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Abstract. The main goal of this paper is to study some properties of an

extension of valuations from classical invariants. More specifically, we consider

a valued field (K, ν) and an extension ω of ν to a finite extension L of K. Then

we study when the valuation ring of ω is essentially finitely generated over

the valuation ring of ν. We present a necessary condition in terms of classic

invariants of the extension by Hagen Knaf and show that in some particular

cases, this condition is also sufficient. We also study when the corresponding

extension of graded algebras is finitely generated. For this problem we present

an equivalent condition (which is weaker than the one for the finite generation

of the valuation rings).

1. Introduction

Let (K, ν) be a valued field, L a finite extension of K and ω an extension of ν

to L. We denote the valuation rings of ω and ν by Oω and Oν , respectively. We

also define the graded algebras associated to ω and ν by

grω(Oω) =
⊕
γ∈Γω

{x ∈ Oω | ω(x) ≥ γ}/{x ∈ Oω | ω(x) > γ}

and

grν(Oν) =
⊕
γ∈Γν

{x ∈ Oν | ν(x) ≥ γ}/{x ∈ Oν | ν(x) > γ},

respectively, where Γω and Γν are the respective value groups of ω and ν. We have

a natural inclusion of graded domains grν(Oν) → grω(Oω) which is an integral

extension, so that grω(Oω) is a finitely generated grν(Oν)-algebra if and and only

if grω(Oω) is a finitely generated grν(Oν)-module.

A ring extension A ⊆ B is called essentially finitely generated if there exist

x1, . . . , xr ∈ B such that

B = S−1A[x1, . . . , xr]
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for some multiplicative set S ⊆ A[x1, . . . , xr]. We also say that B is essentially

of finite type over A if B is essentially finitely generated over A. This paper is

devoted, mainly to the following question:

Question 1.1. (i): When is Oω essentially finitely generated over Oν?

(ii): When is grω(Oω) a finitely generated grν(Oν)-algebra?

The main application that we have in mind is to the problem of local uniformiza-

tion in positive characteristic. One program to solve this problem is by using rami-

fication theory. In this direction, Knaf and Kuhlmann proved that every Abhyankar

valuation admits local uniformization (see [7]) and that every valuation admits lo-

cal uniformization in a suitable finite separable extension of the function field (see

[8]). In order to prove local uniformization for the extension (L|k, ν) they proved

that, in each situation, one can find another field K, k ⊆ K ⊆ L such that (K|k, ν)

admits local uniformization and that L is contained in the absolute inertia field of

K. In the process, they use that if L is contained in the absolute inertia field of K,

then the extension of the valuation rings is essentially finitely generated. Moreover,

the property of having valuation rings essentially finitely generated seems to be

necessary if one wants to lift local uniformization.

Another reason to study such problems is to understand the structure of valu-

ation rings. Valuation rings, despite being almost never noetherian, seem to share

important properties with some classes of noetherian local rings. For example, in

[11] it is proved that the Frobenius map is always flat for valuation rings. This work

is motivated by a famous theorem of Kunz (see [12]) that states that a noetherian

local ring is regular if and only if the Frobenius map is flat.

It is known that if R is an excellent local domain with quotient field K, L is a

finite extension of K and D is the integral closure of R in L, then D is a finitely

generated R-module [6, Scholie IV.7.8.3 (vi)]. We are led to ask whether the same

property holds for a valuation ring, i.e., if O is a valuation ring with quotient field

K and L a finite extension of K, then is the integral closure of O in F a finitely

generated O-algebra? If that is the case, then every valuation ring of L extending

ν is essentially finitely generated over Oν (because all such valuation rings are of

the form Dp where p is a prime ideal of the integral closure D of O in L).

Question 1.1 (i) has a positive answer in the case where L lies in the absolute

inertia field of K (see [13]). In [13], it was studied also, in the case where L lies in

the absolute inertia field of K, under which conditions the extension of valuation

rings is finitely generated (i.e., when we do not need to localize at a prime ideal). In

that paper it was also suggested that items (i) and (ii) of Question 1.1 are closely

related. In this paper, we will give characterizations of when this statements are

true in terms of classic invariants of extensions of valuation rings.
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Throughout this paper we will fix the following notations and assumptions:

(1)



L|K is a finite field extension,

ω is a valuation on L

ν is the restriction of ω to K,

Oω and Oν are the valuation rings of ω and ν, respectively,

Γω and Γν are the value groups of ω and ν, respectively,

Fω and Kν are the residue fields of ω and ν, respectively.

The ramification and inertia indexes of the extension ω|ν are defined as

e(ω|ν) = (Γω : Γν) and f(ω|ν) = [Fω : Kω],

respectively. We also define the henselization of (K, ν) (for a fixed extension ν of

ν to an algebraic closure K of K) as the smallest field Kh such that K ⊆ Kh ⊆ K
and that ν is the only extension of ν|Kh to K ([4, Section 17]). One can prove (see

Corollary 5.3.8 and discussion on page 75 of [5]) that

d(ω|ν) =

[
Lh : Kh

]
e(ω|ν) · f(ω|ν)

is a positive integer which we will call the defect of ω|ν (in fact, one can prove that

d(ω|ν) = 1 if char(Kν) = 0 and d(ω|ν) = pn for some n ∈ N if char(Kν) = p > 0).

For an extension ∆ ⊆ Γ of ordered abelian groups, we define the initial index

of ∆ in Γ [4, page 138] as

ε(Γ | ∆) := |{γ ∈ Γ≥0 | γ < ∆>0}|,

where

Γ≥0 = {γ ∈ Γ | γ ≥ 0} and ∆>0 = {δ ∈ ∆ | δ > 0}.

Hence, we can also define the initial index ε(ω|ν) of the extension ω|ν as ε(Γω : Γν).

If S is a subsemigroup of an abelian semigroup T , we will say that T is a finitely

generated S-module, or that S has finite index in T if there exist a finite number

of elements γ1, . . . , γt ∈ T such that

T =

t⋃
i=1

(γi + S).

We now consider the following statements:

¶. Oω is essentially finitely generated over Oν .

·. grω(Oω) is finitely generated over grν(Oν).

¸. (Γν)≥0 has finite index in (Γω)≥0.

¹. The integral closure D of Oν in L is a finitely generated Oν-algebra.

º. The integral closure D of Oν in L is a finite module over Oν .

». ε(ω|ν) = e(ω|ν).

¼. ε(ω|ν) = e(ω|ν) and d(ω|ν) = 1.

½. ε(ωi|ν) = e(ωi|ν) and d(ωi|ν) = 1, where ω1, . . . , wr are all the extensions of ν

to L.
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One of the main pourposes of this paper is to prove the implications in the

following diagram:

¹ ⇐⇒ º ⇐⇒ ½

6⇑⇓ 6⇑⇓
¶ =⇒ ¼

6⇑⇓
· ⇐⇒ ¸ ⇐⇒ »

Observe that

½ =⇒ ¼ =⇒ » and º =⇒ ¹

are trivial and ¹ =⇒ ¶ follows from the fact that Oω = DD∩mω. Also, the counter-

examples for ¶ 6⇒ ¹, » 6⇒ ¼ and ¼ 6⇒ ½ are not difficult and will be presented in

Section 2.

The equivalence ½ ⇐⇒ º is Theorem 18.6 of [4] and we will show ¹ =⇒ º in

Section 2 (Proposition 2.6). The equivalences

·⇐⇒ ¸⇐⇒ »

are the main subject of Section 3 and the implication ¶ =⇒ ¼ is the main subject

of Section 4. We present in Section 4 a proof of this implication by Hagen Knaf.

It is proven in [13] that if L lies in the absolute inertia field of (K, ν) (this is

equivalent to e(ω|ν) = 1, d(ω|ν) = 1 and that Lω|Kν is separable), then Oω is

essentially finitely generated over Oν . Also, the condition ε(ω|ν) = e(ω|ν) and

d(ω|ν) = 1 implies that Oω is essentially finitelly generated over Oν in the cases

where L|K is normal and when ω is the only extension of ν to L (see Corollary

2.2). Hence, we are led to believe that this holds in general, i.e., that the following

conjecture is true.

Conjecture 1.2 (¼ =⇒ ¶). Assume that we are in situation

(2)

{
We are in situation (1); and

d(ω|ν) = 1 and ε(ω | ν) = e(ω | ν)

Then Oω is essentially finitely generated over Oν .

