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Abstract. Let (K, v) be a Henselian discrete valued field with residue

field K̂ of characteristic p, and Brdp(K), abrdp(K) be the Brauer p-
dimension and absolute Brauer p-dimension of K, respectively. This
paper shows that abrdp(K) ≥ n and Brdp(K) ≥ n − [n/3] − 1, if

[K̂ : K̂p] = pn, for some n ∈ N; the second inequality is strict when

n 6= 5. We show that Brdp(K) = ∞, if [K̂ : K̂p] = ∞, and we find

Brdp(K) and abrdp(K) in case [K̂ : K̂p] ≤ p.

1. Introduction

Let E be a field, Br(E) its Brauer group, s(E) the class of associative
finite-dimensional central simple algebras over E, d(E) the subclass of di-
vision algebras D ∈ s(E), and for each A ∈ s(E), let deg(A), ind(A) and
exp(A) be the degree, the Schur index and the exponent of A, respectively.
It is well-known (cf. [28], Sect. 14.4) that exp(A) divides ind(A) and shares
with it the same set of prime divisors; also, ind(A) | deg(A), and deg(A) =
ind(A) if and only if A ∈ d(E). Note that ind(B1⊗E B2) = ind(B1)ind(B2)
whenever B1, B2 ∈ s(E) and g.c.d.{ind(B1), ind(B2)} = 1; equivalently,
B′1 ⊗E B′2 ∈ d(E), if B′j ∈ d(E), j = 1, 2, and g.c.d.{deg(B′1), deg(B′2)} = 1

(see [28], Sect. 13.4). Since Br(E) is an abelian torsion group, and ind(A),
exp(A) are invariants both of A and its equivalence class [A] ∈ Br(E), these
results indicate that the study of the restrictions on the pairs ind(A), exp(A),
A ∈ s(E), reduces to the special case of p-primary pairs, for an arbitrary
fixed prime p. The Brauer p-dimensions Brdp(E), p ∈ P, where P is the set
of prime numbers, contain essential (sometimes, complete) information on
these restrictions. We say that Brdp(E) = n < ∞, for a given p ∈ P, if n
is the least integer ≥ 0, for which ind(Ap) | exp(Ap)

n whenever Ap ∈ s(E)
and [Ap] lies in the p-component Br(E)p of Br(E); if no such n exists, we
put Brdp(E) = ∞. For instance, Brdp(E) ≤ 1, for all p ∈ P, if and only if
E is a stable field, i.e. deg(D) = exp(D), for each D ∈ d(E); Brdp′(E) = 0,
for some p′ ∈ P, if and only if Br(E)p′ is trivial. The absolute Brauer p-
dimension of E is defined as the supremum abrdp(E) of Brdp(R) : R ∈ Fe(E),
where Fe(E) is the set of finite extensions of E in a separable closure Esep.
We have abrdp(E) ≤ 1, p ∈ P, if E is an absolutely stable field, i.e. its finite
extensions are stable fields. Important examples of this type are provided
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by class field theory, which shows that Brdp(Φ) = abrdp(Φ) = 1, p ∈ P, if Φ
is a global or local field (see, e.g., [30], (31.4) and (32.19)).

The sequence Brdp(E), abrdp(E) : p ∈ P, contains useful information about
the behaviour of index-exponent relations over finitely-generated transcen-
dental extensions of E [8]. As it turns out, an essential part of it can be
derived of the description in [9] of the set of sequences Brdp(Kq), abrdp(Kq),
p ∈ P, where Kq runs across the class of fields with Henselian valuations vq
whose residue fields K̂q are perfect of characteristic q ≥ 0, and such that
their absolute Galois groups are projective profinite groups, in the sense of
[33]. The description is complete, if q = 0 as well as in the subclass of
maximally complete fields (Kq, vq) with char(Kq) = q > 0, which contain
finitely many roots of unity (cf. [10], Sect. 3). By definition, a maximally
complete field means a valued field (K, v) not admitting immediate proper

extensions, i.e. valued extensions (K ′, v′) 6= (K, v) with K̂ ′ = K̂ and value
groups v′(K ′) = v(K). These fields are singled out in valuation theory by
Krull’s theorem (see [37], Theorem 31.24 and page 483), stated as follows:

(1.1) Every nontrivially valued field (L0, λ0) possesses an immediate ex-
tension (L1, λ1) that is a maximally complete field.

The description of the set of sequences Brdp(Kq), abrdp(Kq), p 6= q, is
based on formulae for Brdp(Kq) and abrdp(Kq), p 6= q, deduced from lower
and upper bounds on Brdp(K) and abrdp(K) (including infinity criterions).
The bounds in question have been found under the hypothesis that (K, v) is a

Henselian (valued) field with abrdp(K̂) <∞ and p 6= char(K̂). The formulae

for Brdp(Kq) depend only on whether or not K̂q contains a primitive p-th

root of unity, and on invariants of K̂q and the value group vq(Kq). In fact, on
the dimension τ(p) of the quotient group vq(Kq)/pvq(Kq) as a vector space

over the prime field Fp = Z/pZ, and on the rank rp(K̂q) of the Galois group

G(K̂q(p)/K̂q), where K̂q(p) is the maximal p-extension of K̂q in K̂q,sep (we

put τ(p) =∞ if vq(Kq)/pvq(Kq) is infinite, and rp(K̂q) = 0 if K̂q(p) = K̂q).
When q > 0, the noted restrictions on (Kq, vq) allow one to find a formula

for Brdq(Kq) as well (see [10], Proposition 3.5). At the same time, they

make it easy to show that Brdp(K) does not depend only on K̂ and v(K),
when (K, v) runs across the class of Henselian fields of characteristic p.
Specifically, it turns out (see [10], Exercise 3.7) that, for any integer t ≥ 2,
the iterated formal Laurent power series field Yt = Fp((T1)) . . . ((Tt)) in t
variables over Fp possesses subfields K∞ and Kn, n ∈ N, such that:

(1.2) (a) Brdp(K∞) =∞; n+ t− 1 ≤ Brdp(Kn) ≤ n+ t, for each n ∈ N;
(b) The valuations vm of Km, m ≤ ∞, induced by the standard Zt-valued

valuation of Yt are Henselian with K̂m = Fp and vm(Km) = Zt; here Zt is
viewed as an abelian group endowed with the inverse-lexicographic ordering.

Statement (1.2) motivates the study of Brauer p-dimensions of Henselian
fields of residual characteristic p > 0, which lie in suitably chosen special
classes. As a step in this direction, the present paper considers Brdp(K)
and abrdp(K), for a Henselian discrete valued field (abbr, an HDV-field)

(K, v) with char(K̂) = p. This topic is related to the problem of describing
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index-exponent relations over finitely-generated field extensions (see, e.g.,

[8], Sect. 6 and Theorem 2.1, with its proof). When [K̂ : K̂p] = pn, for some
n ∈ N, our main results give a lower bound for Brdp(K) and improve the
lower bound for abrdp(K), provided by [27], Theorem 2. Combined with
[27], Theorem 2, and [38], Proposition 2.1, they yield Brdp(K) = ∞ if and

only if [K̂ : K̂p] =∞, and also determine Brdp(K) in case [K̂ : K̂p] ≤ p.

