
SPACES OF R-PLACES OF FUNCTION FIELDS OVER REALCLOSED FIELDSFRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKAbstrat. In this paper an answer to the problem "When do di�erent or-derings of R(X) (where R is a real losed �eld) lead to the same R-plae?" isgiven. We use this result to show that if R is a dense real losed sub�eld of areal losed �eld ~R, then the spaes of R-plaes of funtion �elds over R and ~Rare homeomorphi. We also disuss the problem of metrizibility of the spaeM(R(X)). 1. IntrodutionStudies of real plaes of formally real �elds were initiated by Dubois [6℄ andBrown [3℄, and sine then have been ontinued in several papers by Brown andMarshall [4℄, Harman [10℄, Sh�ulting [15℄, Beker and Gondard [2℄ and Gondardand Marshall [9℄. We shall briey outline some basi notions of this theory. Wewill use the notation and terminology introdued by Lam [12℄, where also most ofthe results that we reall in this setion an be found. We assume that the readeris somewhat familiar with valuation theory and theory of formally real (ordered)�elds.Let K be an ordered �eld. The set X (K) of all orderings of K an be madeinto a topologial spae by introduing a subbasis for the topology on X (K)onsisting of Harrison sets, i.e., sets of the formHK(a) := fP 2 X (K) : a 2 Pg; a 2 _K = K n f0g:The spae X (K) is known to be Boolean (i.e., ompat, Hausdor� and totallydisonneted - see [12, p.2℄).For a �xed ordering P of K the setA(P ) := fa 2 K : 9q 2 Q+(�q <P a <P q)gDate: 5. 4. 2009.2000 Mathematis Subjet Classi�ation. Primary 12D15, Seondary 14P05 .Key words and phrases. formally real �elds, real plae, spaes of real plaes.The researh of the third author was funded in part by Center for Advaned Studies inMathematis, Ben-Gurion University of the Negev, Israel.1



2 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKis a valuation ring in K with the maximal idealI(P ) := fa 2 K : 8q 2 Q+(�q <P a <P q)g:There is a natural ordering on the residue �eld K(P ) := A(P )=I(P ), whih isArhimedean, namely �P = (P \ U(P )) + I(P ), where U(P ) = A(P ) n I(P ) isthe set of units of A(P ). Thus K(P ) is naturally embedded in the �eld R; thisembedding omposed with the plae K ! K(P )[f1g assoiated to the orderingP , gives a real-valued plae, or an R-plae, for short. Conversely, every plae ofK with values in R is determined by some ordering of K in the way desribedabove (see [12, Prop. 9.1℄). The set of all R-plaes of the �eld K will be denotedby M(K).The above desribed orrespondene between orderings and R-plaes de�nes asurjetive map �K : X (K) �!M(K);whih, in turn, allows us to equipM(K) with the quotient topology inherited fromX (K). M(K) is a Hausdor� spae (see [12, Cor. 9.9℄). It is also ompat as aontinuous image of a ompat spae. Unlike X (K), the spaeM(K) need not beBoolean. However, every Boolean spae is realized as a spae of R-plaes of someformally real �eld ([13℄). On the other hand, there are many examples of �eldsfor whih the spae of R-plaes has a �nite number of onneted omponents, oreven is onneted. In partiular, if K is a real losed �eld, then the spae M(K)has only one point, and the spae M(R(X)) is homeomorphi to a irle (see [2℄,[15℄). A slightly more general result states that the spae of R-plaes of a rationalfuntion �eld K(X) is onneted if and only if M(K) is onneted (see [10℄,[15℄).The main objetive of this paper is to desribe the spae of R-plaes of the �eldR(X), where R is a real losed �eld. The main theorem of Setion 2 explainshow the map �R(X) : X (R(X)) �! M(R(X)) "glues" points. We then applythis result, in Setion 3, to show that if a �eld R is a dense real losed sub�eldof a real losed �eld ~R, then the spaes M(R(X)) and M( ~R(X)) are naturallyhomeomorphi. In the last setion we �nd onditions of metrizibility of the spaeM(R(X)).