In Section 5 we will show that in order to prove the conjecture above, we can

assume that L|K is separable, i.e., that it is enough to show the following conjecture.

Conjecture 1.3. Assume that we are in situation (2) and that L|K is separable.

Then Oω is essentially finitely generated over Oν .

One of the main results of this paper is that Conjecture 1.2 is satisfied for the

case where ν is centered in a quasi-excellent local domain of dimension two, or if ν

is an Abhyankar valuation.

If R is a local domain which is contained in K, then we say that ν is centered

in R is R ⊂ Oν and mν ∩R = mR.
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Theorem 1.4. Assume that R is an excellent two-dimensional local domain with

quotient field K. Suppose that ν is a valuation of K centered at R. Assume that

L is a finite separable extension of K and that ω is an extension of ν to L. If

d(ω | ν) = 1 and ε(ω | ν) = e(ω | ν), then Oω is essentially finitely generated over

Oν .

Section 6 is devoted to the proof of Theorem 1.4.

Let K be an algebraic function field over a field k. A valuation ν on K (which

is trivial on k) satisfies the fundamental inequality ([1, Lemma 1])

trdegkK ≥ trdegkOν/mν + ratrk(ν).

Here the rational rank ratrk(ν) of ν is the Q-dimension of the tensor product of the

value group Γν of ν with Q. We say that ν is an Abhyankar valuation if equality

holds in this equation.

Theorem 1.5. Let K be an algebraic function field over a field k, and let ν be an

Abhyankar valuation on K. Assume that L is a finite extension of K and that ω

is an extension of ν to L. Suppose that Oω/mω is separable over k. If d(ω|ν) = 1

and ε(ω|ν) = e(ω|ν), then Oω is essentially finitely generated over Oν .

We prove Theorem 1.5 in Section 7.

Acknowledgement. We are grateful to Hagen Knaf for suggesting the main prob-

lem of this paper and for interesting discussions on the topic. Also, he contributed

substantially to this paper by providing the proof for Theorem 4.1 presented here.

2. Preliminaries

We will start by stating some known results related to this paper. For a subring

R of Oν (and S of Oω) we will denote Rν = Rmν∩R (Sω = Smω∩S).

Theorem 2.1. ([4, Theorem 18.6]) Assume that we are in situation (1) and let

ω = ω1, . . . , ωr be all the extensions of ν to L. Let D be the integral closure of Oν
in L. Then D is a finite free module over Oν if and only if (L|K, ν) is defectless

and ε(ωi|ν) = e(ωi|ν) for every i = 1, . . . , r.

Corollary 2.2. Assume that we are in one of the following case:

(i) ω is the only extension of ν to L;

(ii) L|K is a normal extension.

Then D is a finite Oν-module if and only if d(ω|ν) = 1 and ε(ω|ν) = e(ω|ν).

Proof. Item (i) is trivial and item (ii) follows from the fact that if L|K is normal,

any every extension ωi of ν to L is conjugate to ω and hence d(ωi|ν) = d(ω|ν),

ε(ωi|ν) = ε(ω|ν) and e(ωi|ν) = e(ω|ν). �

Theorem 2.3. ([13, Theorem 1.3]) Assume that we are in situation (1). If e(ω|ν) =

d(ω|ν) = 1 and Lω|Kν is separable, then

Oω = Oν [η]ω for some η ∈ Oω.
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In particular, Oω is essentially finitely generated over Oν .

We will present now the examples that show that the “up arrows” in our diagram

are satisfied.

Example 2.4. (» ; ¼) For this, it is enough to present an immediate extension

with non trivial defect. Example 3.1 of [14] is a simple example of that situation.

Example 2.5. (¶ ; ¹ and ¼ ; ½) Let (K, ν) be a valued field with group of

values 1
3∞Z. Let L be the extension

K(η) = K[X]/(X(X − 1)2 − a)

where a ∈ K is such that ν(a) = 1. Then ν admits two extensions ω1 and ω2 to L

defined by

ω1(η) = 1 and ω2(η − 1) =
1

2
.

Since

e(ω1|ν) ≥ 1 and e(ω2|ν) ≥ 2,

we have by the fundamental inequality, that these are the only extensions of ν to

L. Moreover, we have that

e(ω1|ν) = 1, e(ω2|ν) = 2 and d(ωi|ν) = f(ωi|ν) = 1 for i = 1, 2.

Since the value group of ν is not discrete, we have that ε(ωi|ν) = 1 for i = 1, 2.

Hence, the extension ω1 satisfies ¼ but not ½, since ε(ω2|ν) < e(ω2|ν).

Moreover, since ε(ω2|ν) < e(ω2|ν), by Theorem 2.1 we conclude that ¹ is not

satisfied. By Theorem 2.3, we have that ¶ is satisfied. In fact, one can show that

Oω1
= Oν [η]ω1

.

Proposition 2.6 (¹ =⇒ º). Let A be a normal domain (integrally closed in

K = Quot(A)) and L an algebraic extension extension of K. Let IL(A) be the

integral closure of A in L. If IL(A) is a finitely generated A-algebra, then it is a

finite A-module.

Proof. Take any x ∈ IL(A). Since x is integral over A, there exists a relation

xn + an−1x
n−1 + . . .+ a0 = 0, for a0, . . . , an−1 ∈ A.

This means that

xn = −an−1x
n−1 − . . .− a0 ∈ Ax := Axn−1 + . . .+Ax+A.

Assume now that for k ≥ n, we have xi ∈ Ax for every 1 ≤ i ≤ k. Then

xk+1 = xxk = x(bn−1x
n−1 + bn−2x

n−2 . . .+ b0)

= bn−1x
n + bn−2a

n−1 . . .+ b0x

= (bn−2 − bn−1an−1)xn−1
i + . . .+ (b0 − bn−1a1)x− bn−1a0 ∈ Ax.

Therefore, A[x] = Ax.

If IL(A) = A[x1, . . . , xr], then we choose n1, . . . , nr such that xnii ∈ Axi . Then

we can prove, by induction on s, 1 ≤ s ≤ r, that A[x1, . . . , xs] is generated as an
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A-module by xj11 . . . xjss where 0 ≤ ji < ni and 1 ≤ i ≤ s. Therefore, IL(A) is a

finite A-module. �

3. The initial index

In this section we prove a few basic results about the initial index of a subgroup

∆ of finite index in an ordered group Γ.

Lemma 3.1. Let Γ0 be the first convex subgroup of Γ. If 1 < ε(Γ | ∆) < ∞, then

Γ0 ' Z.

Proof. Assume, towards a contradiction, that Γ0 6' Z. Then Γ does not admit a

smallest positive element. Since ε > 1, there exists γ ∈ Γ>0 such that γ < ∆>0.

Since Γ does not admit a smallest positive element, there would exist infinitely many

positive elements in Γ smaller than ∆>0, and this is a contradiction to ε <∞. �

Proposition 3.2. Assume that ε := ε(Γ | ∆) > 1 and denote

0 = γ0 < γ1 < . . . < γε−1

for all the elements in Γ≥0 which are smaller than ∆>0. Then

(3) γk = kγ1 for every k, 1 ≤ k ≤ ε− 1 and εγ1 ∈ ∆.

Proof. We will prove it by induction on k. For k = 1, the first assertion of (3) is

trivially satisfied. Assume that for a given k, 1 ≤ k ≤ ε− 2, we have γk = kγ1. We

will show that γk+1 = (k + 1)γ1. Since γk = kγ1, we have

(k + 1)γ1 = kγ1 + γ1 = γk + γ1,

hence we have to show that γk+1 = γk + γ1.

Since γk < γk+1 we have 0 < γk+1 − γk and because γ1 is the smallest positive

element of Γ, we obtain that γ1 ≤ γk+1 − γk. Hence, γk + γ1 ≤ γk+1. Since

γk + γ1 ≤ γk+1 < ∆>0, there exists j, 1 ≤ j ≤ ε − 1, such that γk + γ1 = γj . On

the other hand, since γk < γj , by our assumption on γi’s, γk+1 ≤ γj = γk + γ1.

Therefore, γk+1 = γk + γ1, which is what we wanted to prove.

Since γε−1 is the largest element in Γ≥0 which is smaller than every element

δ ∈ ∆>0, there exists δ ∈ ∆ such that

γε−1 < δ ≤ γε−1 + γ1 = (ε− 1)γ1 + γ1 = εγ1.