2. Statements of the main results

Let (K, v) be an HDV-field with char(K̂) = p > 0. As shown by Parimala
and Suresh [27], abrdp(K) satisfies the following: [n/2] ≤ abrdp(K) ≤ 2n, if

[K̂ : K̂p] = pn, for some n ∈ N; abrdp(K) = ∞, if [K̂ : K̂p] = ∞. Bhaskhar
and Haase have recently proved [4] that, in the former case, when n is odd,
we have abrdp(K) ≥ 1 + [n/2]. The proofs of these results show that they
hold for Brdp(K), if K contains a primitive p-th root of unity. The main
purpose of the present paper is to improve the lower bounds in these results
as well as to extend their scope, and also, to determine Brdp(K) in the case
where n = 1. Our first main result can be stated as follows:

Theorem 2.1. Let (K, v) be an HDV-field with a residue field K̂ of char-
acteristic p > 0. Then:

(a) Brdp(K) is infinite if and only if K̂/K̂p is an infinite extension;

(b) abrdp(K) ≥ n, provided that [K̂ : K̂p] = pn, for some n ∈ N; in this
case, we have Brdp(K) ≥ n, if char(K) = p or char(K) = 0 and there exists
λ ∈ K∗ algebraic over Q of value v(λ) /∈ pv(K);

(c) Brdp(K) ≥ n − [n/3] − 1, char(K) = 0 and [K̂ : K̂] = pn < ∞; the
inequality is strict except, possibly, in the case where n = 5, K does not
contain a primitive p-th root of unity and v(p) ∈ p2v(K) \ p3v(K).

The lower bound for Brdp(K) given by Theorem 2.1 (c) is better than
those provided by [27], Theorem 2, and [4], Proposition 4.15, for n 6= 1, 2, 3
and 5. It is unlikely, however, that this bound is optimal. For example,
by the proof of [8], Proposition 6.3 (see also [4], Theorem 5.2), we have

Brdp(K) ≥ n+1, if K̂ is a finitely-generated extension of Fp of transcendency
degree n. Theorem 2.1 (b), this result and [4], Theorem 4.16, agree with the
following conjecture (stated in [4] for complete discrete valued fields):

(2.1) If (K, v) is an HDV-field with char(K̂) = p > 0 and [K̂ : K̂p] = pn,
for some n ∈ N, then n ≤ Brdp(K) ≤ n+ 1.

When char(K) = p, the conclusions of (2.1) and Theorem 2.1 (a) and (b)
follow from our next result:

(2.2) If (K ′, v′) is a Henselian field, char(K ′) = p > 0, v′(K ′) 6= pv′(K ′),
and τ(p) is defined in accordance with Section 1, then:

(a) Brdp(K
′) = ∞, if [K̂ ′ : K̂ ′p] = ∞ or τ(p) = ∞; when (K ′, v′) is

maximally complete, this holds if and only if [K ′ : K ′p] =∞;

(b) n + τ(p) − 1 ≤ Brdp(K
′), provided n, τ(p) < ∞ and [K̂ ′ : K̂ ′p] = pn;

in addition, if (K ′, v′) is maximally complete, then [K ′ : K ′p] = pn
′

and
Brdp(K

′) ≤ n′, where n′ = n+ τ(p);
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(c) When (K ′, v′) is maximally complete with K̂ ′ perfect, Brdp(K
′) = τ(p)

if rp(K̂
′) ≥ τ(p); Brdp(K

′) = τ(p)− 1 if rp(K̂
′) < τ(p).

The former part of (2.2) (a) and the lower bound on Brdp(K) in (2.2) (b)
follow from [8], Lemma 4.2. Formula (2.2) (c) is contained in [10], Propo-
sition 3.5, and can be deduced from this bound, [3], Theorem 3.3, and [7],
Lemmas 4.1, 4.3. The other assertions of (2.2) are easily proved, using the
version of Ostrowski’s theorem for maximally complete fields and Albert’s
theory of p-algebras (see (3.2) (b) below and [2], Ch. VII, Theorem 28).

Before stating our second main result, let us recall that a field E is said to
be p-quasilocal, for a given p ∈ P, if one of the following conditions is fulfilled:
(i) Brdp(E) = 0 or rp(E) = 0; (ii) Brdp(E) 6= 0, rp(E) > 0 and every degree
p extension of E in E(p) embeds as an E-subalgebra in each D ∈ d(E) of
degree p. We say that E is a quasilocal field, if its finite extensions are
p′-quasilocal fields, for each p′ ∈ P. Both types of fields have been studied in
[6]. Specifically, it has been proved there that if E is a p-quasilocal field, then
so are the extensions of E in E(p), and in case char(E) = p, Brdp(E) ≤ 1
and purely inseparable extensions of E are p-quasilocal as well. Note also
that one can find in [10], Sect. 4, a formula for Brdp(L), where (L, λ) is

a Henselian field, such that L̂ is p-quasilocal, char(L̂) 6= p, rp(L̂) 6= 0 and
λ(L) 6= pλ(L). By an almost perfect field, we mean a field Φ whose finite
extensions are simple; it is well-known that Φ is almost perfect if and only
if either it is perfect or char(Φ) = p > 0 and [Φ: Φp] = p. The introduced
notions are used in the following characterization of those HDV-fields with

char(K̂) = p, which satisfy the inequality Brdp(K) ≤ 1.

Theorem 2.2. Let (K, v) be an HDV-field with char(K̂) = p > 0. Then

Brdp(K) ≤ 1 if and only if K̂ is p-quasilocal and almost perfect; in order that

Brdp(K) = 0 it is necessary and sufficient that K̂ be perfect and rp(K̂) = 0.

The validity of Theorem 2.2 in the case where K̂sep = K̂ has been proved
in [4]; this result is also contained in [38], Proposition 2.1. When K contains

a primitive p-th root of unity and char(K̂) = p, it has been shown in [4],

Sect. 4, and in [5], Sect. 2, that Brdp(K) ≤ 1 implies [K̂ : K̂p] ≤ p.

Corollary 2.3. For an HDV-field (K, v) with char(K̂) = p > 0, we have

Brdp(K) = 2, provided that [K̂ : K̂p] = p and K̂ is not p-quasilocal.

Corollary 2.3 follows from Theorem 2.2 and [27], Theorem 2. Theorem
2.2 and this corollary fully determine Brdp(K) in the case where (K, v) is

an HDV-field with char(K̂) = p and [K̂ : K̂p] ≤ p. Theorem 2.2 also allows
us to supplement [6], Proposition 2.3, and the main results of [5] as follows:

Corollary 2.4. Let (K, v) be an HDV-field. Then K is stable if and only if

K̂ is stable, almost perfect and p-quasilocal, for each p ∈ P; K is absolutely

stable if and only if K̂ is quasilocal and almost perfect.
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The proofs of the main results of this paper essentially rely on the follow-
ing properties of HDV-fields (K, v), which specify and supplement (2.2):

(2.3) (a) The scalar extension map Br(K)→ Br(Kv), where Kv is a com-
pletion of K with respect to the topology of v, is an injective homomorphism
which preserves Schur indices and exponents (cf. [11], Theorem 1, and [31],
Ch. 2, Theorem 9); hence, Brdp′(K) ≤ Brdp′(Kv), for every p′ ∈ P;

(b) The valued field (Kv, v̄), where v̄ is the valuation of Kv continuously
extending v, is maximally complete (see [31], Ch. 2, Theorem 8; in addition,
(Kv, v̄) is an immediate extension of (K, v);

(c) Brdp(K) =∞↔ [K̂ : K̂p] =∞; n ≤ Brdp(K) ≤ n+1 if [K̂ : K̂p] = pn.

At the same time, it follows from (2.2) (b), (1.1) and (1.2) that the conclusion
of the latter part of (2.3) (a) need not be true, for p′ = p, if (K, v) is merely
Henselian of prime characteristic p, and (Kv, v̄) is replaced by an immediate
extension of (K, v) that is a maximally complete field.

