, ∅),
which are called the improper cuts.

For all M ⊂ I, we denote by M+, M− the cuts determined by the initial segments

M+ = {i ∈ I | ∃m ∈M : i ≤ m}, M− = {i ∈ I | i < M}.

If M = {i}, we will write i+ = I≤i instead of {i}+ and i− = I<i instead of {i}−.
These cuts are said to be principal.

Hence, a cut D is principal if either DL has a maximal element, or DR has a
minimal element. A cut for which these two conditions hold simultaneously is called
a gap, or a jump according to different authors.

If I ↪→ J is an extension of ordered sets and j ∈ J satisfies DL ≤ j ≤ DR, then we
will say that j realizes the cut D in J .

Every cut D has associated an important invariant

(κ(D), λ(D)),

which is a pair of regular cardinals. The cardinal κ(D) is the cofinality of DL (least
cardinality of any cofinal subset). Dually, λ(D) is the coinitiality of DR (least cardi-
nality of any coinitial subset).

1.2. Ordered groups. An ordered group (Γ, <) is an (additive) abelian group Γ
equipped with a total ordering <, which is compatible with the group structure.

For all a ∈ Γ, we denote |a| = max(a,−a).
An ordered group has no torsion. In fact, all nonzero a ∈ Γ satisfy

n|a| ≥ |a| > 0, ∀n ∈ N.

An embedding/extension/isomorphism of ordered groups is a group homomorphism
which is simultaneously an embedding/extension/isomorphism of ordered sets.

A basic example of ordered group is Rn
lex, the additive group (Rn,+) equipped with

the lexicographical ordering. Also, any subgroup of an ordered group inherits the
structure of an ordered group.

The divisible hull of an ordered group Γ is the group

ΓQ = Γ⊗Z Q,

which inherits a natural ordering determined by the condition

a⊗ (1/n) < b⊗ (1/m) ⇐⇒ ma < nb,

for all n,m ∈ N and all a, b ∈ Γ.
Since Γ has no torsion, it may be embedded in a unique way into ΓQ as an ordered

group. The divisible hull of Γ is the minimal divisible extension of Γ.

Lemma 1.1. For any embedding ι : Γ ↪→ Λ into a divisible ordered group Λ, there
exists a unique embedding of ΓQ into Λ such that ι coincides with the composition
Γ ↪→ ΓQ ↪→ Λ.

Given a subgroup H ⊂ Γ, the quotient Γ/H inherits a structure of ordered group
if and only if H is a convex subgroup; that is,

h ∈ H =⇒ {x ∈ Γ | |x| ≤ |h|} ⊂ H.
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In this case, we may define an ordering in Γ/H by:

a+H < b+H ⇐⇒ a+H 6= b+H and a < b.

The notation a + H < b + H is compatible with the natural meaning of such
an inequality for arbitrary subsets of Γ. The convex subgroups of Γ/H are in 1-1
correspondence with the convex subgroups of Γ containing H.

Lemma 1.2. Let f : Γ→ ∆ be an order-preserving group homomorphism between two
ordered groups. Then, Ker(f) is a convex subgroup of Γ and the natural isomorphism
between Γ/Ker(f) and f(Γ) is order-preserving too.

Lemma 1.3. The convex subgroups of Γ are totally ordered by inclusion.

Proof. Let H, H ′ be convex subgroups such that there exists a ∈ H \H ′.
Then, for all b ∈ H ′ we must have |b| < |a|, so that H ′ ⊂ H. �

Definition. Let C = Conv(Γ) be the ordered set of all proper convex subgroups,
ordered by ascending inclusion

{0} ⊂ · · · ⊂ H ⊂ · · · ( Γ.

The order-type of C is called the rank of Γ, and is denoted rk(Γ).
We identify C∞ with the ordered set of all convex subgroups of Γ, by letting ∞

represent the whole group Γ.

Examples.

• rk(Z) = rk(Q) = rk(R) = 1.

• rk(Rn
lex) = n. The sequence of convex subgroups is

{0Rn} ⊂ · · · ⊂ {0}k × Rn−k
lex ⊂ · · · ⊂ Rn

lex.

For all a ∈ Γ, we denote by H(a) the convex subgroup of Γ generated by a:

H(a) = {b ∈ Γ | |b| ≤ n|a| for some n ∈ N} .

These convex subgroups H(a) are said to be principal.

Definition. Let I = Prin(Γ) be the ordered set of nonzero convex principal sub-
groups of Γ, ordered by descending inclusion.

We identify I∞ with a set of indices parametrizing all principal convex subgroups
of Γ. For all i ∈ I we denote by Hi the corresponding principal convex subgroup. We
agree that H∞ = {0}. According to our convention, for all i, j ∈ I∞, we have

i < j ⇐⇒ Hi ) Hj.

Lemma 1.4. Every convex subgroup H ⊂ Γ satisfies H =
⋃
i∈I,Hi⊂H Hi.

Proof. For all a ∈ H, the principal convex subgroup H(a) is contained in H. �

Corollary 1.5. If I is well-ordered, then all convex subgroups are principal.

Proof. For any convex subgroup H, the subset {i ∈ I | Hi ⊂ H} ⊂ I has a minimal
element i0. By Lemma 1.4, H = Hi0 . �
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1.3. Archimedean classes and natural valuation. Two elements a, b ∈ Γ are
archimedean equivalent if they generate the same convex subgroup: H(a) = H(b).
This defines an equivalence relation on Γ, whose quotient set is I∞.

We say that Γ is archimedean if all nonzero elements are archimedean equivalent;
that is, if {0} and Γ are the only convex subgroups of Γ.

Proposition 1.6. If Γ is nontrivial, the following conditions are equivalent.

(1) Γ is archimedean.
(2) Γ has rank one.
(3) Γ is order-isomorphic to a subgroup of R.

Proof. Conditions (1) and (2) are obviously equivalent. Also, clearly (3) implies (1).
Finally, if Γ is archimedean, the choice of any positive b ∈ Γ determines a unique

embedding Γ ↪→ R of ordered groups, such that b 7→ 1. Indeed, any a ∈ Γ is mapped
to the real number determined by the initial segment of the rational numbers m/n
such that mb ≤ na. Thus, (1) implies (3). �

The natural valuation on Γ is the mapping

val := valΓ : Γ −→ I∞, a 7−→ val(a) = H(a).

This mapping satisfies the following two properties, for all a, b ∈ Γ:

(VAL0) val(a) =∞ ⇐⇒ a = 0.

(VAL1) val(a− b) ≥ min{val(a), val(b)}, and equality holds if val(a) 6= val(b).

We may consider balls in Γ with center an element a ∈ Γ and radius i ∈ I:

Bi(a) = {x ∈ Γ | val(x− a) ≥ i} = a+Hi,

Bo
i (a) = {x ∈ Γ | val(x− a) > i} = a+H∗i ,

where H∗i is the union of all principal convex subgroups strictly contained in Hi.
The natural valuation determines an ultrametric topology on Γ by taking the set
{Bo

i (a) | i ∈ I} as a fundamental system of open neighbourhoods of a.
For all i ∈ I, the subgroup

H∗i = Bo
i (0) ( Hi

is a convex subgroup (not necessarily principal) which is the immediate predecessor
of Hi in the ordered set C∞. In particular, the quotient

Ci = Ci(Γ) = Hi/H
∗
i

is an ordered group of rank one, which is called the i-th component of Γ.
The skeleton of Γ is the pair (I, (Ci)i∈I).

1.4. Relationship between C and I. The ordered sets I and C∞ are determined
one by the other.

Lemma 1.7. The set I is the subset of C∞ formed by all elements admitting an
immediate predecessor.

Proof. Any nonzero principal convex subgroup Hi has an immediate predecessor H∗i .
Conversely, if H ′ ( H is an immediate predecessor of a convex subgroup H, then

H is the principal subgroup generated by any a ∈ H \H ′. �
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To any cut (S, Sc) in I we may associate the convex subgroup

HS =
⋃

i∈I, i 6∈S
Hi.

Lemma 1.8. The assignment (S, Sc) 7→ HS yields an isomorphism of ordered sets:

Cuts(I)opp −→ C∞.
The inverse isomorphism maps any H ∈ C∞ to the cut (val (Γ \H) , val (H)).

Proof. If S ( T are initial segments of I, then HT ⊂ H∗i ( Hi ⊂ HS, for all i ∈ T \S.
Thus, the mapping (S, Sc) 7→ HS is an embedding of ordered sets. Also, it is an onto
map because H = Hval(Γ\H) by Lemma 1.4. �

Corollary 1.9. For H ∈ C, let S = val (Γ \H) be the initial segment of I such that
H = HS. Then, the assignment H ′ 7→ H ′/H induces isomorphisms of ordered sets:

C≥H ' Conv(Γ/H), val (Γ \H) ' Prin(Γ/H).

1.5. Immediate extensions.

Lemma 1.10. Every extension Γ ↪→ Λ of ordered groups induces natural embeddings
of ordered sets:

Conv(Γ) ↪−→ Conv(Λ), H 7→ H convex subgroup of Λ generated by H.

Prin(Γ)
ι

↪−→ Prin(Λ), Hi = valΓ(a) 7→ Hι(i) = Hi = valΛ(ι(a)).

Moreover, the embedding Hi ↪→ Hi induces an embedding Ci(Γ) ↪→ Cι(i)(Λ).

