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Abstract. Suppose that R is a 2 dimensional excellent local domain with quotient field
K, K∗ is a finite separable extension of K and S is a 2 dimensional local domain with
quotient fieldK∗ such that S dominatesR. Suppose that ν∗ is a valuation ofK∗ such that
ν∗ dominates S. Let ν be the restriction of ν∗ to K. The associated graded ring grν(R)
was introduced by Bernard Teissier. It plays an important role in local uniformization.
We show in Theorem 0.1 that the extension (K, ν) → (K∗, ν∗) of valued fields is without
defect if and only if there exist regular local rings R1 and S1 such that R1 is a local ring
of a blow up of R, S1 is a local ring of a blowup of S, ν∗ dominates S1, S1 dominates R1

and the associated graded ring grν∗(S1) is a finitely generated grν(R1)-algebra.
We also investigate the role of splitting of the valuation ν in K∗ in finite generation

of the extensions of associated graded rings along the valuation. We will say that ν does
not split in S if ν∗ is the unique extension of ν to K∗ which dominates S. We show
in Theorem 0.5 that if R and S are regular local rings, ν∗ has rational rank 1 and is
not discrete and grν∗(S) is a finitely generated grν(R)-algebra, then ν does not split in
S. We give examples showing that such a strong statement is not true when ν does not
satisfy these assumptions. As a consequence of Theorem 0.5, we deduce in Corollary 0.6
that if ν has rational rank 1 and is not discrete and if R → R′ is a nontrivial sequence
of quadratic transforms along ν, then grν(R′) is not a finitely generated grν(R)-algebra.

Suppose that K is a field. Associated to a valuation ν of K is a value group Φν and a
valuation ring Vν with maximal ideal mν . Let R be a local domain with quotient field K.
We say that ν dominates R if R ⊂ Vν and mν ∩ R = mR where mR is the maximal ideal
of R. We have an associated semigroup SR(ν) = {ν(f) | f ∈ R}, as well as the associated
graded ring along the valuation

(1) grν(R) =
⊕
γ∈Φν

Pγ(R)/P+
γ (R) =

⊕
γ∈SR(ν)

Pγ(R)/P+
γ (R)

which is defined by Teissier in [44]. Here

Pγ(R) = {f ∈ R | ν(f) ≥ γ} and P+
γ (R) = {f ∈ R | ν(f) > γ}.

This ring plays an important role in local uniformization of singularities ([44] and [45]).
The ring grν(R) is a domain, but it is often not Noetherian, even when R is.

Suppose that K → K∗ is a finite extension of fields and ν∗ is a valuation which is an
extension of ν to K∗. We have the classical indices

e(ν∗/ν) = [Φν∗ : Φν ] and f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ]

as well as the defect δ(ν∗/ν) of the extension. Ramification of valuations and the defect
are discussed in Chapter VI of [49], [21] and Kuhlmann’s papers [33] and [35]. A survey

partially supported by NSF.

1



is given in Section 7.1 of [16]. By Ostrowski’s lemma, if ν∗ is the unique extension of ν to
K∗, we have that

(2) [K∗ : K] = e(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν)

where p is the characteristic of the residue field Vν/mν . From this formula, the defect
can be computed using Galois theory in an arbitrary finite extension. If Vν/mν has

characteristic 0, then δ(ν∗/ν) = 0 and pδ(ν
∗/ν) = 1, so there is no defect. Further, if

Φν = Z and K∗ is separable over K then there is no defect.
If K is an algebraic function field over a field k, then an algebraic local ring R of K is

a local domain which is essentially of finite type over k and has K as its field of fractions.
In [10], it is shown that if K → K∗ is a finite extension of algebraic function fields over a
field k of characteristic zero, ν∗ is a valuation of K∗ (which is trivial on k) with restriction
ν to K and if R → S is an inclusion of algebraic regular local rings of K and K∗ such
that ν∗ dominates S and S dominates R then there exists a commutative diagram

(3)
R1 → S1

↑ ↑
R → S

where the vertical arrows are products of blowups of nonsingular subschemes along the
valuation ν∗ (monoidal transforms) and R1 → S1 is dominated by ν∗ and is a monomial
mapping; that is, there exist regular parameters x1, . . . , xn in R1, regular parameters
y1, . . . , yn in S1, units δi ∈ S1, and a matrix A = (aij) of natural numbers with Det(A) 6= 0
such that

(4) xi = δi

n∏
j=1

yaij for 1 ≤ j ≤ n.

In [16], it is shown that this theorem is true, giving a monomial form of the mapping (4)
after appropriate blowing up (3) along the valuation, if K → K∗ is a separable extension
of two dimension algebraic function fields over an algebraically closed field, which has no
defect. This result is generalized to the situation of this paper, that is when R is a two
dimensional excellent local ring, in [14]. However, it may be that such monomial forms do
not exist, even after blowing up, if the extension has defect, as is shown by examples in
[12].

In the case when k has characteristic zero and for separable defectless extensions of two
dimensional algebraic function fields in positive characteristic, it is further shown in [16]
that the expressions (3) and (4) are stable under further simple sequences of blow ups
along ν∗ and the form of the matrix A stably reflects invariants of the valuation.

We always have an inclusion of graded domains grν(R)→ grν∗(S) and the index of their
quotient fields is

(5) [QF(grν∗(S)) : QF(grν(R))] = e(ν∗/ν)f(ν∗/ν)

as shown in Proposition 3.3 [13]. Comparing with Ostrowski’s lemma (2), we see that the
defect has disappeared in equation (5).

Even though QF(grν∗(S)) is finite over QF(grν(R)), it is possible for grν∗(S) to not
be a finitely generated grν(R)-algebra. Examples showing this for extensions R → S of
two dimensional algebraic local rings over arbitrary algebraically closed fields are given in
Example 9.4 of [17].

It was shown by Ghezzi, Hà and Kashcheyeva in [23] for extensions of two dimensional
algebraic function fields over an algebraically closed field k of characteristic zero and later
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by Ghezzi and Kashcheyeva in [24] for defectless separable extensions of two dimensional
algebraic functions fields over an algebraically closed field k of positive characteristic that
there exists a commutative diagram (3) such that grν∗(S1) is a finitely generated grν(R1)-
algebra. Further, this property is stable under further suitable sequences of blow ups.

In Theorem 1.6 [13], it is shown that for algebraic regular local rings of arbitrary dimen-
sion, if the ground field k is algebraically closed of characteristic zero, and the valuation
has rank 1 and is zero dimensional (Vν/mν = k) then we can also construct a commutative
diagram (3) such that grν∗(S1) is a finitely generated grν(R1)-algebra and this property
is stable under further suitable sequences of blow ups.

An example is given in [8] of an inclusion R→ S in a separable defect extension of two
dimensional algebraic function fields such that grν∗(S1) is stably not a finitely generated
grν(R1)-algebra in diagram (3) under sequences of blow ups. This raises the question of
whether the existence of a finitely generated extension of associated graded rings along
the valuation implies that K∗ is a defectless extension of K.

We find that we must impose the condition that K∗ is a separable extension of K to
obtain a positive answer to this question, as there are simple examples of inseparable defect
extensions such that grν∗(S) is a finitely generated grν(R)-algebra, such as in the following
example, which is Example 8.6 [33]. Let k be a field of characteristic p > 0 and k((x)) be
the field of formal power series over k, with the x-adic valuation νx. Let y ∈ k((x)) be
transcendental over k(x) with νx(y) > 0. Let ỹ = yp, and K = k(x, ỹ) ⊂ K∗ = k(x, y).
Let ν∗ = νx|K∗ and ν = νx|K. Then we have equality of value groups Φν = Φν∗ = ν(x)Z
and equality of residue fields of valuation rings Vν/mν = Vν∗/mν∗ = k, so e(ν∗/ν) = 1
and f(ν∗/ν) = 1. We have that ν∗ is the unique extension of ν to K∗ since K∗ is purely
inseparable over K. By Ostrowski’s lemma (2), the extension (K, ν)→ (K∗, ν∗) is a defect
extension with defect δ(ν∗/ν) = 1. Let R = k[x, ỹ](x,ỹ) → S = k[x, y](x,y). Then we have
equality

grν(R) = k[t] = grν∗(S)

where t is the class of x.
In this paper we show that the question does have a positive answer for separable

extensions in the following theorem.