The basic notation, terminology and conventions kept in this paper are
standard and virtually the same as in [8]. Throughout, Brauer and value
groups are written additively, Galois groups are viewed as profinite with
respect to the Krull topology, and by a profinite group homomorphism,
we mean a continuous one. For any field E, E∗ stands for its multiplicative
group, E∗n = {an : a ∈ E∗}, for each n ∈ N, GE = G(Esep/E) is the absolute
Galois group of E, and for each p ∈ P, pBr(E) = {bp ∈ Br(E) : pbp = 0}.
As usual, Br(E′/E) denotes the relative Brauer group of any field extension
E′/E. We write πE′/E for the scalar extension map of Br(E) into Br(E′), and
I(E′/E) for the set of intermediate fields of E′/E; when E′/E is separable
of finite degree [E′ : E], N(E′/E) stands for the norm group of E′/E. By
a p-basis of a field extension Y ′/Y , such that char(Y ) = p, Y ′p ⊆ Y and
[Y ′ : Y ] = pn <∞, we mean a generating set of Y ′/Y of n elements.

The paper is organized as follows: Section 3 includes preliminaries used
in the sequel, and also, a proof of Theorem 2.1 (a). Theorems 2.1 (b), (c)
and 2.2 are proved in Sections 4 and 5, respectively. Section 6 presents
applications to m-dimensional local fields (i.e. m-discretely valued fields
with finite m-th residue fields, see [35], [14], [40]). It is shown that a field
Km of this type is absolutely stable, ifm ≤ 2, andKm is not stable, otherwise
(when char(Km) > 0, this is contained in [5], Corollaries 4.4, 4.5). We also
prove that abrdp(Km) ≥ m − 1 and usually Brdp(Km) ≥ m − 1, for m ≥ 3
and p = char(K0), where K0 is the m-th residue field of Km. This result and
the upper bound abrdp(Km) ≤ m, in fact found in [19], agree with (2.1).

3. Preliminaries and proof of Theorem 2.1 (a)

Let K be a field with a nontrivial valuation v, Ov(K) = {a ∈ K : v(a) ≥
0} the valuation ring of (K, v), Mv(K) = {µ ∈ K : v(µ) > 0} the maximal
ideal of Ov(K), Ov(K)∗ = {u ∈ K : v(u) = 0} the multiplicative group of

Ov(K), v(K) and K̂ = Ov(K)/Mv(K) the value group and the residue field
of (K, v), respectively. For each γ ∈ v(K), γ ≥ 0, we denote by ∇γ(K) the
set {λ ∈ K : v(λ− 1) > γ}. We say that the valuation v is Henselian, if it
extends uniquely, up-to an equivalence, to a valuation vL on each algebraic
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extension L of K. For example, maximally complete fields are Henselian,
since Henselizations of any valued field are its immediate extensions (see [13],
Theorem 15.3.5). In order that v be Henselian, it is necessary and sufficient
that any of the following three equivalent conditions holds (cf. [13], Sect.
18.1, and [21], Ch. XII, Sect. 4):

(3.1) (a) Given a polynomial f(X) ∈ Ov(K)[X] and an element a ∈
Ov(K), such that 2v(f ′(a)) < v(f(a)), where f ′ is the formal derivative of f ,
there is a zero c ∈ Ov(K) of f satisfying the equality v(c−a) = v(f(a)/f ′(a));

(b) K is separably closed in the completion Kv, and the valuation v̄ of
Kv continuously extending v is Henselian;

(c) For each normal extension Ω/K, v′(τ(µ)) = v′(µ) whenever µ ∈ Ω, v′

is a valuation of Ω extending v, and τ is a K-automorphism of Ω.

When v is Henselian, so is vL, for every algebraic field extension L/K.

In this case, we denote by L̂ the residue field of (L, vL), and put Ov(L) =

OvL(L), Mv(L) = MvL(L) and v(L) = vL(L). Clearly, L̂ is an algebraic

extension of K̂, and v(K) is an ordered subgroup of v(L); the index e(L/K)
of v(K) in v(L) is called a ramification index of L/K. Suppose further

that [L : K] is finite. Then, by Ostrowski’s theorem, [L̂ : K̂]e(L/K) divides

[L : K] and [L : K][L̂ : K̂]−1e(L/K)−1 has no divisor p ∈ P, p 6= char(K̂).

We say that L/K is defectless, if [L : K] = [L̂ : K̂]e(L/K). It is clear from

Ostrowski’s theorem that L/K is defectless, provided that char(K̂)† [L : K].
The same holds in the following two cases:

(3.2) (a) If (K, v) is HDV and L/K is separable (see [35], Proposition 2.2);
(b) When (K, v) is maximally complete (cf. [37], Theorem 31.22).

Assume that (K, v) is a nontrivially valued field. We say that a finite ex-
tension R of K is inertial with respect to v, if R has a unique (up-to an

equivalence) valuation vR extending v, the residue field R̂ of (R, vR) is sep-

arable over K̂, and [R : K] = [R̂ : K̂]; R/K is called totally ramified with
respect to v, if v has a unique prolongation vR on R, and the index of v(K)
in vR(R) equals [R : K]. When v is Henselian, this amounts to saying that
e(R/K) = [R : K]. In this case, inertial extensions have the following fre-
quently used properties (see [16], Theorems 2.8, 2.9, and [34], Theorem A.24,
or the remarks between Proposition 3.1 and Theorem 3.2 of [36]):

(3.3) (a) An inertial extension R′/K in is Galois if and only if R̂′/K̂ is

Galois. When this holds, G(R′/K) and G(R̂′/K̂) are canonically isomorphic.
(b) The compositum Kur of inertial extensions of K in Ksep is a Galois

extension of K with G(Kur/K) isomorphic to the absolute Galois group G
K̂

.
(c) Finite extensions of K in Kur are inertial, and the natural mapping

of I(Kur/K) into I(K̂sep/K̂) is bijective.

The Henselity of (K, v) guarantees that v extends to a unique, up-to an
equivalence, valuation vD, on each D ∈ d(K) (cf. [31], Ch. 2, Sect. 7). Put

v(D) = vD(D) and denote by D̂ the residue division ring of (D, vD). It is

known that D̂ is a division K̂-algebra, v(D) is an ordered abelian group and
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v(K) is an ordered subgroup of v(D) of finite index e(D/K) (called a ramifi-

cation index ofD/K). Note further that [D̂ : K̂] <∞, and by the Ostrowski-

Draxl theorem [12], [D̂ : K̂]e(D/K) | [D : K] and [D : K][D̂ : K̂]−1e(D/K)−1

has no prime divisor p 6= char(K̂). When (K, v) is an HDV-field, the follow-
ing condition holds (cf. [35], Theorem 3.1):

(3.4) D/K is defectless, i.e. [D : K] = [D̂ : K̂]e(D/K).

Next we give examples of central division K-algebras of exponent p, which

are specific for HDV-fields (K, v) with char(K̂) = p and K̂ 6= K̂p. Suppose
first that there exists a totally ramified Galois extension M/K, such that
G(M/K) is an elementary abelian p-group of order pn, for some n ∈ N. Then,
by Galois theory, M equals the compositum L1 . . . Ln of degree p (cyclic)
extensions Lj of K, j = 1, . . . , n. Fix a generator σj of G(Lj/K) and an
element aj ∈ K∗, and denote by ∆j the cyclic K-algebra (Lj/K, σj , aj), for
each j. Arguing by the method of proving [8], Lemma 4.2, one obtains that

(3.5) The tensor product Dn = ⊗nj=1∆j , where ⊗ = ⊗K , lies in d(K),

provided that aj ∈ Ov(K)∗, j = 1, . . . , n, and â1, . . . , ân are p-independent

over K̂p, i.e. K̂p(â1, . . . , ân)/K̂p is a field extension of degree pn; D̂n is a

root field over K̂ of the binomials Xp − âj , j = 1, . . . , n, so [D̂n : K̂] = pn.