Definition. The extension Γ ↪→ Λ is immediate if it preserves the skeleton. That
is, it induces an isomorphism Prin(Γ) ' Prin(Λ) of ordered sets, and isomorphisms
Ci(Γ) ' Cι(i)(Λ) between all the components.

It is possible to construct ordered groups with a prescribed skeleton.
Let I be an arbitrary ordered set and (Ci)i∈I a family of ordered groups of rank

one, parametrized by I. Their Hahn sum is the direct sum
⊕

i∈I Ci equipped with
the lexicographical order.

For any element x = (xi)i∈I ∈
∏

i∈I Ci, the support of x is the subset

supp(x) = {i ∈ I | xi 6= 0} ⊂ I.

The Hahn product is defined as the subgroup

H
i∈I
Ci ⊂

∏
i∈I

Ci

formed by all elements whose support is a well-ordered subset of I, with respect to
the ordering induced by that of I. It is easy to check that it makes sense to consider
the lexicographical ordering on this subgroup.

The Hahn product is an immediate extension of the Hahn sum because both ordered
groups have skeleton (I, (Ci)i∈I). More precisely, in both cases the principal subgroups
are parametrized by I via:

Hi = {x = (xj)j∈I | xj = 0 for all j < i}, i ∈ I.
Moreover, the projection Hi → Ci, sending x 7→ xi, induces an isomorphism of
ordered groups between Hi/H

∗
i and Ci.
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The convex subgroup HS determined by an initial segment S ∈ Init(I) is:

HS = {(xj)j∈I | xj = 0 for all j ∈ S}.
If Ci = C for all i ∈ I, then we use the notation

C(I) ⊂ CI
lex ⊂ CI ,

for the Hahn sum, Hahn product, and cartesian product, respectively.
The following result is known as Hahn’s embedding theorem [8, Sec. A].

Theorem 1.11. Every divisible ordered group Γ admits an immediate embedding in
the Hahn product determined by the skeleton of Γ.

Let us quickly review the proof of Hahn’s theorem based on the following result of
Banaschewski, which makes use of Zorn’s lemma.

Banaschewski’s lemma. Let V be a vector space over a field K. Consider a
non-empty set S ⊂ Subsp(V ) of subspaces of V . Then, there exists a mapping

( )cmpl : S −→ Subsp(V )

satisfying the following properties:

(i) V = W ⊕W cmpl, for all W ∈ S.
(ii) U ⊂ W =⇒ U cmpl ⊃ W cmpl, for all U,W ∈ S.

Now, let Γ be a divisible ordered abelian group with skeleton (I, (Ci)i∈I). The
group Γ and its components Ci have a natural structure of Q-vector spaces; hence,
the Hahn product is a Q-vector space too. Hahn’s embedding

ϕ : Γ ↪−→ H(Γ) := H
i∈I
Ci

is necessarily a Q-linear mapping.
By Banaschewski’s lemma, we may choose complementary Q-subspaces:

Γ = H ⊕Hcmpl, for all H ∈ Conv(Γ),

with the coherent behaviour with respect to inclusions indicated in condition (ii).
For all i ∈ I we have Q-linear projections:

Γ −� Hi −� Ci, a 7−→ ai.

The projection Γ � Hi depends on the choice of the subspace Hcmpl
i . The projection

Hi � Ci = Hi/H
∗
i is the canonical quotient mapping.

In this way, we obtain an injective group homomorphism:

ϕ : Γ −→
∏
i∈I

Ci, a 7−→ (ai)i∈I .

Indeed, if a ∈ Γ is non-zero, the principal subgroup H(a) generated by a is non-zero
too; thus, H(a) = Hi for some i ∈ I. The element ai ∈ Ci is the class of a modulo
H∗i . Since a generates Hi, we have ai 6= 0.

The proof of Hahn’s theorem ends by checking that ϕ(Γ) ⊂ H(Γ) and ϕ preserves
the ordering [8, Sec. A].

Let us recall some nice properties of this embedding ϕ. For all S ∈ Init(I), consider
the well-known process of truncation by S:

H(Γ) −→ H(Γ), x = (xi)i∈I 7−→ xS = (yi)i∈I ,



8 KUHLMANN AND NART

where yi = xi for all i ∈ S, and yi = 0 otherwise.

Lemma 1.12. The image ϕ(Γ) of Hahn’s embedding contains the truncations ϕ(a)S,
for all a ∈ Γ, S ∈ Init(I). In particular, ϕ(Γ) contains the Hahn sum

⊕
i∈I Ci.

Proof. Take a ∈ Γ, S ∈ Init(I). We can write in a unique form:

a = c+ b, c ∈ HS, b ∈ Hcmpl
S .

Let us show that ϕ(a)S = ϕ(b) ∈ ϕ(Γ). Indeed, for i ∈ S we have HS ⊂ H∗i ( Hi.
Thus, the decompositions of a and b over Hi are:

b = u+ v, a = (c+ u) + v, u, c ∈ Hi, v ∈ Hcmpl
i .

Since c ∈ HS ⊂ H∗i , we have ai = (c+ u) (mod H∗i ) = u (mod H∗i ) = bi.

For i 6∈ S we have Hi ⊂ HS, so that b ∈ Hcmpl
S ⊂ Hcmpl

i . Thus, bi = 0. This proves
that ϕ(Γ) contains all truncations.

Take now i ∈ I and q ∈ Ci. Choose any a ∈ Hi such that q = a (mod H∗i ). For
all j < i, we have Hj ) Hi. Thus, H∗j ⊇ Hi and aj = 0. Hence, for S = I≤i, the
projection ϕ(a)S has i-th coordinate q, and all other Hahn coordinates vanish. Since
ϕ(a)S ∈ ϕ(Γ), this proves that ϕ(Γ) contains the Hahn sum. �

2. Cuts in ordered abelian groups

In this section we study basic properties of cuts in an ordered abelian group Γ.
Most of the material has been taken from [4].

We keep with the notation C = Conv(Γ), I = Prin(Γ), used in the last section.
Any cut (D,E) in Γ admits the operations of shifting by an element a ∈ Γ and

multiplication by −1. They are defined in the obvious way:

(D,E) + a = (D + a,E + a), −(D,E) = (−E,−D).

These operations are defined for the improper cuts too, if we agree that

−∅ = ∅, ∅+ a = ∅ for all a ∈ Γ.

2.1. Invariance group of a cut. To every subset D ⊂ Γ we may associate the
following invariance subgroup:

H(D) = {h ∈ Γ | D + h = D} ⊂ Γ.

Let E = Γ \ D be the complementary subset of D. For all h ∈ Γ, we clearly have
Γ \ (D + h) = E + h; therefore,

D + h = D ⇐⇒ E + h = E.

In particular, to every cut (D,E) in Γ, we may associate its invariance group:

H(D,E) := H(D) = H(E).

Now, since D is an initial segment of Γ, the subgroup H(D) ⊂ Γ is convex. Indeed,
take a positive h ∈ H(D) and an element a ∈ Γ such that 0 < a < h. We have
necessarily a ∈ H(D), because

D = D − h ⊂ D + a ⊂ D + h = D.

Lemma 2.1. Let (D,E) be a cut in Γ, and let H ⊂ Γ be a convex subgroup.

(i) E −D = (Γ>0) \H(D).
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(ii) We have H ⊂ H(D) if and only if (D/H,E/H) is a cut in Γ/H. In this
case, the invariance group of this cut is H(D)/H.

(iii) H(−D) = H(D) and H(D + a) = H(D) for all a ∈ Γ.

Proof. Item (iii) is obvious. Let us prove (i). Suppose that h is positive. Then,

h 6∈ H(D) ⇐⇒ (D + h) ∩ E 6= ∅ ⇐⇒ h ∈ E −D.

Item (ii) follows from: (D/H)∩ (E/H) = ∅ ⇐⇒ D+H = D ⇐⇒ H ⊂ H(D). �

Let S = {i ∈ I | Hi ) H(D)} be the initial segment of I canonically associated
to H(D) in Lemma 1.8. Let H ′ ∈ C∞ be the unique possible candidate to be an
immediate successor of H(D) in C∞. That is,

(1)
⋃
i 6∈S

Hi = H(D) ⊂ H ′ :=
⋂
i∈S

Hi.

Lemma 2.2. For any cut (D,E) in Γ, the following conditions are equivalent.

(a) The principal cut H(D)+ in C∞ is a gap.
(b) There exists a maximal element in S.
(c) H(D) ( H ′.

In this case, H(D) is the immediate predecessor of the principal convex subgroup
H ′ = Himax, where imax = max(S).

Proof. If H(D)+ is a gap in C∞, there exists an immediate successor of H(D) in
C∞. This successor must be principal by Lemma 1.7; thus, it coincides with H ′.
This shows that (a) implies (b).

If there exists imax = max(S), then obviously H ′ = Himax . Hence,

H(D) =
⋃
i 6∈S

Hi = H∗i ( Hi.

Thus, (b) implies (c).
Finally, if H(D) ( H ′, then H ′ is the minimal element in ( C∞)>H(D). Therefore,

H(D)+ is a gap. Thus, (c) implies (a). �

Definition. If the conditions of Lemma 2.2 hold, we say that the cut (D,E) has a
convexity gap.

The improper cuts determined by D = ∅, Γ have both H(D) = Γ and S = ∅.
Hence, they do not have a convexity gap.

2.2. Covariance subgroups of a subset of Γ. Let us associate a couple of covari-
ance convex subgroups to every subset D ⊂ Γ.