Theorem 0.1. Suppose that R is a 2 dimensional excellent local domain with quotient field
K. Further suppose that K∗ is a finite separable extension of K and S is a 2 dimensional
local domain with quotient field K∗ such that S dominates R. Suppose that ν∗ is a valuation
of K∗ such that ν∗ dominates S. Let ν be the restriction of ν∗ to K. Then the extension
(K, ν) → (K∗, ν∗) is without defect if and only if there exist regular local rings R1 and
S1 such that R1 is a local ring of a blow up of R, S1 is a local ring of a blowup of S, ν∗

dominates S1, S1 dominates R1 and grν∗(S1) is a finitely generated grν(R1)-algebra.

We immediately obtain the following corollary for two dimensional algebraic function
fields.

Corollary 0.2. Suppose that K → K∗ is a finite separable extension of two dimensional
algebraic function fields over a field k and ν∗ is a valuation of K∗ with restriction ν to K.
Then the extension (K, ν)→ (K∗, ν∗) is without defect if and only if there exist algebraic
regular local rings R of K and S of K∗ such that ν∗ dominates S, S dominates R and
grν∗(S) is a finitely generated grν(R)-algebra.

We see from Theorem 0.1 that the defect, which is completely lost in the extension of
quotient fields of the associated graded rings along the valuation (5), can be recovered
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from knowledge of all extensions of associated graded rings along the valuation of regular
local rings R1 → S1 within the field extension which dominate R→ S and are dominated
by the valuation.

The fact that there exists R1 → S1 as in the conclusions of the theorem if the as-
sumptions of the theorem hold and the extension is without defect is proven within 2-
dimensional algebraic function fields over an algebraically closed field in [23] and [24], and
in the generality of the assumptions of Theorem 0.1 in Theorems 4.3 and 4.4 of [14]. Fur-
ther, if the assumptions of the theorem hold and the defect δ(ν∗/ν) 6= 0, then the value
group Φν∗ is not finitely generated by Theorem 7.3 [16] in the case of algebraic function
fields over an algebraically closed field. With the full generality of the hypothesis of Theo-
rem 0.1 , the defect is zero by Corollary 18.7 [21] in the case of discrete, rank 1 valuations
and the defect is zero by Theorem 3.7 [14] in the case of rational rank 2 valuations, so by
Abhyankar’s inequality, Proposition 2 [1] or Appendix 2 [49], if the defect δ(ν∗/ν) 6= 0,
then the value group Φν∗ has rational rank 1 and is not discrete and Vν∗/mν∗ is alge-
braic over S/mS . Thus to prove Theorem 0.1, we have reduced to proving the following
proposition, which we establish in this paper.

Proposition 0.3. Suppose that R is a 2 dimensional excellent local domain with quotient
field K. Further suppose that K∗ is a finite separable extension of K and S is a 2 dimen-
sional local domain with quotient field K∗ such that S dominates R. Suppose that ν∗ is a
valuation of K∗ such that ν∗ dominates S. Let ν be the restriction of ν∗ to K.

Suppose that ν∗ has rational rank 1 and ν∗ is not discrete. Further suppose that there
exist regular local rings R1 and S1 such that R1 is a local ring of a blow up of R, S1 is a
local ring of a blowup of S, ν∗ dominates S1, S1 dominates R1 and grν∗(S1) is a finitely
generated grν(R1)-algebra. Then the defect δ(ν∗/ν) = 0.

Another factor in the question of finite generation of extensions of associated graded
rings along a valuation is the splitting of ν in K∗. We will say that ν does not split in S
if ν∗ is the unique extension of ν to K∗ such that ν∗ dominates S. After a little blowing
up, we can always obtain non splitting, as the following lemma shows.

Lemma 0.4. Given an extension R→ S as in the hypotheses of Theorem 0.1, there exists
a normal local ring R′ which is a local ring of a blow up of R such that ν dominates R′

and if
R1 → S1

↑ ↑
R → S

is a commutative diagram of normal local rings, where R1 is a local ring of a blow up of
R and S1 is a local ring of a blow up of S, ν∗ dominate S1 and R1 dominates R′, then ν
does not split in S1.

Lemma 0.4 will be proven in Section 1.
We have the following theorem.

Theorem 0.5. Suppose that R is a 2 dimensional excellent regular local ring with quo-
tient field K. Further suppose that K∗ is a finite separable extension of K and S is a 2
dimensional regular local ring with quotient field K∗ such that S dominates R. Suppose
that ν∗ is a valuation of K∗ such that ν∗ dominates S. Let ν be the restriction of ν∗ to K.
Further suppose that ν∗ has rational rank 1 and ν∗ is not discrete. Suppose that grν∗(S)
is a finitely generated grν(R)-algebra. Then S is a localization of the integral closure of R
in K∗, the defect δ(ν∗/ν) = 0 and ν∗ does not split in S.
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We give examples showing that the condition rational rank 1 and discrete on ν∗ in
Theorem 0.5 are necessary.

As an immediate consequence of Theorem 0.5, we obtain the following corollary.

Corollary 0.6. Suppose that R is a 2 dimensional excellent regular local ring with quotient
field K. Suppose that ν is a valuation of K such that ν dominates R. Further suppose that
ν has rational rank 1 and ν is not discrete. Suppose that R→ R′ is a nontrivial sequence
of quadratic transforms along ν. Then grν(R′) is not a finitely generated grν(R)-algebra.

In [47], Michel Vaquié extends MacLane’s theory of key polynomials [37] to show that
if (K, ν) → (K∗, ν∗) is a finite extension of valued fields with δ(ν∗/ν) = 0 and ν∗ is the
unique extension of ν to K∗, then ν∗ can be constructed from ν by a finite sequence of
augmented valuations. This suggests that a converse of Theorem 0.5 may be true.

We thank Bernard Teissier for discussions on the topics of this paper.

1. Local degree and defect

We will use the following criterion to measure defect, which is Proposition 3.4 [14]. This
result is implicit in [16] with the assumptions of Proposition 0.3.

Proposition 1.1. Suppose that R is a 2 dimensional excellent local domain with quotient
field K. Further suppose that K∗ is a finite separable extension of K and S is a 2 dimen-
sional local domain with quotient field K∗ such that S dominates R. Suppose that ν∗ is
a valuation of K∗ such that ν∗ dominates S, the residue field Vν∗/mν∗ of Vν∗ is algebraic
over S/mS and the value group Φν∗ of ν∗ has rational rank 1. Let ν be the restriction of
ν∗ to K. There exists a local ring R′ of K which is essentially of finite type over R, is
dominated by ν and dominates R such that if we have a commutative diagram

(6)

Vν → Vν∗
↑ ↑
R1 → S1

↑
R′ ↑
↑
R → S

where R1 is a regular local ring of K which is essentially of finite type over R and dominates
R, S1 is a regular local ring of K∗ which is essentially of finite type over S and dominates
S, R1 has a regular system of parameters u, v and S1 has a regular system of parameters
x, y such that there is an expression

u = γxa, v = xbf

where a > 0, b ≥ 0, γ is a unit in S, x 6 | f in S1 and f is not a unit in S1, then

(7) ad[S1/mS1 : R1/mR1 ] = e(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν)

where d = ν(f mod x) with ν being the natural valuation of the DVR S/xS.

We now prove Lemma 0.4 from the introduction. Let ν1 = ν∗, ν2, . . . , νr be the exten-
sions of ν to K∗. Let T be the integral closure of Vν in K∗. Then T = Vν1 ∩ · · · ∩ Vνr is
the integral closure of Vν∗ in K∗ (by Propositions 2.36 and 2.38 [3]). Let mi = mνi ∩ T
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be the maximal ideals of T . By the Chinese remainder theorem, there exists u ∈ T such
that u ∈ m1 and u 6∈ mi for 2 ≤ i ≤ r. Let

un + a1u
n−1 + · · ·+ an = 0

be an equation of integral dependence of u over Vν . Let A be the integral closure of
R[a1, . . . , an] in K and let R′ = AA∩mν . Let T ′ be the integral closure of R′ in K∗. We
have that u ∈ T ′ ∩mi if and only if i = 1. Let S′ = T ′T ′∩m1

. Then ν does not split in S′

and R′ has the property of the conclusions of the lemma.