It is likely that, for every HDV-field (K, v) with K̂ infinite and char(K̂) =
p > 0, there are totally ramified Galois extensions Mn/K, n ∈ N, such that
G(Mn/K) is an elementary abelian p-group of order pn, for each index n.
By [8], Lemma 4.2, this holds if char(K) = p, and the following two lemmas
prove the existence of such extensions, when char(K) = 0 and v(p) /∈ pv(K).

Lemma 3.1. Assume that (K, v) is an HDV-field with char(K) = 0 and

char(K̂) = p > 0, and also, that (Φ, ω) is a valued subfield of (K, v), such
that p does not divide the index of ω(Φ) in v(K). Let Ψ be a finite extension
of Φ in Ksep of p-primary degree, and suppose that Ψ is totally ramified over
Φ relative to ω. Then ΨK/K is totally ramified and [ΨK : K] = [Ψ: Φ].

Proof. Our assumptions guarantee that (K, v) contains as a valued subfield
a Henselization (Φ′, ω′) of (Φ, ω) (cf. [13], Theorem 15.3.5). Also, the condi-
tion that Ψ is totally ramified over Φ relative to ω means that Ψ/Φ possesses
a primitive element θ whose minimal polynomial fθ(X) over Φ is Eisen-
steinian relative to Oω(Φ) (see [15], Ch. 2, (3.6), and [21], Ch. XII, Sects.
2, 3 and 6). Since (Φ′, ω′)/(Φ, ω) is immediate, fθ(X) remains Eisensteinian
relative to Oω′(Φ

′), whence, irreducible over Φ′. In other words, the field
Ψ′ = Φ′(θ) = ΨΦ′ is a totally ramified extension of Φ′ and [Ψ′ : Φ′] = [Ψ: Φ].
Put m = [Ψ: Φ] and θ1 = θ, denote by θ1, . . . , θm the roots of fθ(X) in Ksep,
and let M ′ = Φ′(θ1, . . . , θm). Applying (3.1) (c) to the extension M ′/Φ′,
one obtains that ω′M ′(θj) = ω′M ′(θ), j = 1, . . . ,m. At the same time, by the
Eisensteinian property of fθ(X) relative to Oω′(Φ

′), the free term of fθ(X)
is a uniform element of (Φ′, ω′). As m = [Ψ: Φ] is a p-primary number, v is
discrete and p does not divide the index |v(K) : ω(Φ)|, the presented obser-
vations indicate that fθ(X) is irreducible over K, and the field Ψ′K = ΨK is
a totally ramified extension of K of degree m, as claimed by Lemma 3.1. �
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Let (K, v) be an HDV-field with char(K) = 0 and char(K̂) = p > 0, and
let ε be a primitive p-th root of unity in Ksep. It is known (cf. [21], Ch.
VIII, Sect. 3) that then K(ε)/K is a cyclic extension and [K(ε) : K] | p− 1;
also, it is easy to see that vK(ε)(1 − ε) = v(p)/(p − 1). These facts enable
one to deduce the following assertions from (3.1) (a):

(3.6) K∗p = K(ε)∗p ∩ K∗, and for each β ∈ ∇γ′(K(ε)), where γ′ =
pv(p)/(p − 1), the polynomial gβ(X) = (1 − ε)−p((1 − ε)X + 1)p − β) lies
in Ov(K(ε))[X] and has a root in K(ε) (see also [35], Lemma 2.1). Hence,
∇γ′(K(ε)) ⊂ K(ε)∗p and ∇γ(K) ⊂ K∗p, in case γ ∈ v(K) and γ ≥ γ′.
An element λ ∈ ∇0(K) is said to be normal over K, if λ /∈ K∗p and v(λ−1) ≥
v(λ′ − 1) whenever λ′ lies in the coset λK∗p. Let π = λ − 1 and K ′ be an
extension of K generated by a p-th root of λ. It is easy to see that λ is
normal over K if and only if one of the following conditions is fulfilled:

(3.7) (a) v(π) /∈ pv(K) and (p − 1)v(π) < pv(p); when this holds, K ′ is
totally ramified over K;

(b) (p − 1)v(π) < pv(p) and π = πp1a, for a pair π1 ∈ K, a ∈ Ov(K)∗,

such that â /∈ K̂∗p; in this case, K̂ ′/K̂ is purely inseparable of degree p;
(c) π = πp1a, for some π1 ∈ K, a ∈ Ov(K)∗, such that (p− 1)v(π1) = v(p)

and the polynomial Xp − X − â is irreducible over K̂; when this occurs,
K ′/K is inertial and v(π) = pv(p)/(p− 1).

Statements (3.6) and (3.7) show that, for each α ∈ ∇0(K) \ K∗p, αK∗p
contains a normal element over K. In addition, it follows from (3.7) and
(3.2) (a) that if α is normal overK, then it is normal over any finite extension
K1 of K of degree not divisible by p. This, applied to the field K1 = K(ε),
facilitates the construction of the abelian p-extensions of K needed to prove
Theorem 2.1 (b) and (c). We use repeatedly this technique, beginning with
the proof of the former assertion of the following lemma.

Lemma 3.2. Let (K, v) be an HDV-field with char(K) = 0 and char(K̂) =
p > 0. Suppose that one of the following two conditions holds:

(a) K̂ is an infinite perfect field;

(b) K̂ is imperfect and there exists θ ∈ K algebraic over the field Q of
rational numbers (the prime subfield of K), and of value v(θ) /∈ pv(K).
Then there exist totally ramified Galois extensions Mn/K, n ∈ N, such that
[Mn : K] = pn and G(Mn/K) is an elementary abelian p-group, for each n.

Proof. Let ε be a primitive p-th root of unity in Ksep, m = [K(ε) : K], and F
the prime subfield of K̂. As noted above, then K(ε)/K is a cyclic extension
and m | p−1. Fix a generator ϕ of G(K(ε)/K), and an element π ∈ K with
0 < v(π) ≤ v(p) and v(π) /∈ pv(K), and let s, l be integers satisfying ϕ(ε) =
εs and sl ≡ 1(mod p). For any α ∈ Ov(K)∗, denote by L′α the extension of
K(ε) in Ksep obtained by adjunction of a p-th root ηα of the element α′ =∏m−1
j=0 [1 + (1− ϕj(ε))pπ−1α]l(j), where l(j) = lj , for each j. It is verified by

direct calculations that ϕ(α′)α′−s ∈ K(ε)∗p. Observing that sp ≡ s(mod p)
and vK(ε)(1−ϕj(ε)) = v(p)/(p−1), 0 ≤ j ≤ m−1, one obtains similarly that

vK(ε)(α
′−1−m(1−ε)pπ−1α) > vK(ε)(m(1−ε)pπ−1α) and v(mα) = 0. These
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calculations show that α′ and 1 +m(1− ε)pπ−1α are normal elements over
K(ε). Therefore, α′ /∈ K(ε)∗p, and since ϕ(α′)α′−s ∈ K(ε)∗p, this enables
one to deduce the following statement from Albert’s theorem (characterizing
cyclic extensions of degree p, see [1], Ch. IX, Theorem 6):

(3.8) L′α/K is a cyclic field extension of degree pm; in particular, there
exists a unique cyclic extension Lα of K in L′α of degree p.

Suppose now that K̂ is infinite and perfect. The infinity of K̂ ensures
the existence of a sequence b = bn ∈ Ov(K)∗, n ∈ N, such that the system

b̄ = b̂n ∈ K̂, n ∈ N, is linearly independent over the field F. Denote by K ′

the compositum of the fields Lbn , n ∈ N. Clearly, K ′ = ∪∞n=1Mn, where
Mn = Lb1 . . . Lbn , for each n, and it follows that K ′/K is a Galois extension
and G(K ′/K) is an infinite abelian pro-p-group of period p. In addition, it is
easily obtained from (3.8) and the choice of b that every degree p extension of

K inK ′ is totally ramified. As K̂ is perfect, whence its finite extensions in K̂ ′

have inertial lifts over K, that embed in K ′ as K-subalgebras (see (3.3)), this
result, combined with Galois theory and (3.2) (a), implies finite extensions
of K in K ′ are totally ramified. Therefore, the preceding argument shows
that the fields Mn, n ∈ N, have the properties claimed by Lemma 3.2.