For all d ∈ D, let Vf (d) = Vf (D, d) be the convex subgroup generated by the set

D≥d − d = {d′ − d | d′ ∈ D, d′ ≥ d} .

If d < d′, then Vf (d) ⊃ Vf (d
′), because

e ∈ D≥d′ =⇒ 0 ≤ e− d′ < e− d ∈ D≥d − d =⇒ e− d′ ∈ Vf (d).
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Definition. The final covariance group Vf (D), and initial covariance group Vi(D)
of D are defined as

Vf (D) =
⋂
d∈D

Vf (d), Vi(D) := Vf (D
opp) =

⋂
d∈D

Vf (D
opp, d).

The group Vf (D) is said to be stable if Vf (D) = Vf (d) for some d ∈ D.
The group Vi(D) is said to be stable if Vi(D) = Vf (D

opp, d) for some d ∈ D.
A covariance group which is not stable is said to be unstable.

The following basic properties of these groups are easy to check.

• If there exists dM = max(D), then Vf (D) = Vf (dM) = 0 is stable.
If there exists dm = min(D), then Vi(D) = Vf (D

opp, dm) = 0 is stable.

• Let ini(D), fin(D) be the initial segment and final segment of Γ generated by
D, respectively. Then, Vf (D) = Vf (ini(D)) and Vi(D) = Vi(fin(D)).

• Vf (D
opp, d) = Vf (−D,−d), for all d ∈ D.

• Vf (−D) = Vi(D), Vi(−D) = Vf (D).

• Vf (D + a) = Vf (D), Vi(D + a) = Vi(D), for all a ∈ Γ.

• Vf (Γ) = Vi(Γ) = Γ is stable. We agree that Vf (∅) = Vi(∅) = Γ is unstable.

Covariance subgroups of a cut. To every cut (D,E) in Γ we may associate the
couple of convex subgroups

Vf (D,E) := Vf (D), Vi(D,E) := Vi(E).

The invariance group of a cut was a symmetric object, but these covariance sub-
groups of a cut do not always coincide. The most simple example is the cut 0+ in
Γ = Q, for which Vf (0

+) = 0 and Vi(0
+) = Q. However, we have in full generality

Vf (D,E) = Vi(−(D,E)), Vi(D,E) = Vf (−(D,E)).

Lemma 2.3. Let (D,E) be a cut in Γ, and denote H = H(D). Then,

(2) H ⊂ Vf (D), Vi(E) ⊂ H ′,

where H ′ is the convex subgroup defined in (1). In particular, either Vf (D) = H, or
Vf (D) = H ′, and an analogous statement holds for Vi(E).

Moreover, the covariance groups of the cut (D/H,E/H) in Γ/H are Vf (D/H) =
Vf (D)/H and Vi(E/H) = Vi(E)/H.

Proof. For all d ∈ D, the condition d + H ⊂ D implies H ⊂ Vf (d). Therefore,
H ⊂ Vf (D).

Take any positive a ∈ Γ \H; Lemma 2.1(i) shows the existence of d ∈ D such that
d+ a > D. For all d′ ∈ D≥d we have 0 ≤ d′ − d < a. Hence,

(3) Vf (D) ⊂ Vf (d) ⊂ H(a),

where H(a) is the principal convex subgroup generated by a. Since this holds for all
a ∈ Γ \H, we deduce that Vf (D) ⊂ H ′.

Now, since H(−D) = H(D) = H, and Vf (D
opp) = Vf (−D), the above arguments

show that H ⊂ Vi(E) = Vf (D
opp) ⊂ H ′ as well. This ends the proof of (2).

The proof of the last statement is straightforward. �
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Lemma 2.4. If a cut (D,E) in Γ has a convexity gap, then its covariance groups
Vf (D), Vi(E) are both stable.

Proof. Let H = H(D) be the invariance group of the cut. The group Vf (D) is stable
if and only if the final covariance group Vf (D)/H of the cut (D/H,E/H) is stable.
Hence, we may assume H = {0}. In this case, H ′ is a minimal nonzero convex
subgroup. By Lemma 1.7, H ′ is a principal convex subgroup.

If there exists dmax = max(D), then Vf (D) = Vdmax = {0} is stable.
Otherwise, Vf (d) ⊃ H ′ for all d ∈ D; hence, Vf (D) ⊃ H ′ and this implies Vf (D) =

H ′ by Lemma 2.3. Let a ∈ Vf (D) be a positive generator of H ′ as a convex subgroup.
Since a 6∈ H, the arguments in the proof of Lemma 2.3 lead to the inclusions (3) for
some d ∈ D:

Vf (D) ⊂ Vf (d) ⊂ H(a) = H ′ = Vf (D).

Thus, Vf (D) = Vf (d) is stable too.
Since the cut −(D,E) has the same invariance group H, it has a convexity gap

too. Thus, Vi(E) = Vf (−(D,E)) is stable. �

Definition. A cut (D,E) in Γ is said to be vertical if H(D) ( Vf (D). Otherwise,
we say that (D,E) is horizontal.

By Lemma 2.3, all cuts which do not have a convexity gap are horizontal, because
they satisfy

H(D) = Vf (D) = Vi(E) = H ′.

The adjective vertical is motivated by the applications to valuation theory. There
is a certain procedure of limit augmentation of valuations, which involves increasing
families D of values in a certain ordered abelian group Γ. The cut in Γ determined by
the initial segment generated by D is vertical if and only if the family D is “vertically
bounded” in the terminology of [1, Sec. 4].

2.3. The six types of cuts. Let us study the possible types of cuts according to its
convexity-gap character plus the fact of being horizontal/vertical, and their covariance
groups being stable/unstable.

Definition. Let (D,E) be a cut in Γ, with invariance group H. We say that (D,E)
is a ball cut if the cut (D/H,E/H) in the quotient group Γ/H is principal.

Thus, a ball cut in Γ takes the form

(a+H)+ or (a+H)−,

for some a ∈ D and an arbitrary convex subgroup H ⊂ Γ, which clearly becomes the
invariance group of the cut.

For instance, the principal cuts and the improper cuts are ball cuts, with H = {0}
and H = Γ, respectively.

Note that −(a + H)+ = (−a + H)−. Thus, the set of all ball cuts is closed under
the “multiplication by −1” operation.

For the non-ball cuts, the situation is quite rigid. The convexity-gap character
determines all other properties of the cut.

Lemma 2.5. Let (D,E) be a non-ball cut in Γ, with invariance group H.
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(1) If (D,E) has a convexity gap, then H ( Vf (D) = Vi(E) and the covariance
groups are stable.

(2) If (D,E) does not have a convexity gap, then H = Vf (D) = Vi(E) and the
covariance groups are unstable.

Proof. All properties of the cut are preserved when we pass to the quotient Γ/H.
Thus, we may assume that H = {0} and the cut is not principal.

For all d ∈ D there exists a positive h ∈ Γ such that d+h ∈ D. Since h ∈ Vf (d), we
see that Vf (d) 6= {0} for all d ∈ D. The same argument shows that Vf (E

opp, e) 6= {0}
for all e ∈ E.

If the cut has a convexity gap, the covariance groups are stable by Lemma 2.4.
Thus, Vf (D) = Vf (d) ) H for some d ∈ D, and simultaneously

Vi(E) = Vf (E
opp) = Vf (E

opp, e) ) H, for some e ∈ E.
Therefore, Vf (D) = Vi(E) = H ′, by Lemma 2.3.

If the cut does not have a convexity gap, then H = Vf (D) = Vi(E) = H ′ = {0}.
Hence Vf (D) 6= Vf (d) for all d ∈ D and Vi(E) 6= Vf (E

opp, e) for all e ∈ E. Both
covariance groups are unstable. �

On the other hand, since the analysis of the properties of ball cuts may be reduced
to the analysis of principal cuts, it is easy to check that we obtain the four types of
ball cuts, described in the table of Figure 1.

The notation b/nb stands for ball/non-ball and G/NG stands for convexity-
gap/non-convexity-gap, respectively.

Figure 1. The six types of cuts. The initial segment S ∈ Init(I) is
determined by H = HS, where H is the invariance group of the cut.
The convex group H ′ ⊃ H is defined in equation (1).

(D,E) ∃max(S) Vf (D) Vi(E) notation

(a+H)+ yes H stable H ′ stable (b+G)+

(a+H)+ no H stable H unstable (b+NG)+

(a+H)− yes H ′ stable H stable (b+G)−

(a+H)− no H unstable H stable (b+NG)−

non-ball yes H ′ stable H ′ stable nb+G

non-ball no H unstable H unstable nb+NG

Examples. Let us exhibit an example of each type of cut. In all examples, the
invariance group is H = 0 and the corresponding initial segment is S = I.

Take Γ = Q, and let ξ ∈ R \Q be an irrational number.

0+ (b+G)+, 0− (b+G)−, (Q<ξ,Q>ξ) nb+G.

Take the Hahn sum Γ = Q(N), and let ξ ∈ QN \ Q(N) be a vector with an infinite
number of nonzero coordinates.

0+ (b+NG)+, 0− (b+NG)−, (Γ<ξ,Γ>ξ) nb+NG.
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The shift (D,E) 7→ (D,E) + a preserves the type of all cuts. However, multiplica-
tion by −1 acts on the six types as follows

(b+G)+ ↔ (b+G)−, (b+NG)+ ↔ (b+NG)−, nb+G 	, nb+NG 	 .

3. Small extensions of ordered groups

The rational rank of an abelian group G is the dimension of its divisible hull as a
Q-vector space:

rr(G) = dimQ(G⊗Z Q).