If δ < εγ1, we would have 0 < δ − γε−1 < γ1, which is a contradiction. Therefore,

δ = εγ1, which completes our proof. �

Proposition 3.3 (¸ ⇐⇒ »). Let Γ be an ordered abelian group and ∆ a subgroup

of Γ of finite index. We have:

(i): ε(Γ | ∆) ≤ (Γ : ∆); and
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(ii): ε(Γ | ∆) = (Γ : ∆) if and only if ∆≥0 has finite index in Γ≥0, i.e., if

there exist γ0, . . . , γn−1 ∈ Γ≥0 (γ0 = 0) such that

Γ≥0 =

n−1⋃
i=0

(γi + ∆≥0) .

Proof. Set ε := ε(Γ | ∆) and choose γ0, . . . , γε−1 ∈ Γ≥0 such that

0 = γ0 < . . . < γε−1 < ∆>0.

We claim that the cosets of the γi’s modulo ∆ are disjoint, i.e, that

(γi + ∆) ∩ (γj + ∆) = ∅ if i 6= j.

Assume otherwise. Then, there would exist i and j, 0 ≤ i < j ≤ ε− 1 such that

γj − γi = δ ∈ ∆.

Then

0 < γj − γi = δ < γj ,

which is a contradiction to our assumption on the γi’s.

Since the cosets of the γi’s are disjoint, we have (i). To prove (ii) we assume

first that ε = (Γ : ∆). This, together with the fact that the γi’s have distinct cosets

modulo ∆ gives us that

Γ =

ε−1⋃
i=0

(γi + ∆) .

Now take any element γ ∈ (Γ)≥0. Since γ ∈ Γ, there exist i, 0 ≤ i ≤ ε− 1, and

δ ∈ ∆ such that γ = γi + δ. We claim that δ ≥ 0. Indeed, if δ < 0, then

0 ≤ γ = γi + δ < γi,

and consequently γ = γj for some j. This implies that

(γi + ∆) ∩ (γj + ∆) 6= ∅ and γi 6= γi,

and this is a contradiction to what we proved in the previous paragraph. Therefore,

(Γ)≥0 =

ε−1⋃
i=0

(
γi + (∆)≥0

)
.

Assume now that

(4) (Γ)≥0 =

n−1⋃
i=0

(
γi + (∆)≥0

)
,

for some γ0, . . . , γn−1 ∈ Γ≥0. We claim that we can choose the γi’s such that

(γi + ∆≥0) ∩ (γj + ∆≥0) = ∅, for 0 ≤ i < j ≤ n− 1.

Indeed, if for some i and j, 0 ≤ i, j ≤ n− 1, we have

(γi + ∆≥0) ∩ (γj + ∆≥0) 6= ∅,
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then there exist δi, δj ∈ ∆≥0 such that γi + δi = γj + δj . Assume, without loss of

generality, that γj > γi. Then δi − δj = γj − γi ∈ ∆≥0 and consequently

γj = γi + δi − δj ∈ γi + ∆≥0.

Hence, γj + ∆≥0 ⊆ γi + ∆≥0 and we can remove γj + ∆≥0 in (4). Since there are

only finitely many γi’s, we proceed as above until we reach disjoint cosets modulo

∆≥0. Assume, without loss of generality, that

0 = γ0 < γ1 < . . . < γn−1.

We will show that

Γ =

n−1⋃
i=0

(γi + ∆) ,

that (γi + ∆) ∩ (γj + ∆) = ∅ when i 6= j and that γn−1 < δ for every δ ∈ ∆>0.

This will imply that (Γ : ∆) = n ≤ ε, and since ε ≤ (Γ : ∆) we conclude that

ε = (Γ : ∆).

Take γ ∈ Γ. If γ ≥ 0, then by our assumption

γ ∈ γi + ∆≥0 ⊆ γi + ∆ for some i, 0 ≤ i ≤ n− 1

and if γ ∈ ∆, then

γ ∈ γ0 + ∆,

because γ0 = 0. Assume now that γ < 0 and that γ ∈ Γ \ ∆. Since ∆ has finite

index in Γ, there exist δ ∈ ∆ and r ∈ N, r > 1, such that rγ = δ. Since γ < 0, we

have δ = rγ < γ and hence γ − δ ∈ Γ≥0. By our assumption, there exists γi and

δ′ ∈ ∆≥0 such that γ − δ = γi + δ′ and consequently γ ∈ γi + ∆. Therefore,

(5) Γ =

n−1⋃
i=0

(γi + ∆) .

Assume now that (γi + ∆) ∩ (γj + ∆) 6= ∅ for some i ≤ j. This means that

there exist δi, δj ∈ ∆ such that γi + δi = γj + δj . Since i ≤ j, this means that

δi− δj = γj −γi ∈ ∆≥0 and since we assumed that the cosets in (4) are disjoint, we

must have that i = j. This implies that the cosets in (5) are disjoint and therefore

n = (Γ : ∆).

It remains to show that n ≤ ε, i.e., that γn−1 < δ for every δ ∈ ∆>0. If this were

not the case, then there would exist δ ∈ ∆ such that 0 < δ ≤ γn−1 and consequently

γn−1 − δ ∈ Γ≥0. Since δ > 0 we have that γn−1 − δ < γn−1 and hence there exists

i, 0 ≤ i < n − 1 such that γn−1 − δ = γi + δ′. Therefore, γn−1 − γi ∈ ∆, which is

a contradiction to the fact that the cosets in (5) are disjoint. This concludes our

proof. �

Remark 3.4. (i) We observe from the proof of the above proposition, that if

ε := ε(Γ : ∆) = (Γ : ∆), then

Γ =

ε−1⋃
i=0

(γi + ∆) and Γ≥0 =

ε−1⋃
i=0

(γi + ∆≥0) ,
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where 0 = γ0 < γ1 < . . . < γε−1 are all the elements in Γ≥0 smaller than ∆>0.

(ii) From the above propositions we conclude that if ε(Γ|∆) = (Γ : ∆), then

Γ/∆ ' Z/εZ.

Corollary 3.5. Assume that Γ = Γ1 ⊕lex Z. If ε := ε(Γ | ∆) = (Γ : ∆) > 1, then

for every γ1 ∈ (Γ1)>0 there exists a ∈ Z such that (γ1, a) ∈ ∆.

Proof. Since (0, 1) is the smallest element of Γ>0, Proposition 3.2 gives us that

(0, i) /∈ ∆ for every i, 1 ≤ i < ε, and (1, ε) ∈ ∆. Since ε(Γ|∆) = (Γ : ∆),

Proposition 3.3 (and the remark above) gives us

Γ≥0 =

ε−1⋃
i=0

(0, i) + ∆≥0.

Since (γ1, 0) ∈ Γ≥0, there exists (b, c) ∈ ∆≥0 and i, 0 ≤ i ≤ ε − 1 such that

(γ1, 0) = (b, c) + (0, i). Hence, (γ1,−i) = (b, c) ∈ ∆≥0. �

As a consequence of the previous corollary, if Γ = Zn (with the lexicographic

ordering) and ∆ ⊆ Γ is such that ε(Γ|∆) = (Γ : ∆), then there exist ai,j ∈ Z, for

1 ≤ i ≤ n− 1 and i+ 1 ≤ j ≤ n, such that

(1, a12, . . . , a1n), . . . , (0, . . . , 0, 1, an−1n) ∈ ∆.

Indeed, setting Γ1 = Zn−1, the previous corollary says that for every γ1 ∈ Zn−1,

γ1 > 0, there exists a ∈ Z such that (γ1, a) ∈ ∆. Hence, if we take

γ1 = (1, a12, . . . , a1n−1), . . . , γn−1 = (0, . . . , 0, 1) ∈ Γ1

(we could choose aij = 0 if we wanted), there exist a1n, . . . , an−1n ∈ Z such that

(1, a12, . . . , a1n), . . . , (0, . . . , 0, 1, an−1n) ∈ ∆.

We will now prove the converse of the previous statement.

Proposition 3.6. Assume that Γ = Zn (with lexicographic ordering) and that ∆

is a subgroup of Γ of finite order. If there exist ai,j ∈ Z with 1 ≤ i ≤ n − 1 and

i+ 1 ≤ j ≤ n such that

(1, a12, . . . , a1n), . . . , (0, . . . , 0, 1, an−1n) ∈ ∆,

then ε(Γ : ∆) = (Γ : ∆).