2. Generating Sequences

Given an additive group G with λ0, . . . , λr ∈ G, G(λ0, . . . , λr) will denote the sub-
group generated by λ0, . . . , λr. The semigroup generated by λ0, . . . , λr will be denoted by
S(λ0, . . . , λr).

In this section, we will suppose that R is a regular local ring of dimension two, with
maximal ideal mR and residue field R/mR. For f ∈ R, let f or [f ] denote the residue of
f in R/mR.

The following theorem is Theorem 4.2 of [17], as interpreted by Remark 4.3 [17].

Theorem 2.1. Suppose that ν is a valuation of the quotient field of R dominating R.
Let L = Vν/mν be the residue field of the valuation ring Vν of ν. For f ∈ Vν , let [f ]
denote the class of f in L. Suppose that x, y are regular parameters in R. Then there
exist Ω ∈ Z+ ∪ {∞} and Pi(ν,R) ∈ mR for i ∈ Z+ with i < min{Ω + 1,∞} such that
P0(ν,R) = x, P1(ν,R) = y and for 1 ≤ i < Ω, there is an expression

(8) Pi+1(ν,R) = Pi(ν,R)ni(ν,R) +

λi∑
k=1

ckP0(ν,R)σi,0(k)P1(ν,R)σi,1(k) · · ·Pi(ν,R)σi,i(k)

with ni(ν,R) ≥ 1, λi ≥ 1,

(9) 0 6= ck units in R

for 1 ≤ k ≤ λi, σi,s(k) ∈ N for all s, k, 0 ≤ σi,s(k) < ns(ν,R) for s ≥ 1. Further,

ni(ν,R)ν(Pi(ν,R)) = ν(P0(ν,R)σi,0(k)P1(ν,R)σi,1(k) · · ·Pi(ν,R)σi,i(k))

for all k.
For all i ∈ Z+ with i < Ω, the following are true:

1) ν(Pi+1(ν,R)) > ni(ν,R)ν(Pi(ν,R)).
2) Suppose that r ∈ N, m ∈ Z+, jk(l) ∈ N for 1 ≤ l ≤ m and 0 ≤ jk(l) < nk(ν,R) for

1 ≤ k ≤ r are such that (j0(l), j1(l), . . . , jr(l)) are distinct for 1 ≤ l ≤ m, and

ν(P0(ν,R)j0(l)P1(ν,R)j1(l) · · ·Pr(ν,R)jr(l)) = ν(P0(ν,R)j0(1) · · ·Pr(ν,R)jr(1))

for 1 ≤ l ≤ m. Then

1,

[
P0(ν,R)j0(2)P1(ν,R)j1(2) · · ·Pr(ν,R)jr(2)

P0(ν,R)j0(1)P1(ν,R)j1(1) · · ·Pr(ν,R)jr(1)

]
, . . . ,

[
P0(ν,R)j0(m)P1(ν,R)j1(m) · · ·Pr(ν,R)jr(m)

P0(ν,R)j0(1)P1(ν,R)j1(1) · · ·Pr(ν,R)jr(1)

]
are linearly independent over R/mR.

3) Let

ni(ν,R) = [G(ν(P0(ν,R)), . . . , ν(P(ν,R)i)) : G(ν(P0(ν,R)), . . . , ν(Pi−1(ν,R)))].

Then ni(ν,R) divides σi,i(k) for all k in (8). In particular, ni(ν,R) = ni(ν,R)di(ν,R)
with di(ν,R) ∈ Z+
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4) There exists Ui(ν,R) = P0(ν,R)w0(i)P1(ν,R)w1(i) · · ·Pi−1(ν,R)wi−1(i) for i ≥ 1
with w0(i), . . . , wi−1(i) ∈ N and 0 ≤ wj(i) < nj(ν,R) for 1 ≤ j ≤ i − 1 such that
ν(Pi(ν,R)ni) = ν(Ui(ν,R)) and setting

αi(ν,R) =

[
Pi(ν,R)ni(ν,R)

Ui(ν,R)

]
then

bi,t =

[∑
σi,i(k)=tni(ν,R) ck

P0(ν,R)σi,0(k)P1(ν,R)σi,1(k)···Pi−1(ν,R)σi,i−1(k)

Ui(ν,R)(di(ν,R)−t)

]
∈ R/mR(α1(ν,R), . . . , αi−1(ν,R))

for 0 ≤ t ≤ di(ν,R)− 1 and

fi(u) = udi(ν,R) + bi,di(ν,R)−1u
di(ν,R)−1 + · · ·+ bi,0

is the minimal polynomial of αi(ν,R) over R/mR(α1(ν,R), . . . , αi−1(ν,R)).

The algorithm terminates with Ω <∞ if and only if either
(10)
nΩ(ν,R) = [G(ν(P0(ν,R)), . . . , ν(PΩ(ν,R))) : G(ν(P0(ν,R)), . . . , ν(PΩ−1(ν,R)))] =∞

or
(11)

nΩ(ν,R) <∞ (so that αΩ(ν,R) is defined as in 4)) and
dΩ(ν,R) = [R/mR(α1(ν,R), . . . , αΩ(ν,R)) : R/mR(α1(ν,R), . . . , αΩ−1(ν,R))] =∞.

If nΩ(ν,R) =∞, set αΩ(ν,R) = 1.

Let notation be as in Theorem 2.1.
The following formula is formula B(i) on page 10 of [17].

(12)

Suppose that M is a Laurent monomial in P0(ν,R), P1(ν,R), . . . , Pi(ν,R)
and ν(M) = 0. Then there exist si ∈ Z such that

M =
∏i
j=1

[
Pj(ν,R)nj

Uj(ν,R)

]sj
,

so that
[M ] ∈ R/mR[α1(ν,R), . . . , αi(ν,R)].

Define βi(ν,R) = ν(Pi(ν,R)) for 0 ≤ i.
Since ν is a valuation of the quotient field of R, we have that

(13) Φν = ∪∞i=1G(β0(ν,R), β1, . . . , βi(ν,R))

and

(14) Vν/mν = ∪∞i=1R/mR[α1(ν,R), . . . , αi(ν,R)]

The following is Theorem 4.10 [17].

Theorem 2.2. Suppose that ν is a valuation dominating R. Let

P0(ν,R) = x, P1(ν,R) = y, P2(ν,R), . . .
7



be the sequence of elements of R constructed by Theorem 2.1. Suppose that f ∈ R and
there exists n ∈ Z+ such that ν(f) < nν(mR). Then there exists an expansion

f =
∑
I

aIP0(ν,R)i0P1(ν,R)i1 · · ·Pr(ν,R)ir +
∑
J

ϕJP0(ν,R)j0 · · ·Pr(ν,R)jr + h

where r ∈ N, aI are units in R, I, J ∈ Nr+1, ν(P0(ν,R)i0P1(ν,R)i1 · · ·Pr(ν,R)ir) = ν(f)
for all I in the first sum, 0 ≤ ik < nk(ν,R) for 1 ≤ k ≤ r, ν(P0(ν,R)j0 · · ·Pr(ν,R)jr) >
ν(f) for all terms in the second sum, ϕJ ∈ R and h ∈ mn

R. The terms in the first sum are
uniquely determined, up to the choice of units ai, whose residues in R/mR are uniquely
determined.