An extension of ordered groups Γ ↪→ Λ is commensurable if rr(Λ/Γ) = 0. That is,
if Λ/Γ is a torsion group.

The extension Γ ↪→ ΓQ is simultaneously the minimal divisible extension of Γ and
the maximal commensurable extension of Γ.

Lemma 3.1. For any commensurable extension Γ ↪→ Λ, there exists a unique embed-
ding of Λ into ΓQ such that the composition Γ ↪→ Λ ↪→ ΓQ is the canonical embedding.

Two extensions Γ ↪→ Λ, Γ ↪→ Λ′ are said to be Γ-equivalent if there is an
isomorphism Λ →∼ Λ′ of ordered groups fitting into a commutative diagram:

Λ

↑ ↘
Γ −→ Λ′

In this case, we write Λ ∼Γ Λ′. By Lemma 3.1, every commensurable extension of Γ
is Γ-equivalent to a unique subgroup of ΓQ.

3.1. Small extensions. For an arbitrary extension ι : Γ ↪→ Λ, let ∆ ⊂ Λ be the
relative divisible closure of Γ in Λ:

∆ = {x ∈ Λ | nx ∈ ι(Γ), for some n ∈ N} .
Equivalently, ∆ is the maximal commensurable extension of Γ in Λ.

Definition. We say that Γ ↪→ Λ is a small extension if Λ/∆ is a cyclic group.

Therefore, a small extension is either commensurable (∆ = Λ), or it has rr(Λ/Γ) =
1 and the quotient Λ/∆ is isomorphic to Z.

This definition is motivated by the following result.

Theorem 3.2. Let K be a field and let µ : K[x]→ Λ∞ be a valuation on the polyno-
mial ring K[x]. Let Γ = µ(K∗) and let Γµ be the subgroup of Λ generated by µ(K[x]).
Then, Γ ⊂ Γµ is a small extension of ordered groups.

This theorem was proved in [3, Thm. 1.5] for valuations with trivial support; that
is, valuations that may be extended to the rational field K(x). For valuations with
non-trivial support the extension Γ ⊂ Γµ is commensurable, because Γµ is the value
group of an extension of µ|K to a finite extension of K.

Not all small extensions arise from valuations on a polynomial ring. In [3] it is
shown that the divisible closure of Γ in Γµ must be countably generated, and it must
be finitely generated if rr(Γµ/Γ) = 1.



14 KUHLMANN AND NART

Let us exhibit a few examples of small and non-small extensions. Consider the
following four extensions of Γ = Z:

(a) Z ⊂ Z⊕ 3
√

2Z, (b) Z ⊂ Z[ 3
√

2],

(c) Z ↪→ Q× Z, m 7→ (m, 0), (d) Z ↪→ Q× Z, m 7→ (0,m).

The extensions (a) and (b) preserve the rank, while (c) and (d) increase the rank
by one. On the other hand, only (a) and (c) are small.

Actually, all small extensions “increase the rank at most by one”. Let us be more
precise about the meaning of this statement.

By Lemma 1.10, any extension Γ ↪→ Λ induces two embeddings of ordered sets

Conv(Γ) ↪−→ Conv(Λ), Prin(Γ) ↪−→ Prin(Λ).

The following inequality follows easily from Hahn’s embedding theorem:

(4) rr(Λ/Γ) ≥ ] (Prin(Λ) \ Prin(Γ)) ,

where we identify Prin(Γ) with its image in Prin(Λ) under the above embedding.
Now, it is easy to deduce from Lemmas 1.7 and 1.8 that

] (Prin(Λ) \ Prin(Γ)) = 0 ⇐⇒ ] (Conv(Λ) \ Conv(Γ)) = 0.

] (Prin(Λ) \ Prin(Γ)) = 1 ⇐⇒ ] (Conv(Λ) \ Conv(Γ)) = 1.

Definition. We say that the extension Γ ↪→ Λ increases the rank at most by one if

] (Prin(Λ) \ Prin(Γ)) ≤ 1.

If ] (Prin(Λ) \ Prin(Γ)) = 0 we say that Γ ↪→ Λ preserves the rank.
If ] (Prin(Λ) \ Prin(Γ)) = 1 we say that Γ ↪→ Λ increases the rank by one.

Therefore, the following result follows immediately from (4).

Lemma 3.3. The extension Γ ↪→ ΓQ preserves the rank and every small extension
Γ ↪→ Λ increases the rank at most by one

Caution! If rk(Γ) is infinite, this terminology abuses of language. If Γ ↪→ Λ preserves
the rank, then obviously rk(Γ) = rk(Λ), but the converse is not true.

For instance, N0 = {0} + N is isomorphic to N as an ordered set; hence, the
ordered groups RN

lex and RN0
lex have the same rank. However, the natural embedding

RN
lex ↪→ RN0

lex increases the rank by one.

3.2. Proper small extension generated by a cut. In this section, we assume
that Γ = ΓQ is a divisible group.

For any cut D = (DL, DR) in Γ, we consider a formal symbol x = xD and we build
up the abelian group

Γ(D) = xZ⊕ Γ = {mx+ b | m ∈ Z, b ∈ Γ} .
There is a unique ordering on Γ(D) which is compatible with the group structure

and satisfies DL < x < DR. Namely,

mx+ b ≤ nx+ a ⇐⇒ (m− n)x ≤ a− b ⇐⇒ (m− n)DL ≤ a− b.
Therefore, Γ ⊂ Γ(D) is a proper (incommensurable) small extension of ordered

abelian groups.
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Lemma 3.4. Let D = (DL, DR) be a cut in Γ and take a ∈ Γ. Then, the three
extensions Γ(D), Γ(−D), Γ(D + a) are Γ-equivalent.

Proof. The Γ-isomorphism between Γ(D) and Γ(−D) is determined by xD 7→ −x−D.
The Γ-isomorphism between Γ(D) and Γ(D+a) is determined by xD 7→ xD+a−a. �

Our first aim is to characterize those cuts D for which the extension Γ ⊂ Γ(D)
preserves the rank. Let us denote

I = Prin(Γ), I(D) = Prin(Γ(D)).

Let valΓ be the natural valuation on Γ and let us denote simply by val the natural
valuation on Γ(D). By Lemma 1.10, we have a commutative diagram

Γ ↪−→ Γ(D)

valΓ ↓ ↓ val

I ↪−→ I(D)

and the image of I inside I(D) is val(Γ). Thus, we want to find out for which cuts
the equality I(D) = val(Γ) holds.

From now on, we denote simply by H = H(D) the invariance group of our cut D.
Also, we denote by H the convex subgroup of Γ(D) generated by H.

The arguments that follow are inspired in [4, Sec. 3.7].

Lemma 3.5. The cut in I(D) associated to H in Lemma 1.8 is (val(x+ Γ), val(H)).

Proof. For a ∈ Γ, suppose that x − a ∈ H. Then, there exists h ∈ H such that
0 < |x− a| < h. If a < x, we deduce x < a+ h, while for a > x we deduce a− h < x.
Both situations contradict the fact that D + h = D.

Therefore, we have x− a 6∈ H for all a ∈ Γ. This implies two facts:
(1) val(H) = val(H) is the final segment of the cut in I(D) associated to H.
(2) val(x+ Γ) < val(H).
Hence, val(x+Γ) ⊂ val(Γ(D)\H) and we need only to prove the opposite inclusion.
Take any positive h ∈ Γ(D) \H. If h = mx+ c with c ∈ Γ and m 6= 0, then

val(h) = val(x+ (c/m)) ∈ val(x+ Γ).

Now, suppose that m = 0: that is, h ∈ Γ \ H. By Lemma 2.1(i), h = b − a
for some a ∈ DL, b ∈ DR. From a + h = b > x we deduce 0 < x − a < h, so
that val(h) ≤ val(x− a). If the inequality is strict, then the property (VAL1) of the
natural valuation shows that

val(x− a− h) = min{val(h), val(x− a)} = val(h).

In any case, we see that val(h) belongs to val(x+ Γ). �

Lemma 3.6. Take a ∈ Γ. Then,

val(x− a) 6∈ val(Γ) ⇐⇒ H(x− a) ∩ Γ = H ⇐⇒ H(x− a) ∩ Γ ⊂ H.

In this case, we have val(x− a) = max (val(x+ Γ)).
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Proof. By Lemma 3.5, H ( H(x− a) for all a ∈ Γ. Thus, H ⊂ H(x− a) ∩ Γ.
Suppose that val(x− a) 6∈ val(Γ).
If val(x − a) < val(x − b) for some b ∈ Γ, then v(b − a) = val(x − a) by (VAL1),

contradicting our assumption. This shows that val(x− a) = max (val(x+ Γ)).
Now, for all h ∈ Γ \ H, Lemma 3.5 shows that val(h) ∈ val(x + Γ). Hence,

val(h) < val(x− a) and this implies h 6∈ H(x− a) ∩ Γ. Thus, H(x− a) ∩ Γ = H.
On the other hand, if val(x − a) = val(h) ∈ val(Γ), then h 6∈ H by Lemma 3.5.

Therefore, H(x− a) ∩ Γ = H(h) ) H. �

The following result follows immediately from Lemmas 3.5 and 3.6.

Theorem 3.7. Let H = H(D) be the invariance group of a cut D in Γ.

(1) If Γ ⊂ Γ(D) preserves the rank, then val(x+ Γ) = val(Γ \H).