Proof. First we observe that if there exist ai,j ∈ Z, 1 < i ≤ j ≤ n such that

(1, a12, . . . , a1n), . . . , (0, . . . , 0, 1, an−1n) ∈ ∆,

then (using “Gaussian elimination”) there exist a1, . . . , an−1 ∈ Z such that

α1 := (1, 0, . . . , 0, a1), . . . , αn−1 := (0, . . . , 0, 1, an−1) ∈ ∆.

If ε(Γ|∆) = 1, then (0, . . . , 0, 1) ∈ ∆ and we can use again Gaussian elimination to

obtain that (1, . . . , 0, 0), . . . , (0, . . . , 0, 1) ∈ ∆ and hence Γ = ∆.
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If ε(Γ : ∆) > 1, then by Lemma 3.2, we have that (0, . . . , 0, 1), . . . , (0, . . . , 0, ε−
1) /∈ ∆ and (0, . . . , 0, ε) ∈ ∆. We will show that

Γ≥0 =

ε−1⋃
i=0

(0, . . . , 0, i) + ∆≥0

and the result will follow from Proposition 3.3 (ii). Take any γ = (b1, . . . , bn) ∈ Γ≥0.

If b1 = b2 = . . . = bn−1 = 0, then bn ≥ 0 and there exist c′ ∈ N and i, 0 ≤ i ≤ ε− 1,

such that bn = i+ c′ε. Hence, γ = (0, . . . , 0, i) + δ where δ = c′(0, . . . , 0, ε) ∈ ∆≥0.

If bj 6= 0 for some j, 1 ≤ j ≤ n − 1, then there exists i, 1 ≤ i ≤ n − 1, such that

bj = 0 for j < i and bi > 0. Then, we can write

γ = biαi + bi+1αi+1 + . . .+ bn−1αn−1 + (0, . . . , 0, c)

for some c ∈ Z. Then there exists c′ ∈ Z and i, 1 ≤ i ≤ ε− 1, such that

c = i+ c′ε.

Therefore, γ = (0, . . . , 0, i) + δ, where

δ = biαi + bi+1αi+1 + . . .+ bn−1αn−1 + c′(0, . . . , 0, ε) ∈ ∆≥0.

This concludes our proof. �

The next lemma shows that ε is multiplicative.

Lemma 3.7. Let ∆ ⊆ Σ ⊆ Γ be ordered abelian groups (with ∆ ⊆ Σ, Σ ⊆ Γ and

∆ ⊆ Γ of finite index). Then

ε(Γ | Σ) · ε(Σ | ∆) = ε(Γ | ∆).

In particular, ε(Γ | ∆) = (Γ : ∆) if and only if

ε(Γ | Σ) = (Γ : Σ) and ε(Σ | ∆) = (Σ : ∆).

Proof. Let r = ε(Σ | ∆) and s = ε(Γ | Σ) and choose elements σ0, . . . , σr−1 ∈ Σ≥0

and γ0, . . . , γs−1 ∈ Γ≥0 such that

0 = σ0 < . . . < σr−1 < ∆>0 and 0 = γ0 < . . . < γs−1 < Σ>0.

If δ ∈ ∆>0, then σr−1 < δ and since ∆ ⊆ Σ we have δ − σr−1 ∈ Σ>0. Hence,

γs−1 < δ − σr−1 which implies that

σi + γj ≤ σr−1 + γs−1 < δ, for every i and j, 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s− 1.

Therefore,

ε(Γ | Σ) · ε(Σ | ∆) = r · s ≤ ε(Γ | ∆).

Take now γ ∈ Γ≥0 such that γ < ∆>0 and let j, 0 ≤ j ≤ r − 1 be the largest

index for which σj ≤ γ, i.e.,

j = r − 1 and σr−1 ≤ γ or j < r − 1 and σj ≤ γ < σj+1.
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We claim that γ − σj < Σ>0 and consequently γ − σj = γi (i.e., γ = γi + σj) for

some i, 0 ≤ i ≤ s − 1. Indeed, if this were not the case, then there would exist

σ ∈ Σ>0 such that

0 < σ ≤ γ − σj ≤ γ < ∆>0

and then σ = σj′ for some j′, 0 ≤ j′ ≤ r − 1. This would imply that

σj < σj + σj′ ≤ γ < ∆>0.

Since σj + σj′ ∈ Σ>0 and σj + σj′ ≤ γ < ∆>0, this implies that σj + σj′ = σj′′

for some j′′, j < j′′ ≤ r − 1. This is a contradiction to the fact that j was chosen

as the largest index for which σj ≤ γ. We have proved that for every γ ∈ Γ≥0, if

γ < ∆>0, then there exist i and j, 0 ≤ i ≤ s − 1 and 0 ≤ j ≤ r − 1, such that

γ = σj + γi. Therefore,

ε(Γ | ∆) ≤ r · s = ε(Γ | Σ) · ε(Σ | ∆).

This concludes the proof that ε(Γ | ∆) = ε(Γ | Σ) · ε(Σ | ∆).

Since ε(Γ | Σ) ≤ (Γ : Σ), ε(Σ : ∆) ≤ (Σ : ∆) and ε(Γ : ∆) ≤ (Γ : ∆), we have

ε(Γ : ∆) = ε(Γ | Σ) · ε(Σ | ∆) ≤ (Γ : Σ) · (Σ : ∆) = (Γ : ∆) ≤ ε(Γ : ∆).

If the equality holds in one of the above inequalities, then equality holds everywhere.

Therefore, ε(Γ | ∆) = (Γ : ∆) if and only if ε(Γ | Σ) = (Γ : Σ) and ε(Σ | ∆) = (Σ :

∆). �

Theorem 3.8 (·⇐⇒ ¸). We have that grω(Oω) is finitely generated over grν(Oν)

if and only if (Γω)≥0 is finitely generated over (Γν)≥0.

Proof. Assume first that grω(Oω) is finitely generated over grν(Oν). This implies

that there exist f1, . . . , fn ∈ Oω such that inω(f1), . . . , inω(fn) generate grω(Oω)

over grν(Oν). For γ ∈ (Γω)≥0 there exists x ∈ Oω such that ω(x) = γ. Since

inω(f1), . . . , inω(fn) generate grω(Oω), there exist g11, . . . , g1r1 , . . . , g1n, . . . , gnrn ∈
Oν , such that

inω(x) =

 r1∑
j=1

inν(g1j)

 inω(f1) + . . .+

 rn∑
j=1

inν(gnj)

 inω(fn)

=

 r1∑
j=1

inν(g1j)inω(f1)

+ . . .+

 rn∑
j=1

inν(gnj)inω(fn)


By the definition of the graded algebra, this means that we just need to consider

the homogeneous components of degree γ in the equation above, hence there exists

some fi and gij such that

γ = ω(x) = ω(gijfi) = ν(gij) + ω(fi).

Hence

(Γω)≥0 =

n⋃
i=1

(
ω(fi) + (Γν)≥0

)
.
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For the converse, assume that (Γω)≥0 has finite index over (Γν)≥0. Thus there

exist f1, . . . , fn ∈ Oω such that

(Γω)≥0 =

n⋃
i=1

(
ω(fi) + (Γν)≥0

)
.

Moreover, since Fω is a finite Kν-vector space, there exists h1, . . . , hr ∈ Oω such

that h1ω, . . . , hrω is a Kν-basis of Lω. For x ∈ Oω there exists i0 ∈ {1, . . . , n} such

that ω(x) = ν(gi0) + ω(fi0) for some gi0 ∈ Oν . This means that ω
(

x
gi0fi0

)
= 0.

Then, there exists a1, . . . , ar ∈ Oν such that(
x

gi0fi0

)
ω = a1ν · h1ω + . . .+ arν · hrω.

Hence

ω(x− a1h1gi0fi0 − · · · − arhrgi0fi0) > ω(x).

Consequently,

inω(x) =
∑
j∈J

inν(ajgi0)inω(hjfi0),

where

J = {j ∈ {1, . . . , r} | ω(a1h1gi0fi0) = ω(x)}.
Therefore, grω(Oω) is generated over grν(Oν) by

{inω(hjfi) | 1 ≤ j ≤ r and 1 ≤ i ≤ n}.

�

4. Proof of the necessity condition

The statement and proof of Theorem 4.1 are by Hagen Knaf.

Theorem 4.1. (¶ =⇒ ¼)(Knaf) Assume that we are in condition (1). Then for

the local ring extension Oν ⊆ Oω to be essentially finitely generated the following

conditions are necessary:

e(ω|ν) = ε(ω|ν) and d(ω|ν) = 1.