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 3Throughout this paper we shall denote by _S the set S n f0g, for any subset Sof a �eld. We shall also use the familiar notion of intervals: if (S;<) is a linearlyordered set, then (a; b) = f 2 S : a <  ^  < bg:Similarly we de�ne [a; b℄, [a; b), (a;1) et. If A;B are subsets of an ordered setS, then by A < B we mean that a < b for every a 2 A and every b 2 B.2. The R-plaes of R(X)Let R be a real losed �eld with its unique ordering _R2. Denote by v thenatural valuation of R, i.e., assoiated to A( _R2), by � the value group of v andby k the residue �eld of v. Sine R is real losed, � is a divisible group and k isa real losed �eld (see [7, Th. 4.3.7℄). Moreover, using Hensel's Lemma one anshow that k an be onsidered as a sub�eld of R.There is a one-to-one orrespondene between orderings of R(X) and uts ofR (see [8℄, [16℄). The ut (AP ; BP ) orresponding to P is given by AP = fa 2R : a <P Xg and BP = fb 2 R : b >P Xg. Conversely, if (A;B) is a ut in R,then the setQ = ff 2 R(X) : 9a 2 A 9b 2 B 8 2 (a; b) (f() 2 _R2)gis an ordering of R(X), and (AQ; BQ) = (A;B).The uts (;; R) and (R; ;) are alled the improper uts. The orderings deter-mined by these uts areP�1 = ff 2 R(X) : 9b 2 R 8 < b (f() 2 _R2)gand P+1;= ff 2 R(X) : 9a 2 R 8 > b (f() 2 _R2)g;respetively. A ut (A;B) of R is alled normal if it satis�es the following ondi-tion: 8 2 _R2 9a 2 A 9b 2 B (b� a < ):If A has a maximal element or B has a minimal element, then (A;B) is alleda prinipal ut. Prinipal uts are normal. Every a 2 R de�nes two prinipaluts: ((�1; a); [a;1)), with the orresponding ordering denoted by P�a , and



4 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAK((�1; a℄; (a;1)), with the orresponding ordering denoted by P+a . Note that ifR is a real losed sub�eld of R, then all proper uts of R are normal. Moreover,R = R if and only if all proper uts are prinipal.If A does not have a maximal element and B does not have a minimal element,then we say that (A;B) is a free ut or a gap. If R is not ontained in R, then Rhas abnormal gaps, i.e., gaps whih are not normal. For example, ifA = (�1; 0℄ [ I( _R2)and B = (0;1) n I( _R2);then (A;B) is an abnormal gap in R.In fat, we have three kinds of proper uts:(1) prinipal uts,(2) normal (but not prinipal) gaps,(3) abnormal gaps.Note that the orrespondene between uts in R and orderings of R(X) makesthe set X (R(X)) linearly ordered: if Q is another ordering of R(X), then letP � Q() AP � AQ:The set X (R(X)) has a minimal element P�1 and a maximal element P+1. Con-sider the two orderings orresponding to the prinipal uts determined by a 2 R,P�a and P+a . Then P�a � P+a . Observe that the interval (P�a ; P+a ) is empty { wethus say that � has a step in a.Proposition 2.1. The Harrison topology on the spae X (R(X)) oinides withthe topology indued by the ordering de�ned above.Proof. Take the Harisson setHR(X)(fg ) = H(fg) � X (R(X)). Note thatHR(X)(fg)is a �nite union of intervals (P�a ; P+b ) suh that:1. a; b 2 R [ f1g and if a; b 2 R, then they are roots of fg;2. fg has positive values on (a; b).So, HR(X)(fg ) is open in the order topology of X (R(X)).



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 5On the other hand, an interval (P;Q) � X (R(X)) an be replaed by a unionof Harrison sets HR(X)(f), where f runs through all quadrati polynomials withroots a < b 2 BP \AQ suh that f is positive on (a; b). �Consider the map �R(X) : X (R(X)) �!M(R(X)):Note that �R(X) annihilates every step by \gluing" orderings, that is by mappingboth P�a and P+a onto the same real plae. Our goal is to answer the follow-ing question: Whih points of X (R(X)) are glued by �R(X), that is, for whihorderings P1 and P2 of R(X), �R(X)(P1) = �R(X)(P2)?We shall make use of the following Separation Criterion [12, Prop. 9.13℄, whihwe reall now in the version useful for this paper:Theorem 2.2. [Separation Criterion℄ Let P1 and P2 be two di�erent orderingsof R(X). Then �R(X)(P1) 6= �R(X)(P2) if and only if there exists f 2 R(X) suhthat f 2 U(P1) \ P1 and �f 2 P2.We shall refer to f as to a \separating element". In view of the above de-sribed duality between orderings of R(X) and uts of R, we an also speak of a\separating element" of two uts of R.Claim 2.3. Let P be an ordering of R(X) with orresponding (proper) ut (A;B)in R. Then(1) A(P ) = ff 2 R(X) : 9a 2 A 9b 2 B 8 2 [a; b℄ (f() 2 A( _R2))g(2) U(P ) = ff 2 R(X) : 9a 2 A 9b 2 B 8 2 [a; b℄ (f() 2 U( _R2))gProof. (1) Suppose that f 2 A(P ). Then there exists q 2 Q+ suh that q�f 2 P .It means that there exist a 2 A, b 2 B, suh that for every  2 (a; b),�q < f() < q:Then for every  2 [a; b℄, �q � f() � q:Thus f() 2 A( _R2).Now suppose that there exists a 2 A, b 2 B, suh that for every  2 [a; b℄,f() 2 A( _R2). Then f has no poles in [a; b℄, and as it is a semialgebrai funtion,