(2) If Γ ⊂ Γ(D) increases the rank, then, as ordered sets,

val(x+ Γ) = val(Γ \H) + {val(x− a)}
where val(x−a) is the unique principal convex subgroup of Γ(D) which is not generated
by an element in Γ. In this case, H(x− a) ∩ Γ = H.

Theorem 3.8. The extension Γ ⊂ Γ(D) increases the rank if and only if D is a ball
cut.

Proof. Suppose that D = (a+H)+ for some a ∈ Γ. Then, H = H(D). By Lemma
3.4, in order to show that the extension Γ ⊂ Γ(D) increases the rank, we may assume
that a = 0; that is,

DL = H+ := {d ∈ Γ | d ≤ h for some h ∈ H} .
Let x = xD ∈ Γ(D). By Lemma 3.6, it suffices to show that H(x) ∩ Γ ⊂ H to

conclude that Γ ⊂ Γ(D) increases the rank. Now, a positive h ∈ H(x) ∩ Γ satisfies
0 < h < nx for some n ∈ N. Hence, h/n < x, so that h/n ∈ DL = H+. This implies
0 < h/n ≤ h′ for some h′ ∈ H. Thus, h ∈ H.

By Lemma 3.4, for D = (a+H)− = −(−a+H)+ the extension Γ ⊂ Γ(D) increases
the rank too.

Conversely, suppose that the extension Γ ⊂ Γ(D) increases the rank. Let x = xD
and H = H(D). By Lemma 3.6, there exists a ∈ Γ such that H(x− a) ∩ Γ = H. By
Lemma 3.4, the Γ-isomorphism between Γ(D) and Γ(D−a) maps x−a to xD−a; thus,
by replacing D with D−a, we may assume that H(x)∩Γ = H. Also, by replacing D
with −D, if necessary, we may assume that x > 0. Let us show that D = H+ under
these assumptions.

Since 0 ∈ DL and H is the invariance group of D, we have H ⊂ DL. Thus,
H+ ⊂ DL. Conversely, take any d ∈ DL. If d ≤ 0, then d ∈ H+ because 0 ∈ H. If
d > 0, then 0 < d < x implies that d belongs to H(x) ∩ Γ = H too. �

3.3. Classification of small extensions. We keep assuming that Γ is a divisible
group. Let X pr = X pr(Γ) be the set of all pairs (Λ, x), where Λ is a proper small
extension of Γ and x ∈ Λ is the choice of a generator of the infinite cyclic group Λ/Γ.

Every pair (Λ, x) ∈ X pr determines a cut Dx of Γ, whose initial segment is:

(Dx)
L = {a ∈ Γ | ι(a) < x} ⊂ Γ,
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where ι : Γ ↪→ Λ is the embedding of Γ into Λ. This determines a pre-ordering on
X pr, by defining (Λ, x) ≤ (Λ′, x′) whenever Dx ≤ Dx′ .

We establish on X pr the equivalence relation

(Λ, x) ' (Λ′, x′)

if there exists an isomorphism of ordered groups between Λ and Λ′ which maps x to
x′ and acts as the identity on Γ.

The pre-ordering on X pr induces a total ordering on the quotient set X pr/'.

Proposition 3.9. For a divisible group Γ, any mapping

Cuts(Γ) −→ X pr, D 7−→ (Γ(D), xD)

induces an isomorphism of ordered sets between Cuts(Γ) and X pr/'.

Proof. This follows from two trivial remarks.

(1) (Γ(D), xD) ' (Γ(D′), xD′) ⇐⇒ D = D′.

(2) For any pair (Λ, x) ∈ X pr, we have (Λ, x) ' (Γ(Dx), xDx). �

For any pair ε ∈ {±1}, a ∈ Γ, consider the bijective mapping

tε,a : Cuts(Γ) −→ Cuts(Γ), D 7−→ tε,a(D) = εD + a

These mappings form a subgroup :

Γ± := {tε,a | ε ∈ {±1}, a ∈ Γ}

of the group of all bijective mappings from Cuts(Γ) onto itself, with the operation of
composition. Since,

tε,a ◦ tε′,a′ = tεε′,εa′+a,

the group Γ± is a semidirect product of Γ by {±1}.

Lemma 3.10. Let D,D′ be two cuts in Γ. The small extensions Γ(D), Γ(D′) are
Γ-equivalent if and only if D′ = tε,a(D) for some tε,a ∈ Γ±.

Proof. If D′ = tε,a(D) for some tε,a ∈ Γ±, then Γ(D) ∼Γ Γ(D′) by Lemma 3.4.
Conversely, if ϕ : Γ(D′) −→∼ Γ(D) is a Γ-isomorphism, then〈

Γ, xD
〉

= Γ(D) =
〈

Γ, ϕ(xD′)
〉
,

where
〈

Γ, xD
〉

is the subgroup generated by Γ and xD.
Hence, there exist ε ∈ {±1}, a ∈ Γ such that ϕ(xD′) = ε xD + a. Since

(Γ(D′), xD′) ' (Γ(D), ϕ(xD′)) = (Γ(D), ε xD + a) ' (Γ(εD + a), xεD+a) ,

Proposition 3.9 shows that D′ = εD + a = tε,a(D). �

Therefore, the Γ-equivalence classes of small extensions of Γ are parametrized by

{Γ} t
(
Cuts(Γ)/Γ±

)
.
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The general case. For an arbitrary ordered abelian group Γ, the set Sme(Γ) of
Γ-equivalence classes of small extensions of Γ may be stratified as

Sme(Γ) =
⊔

Γ⊂∆⊂ΓQ

Sme∆(Γ),

where ∆ runs through all subgroups of ΓQ containing Γ, and Sme∆(Γ) is the set of
the Γ-equivalence classes of small extensions for which the relative divisible closure
of Γ is Γ-isomorphic to ∆.

Let us show that Sme∆(Γ) admits a complete analogous description as Sme(ΓQ):

(5) Sme∆(Γ) = {∆} t
(
Cuts(ΓQ)/∆±

)
.

Indeed, let X (∆)pr ⊂ X (ΓQ)pr be the subset of pairs (Λ, x) where Λ is a small
extension of Γ such that the divisible closure of Γ in Λ is Γ-isomorphic to ∆. The
equivalence relation ' “descends” to X (∆)pr; that is, if (Λ, x) ∈ X (∆)pr, then the
whole class of (Λ, x) is included in X (∆)pr.

Proposition 3.11. For all D ∈ Cuts(ΓQ), let ∆(D) be the subgroup of ΓQ(D) gene-
rated by ∆ and xD. Then, any mapping

Cuts(ΓQ) −→ X (∆)pr, D 7−→ (∆(D), xD)

induces an isomorphism of ordered sets between Cuts(ΓQ) and X (∆)pr/'.

Proof. This follows from two remarks.

(1) (∆(D), xD) ' (∆(D′), xD′) ⇐⇒ D = D′.

(2) For all (Λ, x) ∈ X (∆)pr, we have (Λ, x) ' (∆(D), xD) for some D ∈ Cuts(ΓQ).

Let us denote x = xD, x′ = xD′ . We have ∆(D) = xZ ⊕ ∆, ∆(D′) = x′Z ⊕ ∆.
Suppose there exists an order preserving isomorphism j : ∆(D) −→∼ ∆(D′) acting
as the identity on Γ, and such that j(x) = x′. Since x and x′ have no torsion over
∆, we have necessarily j(∆) = ∆. Since ∆/Γ is a torsion group, the only ordered
Γ-automorphism of ∆ is the identity. Hence, j acts as the identity on ∆. Now, for
all a ∈ ΓQ, there exists n ∈ N such that na ∈ ∆, so that

a < x ⇐⇒ na < nx ⇐⇒ na = j(na) < j(nx) = nx′ ⇐⇒ a < x′.

Therefore, D = D′. This proves (1).
Let us prove (2). For all (Λ, x) ∈ X (∆)pr, there is an isomorphism Λ ' xZ ⊕ ∆

which determines an ordering on the latter group. Now, the group xZ⊕ΓQ admits a
unique ordering for which the natural inclusion xZ⊕∆ ⊂ xZ⊕ ΓQ is an embedding
of ordered groups. Indeed, for any a, b ∈ ΓQ and integers m > m′, we have:

mx+ a < m′x+ b ⇐⇒ x < (b− a)/(m−m′) ⇐⇒ nx < n(b− a)/(m−m′),

where n ∈ N satisfies n(b − a)/(m − m′) ∈ ∆. Thus, x determines a cut Dx in ΓQ
and clearly (Λ, x) ' (∆(Dx), xDx). �

A result completely analogous to Lemma 3.10, shows that the Γ-equivalence classes
of incommensurable small extensions such that the divisible closure of Γ is isomorphic
to ∆ are parametrized by the set Cuts(ΓQ)/∆±. This proves (5).
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4. Embedding small extensions in real vector spaces

By using Hahn’s embedding theorem, our ordered abelian group Γ may be em-
bedded in a suitable real vector space [8, Sec. A]. In this section, we recall this
construction and we find a concrete real vector space which is sufficiently large to
contain as well all small extensions of Γ, up to Γ-equivalence.

We give two applications of these real models for small extensions. On one hand,
these models contain realizations of all cuts in the divisible hull ΓQ of Γ in a real vector
space. These realizations facilitate the computation of the cofinality and coinitiality
of all these cuts (Sections 4.1.2 and 4.2.2).

On the other hand, in Section 5, we shall derive another application of these real
models to the problem of classifying valuations on polynomial rings, up to equivalence.