The proof given here is based on three results, which are interesting for their

own sake. Comparing the construction of the henselization Kh of a valued field

(K, ν) in [4, Section 17] and the construction of the henselization of a normal local

ring in [10, Section 43], we see that the valuation ring of the valued field Kh is the

henselization Ohν of Oν .

Lemma 4.2. Assume that we are in condition (1). Then the ring Oω/mνOω is a

Kν-vector space of dimension ε(ω|ν)f(ω|ν).

The proof can be found in [4] (18.5).

Lemma 4.3. Assume that we are in condition (1). If Oν ⊆ Oω is a finite ring

extension, then e(ω|ν) = ε(ω|ν) and d(ω|ν) = 1 hold.
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Proof. The finitely generated, torsion-free Oν-module Oω is free of rank [L : K] by

[4, (18.6)]. By Nakayama’s lemma, lemma 4.2 and [4, (18.3)] one gets

[L : K] = ε(ω|ν)f(ω|ν) ≤ d(ω|ν)e(ω|ν)f(ω|ν) = [Lh : Kh] ≤ [L : K]

and thus the assertion. �

Lemma 4.4. Assume that we are in condition (1). Then Ohω = Oω ·Ohν , where the

ring compositum is formed within the field Lh.

Proof. Recall that a local ring R is called henselian, if Hensel’s lemma holds for

that ring. The henselization Rh of a local ring is henselian [10], (43.3), or just for

valuation domains [4], Theorem 17.11. The latter suffices for the current proof.

The extension Ohν ⊆ Oω ·Ohν is integral and local, since Ohω is the integral closure of

Ohν in Lh. Therefore by [10], Corollary 43.13 the ring Oω ·Ohν is henselian, which by

[10], Theorem 43.5 yields the existence of an injective Oω-algebra homomorphism

f : Ohω −→ Oω · Ohν . In particular, Oω · Ohν is an overring of the valuation ring

f(Ohω) within Lh and is thus a valuation ring itself. Since Oω · Ohν ⊆ Ohω is integral

the assertion follows. �

Proof of Theorem 4.1. By assumption there exists a finitely generated Oν-algebra

A ⊆ Oω and a multiplicative subset S ⊆ A such that Oω = S−1A. The prime

q = mω ∩ A has the property q ∩ S = ∅, hence Aq = Oω. The ring compositum

A · Ohν formed within Lh is local, because it lies between Ohν and Ohω. Its maximal

ideal m satisfies m∩A = q, because on the one hand m = mω ∩ (A · Ohν ) and on the

other hand mhω∩A = q. Consequently Aq ⊆ A·Ohν , which by assumption and lemma

4.4 implies A ·Ohν = Ohω. In particular, by Proposition 2.6, Ohν ⊆ Ohω is a finite ring

extension, which by Lemma 4.3 implies e(ωh|νh) = ε(ωh|νh) and d(ωh|νh) = 1.

Since the henselization is an immediate extension, we have that e(ωh|νh) = e(ω|ν)

and ε(ωh|νh) = ε(ω|ν). Moreover by definition d(ωh|νh) = d(ω|ν). �

5. Reduction of Conjecture 1.2 to the separable case

Lemma 5.1. Let K ⊆ F ⊆ L be finite extensions of fields and let ω be a valuation

on L (whose restrictions to F and K we will denote by µ and ν, respectively). If

Oω is essentially finitely generated over Oµ and Oµ is essentially finitely generated

over Oν , then Oω is essentially finitely generated over Oν .

Proof. First we observe that if for some R ⊆ Oω there exists a prime ideal q of

R such that Oω = Rq, then Oω = Rω. Indeed, since Rq = Oω we have that

R \ q ⊆ R \mω. Therefore Oω = Rω.

Assume now that Oω is essentially finitely generated over Oµ and that Oµ
is essentially finitely generated over Oν . Then there exist x1, . . . , xr ∈ Oω and

y1, . . . , ys ∈ Oµ such that

Oω = Oµ[x1, . . . , xr]ω and Oµ = Oν [y1, . . . , ys]µ.
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Since Oν [y1, . . . , ys] ∩mµ = Oν [y1, . . . , ys] ∩mω this implies that

Oω = Oν [x1, . . . , xr, y1, . . . , ys]ω.

Therefore, Oω is essentially finitely generated over Oν . �

Proposition 5.2. Assume that we are in situation (1). Let L′ be a subfield of L

containing K and set ω′ = ω|L′ . Assume that ω is the unique extension of ω′ to L.

If Oω′ is essentially finitely generated over Oν , d(ω|ω′) = 1 and ε(ω|ω′) = e(ω|ω′),
then Oω is essentially finitely generated over Oν .

Proof. Since ω is the only extension of ω′ to L, d(ω|ω′) = 1 and ε(ω|ω′) = e(ω|ω′),
Corollary 2.2 guarantees that the integral closure D′ of Oω′ in L is a finite Oω′ -

module. Since Oω = D′ω, this implies that Oω is finitely generated over Oω′ . By our

assumption and Lemma 5.1 we conclude that Oω is essentially finitely generated

over Oν . �

Corollary 5.3. If Conjecture 1.3 is true, then Conjecture 1.2 is also true.

Proof. Assume now that we are in situation (2) and set L′ to be the separable

closure of K in L and ω′ = ω|L′ . Since L|L′ is purely inseparable, ω is the unique

extension of ω′ to L.

Since (L|K, ν) is defectless, so are (L|L′, ω′) and (L′|K, ν). Since ε is mul-

tiplicative (Lemma 3.7) and ε(ω|ν) = e(ω|ν) then also ε(ω|ω′) = e(ω|ω′) and

ε(ω′|ν) = e(ω′|ν). If Conjecture 1.3 is true, then we are in the situation of Propo-

sition 5.2, and therefore Oω is essentially finitely generated over Oν . �

6. Proof of Theorem 1.4

We first review some notation that will be used in the proof. If R is a local ring,

we will denote its maximal ideal by mR. The maximal ideal of a valuation ring Oν
will be denoted by mν . If a local domain R is a subring of a local domain S and

mS ∩R = mR we will say that S dominates R and that R→ S is dominating. We

will say that ν dominates R if Oν dominates R. Recall that if R is a subring of a

valuation ring Oν , then Rν is the localization Rν = Rmν∩R.

If a local domain S dominates a local domain R, S is essentially of finite type

over R and R and S have the same quotient field, then R → S will be called a

birational extension. If R is a regular local ring, then a quadratic transform of

R is a dominating map R → S such that S is a local ring of the blowup of the

maximal ideal of R. A quadratic transform R→ S is a quadratic transform along a

valuation ν if ν dominates S. An iterated quadratic transform is a finite sequence

of quadratic transforms.

We now present the proof of Theorem 1.4.

After possibly replacing R with a birational extension of R along ν, we may

assume that R is normal and Oν/mν is algebraic over R/mR. If dimR = 1, then R

is a valuation ring, so R = Oν . Since R is excellent, the integral closure of Oν in L

is a finite R-module. Thus Oω is the localization of a finite Oν-module.
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From now on, assume that dimR = 2.

Let S be the local ring of the integral closure of R in L which is dominated by

ω. The ring S is essentially of finite type over R since R is excellent.

First assume that the rank rk(ν) > 1. By Abhyankar’s inequality [1, Theorem

1], this implies that rk(ν) = 2 and

Γω ' (Z2)lex.

By Theorem 3.7 of [3], our assumption that rk(ν) = 2 implies the assumption of

our theorem that d(ω|ν) = 1, and that there exists a diagram

R0 −→ S0x x
R −→ S

such that R0 and S0 are two-dimensional regular local rings, ω dominates S0, all

the arrows are dominating and the vertical arrows are birational extensions (i.e.,

localizations of blow-ups at ideals) and regular parameter x1(0), x2(0) in R0 and

y1(0), y2(0) in S0 such that there exist units α, β ∈ S0 and a, b, c, d ∈ N such that

|ad− bc| = e and

x1(0) = α · y1(0)ay2(0)b and x2(0) = β · y1(0)cy2(0)d.

Further, the forms of these equations are stable under further quadratic transforms

of ω along ν. We have that S0 is a local ring of a finitely generated R0-algebra since

S is a localization of a finitely generated R-algebra and S −→ S0 is a birational

extension. That is, there exists z1, . . . , zr ∈ S0 such that S0 = Tω where T =

R0[z1, . . . , zr].