6 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKit is ontinuous on [a; b℄. Therefore f has a minimum and a maximum on [a; b℄,i.e., there exists min; max 2 [a; b℄ suh that for every  2 [a; b℄, f(min) � f() �f(max). Sine f(min); f(max) 2 A( _R2), there exists q 2 Q+ suh that�q < f(min) � f() � f(max) < q;for every  2 [a; b℄, so f 2 A(P ).(2) By de�nition of the set of units of a valuation ring, U(P ) ontains the funtionsf 2 R(X) suh that f 2 A(P ) and 1=f 2 A(P ). Suppose that f 2 U(P ).Then there exist a1; a2 2 A and b1; b2 2 B suh that for every  2 [a1; b1℄,f() 2 A( _R2) and for every  2 [a2; b2℄, 1=f() 2 A( _R2). Let a = maxfa1; a2gand b = minfb1; b2g. Then for every  2 [a; b℄, f() and 1=f() belong to A( _R2),i.e., f() 2 U( _R2).Supose that f() 2 U( _R2) for every  2 [a; b℄, where a 2 A and b 2 B. Thenf; 1=f 2 A(P ), so f 2 U(P ). �Remark 2.4. In a similar way one an show thatA(P+1) = ff 2 R(X) : 9a 2 R 8 > a (f() 2 A( _R2))g;U(P+1) = ff 2 R(X) : 9a 2 R 8 > a (f() 2 U( _R2))g;A(P�1) = ff 2 R(X) : 9a 2 R 8 < a (f() 2 A( _R2))g;U(P+1) = ff 2 R(X) : 9a 2 R 8 < a (f() 2 U( _R2))g:Remark 2.5. By a losed neighborhood of a proper ut (A;B) in R we mean aninterval [a; b℄ � R suh that [a; b℄ \ A 6= ; and [a; b℄ \ B 6= ;. Note that A(P )is the set of those funtions whih, on some losed neighborhood of (AP ; BP ),have values in A( _R2). Funtions that belong to U(P ) are the ones that, on somelosed neighborhood of (AP ; BP ), have values in U( _R2).By [16, Lem. 2.2.1℄, every (proper) ut of R determines a lower ut setS = fv(b� a) : a 2 A; b 2 Bg;in the value group �. Note that if (A;B) is a normal ut, then S = �. Forimproper uts, take S = ;. The sets S allow us to ompare gaps as follows: wean say that a gap (A1; B1) is \oarser" than (A2; B2) if S1 ( S2.