Let σ0(ν,R) = 0 and inductively define

(15) σi+1(ν,R) = min{j > σi(ν,R) | nj(ν,R) > 1}.
In Theorem 2.2, we see that all of the monomials in the expansion of f are in terms of

the Pσi .
We have that

S(β0(ν,R), β1(ν,R), . . . , βσj(ν,R)) = S(βσ0(ν,R), βσ1(ν,R), . . . , βσj(ν,R))

for all j ≥ 0 and

R/mR[α1(ν,R), α2(ν,R), . . . , ασj(ν,R)(ν,R)]

= R/mR[ασ1(ν,R)(ν,R), ασ2(ν,R)(ν,R), . . . , ασj(ν,R)(ν,R)]

for all j ≥ 1.
Suppose that R is a regular local ring of dimension two which is dominated by a valua-

tion ν. The quadratic transform T1 of R along ν is defined as follows. Let u, v be a system
of regular parameters in R, Then R[ vu ] ⊂ Vν if ν(u) ≤ ν(v) and R[uv ] ⊂ Vν if ν(u) ≥ ν(v).
Let

T1 = R
[v
u

]
R[ v

u
]∩mν

or T1 = R
[u
v

]
R[u

v
]∩mν

,

depending on if ν(u) ≤ ν(v) or ν(u) > ν(v). T1 is a two dimensional regular local ring
which is dominated by ν. Let

(16) R→ T1 → T2 → · · ·
be the infinite sequence of quadratic transforms along ν, so that Vν = ∪i≥1Ti (Lemma 4.5
[3]) and L = Vν/mν = ∪i≥1Ti/mTi .

For f ∈ R and R → R∗ a sequence of quadratic transforms along ν, we define a strict
transform of f in R∗ to be f1 if f1 ∈ R∗ is a local equation of the strict transform in
R∗ of the subscheme f = 0 of R. In this way, a strict transform is only defined up to
multiplication by a unit in R∗. This ambiguity will not be a difficulty in our proof. We
will denote a strict transform of f in R∗ by stR∗(f).

We use the notation of Theorem 2.1 and its proof for R and the {Pi(ν,R)}. Recall

that U1 = Uw0(1). Let w = w0(1). Since n1(ν,R) and w are relatively prime, there exist
a, b ∈ N such that

ε := n1(ν,R)b− wa = ±1.

Define elements of the quotient field of R by

(17) x1 = (xby−a)ε, y1 = (x−wyn1(ν,R))ε.

We have that

(18) x = x
n1(ν,R)
1 ya1 , y = xw1 y

b
1.
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Since n1(ν,R)ν(y) = wν(x), it follows that

n1(ν,R)ν(x1) = ν(x) > 0 and ν(y1) = 0.

We further have that

(19) α1(ν,R) = [y1]ε ∈ Vν/mν .

Let A = R[x1, y1] ⊂ Vν and mA = mν ∩A.
Let R1 = AmA . We have that R1 is a regular local ring and the divisor of xy in R1

has only one component (x1 = 0). In particular, R → R1 is “free” (Definition 7.5 [16]).
R → R1 factors (uniquely) as a product of quadratic transforms and the divisor of xy in
R1 has two distinct irreducible factors in all intermediate rings.

The following is Theorem 7.1 [17].

Theorem 2.3. Let R be a two dimensional regular local ring with regular parameters
x, y. Suppose that R is dominated by a valuation ν. Let P0(ν,R) = x, P1(ν,R) = y
and {Pi(ν,R)} be the sequence of elements of R constructed in Theorem 2.1. Suppose that
Ω ≥ 2. Then there exists some smallest value i in the sequence (16) such that the divisor of
xy in Spec(Ti) has only one component. Let R1 = Ti. Then R1/mR1

∼= R/mR(α1(ν,R)),
and there exists x1 ∈ R1 and w ∈ Z+ such that x1 = 0 is a local equation of the exceptional
divisor of Spec(R1) → Spec(R), and Q0 = x1, Q1 = P2

x
wn1
1

are regular parameters in R1.

We have that

Pi(ν,R1) =
Pi+1(ν,R)

P0(ν,R1)wn1(ν,R)···ni(ν,R)

for 1 ≤ i < max{Ω,∞} satisfy the conclusions of Theorem 2.1 for the ring R1.

We have that

G(β0(ν,R1), . . . , βi(ν,R1)) = G(β0(ν,R), . . . , βi+1(ν,R))

for i ≥ 1 so that
ni(ν,R1) = ni+1(ν,R) for i ≥ 1

and

R1/mR1 [α1(ν,R1), . . . , αi(ν,R1)] = R/mR[α1(ν,R), . . . , αi+1(ν,R)] for i ≥ 1

so that
di(ν,R1) = di+1(ν,R) and ni(ν,R1) = ni+1(ν,R) for i ≥ 1.

Let σ0(ν,R1) = 0 and inductively define

σi+1(ν,R1) = min{j > σi(1) | nj(ν,R1) > 1}.
We then have that σ0(ν,R1) = 0 and for i ≥ 1, σi(ν,R1) = σi+1(ν,R)−1 if n1(ν,R) > 1

and σi(ν,R1) = σi(ν,R)− 1 if n1(ν,R) = 1, and for all j ≥ 0,

S(β0(ν,R1), β1(ν,R1), . . . , βσj+1(ν,R1)(ν,R1)) = S(βσ0(1)(ν,R1), βσ1(ν,R1), . . . , βσj(ν,R1)(ν,R1))

Iterating this construction, we produce a sequence of sequences of quadratic transforms
along ν,

R→ R1 → · · · → Rσ1(ν,R).

Now x, y = Pσ1(ν,R) are regular parameters in R. By (17) (with y replaced with y) we
have that Rσ1(ν,R) has regular parameters

(20) x1 = (xby−a)ε, y1 = (x−ωynσ1(ν,R)(ν,R))ε

where ω, a, b ∈ N satisfy ε = nσ1(ν,R)(ν,R)b− ωa = ±1.
9



Further, Rσ1(ν,R1) has regular parameters xσ1(ν,R), yσ1(ν,R) where x = δx
nσ1(ν,R)(ν,R1)

σ1(ν,R1) and

yσ1(ν,R1) = stRσ1 (ν,R1)Pσ1(ν,R)(ν,R) with δ ∈ Rσ1(ν,R) a unit.
For the remainder of this section, we will suppose that R is a two dimensional regular

local ring and ν is a non discrete rational rank 1 valuation of the quotient field of R
with valuation ring Vν , so that Vν/mν is algebraic over R/mR. Suppose that f ∈ R
and ν(f) = γ. We will denote the class of f in Pγ(R)/P+

γ (R) ⊂ grν(R) by inν(f). By
Theorem 2.2, we have that grν(R) is generated by the initial forms of the Pi(ν,R) as an
R/mR-algebra. That is,

grν(R) = R/mR[inν(P0(ν,R)), inν(P1(ν,R)), . . .]
= R/mR[inν(Pσ0(ν,R)(ν,R)), inν(Pσ1(ν,R)(ν,R)), . . .].

Thus the semigroup SR(ν) = {ν(f) | f ∈ R} is equal to

SR(ν) = S(β0(ν,R), β1(ν,R), . . .) = S(βσ0(ν,R)(ν,R), βσ1(ν,R)(ν,R), . . .)

and the value group

Φν = G(β0(ν,R), β1(ν,R) . . .)

and the residue field of the valuation ring

Vν/mν = R/mR[α1(ν,R), α2(ν,R), . . .] = R/mR[ασ1(ν,R), ασ2(ν,R), . . .]

By 1) of Theorem 2.1, every element β ∈ SR(ν) has a unique expression

β =
r∑
i=0

aiβi(ν,R)

for some r with ai ∈ N for all i and 0 ≤ ai < ni(ν,R) for 1 ≤ i. In particular, if ai 6= 0 in
the expansion then βi(ν,R) = βσj(ν,R)(ν,R) for some j.

Lemma 2.4. Let

σi = σi(ν,R), βi = βi(ν,R), Pi = Pi(ν,R), ni = ni(ν,R), ni = ni(ν,R),

σi(1) = σi(ν,Rσ1), βi = βi(ν,Rσ1), Pi(1) = Pi(ν,Rσ1), ni(1) = ni(ν,Rσ1), ni(1) = ni(ν,Rσ1).

Suppose i ∈ N, r ∈ N and aj ∈ N for j = 0, . . . , r with 0 ≤ aj < nσj for j ≥ 1 are such
that

ν(P a0σ0 · · ·P
ar
σr ) > ν(Pσi)

or r < i and

ν(P a0σ0 · · ·P
ar
σr ) = ν(Pσi).

