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Abstract. Given a finite set S of places of a number field, we
prove that the field of totally S-adic algebraic numbers is not
Hilbertian.

The field of totally real algebraic numbers Qtr, the field of totally p-adic
algebraic numbers Qtot,p, and, more generally, fields of totally S-adic
algebraic numbers Qtot,S, where S is a finite set of places of Q, play
an important role in number theory and Galois theory, see for example
[5, 8, 9, 7]. The objective of this note is to show that none of these
fields is Hilbertian (see [3, Chapter 12] for the definition of a Hilbertian
field).

Although it is immediate that Qtr is not Hilbertian, it is less clear
whether the same holds for Qtot,p. For example, every finite group that
occurs as a Galois group over Qtr is generated by involutions (in fact,
the converse also holds, see [4]) although over a Hilbertian field all
finite abelian groups (for example) occur. In contrast, over Qtot,p every
finite group occurs, see [2]. In fact, although (except in the case of Qtr)
it was not clear whether these fields are actually Hilbertian, certain
weak forms of Hilbertianity were proven and used, both explicitly and
implicitly, for example in [4, 6]. Also, any proper finite extension of
any of these fields is actually Hilbertian, see [3, Theorem 13.9.1].

The non-Hilbertianity of Qtot,p was actually implicitly stated and
proven in [1, Examples 5.2] but this result seems to have escaped the
notice of the community and was forgotten. We give a short elementary
proof (which is closely related to the proof in [1]) of the following more
general result.

Theorem 1. For any finite set S of real archimedean or ultrametric
discrete absolute values on a field K, the maximal extension Ktot,S of
K in which every element of S totally splits is not Hilbertian.

Note that Ktot,S is the intersection of all Henselizations and real
closures of K with respect to elements of S. We would like to stress
that S does not necessarily consist of local primes in the sense of [7].
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in [1]. They would also like to thank Sebastian Petersen for motivation to return
to the subject of this note. This research was supported by the Lion Foundation
Konstanz and the Alexander von Humboldt Foundation.
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Let

γ(Y, T ) = (Y −1 + T−1Y )−1 =
Y T

Y 2 + T

and

f(X,Z) = X2 +X − Z2.

Lemma 2. If (F, v) is a discrete valued field with uniformizer t ∈ F ,
then v(γ(y, t)) > 0 for each y ∈ F .

Proof. If v(y) = 0, then v(t−1y) < 0 = v(y−1), so v(y−1 + t−1y) < 0.
If v(y) < 0, then v(y−1) > 0 and v(t−1y) < 0, so v(y−1 + t−1y) < 0.
If v(y) > 0, then v(y−1) < 0 and v(t−1y) ≥ 0 since t is a uniformizer,
so again v(y−1 + t−1y) < 0. Thus, in each case, v(γ(y, t)) = −v(y−1 +
t−1y) > 0. �

Lemma 3. Let F be a field and t ∈ F r {0,−1}. If char(F ) = 2,
assume in addition that t is not a square in F . Then f(X, γ(Y, t)) is
irreducible over F (Y ).

Proof. If char(F ) 6= 2, then f(X, γ(Y, t)) is reducible if and only if the
discriminant 1 + 4γ(Y, t)2 is a square in F (Y ). This is the case if and
only if (Y 2 + t)2 + 4(tY )2 is a square. Writing

(Y 2 + t)2 + 4(tY )2 = (Y 2 + aY + b)2

and comparing coefficients we get that a = 0, b2 = t2, and a2 + 2b =
2t(1 + 2t). Hence, t = 0 or t = −1.

If char(F ) = 2, then f(X, γ(Y, t)) is irreducible if and only if

g(X) := f(X + γ(Y, t), γ(Y, t)) = X2 +X + γ(Y, t)

is irreducible. If v denotes the normalized valuation on F (Y ) corre-
sponding to the irreducible polynomial Y 2+t ∈ F [Y ], then v(γ(Y, t)) =
−1. This implies that a zero x of g(X) in F (Y ) would satisfy v(x) =
−1

2
, so g(X) has no zero in F (Y ) and is therefore irreducible. �

Proof of Theorem 1. Without loss of generality assume that S 6= ∅ and
that the absolute values in S are pairwise inequivalent. Let F = Ktot,S.

The weak approximation theorem gives an element t ∈ K r {0,−1}
that is a uniformizer for each of the ultrametric absolute values in
S. Clearly, if S contains an ultrametric discrete absolute value (in
particular if char(K) = 2), then t is not a square in F . Hence, by
Lemma 3, f(X, γ(Y, t)) is irreducible over F (Y ).

Assume, for the purpose of contradiction, that F is Hilbertian. Then
there exists y ∈ F such that f(X, γ(y, t)) is defined and irreducible over
F .

Let | · | ∈ S. If | · | is archimedean (this means we are in the case
char(K) 6= 2), let ≤ be an ordering corresponding to an extension of
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| · | to F , and let E be a real closure of (F,≤). Since γ(y, t)2 ≥ 0, there
exists x ∈ E such that f(x, γ(y, t)) = 0 (note that the map E≥0 → E≥0,
ξ 7→ ξ2+ξ is surjective). If |·| is ultrametric and v is a discrete valuation
corresponding to an extension of | · | to F , let E be a Henselization of
(F, v). Since v(γ(y, t)) > 0 by Lemma 2, f(X, γ(y, t)) ∈ Ov[X] and

f(X, γ(y, t)) = X(X + 1)

has a simple root, so by Hensel’s lemma there exists x ∈ E with
f(x, γ(y, t)) = 0.

Thus in each case, f(X, γ(y, t)) has a root in E, so since it is of degree
2 all of its roots are in E. Since F is the intersection over all such E,
all roots of f(X, γ(y, t)) lie in F , contradicting the irreducibility of
f(X, γ(y, t)). �

References
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