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 7From now on let (A1; B1) and (A2; B2) be the uts in R orresponding to two�xed orderings P1 and P2 of R(X), respetively. Relabeling suitably, if neessary,we may assume that A1 � A2. Consider the setU = fv(a0 � a) : a; a0 2 B1 \A2; a < a0g:Denote by S1 and S2 the lower uts in � determined by (A1; B1) and (A2; B2).Lemma 2.6. The set U is an upper ut set in �. Moreover, � n (S1 \ S2) � U .Proof. We shall show that if  2 U and 0 2 � with  < 0, then 0 2 U . We havethat  = v(a0 � a), where a and a0 are as in the de�nition of U and 0 = v(),where  is a positive element of R. Sine v(a0�a) < v(), v( a0�a) 2 I( _R2). Thena0�a < 1. So a+  < a0. Thus a+  2 B1 \A2. We have v(a+  � a) = v() =0 2 U .Now suppose that  2 � n (S1 \ S2). Let  be a positive element of R withv() = . Fix an element a 2 B1\A2. Assume that  =2 S1. Then a� 2 B1\A2.Thus  = v() = v(a � (a � )) 2 U . If  =2 S2, then a +  2 B1 \ A2 and = v() = v(a+  � a) 2 U . �Theorem 2.7. Let P1, P2 be the orderings as above. Then �R(X)(P1) = �R(X)(P2)if and only if S1 = S2 =: S and S \ U = ;.Proof. We onsider three ases:CASE 1. Suppose that S1 � S2. Then there exist a 2 B1 \ A2 and b 2 B2suh that v(b � a) =2 S1. Consider a linear polynomial f(X) = X�ab�a + 1. Thispolynomial has a root x0 = a�(b�a). If x0 2 A1, then v(b�a) = v(a�x0) 2 S1,a ontradition. Therefore x0 2 B1. Moreover, f(a) = 1 and f(b) = 2. Thusf has positive values in some losed neighbourhood of (A2; B2) whih are unitsin A( _R2) and negative values in some losed neighbourhood of (A1; B1). ByRemark 2.5 and by the Separation Criterion, �R(X)(P1) 6= �R(X)(P2). If S2 � S1,we proeed in a similar manner.CASE 2. Suppose that S1 = S2 =: S but S \ U 6= ;. Let  2 U \ S. Then thereexist a 2 A1, b 2 B1 and ; d 2 B1 \A2 suh that  = v(b� a) = v(d� ).We shall show that one an �x  in suh a way that a < b 6  < d. If < b, then we take 0 = v( � a). We have 0 > , so 0 2 U . If 0 > ,



8 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKthen v( � a) > v(d � ). Thus  � a < d �  and  + ( � a) < d. Therefore+ (� a) 2 B1 \A2. So we an take 0 as ,  as b, and + (� a) as d.Sine v(b � a) = v(d � ), there exists n 2 N suh that 1n < b�ad� < n. Thenb�an < d � . Consider a linear polynomial f(X) suh that f(a) = n + 1 andf(b) = 1, that is f(X) = n(b�X)b�a + 1. This polynomial has a root x0 = b+ b�an <b + d �  < d. Thus f has positive values in a losed neighborhood of (A1; B1)whih are units inA( _R2) and negative values in a losed neighborhood of (A2; B2).Using the Separation Criterion we get �R(X)(P1) 6= �R(X)(P2).CASE 3. Suppose that S1 = S2 =: S and S\U = ;. By Lemma 2.6, U = �nS.We an assume that 0 2 B1 \A2. Indeed, if a 2 B1 \A2, then onsider the uts:(A1 � a;B1 � a) and (A2 � a;B2 � a). Then f(X) is a \separating element"for (A1; B1) and (A2; B2) if and only if f(X + a) is a \separating element" for(A1� a;B1� a) and (A2� a;B2� a), and onsequently, the R-plaes determinedby orderings assoiated to (A1 � a;B1 � a) and (A2 � a;B2 � a) are equal if andonly if �R(X)(P1) = �R(X)(P2). Note that U and S remain unhanged undertranslation of uts.The uts (A1; B1) and (A2; B2) are symmetri about 0, i.e., a 2 B1 \ A2 )�a 2 B1\A2, and onsequently, a 2 B2 ) �a 2 A1. Indeed, if a 2 B1\A2 and�a 2 A1, then S 3 v(a) = v(�a) 2 U , a ontradition to S \ U = ;.Let A := B1 \ A2 and B = A1 [ B2. Then A [ B = R, A \ B = ;, A = �A,B = �B. Further, v(A) = U [ f1g. Sine R is the disjoint union of A and Band � is the disjoint union of U and S, it follows that v(B) = S. We assumeB 6= ;; the proof an easily be adapted to the ase of B = ;, the ase of improperuts.Let v1 be the valuation determined by ordering P1 and let v2 be the valuationdetermined by P2. Both v1 and v2 are extensions of v. We show thatv(a) > vi(X) > v(b); for a 2 A; b 2 B; i = 1; 2:Indeed, sine v(a) = v(�a), v(b) = v(�b), A = �A, B = �B, we may assumethat b 2 B2, �b 2 A1, a � 0, �a � 0. It follows that �b <P1 X <P1 �a � 0 and0 � a <P2 X <P2 b, whene our laim.