By (18) and Theorem 2.3, we have expressions in

Rσ1 = R[x1, y1]mν∩R[x1,y1]

where x1, y1 are defined by (20)

P a0σ0 · · ·P
ar
σr = yaa0+ba1

1 Pσ1(1)(1)a2 · · ·Pσr−1(1)(1)arPσ0(1)(1)t

where t = nσ1a0 + ωa1 + ωnσ1a2 + · · ·+ ωnσ1 · · ·nσr−1ar and

Pσi =


ya1Pσ0(1)(1)nσ1 if i = 0

yb1Pσ0(1)(1)ω if i = 1
Pσi−1(1)(1)Pσ0(1)(1)ωnσ1 ···nσi−1 if i ≥ 2.
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Let

λ =

 nσ1 if i = 0
ω if i = 1
ωnσ1 · · ·nσi−1 if i ≥ 2.

Then

t > λ,

except in the case where i = 1, P a0σ0 · · ·P
ar
σr = Pσ0, and nσ1 = ω = 1. In this case λ = t.

Proof. First suppose that i ≥ 2 and r ≥ i. Then

t− λ = (nσ1a0 + ωa1 + ωnσ1a2 + · · ·+ ωnσ1 · · ·nσr−1ar)− ωnσ1 · · ·nσi−1 > 0.

Now suppose that i ≥ 2 and r < i. We have that

(n1a0 + ωa1 + . . .+ ωn1 · · ·nr−1ar − ωn1(ν,R) · · ·ni−1)βσ0(1)(1)
≥ βσi−1(1)(1)− a2βσ1(1)(1)− . . .− arβσr−1(1)(1) > 0

since nσj(1)(1) = nσj+1 for all j, and so nσj+1βσj(1)(1) < βσj+1(1)(1) for all j.
Now suppose that i = 1. As in the proof for the case i ≥ 2 we have that t − λ > 0

if r ≥ 1, so suppose that i = 1 and r = 0. Then nσ1βσ1 = ωβσ0 . From our assumption
a0ν(P0) ≥ ν(P1) we obtain t − λ = nσ1a0 − ω ≥ 0 with equality if and only if a0 = ω =
nσ1 = 1 since gcd(ω, nσ1) = 1.

Now suppose i = 0. As in the previous cases, we have t− λ > 0 if r > 1 and t− λ > 0
if r = 1 except possibly if P a00 · · ·P arr = P a11 . We then have that ν(P a1σ1 ) > ν(Pσ0), and so

a1
βσ1
βσ0

> 1.

Since
βσ1
βσ0

=
ω

nσ1
,

we have that t− λ = ωa1 − nσ1 > 0.
�

Lemma 2.5. Let notation be as in Lemma 2.4. Suppose that f ∈ R, with ν(f) = ν(Pσi)
for some i ≥ 0, and that f has an expression of the form of Theorem 2.2,

f = cPσi +

s∑
j=1

ciP
a0(j)
σ0 P a1(j)

σ1 · · ·P ar(j)σr + h

where s, r ∈ N, c, cj are units in R, with 0 ≤ ak(j) < nk for 1 ≤ k ≤ r for 1 ≤ j ≤ s,

ν(f) = ν(Pσi) ≤ ν(P a0(j)
σ0 P a1(j)

σ1 · · ·P ar(j)σr )

for 1 ≤ j ≤ s, ak(j) = 0 for k ≥ i if ν(f) = ν(P
ap(j)
σ0 · · ·P ar(j)σr ) and h ∈ mn

R with n > ν(f).
Then stRσ1 (f) is a unit in Rσ1 if i = 0 or 1 and if i > 1, there exists a unit c in Rσ1 and
Ω ∈ Rσ1 such that

stRσ1 (f) = cPσi−1(1)(1) + x1Ω

with ν(stRσ1 (f)) = ν(Pσi−1(1)(1)) and ν(Pσi−1(1)(1)) ≤ ν(x1Ω).
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Proof. Let

λ =

 n1 if i = 0
ω if i = 1
ωnσ1 · · ·nσr−1 if i ≥ 2

Then

f = cHi +

s∑
j=1

cj(y1)aa0(j)+ba1(j)Pσ0(1)(1)tjPσ1(1)a2(j) · · ·Pσr−1(1)(1)ar(j) + Pσ0(1)(1)th′

with

Hi =


(y1)aPσ0(1)(1)n1 if i = 0

(y1)bPσ0(1)(1)ω if i = 1
Pσ0(1)(1)ωn1···ni−1Pσi−1(1)(1) if i ≥ 2

and
tj = n1a0(j) + ωa1(j) + ωnσ1a2 + · · ·+ ωnσ1 · · ·nσr−1ar(j)

for 1 ≤ j ≤ s, t > λ and h′ ∈ Rσ1 . By Lemma 2.4, if i ≥ 2 or i = 0, we have that tj > λ

for all j. Thus f = Pσ0(1)(1)λf where

f = cGi +
s∑
j=1

cjPσ0(1)(1)tj−λPσ1(1)(1)a2(j) · · ·Pσr−1(1)(1)ar(j) + Pσ0(1)(1)t−λh′

with

Gi =


(y1)a if i = 0
(y1)b if i = 1
Pσi−1(1)(1) if i ≥ 2

is a strict transform f = stR1(f) of f in R1.
If i = 1, then by Lemma 2.4, tj > λ for all j, except possibly for a single term (that we

can assume is t1) which is Pσ0 , and we have that ω = nσ1 = 1. In this case t1 = λ. Then[
Pσ1
Pσ0

]
= ασ1(ν,R) ∈ Vν/mν

which has degree dσ1(ν,R) = nσ1 > 1 over R/mR. By (18), x = x1, y = x1y1 and

f = x1[c+ c1y1 + x1Ω]

with Ω ∈ Rσ1 . We have that c+ c1y1 is a unit in Rσ1 since

[y1] =

[
Pσ0
Pσ1

]
6∈ R/mR.

�

3. Finite generation implies no defect

Suppose that R is a two dimensional regular local ring of K and S is a two dimensional
regular local ring such that S dominates R Let K be the quotient field of R and K∗

be the quotient field of S. Suppose that K → K∗ is a finite separable field extension.
Suppose that ν∗ is a non discrete rational rank 1 valuation of K∗ such that Vν∗/mν∗ is
algebraic over S/mS and that ν∗ dominates S. Then we have a natural graded inclusion
grν(R) → grν∗(S), so that for f ∈ R, we have that inν(f) = inν∗(f). Let ν = ν∗|K. Let
L = Vν∗/mν∗ . Suppose that grν∗(S) is a finitely generated grν(R)-algebra.

Let x, y be regular parameters in R, with associated generating sequence to ν, P0 =
P0(ν,R) = x, P1 = P1(ν,R) = y, P2 = P2(ν,R), . . . in R as constructed in Theorem 2.1,
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with Ui = Ui(ν,R), βi = βi(ν,R) = ν(Pi), γi = αi(ν,R), mi = mi(ν,R), mi = mi(ν,R),
di = di(ν,R) and σi = σi(ν,R) defined as in Section 2.

Let u, v be regular parameters in S, with associated generating sequence to ν∗, Q0 =
P0(ν∗, S) = u,Q1 = P1(ν∗, S) = v,Q2 = P2(ν∗, S), . . . in S as constructed in Theorem 2.1,
with Vi = Ui(ν

∗, S), γi = βi(ν
∗, S) = ν∗(Qi), δi = αi(ν

∗, S), ni = ni(ν
∗, S), ni = ni(ν

∗, S),
ei = αi(ν

∗, S) and τi = σi(ν
∗, S) defined as in Section 2.

With our assumption that grν∗(S) is a finitely generated grν(R)-algebra, we have that
for all sufficiently large l,

(21) grν∗(S) = grν(R)[inν∗Qτ0 , . . . , inν∗Qτl ].

Proposition 3.1. With our assumption that grν∗(S) is a finitely generated grν(R)-algebra,
there exist integers s > 1 and r > 1 such that for all j ≥ 0,

βσr+j = γτs+j ,mσr+j = nτs+j , dσr+j = eτs+j ,mσr+j = nτs+j ,

G(βσ0 , . . . , βσr+j ) ⊂ G(γτ0 , . . . , γτs+j ),

[G(γτ0 , . . . , γτs+j ) : G(βσ0 , . . . , βσr+j )] = e(ν∗/ν),

R/mR[δσ1 , . . . , δσr+j ] ⊂ S/mS [ετ1 , . . . , ετs+j ]

and

[S/mS [ετ1 , . . . , ετs+j ] : R/mR[δσ1 , . . . , δσr+j ]] = f(ν∗/ν).