4.1. Embedding rank-preserving small extensions in real vector spaces. For
our ordered group Γ with skeleton (I; (Ci)i∈I), the skeleton of ΓQ is

(I; (Qi)i∈I) , Qi = Ci ⊗Z Q for all i ∈ I.
By Lemma 3.3, we have a natural identification:

I = Prin(Γ) = Prin(ΓQ).

By Hahn’s Theorem 1.11, there is a (non-canonical) immediate Q-linear embedding

ΓQ ↪−→ H(ΓQ) := H
i∈I
Qi.

For each i ∈ I we fix, once and for all, a positive element 1i ∈ Qi. As shown in
Proposition 1.6, this choice determines an embedding Qi ↪→ R of ordered groups,
which sends our fixed element 1i to the real number 1. In this way, we get an
embedding H(ΓQ) ↪→ RI

lex which obviously preserves the rank.
Altogether, we obtain a rank-preserving extension

Γ ↪−→ ΓQ ↪−→ H(ΓQ) ↪−→ RI
lex,

which is maximal among all rank-preserving extensions of Γ [8, Sec. A].

Theorem 4.1. For any rank-preserving extension Γ ↪→ Λ, there exists an embedding
Λ ↪→ RI

lex fitting into a commutative diagram

Λ

↑ ↘
Γ −→ RI

lex

Caution! The embedding Λ ↪→ RI
lex is not unique. Every rank-preserving extension

of Γ is Γ-equivalent to some subgroup of RI
lex, but not to a unique one.

From now on, we identify Γ, ΓQ and H(ΓQ) with their image in RI
lex.

As we saw in Section 1.5, the convex subgroups of RI
lex are given by:

HS =
{
x = (xi)i∈I ∈ RI

lex | xi = 0 for all i ∈ S
}
, S ∈ Init(I).

The convex subgroups of ΓQ are obtained as HS ∩ ΓQ for S ∈ Init(I).
For all S ∈ Init(I), consider the truncation by S:

πS : RI
lex −→ RI

lex, x = (xi)i∈I 7−→ xS = (yi)i∈I ,
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where yi = xi for all i ∈ S and yi = 0 otherwise. Note that π−1
S (xS) = x+HS.

By Lemma 1.12, ΓQ contains the Hahn sum
⊕

i∈I Qi and we have

(6) a ∈ ΓQ =⇒ aS ∈ ΓQ, for all S ∈ Init(I).

Notation. For all i ∈ I, consider unit vectors ei = (xj)j∈I ∈ RI
lex, with zero

coordinates everywhere except for xi = 1. For an arbitrary real number ξ ∈ R, the
vector ξei ∈ RI

lex has an obvious meaning. Clearly, ξei ∈ ΓQ if and only if ξ ∈ Qi ⊂ R.

4.1.1. A real model for the set of non-ball cuts in ΓQ. All x ∈ RI
lex \ ΓQ determine a

cut Dx ∈ Cuts(ΓQ), with initial and final segments:

(Dx)
L = {a ∈ ΓQ | a < x} , (Dx)

R = {a ∈ ΓQ | a > x} .
The subgroup

〈
ΓQ, x

〉
⊂ RI

lex, generated by ΓQ and x, is obviously Γ-equivalent to

the group ΓQ(Dx) constructed in Section 3.2. Since the extension Γ ⊂
〈

ΓQ, x
〉
⊂ RI

lex

preserves the rank, Theorem 3.8 shows that all these Dx are non-ball cuts.
Conversely, for each non-ball cut D ∈ Cuts(ΓQ), Theorems 3.8 and 4.1 show that

the incommensurable small extension ΓQ(D) is Γ-equivalent to some subgroup of RI
lex.

In particular, D is realized by some elements in RI
lex \ ΓQ.

The aim of this section is to find a subset in RI
lex which serves as a model for

the set of non-ball cuts in ΓQ. More precisely, we shall construct a canonical subset
Γnbc ⊂ RI

lex \ ΓQ such that the following mapping is an isomorphism of ordered sets:

Γnbc −→ {non-ball cuts in ΓQ} , x 7−→ Dx.

In particular, the set Γnbc must be a set of representatives of the following equiva-
lence relation on RI

lex \ ΓQ:

x ∼cut x
′ ⇐⇒ Dx = Dx′ .

Let us denote by [x]cut the class of x.

Lemma 4.2. For x ∈ RI
lex \ΓQ, let H ⊂ RI

lex be the convex subgroup generated by the
invariance group of the cut Dx in ΓQ. Then, [x]cut = x+H ⊂ RI

lex \ ΓQ.

Proof. For all h0 ∈ H ∩ ΓQ, since Dx + h0 = Dx, we deduce Dx = Dx+h0 . On the
other hand, all positive h ∈ H satisfy 0 < h ≤ h0 for some h0 ∈ H ∩ ΓQ. Hence,

(Dx)
L < x < x+ h ≤ x+ h0 < (Dx)

R, (Dx)
L < x− h0 ≤ x− h < x < (Dx)

R.

Therefore, for all h ∈ H we have x+ h 6∈ ΓQ and Dx+h = Dx. Thus, x+H ⊂ [x]cut.
To prove the converse inclusion, suppose that y ∈ [x]cut; or equivalently, Dx = Dy.

Let S ∈ Init(I) be determined by H = HS. We want to see that y ∈ x+HS; that is,
xS = yS.

Suppose that xS < yS and let i ∈ S be the minimal index for which xi < yi. Take
any positive q ∈ Qi such that xi < xi + q < yi. Consider the element b = qei ∈ ΓQ.
Since q 6= 0 and i ∈ S, we have b 6∈ H; hence, there exists a ∈ (Dx)

L such that
a + b 6∈ (Dx)

L = (Dy)
L. In other words, a + b > y. However, from a < x we deduce,

by the construction of b, that a+ b < x+ b < y. This is a contradiction. �

Let us compute the invariance group of the cut Dx for all x ∈ RI
lex \ ΓQ.

Lemma 4.3. For all x ∈ RI
lex \ ΓQ consider the set S(x) = {T ∈ Init(I) | xT 6∈ ΓQ}.

Then, the invariance group of Dx is HS ∩ ΓQ, where S = min(S(x)).
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Proof. Let S ∈ Init(I) be determined by H(Dx) = HS ∩ΓQ. By Lemma 4.2, xS 6∈ ΓQ,
so that S ∈ S(x). Let us show that S is the minimal element in this set.

Let T ∈ Init(I) such that xT 6∈ ΓQ. Then, Dx = Dy for all y ∈ x+HT . Indeed, for
all a ∈ ΓQ, the equality aT = xT is impossible by (6). Hence,

a < y ⇐⇒ aT < yT = xT ⇐⇒ a < x.

Thus, y ∼cut x and Lemma 4.2 shows that x+HT ⊂ x+HS. This implies HT ⊂ HS,
or equivalently, T ⊃ S. �

The set of cuts admits a stratification by the invariance group of the cut. Take any
S ∈ Init(I). By Lemmas 4.2 and 4.3, the non-ball cuts of ΓQ whose invariance group
is HS ∩ ΓQ are parametrized by the following subset of RI

lex:

nbc(S) =
{
x ∈ RI

lex \ ΓQ | supp(x) ⊂ S and xT ∈ ΓQ for all T ∈ Init(I), T ( S
}
.

Hence, the real model we are looking for is:

Γnbc :=
⊔

S∈Init(I)

nbc(S).

By Lemma 2.2, the two types of non-ball cuts are distinguished by the parameter
S as follows:

nb+NG =
⊔

@max(S)

nbc(S), nb+G =
⊔

∃max(S)

nbc(S)

This description of the non-ball cuts yields another way to distinguish the two types
of cuts.

Lemma 4.4. An x ∈ nbc(S) is of type nb+NG if and only if x ∈ H(ΓQ).

Proof. Suppose that x = xS = (xj)j∈I 6∈ H(ΓQ), and let J = supp(x). By assumption,

J0 := {j ∈ J | xj 6∈ Qj} 6= ∅.

Since J is well-ordered, there exists i = min (J0). Since xi 6= 0, we have i ∈ S.
Let R = I≤i ⊂ S. Since xR 6∈ ΓQ, we must have R = S by the minimality of S.

Hence, i = max(S).
Conversely, suppose that S contains a maximal element i, and let T = I<i ( S.

By the minimality of S, xT ∈ ΓQ, so that xj ∈ Qj for all j < i. This implies that
xi 6∈ Qi, so that x 6∈ H(ΓQ).

Indeed, if xi ∈ Qi, then the element b = xiei belongs to ΓQ and we get a contradic-
tion: x = xT + b ∈ ΓQ. �

In particular, the set nb+G may be described in a more explicit form:

(7) nb+G =
⊔
i∈I

{
x+ ξei ∈ RI

lex | x ∈ ΓQ, supp(x) ⊂ I<i, ξ ∈ R \Qi

}
.
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Examples.

(Ex1) rk(Γ) = 1, nb+NG= ∅, nb+G= R \ ΓQ.

(Ex2) Γ = R2
lex, nb+NG=nb+G= ∅.

(Ex3) Γ = Q2
lex, nb+NG= ∅, nb+G= ((R \Q)× {0}) t (Q× (R \Q)).

(Ex4) Γ = R(N), nb+NG= RN \ R(N), nb+G= ∅.
(Ex5) Γ = Q(N), nb+NG= QN \Q(N), nb+G=

⊔
i∈N
(
Qi−1 × (R \Q)× {0}N>i

)
.