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 9Suppose that vi(X) = v(a) for some a 2 A, then vi(Xa ) = 0. Thus the funtionXa has Arhimedean values in some losed neighbourhood of (Ai; Bi). Thereforethere exists b 2 B suh that v( ba ) = 0. So S 3 v(b) = v(a) 2 U [ f1g, aontradition to S \U = ;. Similarly, vi(X) 6= v(b) for b 2 B; i = 1; 2. Thereforev(a) > vi(X) > v(b); for a 2 A; b 2 B; i = 1; 2:So, vi(X) =2 � and sine � is divisible, n � vi(X) =2 � for n 2 N. By [7, Cor. 2.2.3℄,v1 = v2 and k is a the residue �eld of vi.By [12, Cor. 2.13℄, two orderings determine the same R-plae if they determinethe same valuation and the same ordering on the residue �eld. Sine the residue�eld of vi is real losed, �R(X)(P1) = �R(X)(P2) �Remark 2.8. The set U allows us to ompare gaps by the \distane" betweenthem. Theorem 2.7 shows that the map �R(X) glues the abnormal gaps whihare \lose" to eah other in the sense that the distane between them is smallerthan their \size". For example, the orderings determined by gaps (A1; B1) and(A2; B2) whereA1 = �R2 n I( _R2), B1 = I( _R2) [R2,A2 = �R2 [ I( _R2), B2 = R2 n I( _R2),are always glued. More generally, we an replae I( _R2) by any onvex subgroupf 2 R : v() 2 U or  = 0g where U is a �nal segment of �. Then vX willsatisfy the gap (� n U;U) in �. The proof of Theorem 2.7 shows that these areall possible ases, up to translation of uts by adding an element of R.Remark 2.9. The orderings P+a and P�a determine the same R-plae, sine S1 =S2 = � and U = ;. Also P+1 and P�1 determine the same R-plae, sine S1 =S2 = ; and U = �.Remark 2.10. If R is a real losed sub�eld of R, then every ut of R is nor-mal. Then it is easy to dedue from Theorem 2.7 that the spae M(R(X)) ishomeomorphi to M(R(X)). We will prove a more general result in Theorem 3.3below.Remark 2.11. At most two orderings determine the same R-plae. Let P1 � P2 �P3 be orderings of R(X) with orresponding uts (A1; B1); (A2; B2) and (A3; B3)



10 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKin R and orresponding lower ut sets S1, S2 and S3 in �, respetively. Supposethat S1 = S2 = S3. Let U13 be the upper ut set determined by the orderings P1and P3. Take a 2 B1 \A2 and b 2 B2 \A3. Then v(b� a) 2 U13 \ S2, so P1 andP3 do not determine the same R-plae.Another way to see this is as follows. If an R-plae of R(X) has the samevalue group as R, whih is divisible and has no nontrivial 2-harater, then thereis only one ordering of R(X) ompatible with it. If it does not have the samevalue group as R, then it is of the form � � Z, having two 2-haraters, andhene there are two distint orderings ompatible with it. Indeed, if two distintorderings are glued, i.e., if S1 = S2 =: S and S \U = ;, then Case 3 of the proofof Theorem 2.7 shows that v(X � a) =2 � for some a 2 R.3. Extension theory of M(R(X))Let L=K be an extension of ordered �elds. Then we have restrition maps� : X (L)! X (K); �(P ) = P \K;and � :M(L)!M(K); �(�) = � jK :The restrition maps are ontinuous and the diagramX (L) �F�! M(L)�??y �??yX (K) �K�! M(K)ommutes (see [6, 7.2.℄).Note that the surjetivity of the map � : X (L)! X (K) implies the surjetivityof the map � : M(L)!M(K).Lemma 3.1. Let R � ~R be an extension of real losed �elds and let ~P be anordering of ~R(X) with orresponding ut ( ~A; ~B) in ~R. Then ( ~A \R; ~B \R) is aut in R whose orresponding ordering P 2 X (R(X)) is a restrition of ~P . Themap � : X ( ~R(X))! X (R(X)) is surjetive.