The idea of the proof of Lemma 3.2 (b) is borrowed from [25], 2.2.1.
Identifying Q with the prime subfield of K, put Φ = Q(θ), and E0 = Φ(t0),

where t0 ∈ Ov(K)∗ is chosen so that t̂0 /∈ K̂p (whence, t̂0 is transcendental
over F). Denote by ω and v0 the valuations induced by v upon Φ and E0,
respectively, and fix a system tn ∈ Ksep, n ∈ N, such that tpn = tn−1, for
each n > 0. It is easy to see that the fields En = Φ(tn), n ∈ N, are purely
transcendental extensions of Φ. Let vn be the restricted Gaussian valuation
of En extending ω, for each n ∈ N. Clearly, for any pair of indices ν, n
with 0 < ν ≤ n, Eν−1 is a subfield of En and vn is the unique prolongation
of vν−1 on En. Hence, the union E∞ = ∪∞n=0En is a field with a unique

valuation v∞ extending vn, for every n <∞. Denote by Ên the residue field
of (En, vn), for each n ∈ N ∪ {0,∞}. The Gaussian property of vn, n <∞,

guarantees that vn(En) = ω(Φ), t̂n is a transcendental element over Φ̂ and

Ên = Φ̂(t̂n) (cf. [13], Example 4.3.2). Observing also that t̂pn = t̂n−1, n ∈ N,

Ê∞ = ∪∞n=1Ên and Φ̂p = Φ̂, one concludes that Ê∞ is an infinite perfect field.
It is therefore clear from Lemma 3.2 (a) and the Grunwald-Wang theorem
[22], that if (E′∞, v

′
∞) is a Henselization of (E∞, v∞) with E′∞ ⊂ Ksep, then

there exist totally ramified Galois extensions T ′n/E
′
∞ and Tn/E∞, n ∈ N,

such that [Tn : E∞] = [T ′n : E′∞] = pn, T ′n = TnE
′
∞ and G(Tn/E∞) is an ele-

mentary abelian p-group isomorphic to G(T ′n/E
′
∞), for every n. This means

that Tn/E∞ possesses a primitive element θn whose minimal polynomial
fn(X) over E∞ is Eisensteinian relative to Ovn(E∞). Since E∞ = ∪∞n=1En
and En ⊂ En+1, n ∈ N, it is easy to see (e.g., from [6], (1.3)) that, for
each n, there exists kn ∈ N, such that fn(X) ∈ Ekn [X] and Ekn(θn)/Ekn
is a Galois extension. This shows that [Ekn(θn) : Ekn ] = pn, which implies
G(Ekn(θn)/Ekn) ∼= G(Tn/E∞). As v∞ extends vkn and v∞(E∞) = vkn(Ekn),
it is also clear that fn(X) ∈ Ovkn (Ekn)[X] and fn(X) is Eisensteinian rela-
tive to Ovkn (Ekn). Let now ψn : Ekn → E0 be the Φ-isomorphism mapping
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tkn into t0, and let ψ̄n be the isomorphism of Ekn [X] upon E0[X], which ex-
tends ψn so that ψ̄n(X) = X. Then the polynomial gn(X) = ψ̄n(fn(X)) lies
in Ov0(E0)[X], it is Eisensteinian relative to Ov0(E0), and pn = [Ln : E0],
where Ln is a root field of gn(X) over E0. The polynomials gn(X), n ∈ N,
preserve the noted properties also when (E0, v0) is replaced by its Henseliza-
tion (E′0, v

′
0). As v0(E0) = ω(Φ) is a subgroup of v(K) of index not divisible

by p, these results, combined with Lemma 3.1, prove Lemma 3.2 (b). �

Assume now that (K, v) is an HDV-field with char(K̂) = p, and for some
m ∈ N, Ov(K)∗ contains elements c1, b1, . . . , cm, bm, such that the system

ĉ1, b̂1, . . . , ĉm, b̂m is p-independent over K̂p, and also, there is an extension

Cj of K in K(p) with [Cj : K] = p and Ĉj = K̂( p
√
ĉj), for j = 1, . . . ,m. Fix

a generator τj of G(Cj/K), and put Vj = (Cj/K, τj , bj), for each index j. It
follows from [24], Theorem 1, that:

(3.9) The K-algebra Wm = ⊗mj=1Vj lies in d(K) (⊗ = ⊗K), and Ŵm/K̂ is

a field extension obtained by adjunction of p-th roots of ĉj , b̂j , j = 1, . . . ,m.

Our next lemma allows us to use (3.9) for proving Theorem 2.1 (a).

Lemma 3.3. Let (K, v) be an HDV-field with char(K) = 0, v(p) ∈ pv(K),

char(K̂) = p > 0, and K̂ 6= K̂p, and let Λ̃/K̂ be an inseparable field exten-
sion of degree p. Then there exists an extension Λ of K in K(p), such that

[Λ: K] = p and Λ̂ is K̂-isomorphic to Λ̃.

Proof. Let ε be a primitive p-th root of unity in Ksep, ϕ a generator of
G(K(ε)/K), and s and l be integers satisfying ϕ(ε) = εs and sl ≡ 1(mod p).
Suppose that [K(ε) : K] = m, and fix elements λ ∈ Ov(K)∗ and π ∈ K

so that the extension of K̂ obtained by adjunction of a p-th root of λ̂ be

K̂-isomorphic to Λ̃. If ε ∈ K, then one may take as Λ the root field in
Ksep of the binomial Xp − λ ∈ K[X], so we assume that ε /∈ K. Putting

λ1 =
∏m−1
j=0 [1+(ϕj(1−ε)pπ−pλ)]l(j), where l(j) = lj , for j = 0, 1, . . . ,m−1,

we show that the root field Λ1 ∈ Fe(K) of fλ(X) = Xp − λ1 (over K(ε)) is
a cyclic extension of K of degree pm. It is easily verified that ϕ(λ1)λ−s1 ∈
K(ε)p, so it follows from Albert’s theorem that it suffices to prove that
λ1 /∈ K(ε)p. Our argument relies on the fact that vK(ε)(λ1−λ′1) > vK(ε)(λ1),

where λ′1 = 1 + m(ε − 1)pπ−pλ. This implies that if η1 ∈ Ksep is a root of
fλ(X), then the minimal polynomial over K(ε), say hλ(X), of the element

η = π(η1 − 1)(1− ε)−1 has the presentation hλ(X) = Xp −mλ+ h̃(X), for

some h̃(X) ∈ MvK(ε)
[X] of degree ≤ m − 1. The obtained result indicates

that λ̂ ∈ Λ̂∗p1 , and since λ̂ /∈ K̂∗p, it proves that η /∈ K(ε) and η1 /∈ K(ε).
Therefore, [Λ1 : K] = pm, and it follows from Galois theory and the cyclicity
of Λ1/K, that there exists a cyclic extension Λ of K in Λ1 of degree p. As

m | p−1, one finally concludes that λ̂ ∈ Λ̂∗p, which completes our proof. �

It is now easy to show that an HDV-field (K, v) with char(K̂) = p > 0

satisfies Brdp(K) = ∞ if and only if [K̂ : K̂p] = ∞. In view of (2.3) (c),
one may consider only the case of char(K) = 0. Then the implication
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Brdp(K) =∞→ [K̂ : K̂p] =∞ follows from [27], Theorem 2, so it remains

to be seen that Brdp(K) = ∞, if [K̂ : K̂p] = ∞. For the purpose, one uses
(3.5) and (3.9) together with Lemmas 3.1, 3.2 and 3.3, and thereby concludes
that there exist Dn ∈ d(K), n ∈ N, with exp(Dn) = p and deg(Dn) = pn,
for each n. This yields Brdp(K) =∞, so Theorem 2.1 (a) is proved.