Since Γν has finite index in Γω, there exist u, v ∈ K such that ν(u) > mν(v) > 0

for all positive integers m. Replacing R0 and S0 with suitable iterated quadratic

transforms along ν and ω respectively, we may assume that u, v ∈ R0 and

u = φx1(0)s1x2(0)s2 , v = ψx1(0)t1x2(0)t2

for some s1, s2, t1, t2 ∈ N and units φ, ψ ∈ R0. After possibly interchanging x1(0)

and x2(0), we then have that ν(x1(0)) > mν(x2(0)) > 0 for all positive integers m.

Similarly, we can assume that ω(y1(0)) > mω(y2(0)) > 0 for all positive integers

m.

Since ε = e, there exists a ∈ Z such that (1, a) ∈ Γν (by Corollary 3.5). Thus,

after possibly performing some further iterated quadratic transforms along ν and

ω, we can assume that there exists f ∈ R0 such that ω(f) = (1, a) for some a ∈ Z
and that f = γ · x1(0)mx2(0)n for some m,n ∈ N, where γ ∈ R0 is a unit. Then

m = 1 and ν(x1(0)) = (1, l) for some l ∈ Z. Consequently, ω(y1(0)) = (1,m) for

some m ∈ Z and a = 1. Further, c = 0. So

x1(0) = α · y1(0)y2(0)b and x2(0) = β · y2(0)e.
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Let S0 −→ S1 be the iterated quadratic transform of S0 along ω with

S1 = S0[y1(1)]ω

where

y1(0) = y1(1)y2(0)r and y2(0) = y2(1)

and r ∈ Z+ is chosen so that b+ r = se for some s ∈ Z+. Let

R0 −→ R1 = R0[x1(1)]ν

be the iterated quadratic transform along ν defined by

x1(0) = x1(1)x2(0)s and x2(0) = x2(1).

We have that

x1(1) =
x1(0)

x2(0)s
= α · β−sy1(1) and x2(1) = β · y2(1)e.

In particular, S1 dominates R1. Further, S1 is a localization of R1[z1, . . . , zr].

Iterating this construction, we produce an infinite commutative diagram of reg-

ular local rings dominated by ω

...
...

Rn −→ Sn
↑ ↑
...

...

↑ ↑
R1 −→ S1

↑ ↑
R0 −→ S0

such that Si is a localization of Ri[z1, . . . , zr] for every i ∈ N and the vertical

arrows are iterated quadratic transforms. Since R and S are two-dimensional local

domains,

Oν =

∞⋃
i=0

Ri and Oω =

∞⋃
i=0

Si

by [1, Lemma 12]. Therefore, Oω is a localization of Oν [z1, . . . , zr].

Now we assume that rk(ν) = 1. Since d(ω|ν) = 1, by Theorem 3.3 and Theorem

3.7 of [3], there exists a commutative diagram

R0 −→ S0x x
R −→ S

such that R0 and S0 are two-dimensional regular local rings, ω dominates S0, all

the arrows are dominating and the vertical arrows are birational extensions and
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there exist regular parameters x1(0), x2(0) in R0 and y1(0), y2(0) in S0 such that,

if the rational rank ratrk(ν) = 1, then there exists a unit α ∈ S0 such that

(6) x1(0) = α · y1(0)e and x2(0) = y2(0),

and if ratrk(ν) = 2, then there exist units γ and τ in S0 such that

(7) x1(0) = γy1(0)ay2(0)b, x2(0) = τy1(0)cy2(0)d

where |ad− bc| = e. In both cases, we have that Oω/mω is the join of (Oν/mν) and

S0/mS0
and

(8) f(ω|ν) = [S0/mS0 : R0/mR0 ] = [Oω/mω : Oν/mν ].

Further, these equations are stable under suitable iterated quadratic transforms

along ν and ω.

Also, S0 is a localization of a finitely generated R-algebra, since S −→ S0 is a

birational extension. Thus there exist z1, . . . , zr ∈ S0 such that S0 = Tω where

T = R0[z1, . . . , zr].

We will treat the cases e = 1 and e > 1 separately. Assume first that e = 1. If

ratrk(ν) = 1, then replacing y1(0) with α · y1(0), we have that

(9) x1(0) = y1(0) and x2(0) = y2(0).

If ratrk(ν) = 2, then from |ad − bc| = 1, we have that there exists an iterated

quadratic transform R0 → R′ along ν such that S0 dominates R′ and R′ has regular

parameters x′1, x
′
2 such that x′1 = γ′y1(0) and x′2 = τ ′y2(0) where γ′, τ ′ ∈ S0 are

units. After replacing R0 with R′, we then have that (9) holds.

After possibly interchanging x1(0) and x2(0) (and y1(0) and y2(0)) we can assume

that ν(x2(0)) ≥ ν(x1(0)). Then the quadratic transform of R0 along ν is

R0 −→ R1 = R0

[
x2(0)

x1(0)

]
ν

.

Let x1(1) = x1(0). Then

R1/(x1(1)) ' R0/mR0

[
x2(0)

x1(0)

]
n

,

where n is a suitable maximal ideal and x2(0)
x1(0) is transcendental over R0/mR0

. Thus,

the maximal ideal of R1/(x1(0)) is generated by an element

f =

(
x2(0)

x1(0)

)d
+ a1

(
x2(0)

x1(0)

)d−1

+ . . .+ ad

for some d and ai ∈ R0/mR0
. Then R1/mR1

= R0/mR0
[z] where z is the class of

x2(0)
x1(0) in R1/mR1 ⊆ Oν/mν ⊆ Oω/mω and f is the minimal polynomial of z over

R0/mR0
. We have that d = [R1/mR1

: R0/mR0
]. The quadratic transform of S0

along ω is

S0 −→ S1 = S0

[
y2(0)

y1(0)

]
ω

, where
y2(0)

y1(0)
=
x2(0)

x1(0)
.
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Let y1(1) = y1(0). Now, as in the inclusion of R0 −→ R1 we have

S1/mS1
' S0/mS0

[z]

and the minimal polynomial of z in S0/mS0

[
x2(0)
x1(0)

]
divides the minimal polynomial

f of z in R0/mS0

[
x2(0)
x1(0)

]
. But by (8), we have

[S1/mS1
: R1/mR1

] = [S0/mS0
: R0/mR0

] = f(ω|ν),

so from

[S1/mS1
: R0/mR0

] = [S1/mS1
: S0/mS0

][S0/mS0
: R0/mR0

]

= [S1/mS1 : R1/mR1 ][R1/mR1 : R0/mR0 ]

we have that [S1/mS1
: S0/mS0

] = d and so f is the minimal polynomial of z

over S0/mS0 . Now letting x2(1) = f where f is a lifting of f to R1, we have that

x1(1), x2(1) are regular parameters in R1 and in S1, giving an expresion like in (9)

in R1 −→ S1.

Further, S1 is a localization of R1[z1, . . . , zr]. Iterating this construction, we

have as in the case rk(ν) = 2 that Oν = ∪∞i=0Ri and Oω = ∪∞i=0Si are unions of

iterated quadratic transforms of R0 and S0 along ν and ω respectively, and Si is a

localization of Ri[z1, . . . , zr] for all i. Thus Oω is a localization of Oν [z1, . . . , zr].

It remains to prove our theorem in the case when rk(ν) = 1 and ε = e > 1. We

then have that ν is discrete of rank one by [4, (18.4) b)]. In this case we have

Γν = eZ ⊆ Z = Γω.

Then, there exists g ∈ K such that ν(g) = e and we may assume (after possibly

performing iterated quadratic transforms of R0 and S0 along ν and ω) that g ∈ R0

amd g = γ · x1(0)a for some unit γ ∈ R0 and some a ∈ Z>0. Thus a = 1 and

ν(x1(0)) = e, and so ω(y1(0)) = 1. Now e | ω(x2(0)) = ω(y2(0)), so ω(x2(0)) =

ω(y2(0)) = es for some s ∈ Z>0. Thus

ω

(
y2(0)

y1(0)

)
= ω

(
x2(0)

x1(0)

)
≥ 0.

Let R1 = R0

[
x2(0)
x1(0)

]
ν

and S1 = S0

[
y2(0)
y1(0)

]
ω

. Now R0 −→ R1 is a quadratic trans-

form along ν and S0 −→ S1 is a quadratic transform along ω. As in the previ-

ous case, S1 dominates R1 and there exists x2(1) ∈ R1 such that x1(1) = x1(0)

and x2(1) are a regular system of parameters in R1 such that y1(1) = y1(0) and

y2(1) = x2(1) are regular system of parameters in S1 satisfying x1(1) = α · y1(1)e

and x2(1) = y2(1) by (6). In particular, S1 is a localization of R1[z1, . . . , zr].