4.1.2. Cofinality and coinitiality of non-ball cuts. For all proper cuts D in ΓQ, we
clearly have κ(D) = λ(−D) and λ(D) = κ(−D).

Theorem 4.5. Let D be a non-ball cut in ΓQ. Let S ∈ Init(I) be the initial segment
such that HS is the invariance group of D. Then, the cofinality and coinitiality (κ, λ)
of D take the following values:

(1) If D is an nb+G cut, then κ = λ = ℵ0.
(2) If D is an nb+NG cut, then κ = λ = cofin(S).

Proof. The two types of non-ball cuts are stable under multiplication by −1. Hence,
if we check that κ(D) depends only on the invariance group H(D) = H(−D), we
deduce that λ(D) = κ(−D) = κ(D).

Suppose that D is an nb+G cut, and let iM = max(S). Let T = I<iM ( S. By (7),
D is realised in the real model Γnbc ⊂ RI

lex \ ΓQ by a unique x ∈ Γnbc of the form

x = xT + ξeiM , xT ∈ ΓQ, ξ ∈ R \QiM .

Consider a countable sequence (qm)m∈N of rational numbers which is cofinal in R<ξ.
Then, the countable sequence (xT + qmeiM )m∈N in ΓQ is cofinal in DL. Thus, κ = ℵ0.
This ends the proof of (1).

Now, suppose that D is an nb+NG cut. By Lemma 4.4, D is realised in the real
model Γnbc ⊂ RI

lex \ ΓQ by a unique x = (xi)i∈I ∈ Γnbc of the form

x = xS ∈ H(ΓQ) \ ΓQ, such that xT ∈ ΓQ for all T ( S.

Since S does not contain a maximal element, the subset supp(x) ⊂ S is cofinal.
Indeed, for any j ∈ S, we have T = S≤j ( S, so that xT ∈ ΓQ. Therefore, x 6= xT
and there must exist i ∈ supp(x) such that i > j. As a consequence,

cofin(S) = cofin(supp(x)).

For all j ∈ supp(x), let Tj = S≤j ( S. Let us construct an element z(j) ∈ H(ΓQ)
as follows:

z(j) = xTj + qj+1ej+1, qj+1 ∈ Qj+1, qj+1 < xj+1,

where j + 1 is the immediate successor of j in supp(x), which is a well-ordered set,
by definition. Clearly, z(j) ∈ ΓQ because xTj and qj+1ej+1 belong both to ΓQ. Also,

z(j) < x for all j ∈ supp(x).

Indeed, for R = S<j+1 we have z(j)R = xR, because all eventual indices i ∈ I such
that j < i < j + 1 do not belong to supp(x), so that xi = z(j)i = 0. We claim that
the mapping

supp(x) −→ DL
x , j 7−→ z(j)
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is an order-preserving embedding with cofinal image. This will end the proof of the
theorem: κ = cofin(DL

x ) = cofin(supp(x)) = cofin(S).
Let us prove that the mapping j 7→ z(j) preserves the ordering. If j < k in supp(x),

then for T = Tj+1 = S≤j+1, we have (z(j))T < xT = (z(k))T . Hence, z(j) < z(k).
Finally, for all a ∈ DL

x , let i ∈ I be the minimal index with ai < xi. We must
have i ∈ S, because i > S would imply xS = aS ∈ ΓQ, which is false. Since supp(x)
is cofinal in S, there exists j ∈ supp(x) such that i < j. Hence, a < z(j), because
aTj < xTj = (z(j))Tj . Thus, the image of supp(x)→ DL

x is cofinal in DL
x . �

4.2. Embedding rank-increasing small extensions in real vector spaces. An
embedding ι : I ↪→ J of ordered sets adds one element if J \ ι(I) is a one-element
subset of J .

For all S ∈ Init(I), consider the ordered set

(8) IS = S + {iS}+ Sc,

where iS is a formal symbol. The natural embedding I ↪→ IS adds one element.
Consider the one-added-element hull of I:

I := I ∪ {iS | S ∈ Init(I)} .
We may consider a natural total ordering on I determined by

(i) For all S ∈ Init(I), the restriction of the ordering to IS = I ∪ {iS} is the
ordering considered in (8).

(ii) iS < iT ⇐⇒ S ( T, for all S, T ∈ Init(I).

Note that i∅ = min(I), iI = max(I).
Lemma 4.6. For any embedding I ↪→ J of ordered sets that adds one element, there
exists a unique embedding J ↪→ I fitting into a commutative diagram

J

↑ ↘
I ↪−→ I

The image of J in I is IS for a unique S ∈ Init(I).

Lemma 4.7. If the extension Γ ↪→ Λ of ordered groups increases the rank by one,
there is a unique S ∈ Init(I) and an embedding Λ ↪→ RIS

lex fitting into commutative
diagram:

Λ

↗ ↘
Γ ↪−→ RI

lex ↪−→ RIS
lex ↪−→ RI

lex

Proof. The initial segment S is uniquely determined by the condition Prin(Λ) ' IS.
The proof follows easily from Hahn’s embedding theorem and Lemma 4.6. �

Therefore, we are interested in the following subset of RI
lex, containing RI

lex:

Rsme = Rsme(I) :=
⋃

S∈Init(I)
RIS

lex ⊂ RI
lex.

Notation. For each S ∈ Init(I) consider unit vectors

eS = (xj)j∈I ∈ RIS
lex ⊂ RI

lex, xj = 0 for all j 6= iS, xiS = 1.



24 KUHLMANN AND NART

4.2.1. A real model for the set of ball cuts in ΓQ. All x ∈ Rsme \RI
lex determine a cut

Dx ∈ Cuts(ΓQ), with initial and final segments:

(Dx)
L = {a ∈ ΓQ | a < x} , (Dx)

R = {a ∈ ΓQ | a > x} .
The subgroup

〈
ΓQ, x

〉
⊂ Rsme generated by ΓQ and x is obviously Γ-equivalent to the

group ΓQ(Dx) constructed in Section 3.2. Since the extension Γ ⊂
〈

ΓQ, x
〉

increases
the rank, Theorem 3.8 shows that all these Dx are ball cuts.

Conversely, for each ball cut D ∈ Cuts(ΓQ), Theorem 3.8 and Lemma 4.7 show
that the incommensurable small extension ΓQ(D) is Γ-equivalent to some subgroup
of RI

lex, contained in Rsme \RI
lex. Thus, D is realized by some elements in Rsme \RI

lex.
The aim of this section is to find a canonical subset Γbc ⊂ Rsme \RI

lex such that the
following mapping is an isomorphism of ordered sets:

Γbc −→ {ball cuts in ΓQ} , x 7−→ Dx.

The set Γbc must be a set of representatives of the equivalence relation on Rsme \RI
lex:

x ∼cut x
′ ⇐⇒ Dx = Dx′ .

For all b ∈ ΓQ, S ∈ Init(I), let us denote

b+
S = bS + eS = ((bj)j∈S | 1 | 0 · · · 0) ∈ RIS

lex,

b−S = bS − eS = ((bj)j∈S | −1 | 0 · · · 0) ∈ RIS
lex,

where ±1 is placed at the iS-th coordinate.
Then, the reader may easily check that we may consider:

Γbc :=
⊔

S∈Init(I)

bc−(S) t bc+(S), bc±(S) :=
{
b±S | b ∈ ΓQ

}
.

Clearly, the corresponding ball cuts in ΓQ are (b+HS)±. Note that

b−S < b+HS < b+
S .

4.2.2. Cofinality and coinitiality of ball cuts. Let D be a proper ball cut in ΓQ.
The invariance group H = H(D) is a proper convex subgroup of ΓQ. Let us denote
by S = (S, Sc) the cut in I intrinsically associated to H in Lemma 1.8, uniquely
determined by the condition H = HS.

In order to compute the cardinal numbers κ(D), λ(D), let us split the proper ball
cuts into eight types, encoded by a sequence of three signs: (±,±,±).

The +/− in the 1st coordinate indicates if D = (a+H)+ or D = (a+H)−.

The +/− in the 2nd coordinate indicates the existence/non-existence of max(S).

The +/− in the 3rd coordinate indicates the existence/non-existence of min(Sc).

In other words, each one of the four types of ball cuts considered in Section 2.3
splits into two subtypes according to the existence or not of min(Sc):

(b+G)+ = (+,+,±), (b+nG)+ = (+,−,±),

(b+G)− = (−,+,±), (b+nG)− = (−,−,±).

Since H(D) = H(−D), multiplication by −1 acts on these eight subtypes by changing
the sign in the first coordinate.



CUTS AND SMALL EXTENSIONS 25

Let us denote by (κ(S), λ(S)) the cofinality and coinitiality of the cut (S, Sc) in I.
Since H is a proper subgroup, S ⊂ I is a non-empty subset. However, for H = 0 we
have S = I and Sc = ∅.
Convention. For the improper cut S = (I, ∅), we agree that λ(S) = 1.

Theorem 4.8. Let D be a proper ball cut in ΓQ. Let S ∈ Init(I) be the initial segment
such that HS is the invariance group of D. Then, the cofinality and coinitiality of D
take the values indicated in the table in Figure 2.

Proof. Let D = (a+HS)−, or D = (a+HS)+, for some a ∈ ΓQ. Denote κ = κ(D),
λ = λ(D). Since the operation of shifting does not change the pair (κ, λ), we may
assume that a = 0.