4. Proof of Theorem 2.1 (b) and (c)

The aim of this Section is to complete the proof of Theorem 2.1. Our
argument relies implicitly on the fact that each generating set of a finite
extension Y ′/Y with char(Y ) = p > 0 and Y ′p ⊆ Y contains as a subset a
p-basis of Y ′/Y (see the proof of (4.2)). We also use the following lemma.

Lemma 4.1. Let (K, v) be an HDV-field, such that char(K̂) = p > 0,

K̂p 6= K̂, [K̂ : K̂p] = pn < ∞, and v(p) /∈ pnv(K). Then K possesses a
finite Galois extension M in Ksep satisfying the following conditions:

(a) G(M/K) is an elementary abelian p-group;
(b) There is M0 ∈ I(M/K) with [M : M0] = pn, M/M0 totally ramified

and [M̂0 : K̂] | pν , where ν is the greatest integer for which v(p) ∈ pνv(K).

Proof. Lemma 3.2 allows us to consider only the case where v(p) ∈ pv(K).
Denote by F the prime subfield of K, fix an element α ∈ Ov(K)∗ so that

α̂ /∈ K̂p, put Φ = F(α), and let ω0 be the valuation of F induced by v.
Identifying F with the field Q, one obtains that ω0 is equivalent to the p-
adic valuation of F. Consider now the valuation ω of Φ induced by v. It
follows from the choice of α and the definition of Φ that α is transcendental
over F and ω is a restricted Gaussian valuation extending ω0. Note also

that v(p) is a generator of ω(Φ), Φ̂ = F̂(α̂), and α̂ is transcendental over F̂,

where F̂ and Φ̂ are the residue fields of (F, ω0) and (Φ, ω), respectively. Now
choose a Henselization (Φ′, ω′) among the valued subfields of (K, v). The
valued extension (Φ′, ω′)/(Φ, ω) is immediate, so the preceding observations

indicate that v(p) is a generator of ω′(Φ′) and Φ̂′ 6= Φ̂′p. Hence, by Lemma
3.2, there exist totally ramified Galois extensions Ψ′m, m ∈ N, of Φ′ in
Ksep with [Ψ′m : Φ′] = pm and G(Ψ′m/Φ

′) an elementary abelian p-group,
for each m. Observe that [(K ∩ Ψ′m : Φ′] | pν , where ν is defined in the
statement of Lemma 4.1 (b); since ω′ is Henselian and (K, v)/(Φ′, ω′) is a
valued extension, this can be deduced from (3.2) (a). Therefore, it is easily
obtained from Galois theory and the assumptions on G(Ψ′m/Φ

′), m ∈ N, that
Ψ′m can be chosen so that Ψ′m∩K = Φ′, for every m. This amounts to saying
that the fields Ψm = Ψ′mK are Galois extensions of K with G(Ψm/K) ∼=
G(Ψ′m/Φ

′). As Ψ′m/Φ
′ are totally ramified, one also sees that [Ψ̂m : K̂] | pν ,

for all m ∈ N. In the rest of the proof, we suppose that m is fixed so
that m ≥ (ν + 1)n and take into account that Ψm equals the compositum
Lm1 . . . Lmm, for some degree p extensions Lmj of K in M , j = 1, . . . ,m.
Put W0 = K, Wj = Lm1 . . . Lmj , for j = 1, . . . ,m, and denote by Σ the set of

those indices j > 0, for which e(Wj/Wj−1) = 1. Clearly, [Wj′′ : Wj′ ] = pj
′′−j′

in case 0 ≤ j′ < j′′ ≤ m; in particular, Wm = Ψm, so it follows from (3.2) (a)
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and the divisibility of pν by [Ŵm : K̂] that Σ consists of at most ν elements.
As m ≥ (ν + 1)n, one may also assume, for the proof of Lemma 4.1, that
Σ 6= φ. Thus it turns out that some of the following two conditions holds:

(4.1) (i) n < µ or µ ≤ m− n, for each µ ∈ Σ;
(ii) Σ contains indices-neighbours µ′ and µ′′, such that µ′′ − µ′ > n.

The conclusions of our lemma are immediate consequences of (4.1). �

In the setting of Lemma 4.1, we have [L̂ : L̂p] = pn, for every finite exten-
sion L/K. Therefore, (3.5) and Lemma 4.2 (b) ensure that Brdp(M0) ≥ n,
which yields abrdp(K) ≥ n and so completes the proof of Theorem 2.1 (b).
Also, it is easily obtained from Lemma 4.1 (a) and Galois theory that if
ν < n, then there exists a field R ∈ I(M/K), such that [R : K] = pn−ν and
R ∩M0 = K. This allows us to supplement Lemma 4.1 as follows:

(4.2) Brdp(K) ≥ n − ν. Specifically, one can find an algebra ∆ ∈ d(K)
so that exp(∆) = p, deg(∆) = pn−ν , [∆] ∈ Br(R/K), ∆ ⊗K M0 ∈ d(M0),
v(∆⊗K M0) = v(M0R), and the residue division ring of ∆⊗K M0 is a field

that is a purely inseparable extension of M̂0 of degree pn−ν .

The proof of (4.2) relies on the existence of elements a1, . . . , an−ν of Ov(K)∗,

such that â1, . . . , ân−ν are p-independent over M̂p
0 . Take cyclic extensions

R1, . . . , Rn−ν of K of degree p so that R1 . . . Rn−ν = R, fix a generator
ρu of G(Ru/K), u = 1, . . . , n − ν, and put ∆ = ⊗n−νu=1∆u, where ∆u =
(Ru/K, ρu, au), for each u. It follows from Lemma 4.1 and the conditions on
a1, . . . , an−ν that theM0-algebra ∆′ = ∆⊗KM0 can be defined in accordance
with (3.5). This ensures that ∆′ ∈ d(M0) and ∆ ∈ d(K), which implies in
conjunction with (3.2) that ∆′ has the properties required by (4.2).

To prove our next lemma, we need the following known characterization
of finite extensions of Kv in Kv,sep, for v Henselian and discrete (cf. [21],
Ch. XII, Sects. 2,3 and 6, and the lemma on page 380 of [20]):

(4.3) (a) Every L ∈ Fe(Kv) is Kv-isomorphic to L̃⊗K Kv and L̃v, where

L̃ is the separable closure of K in L. The extension L/Kv is Galois if and

only if so is L̃/K; when this holds, G(L/Kv) and G(L̃/K) are isomorphic.
(b) Ksep ⊗K Kv is a field and there exist canonical isomorphisms

Ksep ⊗K Kv
∼= Kv,sep and GK ∼= GKv .

Statement (3.5) and our next lemma prove that Brdp(K) ≥ n− [n/3], if

(K, v) is an HDV-field with char(K̂) = p > 0 and [K̂ : K̂p] = pn ≤ p3. They
also imply in conjunction with (3.9), Lemma 3.3 and [24], Theorem 1, that

if [K̂ : K̂p] = pn, for an integer n ≥ 4, then there exist Dj ∈ d(K), j = 1, 2,
such that D1⊗KD2 := D ∈ d(K), deg(D1) = e(D1/K) = p2, e(D2/K) = 1,

deg(D2) = exp(D1) = p, and D̂ is a field with [D̂ : K̂] = p4 and D̂p ⊆ K̂.
This shows that Brdp(K) ≥ 3, which proves Theorem 2.1 (c) in case n = 4.