Proof. Let l be as in (21). For s ≥ l, define the sub algebra Aτs of grν∗(S) by

Aτs = S/mS [inν∗Qτ0 , . . . , inν∗Qτs ].

For s ≥ l, let

rs = max{j | inν∗Pσj ∈ Aτs},
λs = [G(γτ0 , . . . , γτs) : G(βσ0 , . . . , βσrs )],

and

χs = [S/mS [ετ0 , . . . , ετs ] : R/mR[δσ0 , . . . , δσrs ]].

To simplify notation, we will write r = rs.
We will now show that βσr+1 = γτs+1 . Suppose that βσr+1 > γτs+1 . We have that

inν∗Qτs+1 ∈ grν(R)[inν∗Qτ0 , . . . , inν∗Qτs ].

Since

βσr+1 < βσr+2 < · · ·
we then have that inν∗Qτs+1 ∈ Aτs which is impossible. Thus βσr+1 ≤ γτs+1 . If βσr+1 <
γτs+1 , then since

γτs+1 < γτs+2 < · · ·
and inν∗Pσr+1 ∈ grν∗(S), we have that inν∗Pσr+1 ∈ Aτs , which is impossible. Thus βσr+1 =
γτs+1 .

We will now establish that either we have a reduction λs+1 < λs or

(22) λs+1 = λs, βσr+1 = γτs+1 and mσr+1 = nτs+1 .

Let ω be a generator of the group G(γτ1 , . . . , γτs), so that G(γτ1 , . . . , γτs) = Zω. We have
that

G(γτ0 , . . . , γτs+1) =
1

nτs+1

Zω
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and

G(βσ0 , . . . , βσr+1) =
1

mσr+1

Z(λsω).

There exists a positive integer f with gcd(f, nτs+1) = 1 such that

γτs+1 =
f

nτs+1

ω

There exists a positive integer g with gcd(g,mσr+1) = 1 such that

βσr+1 =
g

mσr+1

λsω.

Since βσr+1 = γτs+1 , we have
gλsnτs+1 = fmσr+1 .

Thus nτs+1 divides mσr+1 and mσr+1 divides λsnτs+1 , so that

a =
mσr+1

nτs+1

is a positive integer and defining

λ =
λs
a
,

we have that λ is a positive integer with

λs
mσr+1

=
λ

nτs+1

and
λ = [G(γτ0 , . . . , γτs+1) : G(βσ0 , . . . , βσr+1)].

Since λs+1 ≤ λ, either λs+1 < λs or λs+1 = λs and mσr+1 = nτs+1 .
We will now suppose that s is sufficiently large that (22) holds. Since

inν∗Qτs+1 ∈ grν∗(S) = grν(R)[inν∗Qτ0 , . . . , inν∗Qτs ],

if nτs+1 > 1 we have an expression

(23) inν∗Pσr+1 = inν∗(α)inν∗Qτs+1

in Pγτs+1
(S)/P+

γτs+1
(S) with α a unit in S and if nτs+1 = 1, since inν∗Pσr+1 6∈ Aτs , we have

an expression

(24) inν∗Pσr+1 = inν∗(α)inν∗Qτs+1 +
∑

inν∗(αJ)(inν∗Qτ0)j0 · · · (inν∗Qτs)js

in Pγτs+1
(S)/P+

γτs+1
(S) with α a unit in S and the sum is over certain J = (ji, . . . , js) ∈ Ns

such that the αJ are units in S, and the terms inν∗Qτs+1 and the (inν∗Qτ0)j0 · · · (inν∗Qτs)js
are linearly independent over S/mS .

The monomial Uσr+1 in Pσ0 , . . . , Pσr and the monomial Vτs+1 in Qτ0 , . . . , Qτs both have
the value nτs+1γτs+1 = mσr+1βσr+1 , and satisfy

ετs+1 =

[
Q
nτs+1
τs+1

Vτs+1

]
and

δσr+1 =

[
P
nτs+1
σr+1

Uσr+1

]
.
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Since Uσr+1 , Vτs+1 ∈ Aτs and by (12) and 2) of Theorem 2.1, we have that[
Vτs+1

Uσr+1

]
∈ S/mS [ετ1 , . . . , ετs ].

If nτs+1 > 1, then by (23), we have[
P
nτs+1
σr+1

Uσr+1

]
=

[
Vτs+1

Uσr+1

](
[α]nτs+1

[
Q
nτs+1
τs+1

Vτs+1

])
in L = Vν∗/mν∗ , and if nτs+1 = 1, then by (24), we have[

Pσr+1

Uσr+1

]
=

[
Vτs+1

Uσr+1

](
[α]

[
Qτs+1

Vτs+1

]
+
∑

[αJ ]

[
Qj0τ0 · · ·Q

js
τs

Vτs+1

])
.

Thus by equation (12),

(25) S/mS [ετ1 , . . . , ετs ][ετs+1 ] = S/mS [ετ1 , . . . , ετs ][δσr+1 ].

We have a commutative diagram

S/mS [ετ1 , . . . , ετs ] → S/mS [ετ1 , . . . , ετs , ετs+1 ] = S/mS [ετ1 , . . . , ετs ][δσr+1 ]
↑ ↑

R/mR[δσ1 , . . . , δσr ] → R/mR[δσ1 , . . . , δσr ][δσr+1 ].

Let
χ = [S/mS [ετ1 , . . . , ετs , ετs+1 ] : R/mR[δσ1 , . . . , δσr , δσr+1 ]].

Since
S/mS [ετ1 , . . . , ετs , ετs+1 ] = S/mS [ετ1 , . . . , ετs ][δσr+1 ],

we have that eτs+1 |dσr+1 . Further,

dσr+1

eτs+1

χ = χs,

whence χ ≤ χs. Thus χs+1 ≤ χs and if χs+1 = χs, then dσr+1 = eτs+1 and rs+1 = rs + 1
since Pσr+2 ∈ Aτs+1 implies λs+1 < λs or χs+1 < χs.

We may thus choose s sufficiently large that there exists an integer r > 1 such that for
all j ≥ 0,

βσr+j = γτs+j ,mσr+j = nτs+j , dσr+j = eτs+j ,mσr+j = nτs+j ,

G(βσ0 , . . . , βσr+j ) ⊂ G(γτ0 , . . . , γτs+j ),

there is a constant λ (which does not depend on j) such that

[G(γτ0 , . . . , γτs+j ) : G(βσ0 , . . . , βσr+j )] = λ

R/mR[δσ1 , . . . , δσr+j ] ⊂ S/mS [ετ1 , . . . , ετs+j ]

and there is a constant χ (which does not depend on j) such that

[S/mS [ετ1 , . . . , ετs+j ] : R/mR[δσ1 , . . . , δσr+j ]] = χ.

Then

Φν∗ = ∪j≥1
1

nτs+1 · · ·nτs+j
Zω

where G(γτ0 , . . . , γτs) = Zω, and

Φν = ∪j≥1
1

mσr+1 · · ·mσr+j

λZω = ∪j≥1
1

nτs+1 · · ·nτs+j
λZω
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so that

λ = [Φν∗ : Φν ] = e(ν∗/ν).

For i ≥ 0, let Ki = R/mR[δσ1 , . . . , δσr+i ] and Mi = S/mS [ετ1 , . . . , ετs+i ]. We have that
Mi+1 = Mi[δσr+i+1 ] for i ≥ 0 and χ = [Mi : Ki] for all i. Further,

∪∞i=0Mi = Vν∗/mν∗ and ∪∞i=0 Ki = Vν/mν .

Thus if g1, . . . , gλ ∈ M0 form a basis of M0 as a K0-vector space, then g1, . . . , gλ form a
basis of Mi as a Ki-vector space for all i ≥ 0. Thus

χ = [Vν∗/mν∗ : Vν/mν ] = f(ν∗/ν).

�

Let r and s be as in the conclusions of Proposition 3.1. There exists τt with t ≥ s such
that we have a commutative diagram of inclusions of regular local rings (with the notation
introduced in Section 2)

Rσr → Sτt
↑ ↑
R → S.