In the real model of Γbc, the cut D = H−S is realised by x = −eS = (0 | −1 | 0),
where the −1 is placed at the iS-th coordinate.

If there exists iM = max(S), the countable sequence ((−1/n)eiM )n∈N is cofinal in

DL
x . Thus, for the cuts of the type (b+G)− we have κ = ℵ0.
If S has no maximal element, the mapping

S −→ DL
x , i 7−→ −ei

is an order-preserving embedding with cofinal image. Thus, for the cuts of the type
(b+NG)− we have κ = cofin(S) = κ(S).

In the real model of Γbc, the cut D = H+
S is realised by x = eS = (0 | 1 | 0), where

the 1 is placed at the iS-th coordinate.
If there exists im = min(Sc), the countable sequence (neim)n∈N is cofinal in DL

x .
Thus, κ = ℵ0. Now, suppose that Sc has no minimal element. If Sc = ∅, then
D = 0+ and max(DL) = 0, so that κ(D) = 1. Thus, κ = λ(S), after our convention.
If Sc 6= ∅, the mapping

(Sc)opp −→ DL
x , i 7−→ ei

is an order-preserving embedding with cofinal image. Thus, κ = coini(Sc) = λ(S).
Therefore, for the cuts of the types (b+G)+ and (b+NG)+ we have κ = ℵ0 or

κ = λ(S), according to the existence or not of a minimal element in Sc.
Since multiplication by −1 changes the sign of the first coordinate, the knowledge

of κ for all types of ball cuts determines the values of λ = κ(−D) as well. �

5. Applications to valuation theory

Consider two valuations on a polynomial ring K[x] over a field K:

µ : K[x]→ Ω∞, ν : K[x]→ Ω′∞.
Let pµ = µ−1(∞), pν = ν−1(∞) be their supports. Let Γµ ⊂ Ω, Γν ⊂ Ω′ be the
subgroups generated by µ(K[x] \ pµ), ν(K[x] \ pν), respectively.

We say that µ and ν are equivalent, and we write µ ∼ ν, if there is an isomorphism
of ordered groups ϕ : Γµ →∼ Γν fitting into a commutative diagram

Γµ∞
ϕ−→ Γν∞

µ ↖ ↗ ν

K[x]
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Figure 2. The eight subtypes of ball cuts

type subtype κ(D) λ(D)

(b+G)+ (+,+,+) ℵ0 ℵ0

(+,+,−) λ(S) ℵ0

(b+nG)+ (+,−,+) ℵ0 κ(S)

(+,−,−) λ(S) κ(S)

(b+G)−
(−,+,+) ℵ0 ℵ0

(−,+,−) ℵ0 λ(S)

(b+nG)−
(−,−,+) κ(S) ℵ0

(−,−,−) κ(S) λ(S)

Let us denote by [µ] the class of all valuations on K[x] which are equivalent to µ.

Let (K, v) be a valued field, with group of values Γ = v(K∗). Let I = Prin(Γ). As
we saw in the last section, we may fix an embedding of ordered groups,

` : Γ ↪−→ RI
lex ⊂ Rsme ⊂ RI

lex.

Let us focus on the problem of describing all equivalence classes of valuations on
K[x] whose restriction to K is equivalent to v.

5.1. Equivalence classes of valuations on K[x]. If the restriction to K of the
valuation µ : K[x] → Ω∞ is equivalent to v, there exists an embedding of ordered
groups ι : Γ ↪→ Ω, fitting into a commutative diagram

(9)

K[x]
µ−→ Γµ∞

↑ ↑ ι

K
v−→ Γ∞

We say that µ/v is commensurable, preserves the rank, or increases the rank by one,
if the extension ι : Γ ↪→ Γµ has this property, respectively.

By Theorem 3.2, this embedding ι is a small extension. By Theorem 4.1 and
Lemma 4.7, there is an embedding j : Γµ ↪→ RIS

lex, for some S ∈ Init(I), fitting into a
commutative diagram:

K[x]
µ−→ Γµ∞

↑ ↑ ι ↘j

K
v−→ Γ∞ `−→ RIS

lex∞

Take ν to be the valuation on K[x] determined by the mapping j ◦ µ. Its value
group is Γν = j(Γµ) ⊂ RIS

lex, and the tautological isomorphism j : Γµ →∼ Γν shows
that the two valuations are equivalent. This proves the following result.

Proposition 5.1. Every valuation on K[x] whose restriction to K is equivalent to v
is equivalent to some RI

lex-valued valuation

ν : K[x] −→ RI
lex∞
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such that Γν ⊂ Rsme. If ν/v is commensurable, or preserves the rank, then Γν ⊂ ΓQ,
or Γν ⊂ RI

lex, respectively.

Therefore, we are led to find the equivalence classes of valuations in the subset

T =
{
µ : K[x]→ RI

lex | µ valuation, Γµ ⊂ Rsme

}
of the set of all valuations with values in the fixed ordered group RI

lex.
This set T has a natural structure of a tree. It admits a partial ordering:

µ ≤ ν ⇐⇒ µ(f) ≤ ν(f) for all f ∈ K[x],

and all intervals in T are totally ordered.
For µ ∈ T , denote by KP(µ) ⊂ K[x] the set of MacLane–Vaquié key polynomials

for µ. An element in KP(µ) is a monic polynomial whose initial term generates a
prime ideal in the graded algebra of µ, which cannot be generated by the initial term
of a polynomial of smaller degree.

The subset of leaves of T (maximal elements) is characterized as follows:

L(T ) = {µ ∈ T | KP(µ) = ∅} .

Let T inn ⊂ T be the subtree of all inner nodes. For µ ∈ T inn, we define the degree
and the singular value of µ as

deg(µ) = deg(φ), sv(µ) = µ(φ),

where φ ∈ KP(µ) is a key polynomial of minimal degree. It is well known that sv(µ)
is independent of the choice of φ.

In order to classify the nodes of T under equivalence of valuations, we establish on
Rsme an equivalence relation.

Definition. Two elements x, y ∈ Rsme are sme-equivalent, and we write x ∼sme y,
if there exists an isomorphism of ordered groups between the subgroups

〈
Γ, x

〉
and〈

Γ, y
〉

which maps x to y and acts as the identity on Γ.

With this equivalence at hand, we may characterize equivalence of valuations in T
as follows [2, Prop. 6.3].

Proposition 5.2. Let µ, ν ∈ T be two inner nodes. Then, µ ∼ ν if and only if the
following three conditions hold:

(a) KP(µ) = KP(ν).
(b) For all a ∈ K[x] such that deg(a) < deg(µ), we have µ(a) = ν(a).
(c) sv(µ) ∼sme sv(ν).

Consider any subset Γsme ⊂ Rsme which is a faithful set of representatives of all
sme-classes in Rsme. Consider the subtree

T∼ = L(T ) t
{
µ ∈ T inn | sv(µ) ∈ Γsme

}
.

Then, the following holds [2, Thm. 7.1].

Theorem 5.3. The mapping µ 7→ [µ] induces a bijection between T∼ and the set of
equivalence classes of valuations on K[x] whose restriction to K is equivalent to v.
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5.2. Quasi-cuts. A concrete model for Γsme.

A quasi-cut in ΓQ is a pair D =
(
DL, DR

)
of subsets such that DL ≤ DR and

DL ∪ DR = ΓQ. Then, DL is an initial segment of ΓQ, DR is a final segment of ΓQ
and DL ∩DR consists of at most one element.

The set Qcuts(ΓQ) of all quasi-cuts in ΓQ admits a total ordering:

D =
(
DL, DR

)
≤ E =

(
EL, ER

)
⇐⇒ DL ⊂ EL and DR ⊃ ER.

There is an embedding of ordered sets ΓQ ↪→ Qcuts(ΓQ), which assigns to every
a ∈ ΓQ the principal quasi-cut

(
(ΓQ)≤a , (ΓQ)≥a

)
.

The real models for the sets of cuts in ΓQ that we discussed in Section 4, yield a
quite concrete choice for the ordered set Γsme.

Indeed, the equivalence relation ∼sme is almost identical to the equivalence relation
∼cut. More precisely, for all x ∈ Rsme consider the quasi-cut Dx in ΓQ, whose initial
and final segments are:

DL
x = {a ∈ ΓQ | a ≤ x}, DR

x = {a ∈ ΓQ | a ≥ x}.

Lemma 5.4. For all x, y ∈ Rsme, we have x ∼sme y if and only if Dx = Dy.

Proof. Take x ∈ ΓQ. Then, for all y ∈ Rsme we have

x ∼sme y ⇐⇒ x = y ⇐⇒ Dx = Dy.

The first equivalence follows from the fact that two subgroups ∆,∆′ ⊂ ΓQ are Γ-
isomorphic as ordered groups, only when ∆ = ∆′ and the isomorphism between them
is the identity.

Finally, for x, y 6∈ ΓQ, the lemma follows from Proposition 3.11, in the particular
case ∆ = Γ. �

As a consequence, we may take

Γsme = ΓQ t Γnbc t Γbc,

with the total ordering induced by that of Rsme. We derive a natural isomorphism of
ordered sets:

Γsme −→ Qcuts(ΓQ), x 7−→ Dx.

As an immediate consequence of this isomorphism, we deduce that Γsme is complete
and ΓQ is dense in Γsme, with respect to the order topology. Indeed, it is well known
that the ordered set Qcuts(ΓQ) has these properties.
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key polynomials, Illin. J. Math. 65, No.1 (2021), 201–229.
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