Lemma 4.2. Let (K, v) be an HDV-field with char(K̂) = p > 0. Then there
exists a totally ramified abelian noncyclic extension M/K of degree p2 unless

p > 2, char(K) = 0, K̂ = Fp and v(p) is a generator of v(K).
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Proof. In view of (4.3) and [8], Lemma 4.2, it is sufficient to consider only
the special case where (K, v) = (Kv, v̄) and char(K) = 0. As in the proofs
of Lemmas 3.2 and 3.3, ε denotes a primitive p-th root of unity in Ksep.

Suppose first that K̂ is finite. It is well-known that then K can be viewed
as a finite extension of the field Qp of p-adic numbers (cf. [15], Ch. IV, (1.1));
in addition, if [K : Qp] = µ, then µ+1 ≤ rp(K) ≤ µ+2 and rp(K) = µ+2 if

and only if ε ∈ K (cf. [33], Ch. II, Theorems 3 and 4). Since rp(K̂) = 1, and
by (3.3), G(Kur/K) ∼= GK̂ , this implies the existence of a Galois extension
M ′ of K in Ksep, such that M ′ ∩ Kur = K, [M ′ : K] = pµ and G(M ′/K)
is an elementary abelian p-group. In particular, degree p extensions of K

in M ′ are totally ramified. As K̂ = K̂p, this means that M ′/K is totally
ramified (see the end of the proof of Lemma 3.2 (a)). Thus it becomes clear
that if K 6= Qp, then µ ≥ 2 and every M ∈ I(M ′/K) of degree p2 has
the properties required by Lemma 4.2. When K = Qp, the assertion of the
lemma is deduced in the same way from the following facts: r2(Q2) = 3; if
p > 2, then ε /∈ Qp, rp(Qp) = 2 and Kur ∩K(p) is a Zp-extension of K.

Our objective now is to prove the existence of an extension M/K admis-

sible by Lemma 4.2, assuming that K̂ is infinite. We consider only the case

where v(p) ∈ pv(K) and K̂ 6= K̂p (this is allowed by Lemma 3.2). The
condition on v(p) and the cyclicity of v(K) ensure that there exists π ∈ K
satisfying 0 < v(π) ≤ v(p)/p and v(π) /∈ pv(K). Suppose first that ε ∈ K,
and put M1 = K(ξ), M2 = K(η) and M = M1M2, where ξ and η are p-th
roots in Ksep of π and 1 + π, respectively. It is clear from Kummer theory
and the noted properties of π that M/K is a noncyclic Galois extension
and [M : K] = p2. Moreover, it is easily verified that degree p extensions
of K in M are totally ramified. Observe now that vM1(ξ) /∈ v(K) and the
norm NM

M1
(1 + ξ − η) equals (1 + ξ)p − ηp. Taking also into account that

v(p) ∈ pv(K) and NM
M1

(1 + ξ − η) ∈ pv(M), and applying Newton’s bino-
mial formula to the element (1 + ξ)p, one concludes that vM1(ξ) ∈ pv(M).
This, combined with (3.2) (a), shows that M/K is totally ramified, which
completes the proof of Lemma 4.2 in the case where ε ∈ K.

Suppose finally that ε /∈ K, i.e. [K(ε) : K] = m ≥ 2, and as in the
proofs of Lemmas 3.2 and 3.3, let ϕ be a generator of G(K(ε)/K), and s,
l be integers with ϕ(ε) = εs and sl ≡ 1(mod p). For each α ∈ Ov(K)∗,

put πα = παp and α′ =
∏m−1
j=0 [1 + (1 − ϕj(ε))pπ−1

α ]l(j), where l(j) = lj ,

for j = 0, 1, . . . ,m − 1, and denote by L′α the extension of K(ε) in Ksep

obtained by adjunction of a p-th root ηα of α′. Then, by (3.8), L′α/K is a
cyclic degree pm extension, so L′α contains as a subfield a degree p (cyclic)
extension Lα of K. Now fix α so that α̂p 6= α̂ and put Mα = L1Lα and
M ′α = Mα(ε). Using Kummer theory and arguing by the method of proving
(3.8), one obtains that M ′α/K(ε) and Mα/K are noncyclic Galois extensions
of degree p2, so it remains for the proof of Lemma 4.2 to show that Mα is
totally ramified over K. Since m | p − 1, this is the same as to prove that
M ′α/K(ε) is totally ramified. Put β = αp−1, η′1 = π1(η1 − 1)/(1− ε), and
η′α = πα(ηα − 1)/(1 − ε), and denote by f1(X) and fα(X) the minimal
polynomials over K(ε) of η′1 and η′α, respectively. It is easily verified that

N
M ′α
L′1

(βη′1−η′α) = fα(βη′1) = fα(βη′1)−βpf1(η′1). Note also that the equalities
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vK(ε)(1− εi) = v(p)/(p− 1), i = 1, . . . , p− 1,

and the inequalities 0 < v(π) ≤ v(p)/p

and vK(ε)((1− ϕj(ε))/(1− ε)− sj) ≥ vK(ε)(1− ε), j = 1, . . . ,m, imply that

vK(ε)(t1) = vK(ε)(tα) = v(πp−1) and vK(ε)(β
pt1 − tα) ≥ v(p) + v(πp−1),

where t1 and tα are the free terms of f1(X) and fα(X), respectively. At the

same time, we have f1(X) = (π/(1− ε))p((1− ε)π−1X + 1)− 1′ and

fα(X) = (πα/(1− ε))p((1− ε)π−1
α X + 1)p − α′, so it follows from the

observations on v(π) and vK(ε)(1− εi), i = 1, . . . , p− 1, that the coefficients

of the polynomials

f1(X)−Xp − t1 =
∑p−1

j=1 r1,jX
j and fα(X)−Xp − tα =

∑p−1
j=1 rα,jX

j

(defined by the rule r1,j =
(
p
j

)
(π/(1− ε))p−j and rα,j =

(
p
j

)
(πα/(1− ε))p−j ,

for each index j) lie in the ideal Mv(K(ε)) and form the same value sequence

v(r1,j) = vK(ε)(rα,j) = v(p) + (p− j)(v(π)− vK(ε)(1− ε)), j = 1, . . . , p− 1,

which strictly increases. It is now easy to see that

vL′1(η′1) = vL′α(η′α) = vK(ε)(t1)/p = v(πp−1)/p ≤ (p− 1)v(p)/p2,

v(πp−1) + vL′1(η′1) = (1 + (1/p))v(πp−1) ≤ (1− (1/p2))v(p) < v(p) and

vL′1(N
M ′α
L′1

(βη′1−η′α)) = vL′1(fα(βη′1)−βpf1(η′1)) = vL′1(πp−1
α βη′1−βpπp−1η′1) =

vL′1(πp−1(βp.βη′1−βpη′1)) = v(πp−1(βp+1−βp))+vL′1(η′1) = v(πp−1)+vL′1(η′1).

As v(π) /∈ pv(K), the obtained result indicates that vL′1(N
M ′α
L′1

(βη′1 − η′α))

lies in the complement pv(M ′α) \ pv(L′1), which enables one to deduce from
(3.2) (a) that M ′α/K is totally ramified. Lemma 4.2 is proved. �

In order to complete the proof of Theorem 2.1 it remains to be seen

that if (K, v) is an HDV-field with char(K) = 0, char(K̂) = p > 0 and

[K̂ : K̂p] = pn, for some integer n ≥ 5, then Brdp(K) ≥ n − [n/3] except,
possibly, when n = 5, K does not contain a primitive p-th root of unity, and
v(p) ∈ p2v(K) \ p3v(K). Statements (3.5), (4.2) and Lemmas 4.1 and 4.2
imply the desired inequality in the case of v(p) /∈ p2v(K). For the rest of
the proof of Theorem 2.1 (c), we need the following lemma.