After possibly increasing s and r, we may assume that R′ ⊂ Rσr , where R′ is the local
ring of the conclusions of Proposition 1.1. Recall that R has regular parameters x = P0,
y = P1 and S has regular parameters u = Q0, v = Q1, Rσr has regular parameters xσr ,
yσr such that

x = δx
mσ1 ···mσr
σr , yσr = stRσrPσr+1

where δ is a unit in Rσr and Sτt has regular parameters uτt , vτt such that

u = εu
nτ1 ···nτt
τt , vτt = stSτtQτt+1

where ε is a unit in Sτt . We may choose t� 0 so that we we have an expression

(26) xσr = ϕuλτt

for some positive integer λ where ϕ is a unit in Sτt , since ∪∞t=0Sτt = Vν∗ .
We have expressions Pi = ψix

ci
σr in Rσr where ψi are units in Rσr for i ≤ σr so that

Pi = ψ∗i u
ciλ
τt in Sτt where ψ∗i are units in Sτt for i ≤ σr by (26).

Lemma 3.2. For j ≥ 1 we have

stRσr (Pσr+j ) = u
λj
τt stSτt (Pσr+j )

for some λj ∈ N, where we regard Pσr+j as an element of R on the left hand side of the
equation and regard Pσr+j as an element of S on the right hand side.

Proof. Using (26), we have

Pσr+j = stRσr (Pσr+j )x
fj
σr = stRσr (Pσr+j )u

λfj
τt ϕ

fj

where fj ∈ N. Viewing Pσr+j as an element of S, we have that

Pσr+j = stSτt (Pσr+j )u
gj
τt

for some gj ∈ N. Since uτt 6 | stSτt (Pσr+j ), we have that fjλ ≤ gj and so λj = gj − fjλ ≥ 0.
�
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By induction in the sequence of quadratic transforms above R and S in Lemma 2.5, and
since ν∗(Pσr+j ) = βσr+j = γτs+j by Proposition 3.1, we have by (23) and (24) an expression

(27) stSτt (Pσr+j ) = cstSτt (Qτs+j ) + uτtΩ

with c ∈ Sτt a unit, Ω ∈ Sτt and ν∗(uτtΩ) ≥ ν∗(stSτt (Qτs+j )) if s+ j > t and

(28) Sτt(Pσr+j ) is a unit in Sτt

if s + j ≤ t. Thus Pσr+j = u
dj
τt ϕj in Sτt where dj is a positive integer and ϕj is a unit in

Sτt if s+ j ≤ t.
Suppose s < t. Then

yσr = stRσr (Pσr+1) = ϕ̃uhτt
where ϕ̃ is a unit in Sτt and h is a positive integer. As shown in equation (20) of Section
2,

Rσr+1 = Rσr [x1, y1]mν∩Rσr [x1,y1]

where

x1 = (xbσry
−a
σr )ε, y1 = (x−ωσr y

mσr
σr )ε

with ε = mσrb− ωa = ±1, ν(x1) > 0 and ν(y1) = 0. Substituting

xσr = ϕuλτt and yσ1 = ϕ̃uhτt

we see that Rσr+1 is dominated by Sτt . We thus have a factorization

Rσr → Rσr+1 → Sτt

with xσr+1 = x1 = ϕ̂uλ
′
τt where ϕ̂ is a unit in Sτt and λ′ is a positive integer. We may thus

replace s with s+ 1, r with r + 1 and Rσr with Rσr+1 .
Iterating this argument, we may assume that s = t (with r = rs) so that by Lemma

3.2, (28) and (27),

yσr = stRσr (Pσr+1) = uµτsstSτs (Pσr+1)

where

stSτs (Pσr+1) = c stSτs (Qτs+1) + uτsΩ

with c a unit in Sτs and Ω ∈ Sτs . Thus by (26), we have an expression

xσr = ϕuλτs , yσr = εuατs(vτs + uτsΩ)

where λ is a positive integer, α ∈ N, ϕ and ε are units in Sτs and Ω ∈ Sτs .
We have that ν∗(xσr) = λν∗(uτs),

ν(xσr)Z = G(ν(xσr)) = G(βσ0 , . . . , βσr) and
ν∗(uτs)Z = G(ν∗(uτs)) = G(γτ0 , . . . , γτs).

Thus

λ = [G(γτ0 , . . . , γτs) : G(βσ0 , . . . , βσr)] = e(ν∗/ν)

by Proposition 3.1.
By Theorem 2.3, we have that

Rσr/mRσr = R/mR[δσ1 , . . . , δσr ] and Sτs/mSτs = S/mS [ετ1 , . . . , ετs ].

Thus

[Sτs/mSτs : Rσr/mRσr ] = f(ν∗/ν)

by Proposition 3.1.
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Since the ring R′ of Proposition 1.1 is contained in Rσr by our construction, we have
by Proposition 1.1 that (K, ν) → (K∗, ν∗) is without defect, completing the proofs of
Proposition 0.3 and Theorem 0.1.

4. non splitting and finite generation

In this section, we will have the following assumptions. Suppose that R is a 2 dimen-
sional excellent local domain with quotient field K. Further suppose that K∗ is a finite
separable extension of K and S is a 2 dimensional local domain with quotient field K∗

such that S dominates R. Suppose that ν∗ is a valuation of K∗ such that ν∗ dominates
S. Let ν be the restriction of ν∗ to K.

Suppose that ν∗ has rational rank 1 and ν∗ is not discrete. Then Vν∗/mν∗ is algebraic
over S/mS , by Abhyankar’s inequality, Proposition 2 [1].

Lemma 4.1. Let assumptions be as above. Then the associated graded ring grν∗(S) is an
integral extension of grν(R).

Proof. It suffices to show that inν∗(f) is integral over grν(R) whenever f ∈ S. Suppose
that f ∈ S. There exists n1 > 0 such that n1ν

∗(f) ∈ Φν . Let x ∈ mR and ω = ν(x).
Then there exists a positive integer b and natural number a such that bn1ν

∗(f) = aω, so

ν∗
(
f bn1

xa

)
= 0.

Let

ξ =

[
f bn1

xa

]
∈ Vν∗/mν∗ ,

and let g(t) = tr + ar−1t
r−1 + · · · + a0 with ai ∈ R/mR be the minimal polynomial of ξ

over R/mR. Let ai be lifts of the ai to R. Then

ν∗(f b1n1r+ar−1x
af bn1(r−1)+· · ·+a0x

ar) > ν∗(f bn1r) = ν∗(ar−1x
af bn1(r−1)) = · · · = ν∗(a0x

ar).

Thus
inν∗(f)b1n1r + inν(ar−1x

a)inν∗(f)bn1(r−1) + · · ·+ inν(a0x
ar) = 0

in grν∗(S). Thus inν∗(f) is integral over grν∗(R). �

We now establish Theorem 0.5. Recall (as defined after Proposition 0.3) that ν∗ does
not split in S if ν∗ is the unique extension of ν to K∗ which dominates S.

Theorem 4.2. Let assumptions be as above and suppose that R and S are regular local
rings. Suppose that grν∗(S) is a finitely generated grν(R)-algebra. Then S is a localization
of the integral closure of R in K∗, the defect δ(ν∗/ν) = 0 and ν∗ does not split in S.

Proof. Let s and r be as in the conclusions of Proposition 3.1. We will first show that Pσr+j
is irreducible in Ŝ for all j > 0. There exists a unique extension of ν∗ to the quotient
field of Ŝ which dominates Ŝ ([43], [17], [22]). The extension is immediate since ν∗ is
not discrete; that is, there is no increase in value group or residue field for the extended
valuation. It has the property that if f ∈ Ŝ and {fi} is a a Cauchy sequence in Ŝ which
converges to f , then ν∗(f) = ν∗(fi) for all i� 0.