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 11Proof. It is easy to see that ( ~A\R; ~B\R) is a ut in R. If ( ~A; ~B) is an improperut in ~R, then ( ~A \R; ~B \R) is an improper ut in R, as well.Reall that if ( ~A; ~B) is a proper ut in ~R, then f 2 ~P i� there exists a losedneighbourhood [a; b℄ of ( ~A; ~B) suh that for every  2 [a; b℄, f() > 0. Sine R isa real losed �eld, all real roots of a polynomial f 2 R[X℄ are in R. This impliesthat ~P \R(X) = P .To show the last assertion, take P 2 X (R(X)) with orresponding ut (A;B)in R. Set ~A = f~a 2 ~R j ~a < Bg and ~B = R n ~A. Then ( ~A; ~B) is a ut in ~R and( ~A \ R; ~B \ R) = (A;B). Let ~P 2 X ( ~R(X)) be the ordering orresponding tothis ut. By what we have already proved, ~P \R(X) = P . �Corollary 3.2. Let R � ~R be an extension of real losed �elds. Then the map� :M( ~R(X))!M(R(X)) is surjetive.Theorem 3.3. Let R � ~R be an extension of real losed �elds. If R is dense in~R, then M( ~R(X)) and M(R(X)) are homeomorphi.Proof. The restrition map � :M( ~R(X)) �!M(R(X)) is surjetive and ontin-uous. Sine both spaes are ompat and Hausdor�, we need only to show thatit is injetive.Take two distint plaes �1; �2 2M( ~R(X)) and let P1; P2 orresponding order-ings of ~R(X) and ( ~A1; ~B1) and ( ~A2; ~B2) be the uts in ~R assoiated with them.Let ~v be the valuation orresponding to the unique ordering of ~R. Consider~U = fv(~a0 � ~a) : ~a; ~a0 2 ~B1 \ ~A2; ~a < ~a0g. Set Ai = ~Ai \R and Bi = ~Bi \R fori = 1; 2. If ~U = ;, then also U = fv(a0 � a) : a; a0 2 B1 \ A2; a < a0g = ;. If~U = f0g, then ~R and R are arhimedean and ~B1 \ ~A2 6= ;, so by density of R in~R, B1 \ A2 6= ;, whih implies U = f0g = ~U . Now assume that U has at leasttwo elements and hene has no last element. Then by the density of R in ~R, forall ~a; ~a0 2 ~B1 \ ~A2 with ~a < ~a0 there are a so lose to ~a and a0 so lose to ~a with~a < a < a0 < ~a0 suh that v(~a � a) > v(~a0 � ~a) and v(~a0 � a0) > v(~a0 � ~a). Itfollows that a; a0 2 B1 \A2 with v(a0 � a) = v(~a0 � ~a). Hene U = ~U .In the same way, one shows that ~Si = fv(~b� ~a) : ~a 2 ~Ai; ~b 2 ~Big = fv(b�a) :a 2 Ai; b 2 Big = Si for i = 1; 2. Now it follows from Theorem 2.7 that therestritions of �1 and �2 to R(x) remain distint. �



12 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKReall that an ordered �eld K is alled ontinuously losed if every normalut in K is prinipal. We say that an ordered �eld ~K is a ontinuous losure ofK if ~K is ontinuously losed and K is dense in ~K. The ontinuous losure ~Kis uniquely determined for every ordered �eld K. Moreover, if K is real losed,then ~K is also real losed (see [1℄). In fat, the ontinuous losure ~K of K is aompletion of K with respet to:1) order topology if K is Arhimedean;2) valuation topology if K is not Arhimedean(see [14℄).So we have:Corollary 3.4. If ~R is the ontinuous losure of R, thenM( ~R(X)) and M(R(X))are homeomorphi.4. Metrizibility of the spae M(R(X))First we shall reall some basi topologial fats. By Urysohn's metrizationtheorem (see [11, p. 125℄) a ompat Hausdor� spae is metrizable if and onlyif it is seond-ountable. Every seond-ountable spae is separable. Reall thatthe ellularity of a topologial spae M issupfj F j: F is a family of pairwise disjoint open subsets of Mg:The ellurality is not smaller than the density of M .Reall that the real holomorphy ring HK of a formally real �eld K is theintersetion of all real valuation rings of K, i.e.,HK =\fA(P ); P 2 X (K)g:By [12, Th. 9.11℄, a subbasis for the spae M(K) is given by the family of thesets U(a) = f� 2 M(K) j �(a) > 0g, where a 2 HK . If K is ountable, thenthis subbasis (and onsequently, also a basis) of M(K) is ountable, so M(K) isseond-ountable. So we have:Corollary 4.1. If K is a ountable �eld, then M(K) is metrizable.As before we onsider a real losed �eld R with natural valuation v, valuegroup �, and residue �eld k � R.