Iterating this construction, as in the cases of rk(ν) = 2 and rk(ν) = 1 with e = 1,

we have that Oν = ∪∞i=0Ri and Oω = ∪∞i=0Si are unions of iterated quadratic

transforms of R0 and S0 along ν and ω respectively., and Si is a localization of

Ri[z1, . . . , zr] for all i. Thus Oω is a localization of Oν [z1, . . . , zr].
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7. Proof of Theorem 1.5

Proposition 7.1. Suppose that (K, ν) is a valued field, L is a finite extension field

of K and ω is an extension of ν to L such that

1 < ε(ω|ν) = e(ω|ν).

Let Γν,1 be the first convex subgroup of Γν and Γω,1 be the first convex subgroup of

Γω. Then Γω,1 ∼= Z and in the short exact sequence of groups

(10) 0→ Γω,1/Γν,1 → Γω/Γν → (Γω/Γω,1)/(Γν/Γν,1)→ 0

we have that

(Γω/Γω,1)/(Γν/Γν,1) = 0

and

Γω/Γν ∼= Γω,1/Γν,1 ∼= Ze.

Proof. We have that Γω,1 ∼= Z by Lemma 3.1. The proposition now follows from

Proposition 3.2, Remark 3.4 and (10). �

Suppose that K is an algebraic function field over a field k. An algebraic local

ring of K is a local domain R such that R is essentially of finite type over k and

the quotient field of R is K.

Theorem 7.2. ([7, Theorem 1.1]) Let K be an algebraic function field over a field

k, and let ν be an Abhyankar valuation on K. Suppose that Oν/mν is separable

over k and Z ⊂ Oν is a finite set. Then there exists an algebraic regular local ring

R of K such that ν dominates R and dimR = ratrk(ν). Further, there exists a

regular system of parameters in R such that each element of Z is a monomial in

the regular system of parameters times a unit in R.

7.1. Abhyankar valuations on algebraic function fields. In this subsection,

suppose that K is an algebraic function field over a field k and ν is an Abhyankar

valuation on K. Then Γν is a finitely generated (torsion free) abelian group by [1,

Lemma 1]. Let n = ratrk(ν), and

0 = Γν,0 ⊂ Γν,1 ⊂ · · · ⊂ Γν,r = Γν

be the chain of convex subgroups of Γν . Each quotient Γνi/Γν,i+1 is a torsion free

abelian group.

Proposition 7.3. In the conclusions of Theorem 7.2, we can choose R so that R

has a regular system of parameters {zi,j} such that for each fixed i with 1 ≤ i ≤ r,
we have that {ν(zi,j)} is a Z-basis of Γν,i/Γν,i−1.

Proof. There exists a Z-basis {γi,j} of Γν such that γi,j ∈ (Γν)≥0 for all i, j and

for each fixed i with 1 ≤ i ≤ r, the images of γi,j in Γν,i/Γν,i−1 form a Z-basis of

Γν,i/Γν,i−1.

There exist fi,j ∈ Oν such that ν(fi,j) = γi,j for all i, j. Reindex the fi,j
as f1, . . . , fn so that the ν(fi) are increasing. By Theorem 7.2, there exists an
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algebraic regular local ring R of K such that dimR = n and there exists a regular

system of parameters z1, . . . , zn in R and units λi ∈ R such that

fi = λiz
a1,i
1 · · · zan,in for 1 ≤ i ≤ n.

Since ν(f1), . . . , ν(fn) is a Z-basis of Γν , we have that ν(z1), . . . , ν(zn) is a Z-basis

of Γν . Further, we can reindex the zi as zi,j so that for all fixed i with 1 ≤ i ≤ r,

{ν(zi,j)} is a Z-basis of Γν,i/Γν,i−1. �

Suppose that R satisfies the conclusions of Proposition 7.3. Index the regular

system of parameters zi,j as x1, . . . , xn so that ν(xi) < ν(xj) if i < j.

We define a primitive monoidal transform (PMT) R → R1 along ν by R1 =

R
[
xj
xi

]
ν
. We have thatR1 is a regular local ring with regular parameters x1(1), . . . , xn(1)

defined by

xk = xk(1) if k 6= j and xj = xj(1)xi(1).

Further, {ν(xk(1)) | 1 ≤ k ≤ n} is a Z-basis of Γν , which satisfies the conclusions

of Proposition 7.3 in R1.

We will find the following proposition useful.

Proposition 7.4. Suppose that R satisfies the conclusions of Proposition 7.3, with

regular parameters x1, . . . , xn and M1 = xa11 · · ·xann , M2 = xb11 · · ·xbnn are mono-

mials such that ν(M1) < ν(M2). Then there exists a sequence of PMTs along

ν

R→ R1 → · · · → Rs

such that M1 divides Ms in Rs.

Proof. Consider the indexing zi,j of the regular parameters xi of the statement of

Proposition 7.3. Write

M1 =
∏
i,j

z
ai,j
i,j , M2 =

∏
i,j

z
bi,j
i,j .

There exists a largest index l such that
∏
j z

al,j
l,j 6=

∏
j z

bl,j
l,j . Then ν(

∏
j z

al.j
l,j ) <

ν(
∏
j z

bl,j
l,j ). By [15, Theorem 2], there exists a sequence of PMTs R→ Rs along ν

in the variables zl,j(m) from the regular parameters of Rm as j varies, such that∏
j z

al.j
l,j divides

∏
j z

bl,j
l,j in Rs. Writing M1 and M2 in the regular parameters zi,j(s)

of Rs as

M1 =
∏

zi,j(s)
ai,j(s) and M2 =

∏
zi,j(s)

bi,j(s),

we have that

M2 =

∏
i<l,j

zi,j(s)
bi,j(s)

∏
j

zl,j(s)
bl,j(s)−al,j(s)

∏
i>l,j

zl,j(s)
ai,j(s)


with bl,j(s)− al,j(s) ≥ 0 for all j and for some j, bl,j(s)− al,j(s) > 0. Without loss

of generality, this occurs for j = 1.
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Now perform a sequence of PMTs Rs → Rm along ν defined by zl,1(t + 1) =

zl,1(t)zi,j(t) for i < l and j such that bi,j(t) > ai,j(t) where

M1 =
∏

zi,j(t)
ai,j(t) and M2 =

∏
zi,j(t)

bi,j(t)

to achieve that M1 divides M2 in Rm. �

7.2. Abhyankar valuations in finite extensions. We continue the notation of

the previous section, and further suppose that L is a finite extension field of K and

ω is an extension of ν to L, such that Oω/mω is separable over k. We have that ω

is also an Abhyankar valuation and d(ω|ν) = 1 by [9, Theorem 1].

We suppose that ε(ω|ν) = e(ω|ν).

Proposition 7.5. There exist algebraic regular local rings R of K and S of L

which are dominated by ω and ν respectively such that S dominates R and R has

regular parameters x1, . . . , xn and S has regular parameters y1, . . . , yn satisfying the

conclusions of Proposition 7.3 such that there is an expression

x1 = γye1 and xi = yi for 2 ≤ i ≤ n

where γ is a unit in S.

Proof. By Theorem 7.2 and Proposition 7.3 there exist algebraic regular local rings

R0 of K and S0 of L such that ω dominates S0, S0 dominates R0, R0 has regu-

lar parameters x1, . . . , xn and S0 has regular parameters y1, . . . , yn satisfying the

conclusions of Proposition 7.3 and there exist units γi ∈ S such that

(11) xi = γiy
ai,1
1 · · · yai,nn

for 1 ≤ i ≤ n. Since ν(x1), . . . , ν(xn) is a Z-basis of Γν and ω(y1), . . . , ω(yn) is a

Z-basis of Γω, we have that

e = |Det(A)|

where A = (aij) is the n× n matrix of exponents in (11).

First suppose that ε(ω|ν) = e(ω|ν) > 1. Then Γω,1 ∼= Z and Γω,1/Γν,1 ∼= Ze by

Proposition 7.1. Thus ν(x1) is a Z-basis of Γν,1 and ν(y1) is a Z-basis of Γω,1. We

thus have that a1,j = 0 for j > 1 and a1,1 is a positive multiple of e. Thus from

|Det(A)| = e we have that a1,1 = e and |Det(A)| = 1 where

A =


a2,2 · · · a2,n

...

an,2 · · · an,n

 .