Suppose that Pσr+j is not irreducible in Ŝ for some j > 0. We will derive a contradiction.
With this assumption, Pσr+j = fg with f, g ∈ mŜ . Let {fi} be a Cauchy sequence
in S which converges to f and let {gi} be a Cauchy sequence in S which converges to
g. For i sufficiently large, f − fi, g − gi ∈ mn

Ŝ
where n is so large that nν∗(mŜ) =
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nν∗(mS) > ν(Pσr+j ). Thus Pσr+j = figi + h with h ∈ mn
Ŝ
∩ S = mn

S , and so inν∗(Pσr+j ) =

inν∗(fi)inν∗(gi). Now

ν∗(fi), ν
∗(gi) < ν(Pσr+j ) = βσr+j = γτs+j = ν∗(Qτs+j )

so that

inν∗(fi), inν∗(gi) ∈ S/mS [inν∗(Qτ0), . . . , inν∗(Qτs+j−1)]

which implies

inν∗(Pσr+j ) ∈ S/mS [inν∗(Qτ0), . . . , inν∗(Qτs+j−1)].

But then (24) implies

inν∗(Qτs+j ) ∈ S/mS [inν∗(Qτ0), . . . , inν∗(Qτs+j−1)]

which is impossible. Thus Pσr+j is irreducible in Ŝ for all j > 0.
If S is not a localization of the integral closure of R in K∗, then by Zariski’s Main

Theorem (Theorem 1 of Chapter 4 [41]), mRS = fN where f ∈ mS and N is an mS-
primary ideal. Thus f divides Pi in S for all i, which is impossible since we have shown
that Pσr+j is analytically irreducible in S for all j > 0; we cannot have Pσr+j = ajf where
aj is a unit in S for j > 0 since ν(Pσr+j ) = ν∗(Qτs+j ) by Proposition 3.1.

Now suppose that ν∗ is not the unique extension of ν to K∗ which dominates S. Recall
that Vν is the union of all quadratic transforms above R along ν and Vν∗ is the union of
all quadratic transforms above S along ν∗ (Lemma 4.5 [3]).

Then for all i� 0, we have a commutative diagram

Rσi → Ti
↑ ↑
R → T

where T is the integral closure of R in K∗, Ti is the integral closure of Rσi in K∗, S = Tp
for some maximal ideal p in T which lies over mR, and there exist r ≥ 2 prime ideals
p1(i), . . . , pr(i) in Ti which lie over mRσi

and whose intersection with T is p. We may

assume that p1(i) is the center of ν∗.
There exists an mR-primary ideal Ii in R such that the blow up of Ii is γ : Xσi →

Spec(R) where Xσi is regular and Rσi is a local ring of Xσi . Let Zσi be the integral
closure of Xσi in K∗. Let Yσi = Zσi ×Spec(T ) Spec(S). We have a commutative diagram

of morphisms

Yσi
β→ Xσi

δ ↓ γ ↓
Spec(S)

α→ Spec(R)

The morphism δ is projective (by Proposition II.5.5.5 [25] and Corollary II.6.1.11 [25] and
it is birational, so since Yσi and Spec(S) are integral, it is a blow up of an ideal Ji in
S (Proposition III.2.3.5 [26]), which we can take to be mS-primary since S is a regular
local ring and hence factorial. Define curves C = Spec(R/(Pσi)) and C ′ = α−1(C) =
Spec(S/(Pσi)). Denote the Zariski closure of a set W by W . The strict transform C∗ of
C ′ in Yσi is the Zariski closure

(29)
C∗ = δ−1(C ′ \mS) = δ−1α−1(C \mR) = β−1γ−1(C \mR)

= β−1(γ−1(C \mR)) since β is quasi finite

= β−1(C̃)
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where C̃ is the strict transform of C in Xσi . We have that Zσi×Xσi Spec(Rσi)
∼= Spec(Ti),

so
Yσi ×Xσi Spec(Rσi)

∼= Spec(Ti ⊗T S).

Let xσi be a local equation in Rσi of the exceptional divisor of Spec(Rσi)→ Spec(R) and
let yσi = stRσi (Pσi). Then xσi , yσi are regular parameters in Rσi . We have that√

mRσi
(Ti ⊗T S) = ∩rj=1pj(i)(Ti ⊗T S).

The blow up of Ji(S/(Pσi)) in C ′ is δ : C∗ → C ′, where δ is the restriction of δ to C∗

Corollary II.7.15 [28]). Since yσi is a local equation of C̃ in Rσi , we have by (29) that

p1(i), . . . , pr(i) ∈ δ
−1

(mS) ⊂ C∗.
Since δ is proper and C ′ is a curve, C∗ = Spec(A) for some excellent one dimensional
domain A such that the inclusion S/(Pσi) → A is finite (Corollary I.1.10 [39]). Let

B = A⊗S/(Pσi ) Ŝ/(Pσi). Then

C∗ ×Spec(S/(Pσi ))
Spec(Ŝ/(Pσi)) = Spec(B)→ Spec(Ŝ/(Pσi))

is the blow up of Ji(Ŝ/(Pσi)) in Ŝ/(Pσi). The extension Ŝ/(Pσi) → B is finite since
S/(Pσi)→ A is finite.

Now assume that S/(Pσi) is analytically irreducible. Then B has only one minimal

prime since the blow up Spec(B)→ Spec(Ŝ/(Pσi)) is birational.
Since a complete local ring is Henselian, B is a local ring (Theorem I.4.2 on page 32 of

[39]), a contradiction to our assumption that r > 1. �

As a consequence of the above theorem (Theorem 0.5), we now obtain Corollary 0.6.

Corollary 4.3. Let assumptions be as above and suppose that R is a regular local ring.
Suppose that R → R′ is a nontrivial sequence of quadratic transforms along ν. Then
grν(R′) is not a finitely generated grν(R)-algebra.

The conclusions of Theorem 0.5 do not hold if we remove the assumption that ν∗ is
not discrete, when Vν/mν is finite over R/mR. We give a simple example. Let k be an
algebraically closed field of characteristic not equal to 2 and let p(u) be a transcendental
series in the power series ring k[[u]] such that p(0) = 1. Then f = v− up(u) is irreducible
in the power series ring k[[u, v]] and k[[u, v]]/(f) is a discrete valuation ring with regular
parameter u. Let ν be the natural valuation of this ring. Let R = k[u, v](u,v) and S =

k[x, y](x,y). Define a k-algebra homomorphism R → S by u 7→ x2 and v 7→ y2. The series

f(x2, y2) factors as f = (y − x
√
p(x2))(y + x

√
p(x2)) in k[[x, y]]. Let f1 = y − x

√
p(x2)

and f2 = y + x
√
p(x2). The rings k[[x, y]]/(fi) are discrete valuation rings with regular

parameter x. Let ν1 and ν2 be the natural valuations of these ring.
Let ν be the valuation of the quotient field of R which dominates R defined by the

natural inclusion R→ k[[u, v]]/(f) and let νi for i = 1, 2 be the valuations of the quotient
field of S which dominate S and are defined by the respective natural inclusions S →
k[[x, y]]/(fi) . Then ν1 and ν2 are distinct extensions of ν to the quotient field of S which
dominate S. However, we have that grν(R) = k[inν(u)] and grνi(S) = k[inν∗(x)] with

inν∗(x)2 = inν(u). Thus grνi(S) is a finite grν(R)-algebra.
We now give an example where ν∗ has rational rank 2 and ν splits in S but grν∗(S)

is a finitely generated grν(R)-algebra. Suppose that k is an algebraically closed field of
characteristic not equal to 2. Let R = k[x, y](x,y) and S = k[u, v](u,v). The substitutions

20



u = x2 and v = y2 make S into a finite separable extension of R. Define a valuation ν1 of
the quotient field K∗ of S by ν1(x) = 1 and ν1(y−x) = π+1 and define a valuation ν2 of the
quotient field K∗ by ν2(x) = 1 and ν2(y+x) = π+1. Since u = x2 and v−u = (y−x)(y+x),
we have that ν1(u) = ν2(u) = 2 and ν1(v − u) = ν2(v − u) = π + 2. Let ν be the common
restriction of ν1 and ν2 to the quotient field K of R. Then ν splits in S. However, grν1(S)
is a finitely generated grν(R)-algebra since grν1(S) = k[inν1(x), inν1(y − x)] is a finitely

generated k-algebra. Note that grν(R) = k[inν(u), inν(v − u)] with inν1(x)2 = inν(u) and
inν(v − u) = 2inν1(y − x)inν1(x).
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