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 13Lemma 4.2. Take a 2 R. Then the setUa = [�3>0f� 2M(R(X)) j v�(X � a) > gis open in M(R(X)).Proof. If � is a trivial group, then Ua = ;. So we assume that � is not trivial.We shall show that ��1R(X)(Ua) = [2 _R2;v()>0(P�a�; P+a+);where eah (P�a�; P+a+) is an open interval in X (R(X)).Suppose that P 2 ��1R(X)(Ua). Then there exists � 3  > 0 suh that vP (X �a) > . Let  2 _R2 suh that v() = . Then � <P X � a <P , and thusa�  <P X <P a+ , so P 2 (P�a�; P+a+).Now suppose that P 2 (P�a�; P+a+) for some  2 _R2; v() > 0, i.e., a �  �PX �P a+. Then � �P X�a �P  and thus vP (X�a) � v() > 12v() > 0. �Proposition 4.3. Let R be a non-Arhimedean real losed �eld suh that k is anunountable �eld or � is an unountable group. Then is not metrizable.Proof. Suppose that k � R is an unountable �eld. For every a 2 k take an openset Ua as in the previous lemma.Note that Ua is nonempty, beause the plae determined by the prinipal utsin a belongs to Ua.Suppose that Ua\Ub 6= ; for a 6= b. Let � 2 Ua\Ub, i.e., v�(X�a) > 1 > 0 andv�(X�b) > 2 > 0, for some 1; 2 2 �. Then v�(a�b) = v�((X�a)�(X�b)) > 0,a ontradition, beause k is Arhimedean.Now suppose that � is unountable. For every � 3  < 0 hoose an elementa 2 R with v(a) =  and onsider sets Ua, whih are like previously open andnonempty.Suppose that � 2 Ua \ Ub for a 6= b. Then v�(X � a) > 0 and v�(X � b) > 0,thus v�(a�b) = v�((X�a)�(X�b)) > 0. But v�(a�b) = minfv�(a); v�(b)g < 0,a ontradition.



14 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKIn both ases the family of the sets Ua is an unountable family of pairwisedisjoint open sets in M(R(X)), so the ellularity of M(R(X)) is unountable,hene M(R(X)) annot be metrizable. �Remark 4.4. The proof shows that, without the assumptions on k or �, theellularity of M(R(X)) is bigger or equal to maxfjkj; j�jg.Lemma 4.5. Let N be a dense subset in M(R(X)). Then ��1R(X)(N) is a densesubset of X (R(X)).Proof. Take a basi open set in X (R(X)), i.e., the set of all uts in an interval(a; b) � R. Consider a polynomial f(X) 2 R[X℄, f(X) = �4(X�a)(X�b)(b�a)2 andlet g = f1+f2 . Note that g is positive only on interval (a; b) and g(a+b2 ) = 12 .Therefore the subbasi set U(g) is nonempty (the R-plae determined by theprinipal uts in a+b2 belongs to U(g)), and by density of N in M(R(X)), thereexists � 2 N \ U(g). Let P 2 ��1R(X)(�) and let (A;B) be a ut orrespondingto P . Sine �(g) > 0, g 2 P . So there exists a0 2 A; b0 2 B suh that for every 2 (a0; b0), g() > 0. So, (a0; b0) � (a; b) and P orresponds to a ut in (a; b). �Theorem 4.6. Let R be a real losed �eld. Then M(R(X)) is metrizable if andonly if R ontains a ountable dense sub�eld.Proof. Suppose that M(R(X)) is metrizable. Therefore both, the residue �eldk and the value group � of the natural valuation v of R are ountable. SineM(R(X)) is ompat, it is separable. Let N be a ountable, dense subset ofM(R(X)). Then, by the previous lemma, the set ��1R(X)(N) is dense in X (R(X)).Using this set we shall desribe a onstrution of a ountable, dense subset of R.For every  2 � hoose an element  2 _R2 suh that v() = .Let (A;B) be a ut in R with orresponding ordering P 2 ��1R(X)(N) andlet S be the orresponding lower ut set in �. For every  whih is not themaximal element in S hoose a pair of elements aP 2 A and bP 2 B suh thatv(bP � aP ) = . If 0 is a maximal element in S then hoose a 2 A, b 2 B suhthat v(b� a) = 0. As pointed out earlier in the paper, we may assume that theresidue �eld k is a sub�eld of R. Then(f �d 2 k : a+ �d0 2 Ag; f�e 2 k : a+ �e0 2 Bg)