Since Det(A) = ±1, there exist r2, . . . , rn ∈ Z such that

A


r2

...

rn

 = −


a2,1

...

an,1

 .
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Define s2, . . . , sn ∈ Z≥0 by 
s2

...

sn

 = A


1
...

1

 .

There exists r ∈ Z>0 such that ri + te > 0 for all i. Perform the sequence of PMTs

S0 → S1 along ω defined by

y1 = y1(1), yi = yi(1)y1(1)ri+te for 2 ≤ i ≤ n.

We have that S1 = S0[y1(1), . . . , yn(1)]ω is a regular local ring with regular pa-

rameters y1(1), . . . , yn(1) which dominates R0 and there exist units γ′i ∈ S1 such

that

x1 = γ′1y1(1)e and xi = γ′iy1(1)etsiy2(1)a2,1 · · · yn(1)ai,n for 2 ≤ i ≤ n.

Now perform the sequence of PMTs R0 → R1 along ν defined by

x1 = x1(1), xi = x1(1)tsixi(1) for 2 ≤ i ≤ n.

We have that S1 dominates R1 and there exist units γi(1) ∈ S1 such that

(12) x1(1) = γ1(1)y1(1)e, xi(1) = γi(1)y
ai,2
2 · · · yn(1)ai,n for 2 ≤ i ≤ n.

We continue to have Det(A) = ±1. Let B = A
−1

, Write

B =


b2,2 · · · b2,n

...

bn,2 · · · bn,n


with bi,j ∈ Z. We now replace the yi(1) with the product of the unit γ2(1)−bi,2 · · · γn(1)−bi,n

and yi(1) for 2 ≤ i ≤ n to get γi(1) = 1 for 2 ≤ i ≤ n in (12).

Now define a birational transformationR1 → R2 along ν byR2 = R1[x1(2), . . . , xn(2)]ν
where

xn(1) = xn(2) and xi(1) = x2(2)ai,2 · · ·xn(2)ai,n for 2 ≤ i ≤ n.

The ring R2 is a regular local ring with regular parameters x1(2), . . . , xn(2). We

have that R2 is dominated by S1, and

x1(2) = γy1(2)e and xi(2) = yi(1) for 2 ≤ i ≤ n

where γ is a unit in S1, giving the conclusions of the proposition.

Now suppose that e = 1. This case is much simpler. In (11) we then have that

Det(A) = ±1. Taking B = A−1 = (bi,j), we can then make the change of variables

in S0 replacing the yi with the product of the unit γ
−bi,1
1 · · · γ−bi,nn times yi for

1 ≤ i ≤ n to get γi = 1 for 1 ≤ i ≤ n in (11).

Now define a birational transformationR0 → R1 along ν byR1 = R0[x1(1), . . . , xn(1)]ν
where

xi = x1(1)ai,1 · · ·xn(1)ai,n for 1 ≤ i ≤ n.
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The ring R1 is a regular local ring with regular parameters x1(1), . . . , xn(1). We

have that R1 is dominated by S, and

xi(1) = yi(1) for 1 ≤ i ≤ n,

giving the conclusions of the proposition. �

Proposition 7.6. Suppose that R→ S has the form of the conclusions of Proposi-

tion 7.5 and 1 ≤ i < j ≤ n (with ν(xi) < ν(xj)). Then there exist z1, . . . , zm ∈ Oω
such that S0 = R0[z1, . . . , zm]ω.

Let R0 → R1 = R0[x1(1), . . . , xn(1)]ν be the PMT along ν defined by

xk = xk(1) if i 6= j and xj = xj(1)xi(1).

Then there exists a sequence of PMTs along ω, S0 → S1 such that S1 dominates

R1 and S1 has regular parameters y1(1), . . . , yn(1) such that

x1(1) = γy1(1)e and xi(1) = yi(1) for 2 ≤ i ≤ n

and S1 = R1[z1, . . . , zm]ω.

Proof. The expression S0 = R0[z1, . . . , zm]ω follows since S0 is essentially of finite

type over k.

If i 6= 1 we have that both i = 1 and e = 1, then S1 is defined by

yk = yk(1) if i 6= j and yj = yj(1)yi(1).

If i = 1 and e > 1, then define S → S1 by the sequence of PMTs along ω

yk = yk(1) if k 6= j and yj = y1(1)eyj(1).

�

We now prove Theorem 1.5. Let R0 → S0 have the form of the conclusions of

Proposition 7.5, and write S0 = R0[z1, . . . , zm]ω.

Suppose that f ∈ Oω. Write f = g
h with g, h ∈ S0. Let κ be a coefficient field

of the mS0
-adic completion Ŝ0 of S0. We then have that Ŝ0 is the power series ring

Ŝ0 = κ[[y1, . . . , yn]]. Expand g =
∑
αi1,...,iny

i1
1 · · · yinn and h =

∑
βj1,...,jny

j1
1 · · · yjnn

with αi1,...,in , βj1,...,jn ∈ κ. We have that

ω(g) = min{ω(yi11 · · · yinn ) | αi1,...,in 6= 0}

and

ω(h) = min{ω(yj11 · · · yjnn ) | βj1,...,jn 6= 0}.
Let U be the ideal U = (yi11 · · · yinn | αi1,...,in 6= 0) in Ŝ0 and V be the ideal

V = (yj11 · · · yjnn | βj1,...,jn 6= 0) in Ŝ0. Since Ŝ0 is a noetherian ring, there ex-

ist monomials M1, . . . ,Ms, N1, . . . , Nt in y1, . . . , yn such that U = (M1, . . . ,Ms)

and V = (N1, . . . , Nt). We can further assume that ω(M1) < ω(Mi) for i > 1

and ω(N1) < ω(Nj) for j > 1. Since ω(f) ≥ 0 we have that ω(N1) ≤ ω(M1).

There exist units αi and βi in S0 such that M1 = α1M
e
1 , . . . ,Ms = αsM

e
s , N1 =

β1N
e
1 , . . . , N t = βtN

e
t ∈ R0 are monomials in x1, . . . , xn. By Proposition 7.4, there
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exists a sequence of PMTs along ν R0 → R1 such that M1 divides M i in R1 for

all i, N1 divides N j for all j in R1 and M1 divides N1 in R1. Let S0 → S1 be

the sequence of PMTs along ω obtained from applying Proposition 7.6 to the se-

quence R0 → R1, so that S1 = R1[z1, . . . , zm]ω, and R1 has regular parameters

x1(1), . . . , xn(1), S1 has regular parameters y1(1), . . . , yn(1) such that there is a

unit γ ∈ S1 such that

x1(1) = γy1(1)e and xi(1) = yi(1) for 2 ≤ i ≤ n.

Now each of M1, . . . ,Ms, N1, . . . , N t is a monomial in y1(1), . . . , yn(1) times a unit

in S1, so Me
1 divides Me

i for all i in S1, Ne
1 divides Ne

j for all j in S1 and Ne
1 divides

Me
1 in S1. Thus M1 divides Mi for all i in S1, N1 divides Nj for all j in S1 and N1

divides M1 in S1. Since S1/mS1
= S0/mS0

, we have that κ is a coefficient field for

S1, and Ŝ1 = κ[[y1(1), . . . , yn(1)]]. Further, the induced homomorphism Ŝ0 → Ŝ1

is the natural κ-algebra homomorphism

κ[[y1, . . . , yn]]→ κ[[y1(1), . . . , yn(1)]]

defined by substitution of the yi by suitable monomials in y1(1), . . . , yn(1). Write

g = u1M1+u2M2+· · ·+usMs and h = v1N1+v2N2+· · ·+vtNt, with u1, . . . , us, v1, . . . , vt ∈
Ŝ0 and u1, v1 units. Now

g1 = u1
M1

N1
+ u2

M2

N1
+ · · ·+ us

Ms

N1
∈ Ŝ1

and

h1 = v1 + v2
N2

N1
+ · · ·+ vt

Nt
N1
∈ Ŝ1.

so g
h = g1h

−1
1 ∈ Ŝ1. Thus by [2, Lemma 2],

f =
g

h
∈ Ŝ1 ∩ L = S1 = R1[z1, . . . , zm]ω ⊂ Oν [z1, . . . , zm]ω.
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Rodovia Washington Lúıs, 235
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