SPACES OF R-PLACES OF FUNCTION FIELDS OVER REAL CLOSED FIELDS 15is a ut in k. We note that �e is in the left ut set, and that a+ �f0 2 B for every�f 2 k suh that �f > b�a0 . Hene, this ut is proper. For every � 2 _k2 we anthus hoose �d in the left and �e in the right ut set suh that �e � �d = �. SettingaP� = a + �d0 2 A and bP� = a + �e0 2 B we obtain that v(bP� � aP� ) = 0 and� _R2( bP� �aP�0 ) = �.Let AP be a set of all aP ; bP ; aP� ; bP� with  2 S, � 2 _k2. Note that AP is aountable set beause S and _k2 are ountable. Let A = SfAP : P 2 ��1R(X)(N)g.Then A is ountable. We will show that it is dense in R.Suppose that a < b 2 R. By density of ��1R(X)(N) in X (R(X)), there existsP 2 ��1R(X)(N) suh that P+a � P � P�b . Let (A;B) be a ut in R orrespondingto P and let S be the orresponding lower ut set in �. Then v(b � a) 2 S. Ifv(b�a) is not the maximal element in S, then v(b�a) <  for some  2 S. In thisase, onsider aP ; bP 2 AP . Sine v(b� a) < v(bP � aP ), we have aP 2 (a; b) orbP 2 (a; b). If v(b�a) = 0 is the maximal element in S, then � _R2( b�a0 ) = �d 2 _k2.Take � 2 _k2, � < �d. Then for aP� ; bP� 2 AP ,� _R2(b� a0 � bP� � aP�0 ) > 0 :Thus, (b� a)� (bP� � aP� ) > 0.If aP� < a, then 0 < (b� a)� (bP� �aP� ) < b� bP� , and thus bP� < b. Similarly, ifb < bP� , then a < aP� . So the interval (a; b) ontains an element from A. Sine Ais dense in R the �eld k(A) is dense in R and ountable, beause A is ountable.Now suppose that K is a ountable, dense sub�eld of R. Let R0 be the reallosure of K inside of R. Then R0 � R and R0 is ountable and dense in R.By Theorem 3.3, M(R0(X)) �= M(R(X)), and by Corollary 4.1, M(R0(X)) ismetrizable. �The following example shows that the onverse of Proposition 4.3 does nothold:Example 4.7. Let be a ountable, Arhimedean �eld k and a ountable, non-trivial, ordered, divisible group �. The �eld k((�)) is real losed, with its naturalvaluation v being its t-adi valuation with value group � and residue �eld k. TakeR to be the real losure of k(�) in k((�)).



16 FRANZ-VIKTOR KUHLMANN, MICHA L MACHURA, KATARZYNA OSIAKConsider the funtion �eld R(X). Sine R is ountable, M(R(X)) is metriz-able. We shall show that M(k((�))(X)) is not metrizable.Sine � is divisible, Q � �. Fix an inreasing sequene of rational numbers(n) onverging to 0. Consider a Cantor set given as a family of funtions� 2 f0; 1gfn :n2Ng :Now de�ne a family of sets U� of ardinality 2�0 as follows: U� ontains allR-plaes determined by uts of the interval (a� ; b�), wherea�Æ = 8><>:�(Æ) Æ = n�1 Æ = 00 otherwiseb�Æ = 8><>:�(Æ) Æ = n+1 Æ = 00 otherwise:Take �; � 2 f0; 1gfn :n2Ng , a ut (A1; B1) in (a� ; b�) with orresponding lowerut set S1 in �, and a ut (A2; B2) in (a� ; b� ) with orresponding lower ut setS2. Then both S1 and S2 ontain (�1; 0). Let U be the upper ut set in �orresponding to (A1; B1) and (A2; B2). If � 6= � , then U ontains an element < 0. Thus U\S1 6= ; and by Theorem 2.7, the R-plaes determined by orderingsof k((�))(X) assoiated to the uts (A1; B1) and (A2; B2) are distint. ThereforeU� \ U� = ; for � 6= � , and thus ellularity of M(k((�))(X)) is unountable.More generally, take any real losed sub�eld R0 of k((�)). If it is inluded in asub�eld of k((�)) that is of ountable transendene degree over the ompletionof R, then by Theorem 4.6M(R0(X)) is metrizable. It an be shown that also theonverse is true: if the ompositum of R0 with the ompletion is of unountabletransendene degree over the ompletion, then there are again unountably many� 2 R0 that one an use for the above de�nition of the intervals U�.Referenes[1℄ R. Baer: Dihte, Arhimedizit�at und Starrheit geordneter K�orper. Math. Ann. 188(1970), 165{205[2℄ E. Beker, D. Gondard: Notes on the spae of real plaes of a formally real �eld. RealAnalyti and Algebrai Geometry, W. de Gruyter (1995), 21{46[3℄ R. Brown: Real plaes and ordered �elds. Roky Mount. J. Math. 1 (1971), 633{636[4℄ R. Brown, M. Marshall: The redued theory of quadrati forms, Roky Mount. J. Math.11 (1981), 161{175
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