Lemma 4.3. Let (K, v) be an HDV-field with char(K̂) = p > 0, K̂ 6= K̂p,
char(K) = 0 and v(p) ∈ pv(K). Suppose that ε ∈ Ksep is a primitive p-
th root of unity, v(p) ∈ p3v(K) or ε ∈ K, and λ ∈ Ov(K)∗ is chosen so

that λ̂ /∈ K̂p. Then there is a noncyclic Galois extension M/K, such that

[M : K] = [M̂ : K̂] = p2, λ̂ ∈ M̂p and M̂/K̂ is simple and purely inseparable.

Proof. The idea of our proof is the same as the one of Lemma 4.2 in the case

where K̂ is infinite, so we point out only the basic steps and omit details. As
above, m := [K(ε) : K], ϕ is a generator of G(K(ε)/K), s and l are integers
chosen so that ϕ(ε) = εs and sl ≡ 1(mod p). When ε ∈ K (e.g., if p = 2),
we put M = K(ξ, η), where ξ and η are p-th roots in Ksep of λ and λ + 1,
respectively; also, we put θ = 1 + ξ − η and take an element π0 ∈ K so
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that v(πp0) = v(p). Clearly, M/K is a noncyclic abelian extension of degree

p2, M̂ is purely inseparable over K̂ (degree p extensions of K in M are not
inertial), vK(ξ)(N

M
K(ξ)(θ)/π

p
0) = 0 and the residue class of NM

K(ξ)(θ)/π
p
0 lies

in M̂p \ K̂p. In view of (3.2) (a), this proves that M/K has the properties
claimed by Lemma 4.3, so we assume further that ε /∈ K and v(p) ∈ p3v(K).
Take some π ∈ K∗p so that 0 < v(π) ≤ v(p)/p2, put πα = πα−p and

α′ =
∏m−1
j=0 [1 + (1− ϕj(ε))pπ−pα λ]l(j), for each α ∈ Ov(K)∗, where l(j) = lj ,

for j = 0, . . . ,m − 1, and denote by L′α some extension of K(ε) in Ksep

obtained by adjunction of a p-th root ηα of α′. It is easily verified that
vK(ε)(α

′−1−m(1− ε)pπ−pα λ) > v(p) + vK(ε)((1− ε)pπ
−p
α λ). Since m | p−1,

this implies the binomial Xp − mλ and the minimal polynomial fα(X) of
the element η′α = πα(ηα − 1)/(1 − ε) over K(ε) have the same reduction

modulo Mv(K(ε)). Therefore, η′α ∈ Ov(K(ε))∗ and η̂′pα = mλ̂ = mpλ̂; in

particular, λ̂ ∈ L̂′pα . Observing also that ϕ(α′)α′−s ∈ K(ε)∗p, one deduces
from Albert’s theorem that L′α/K is cyclic of degree pm. Thus L′α contains

as a subfield a cyclic extension Lα of K of degree p, and λ̂ ∈ L̂pα. Now
fix α so that α̂p 6= α̂, put Mα = L1Lα and M ′α = L′1L

′
α, and denote by

θ1 and θα the free terms of f1(X) and fα(X), respectively. It follows from
Kummer theory, the choice of α and the preceding observations that Mα/K

is a noncyclic Galois extension, [Mα : K] = p2, and Λ̂ ∼= L̂1 over K̂, for

each Λ ∈ I(Mα/K) with [Λ: K] = p; hence, M̂α/K̂ is purely inseparable.
Observe that 0 < v(πp) ≤ v(p)/p, so it is verified by direct calculations that

vK(ε)(θ1 − θα) ≥ min{vK(ε)(θ1 +mλ), vK(ε)(θα +mλ)} ≥ v(p) whereas

v(πp−1) = v(πp−1
α ) = v(πp−1 − πp−1

α ) ≤ (p− 1)v(p)/p2 < v(p).

Note also that if δ′α = (η′1− η′α)/τp−1, where τ ∈ K is a p-th root of π, then

the norm ξα = N
M ′α
L′1

(δ′α) is equal to fα(η′1)/πp−1 = (fα(η′1)− f1(η′1))/πp−1.

These calculations make it easy to show that vM ′α(δ′α) = 0, vL′1(ξα) = 0

and ξ̂α a p-th root of (α̂p(p−1) − 1)p.mpλ̂ lying in M̂ ′pα . Since λ̂ /∈ K̂p, m is

equal to [K(ε) : K], [L′1 : L1] and [M ′α : Mα], and p †m, the obtained result

leads to the conclusion that [M̂α : K̂] = [Mα : K] = p2 and the field L̂1∩M̂p
α

contains a p-th root of λ̂. At the same time, it follows that M̂α/K̂ is a

simple purely inseparable extension, so Lemma 4.3 is proved. �

Remark 4.4. Note that if (K, v) is an HDV-field with char(K) = 0, char(K̂) =

p > 0 and [K̂ : K̂p] = pn, for some n ∈ N, then there exists an integer
c(K) ≥ 0, such that e(Lm/K) > 1, for each finite Galois extension Lm/K
satisfying the following: G(Lm/K) is an elementary abelian p-group of or-

der pm > pc(K); L̂m/K̂ is purely inseparable. Moreover, it can be deduced
from (3.6), (3.7) and Albert’s theorem that c(K) ≤ nµ, µ being the index
of 〈pv(p)/(p− 1)〉 as a subgroup of v(K(ε)), where ε ∈ Ksep and ε 6= 1 = εp.

We are now in a position to complete the proof of Theorem 2.1. Let (K, v)

be an HDV-field with char(K) = 0, char(K̂) = p > 0 and [K̂ : K̂p] = pn, for
some integer n ≥ 5. Suppose that we are not in the case where n = 5, v(p) ∈
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p2v(K)\p3v(K) and K does not contain a primitive p-th root of unity (this
restriction is allowed by (4.2)). Fix k ∈ N and elements aj , bj , cj ∈ Ov(K)∗,

j = 1, . . . , k, so that p3k ≤ [K̂ : K̂p] and âj , b̂j , ĉj ∈ K̂, j = 1, . . . , k, are

p-independent over K̂p. Then, by Lemma 4.3, one can find, for each index
j, Galois extensions Lj , L

′
j and Mj of K in K(p), such that Mj = LjL

′
j ,

[Lj : K] = [L′j : K] = p, [Mj : K] = p2, and M̂j/K̂ be purely inseparable,

[M̂j : K̂] = p2 and âj ∈ M̂p
j . Fix generators τ1, τ

′
1, . . . , τk, τ

′
k of

G(L1/K),G(L′1/K), . . . ,G(Lk/K),G(L′k/K), respectively, and put

∆k = ⊗kj=1Aj , where ⊗ = ⊗K and Aj = (Lj/K, τj , bj)⊗K (L′j/K, τ
′
j , cj), for

j = 1, . . . , k. It follows from [24], Theorem 1, that ∆k ∈ d(K), exp(∆k) = p

and deg(∆k) = p2k. The obtained result proves Theorem 2.1 (c) in the
special case of n = 3k. Assume now that n = 3k+ u, where u ∈ {1, 2}, fix a
totally ramified Galois extension Tu/K with [Tu : K] = pu and G(Tu/K) of
period p, and take elements ai ∈ Ov(K)∗, i = 1, . . . , u, so that

K̂p(âi, i ≤ u; b̂j , ĉj , j = 1, . . . k) = K̂. Then (3.5) and [24], Theorem 1,

enable one to attach to Tu/K and ai, i ≤ u, an algebra Θu ∈ d(K) with

exp(Θu) = p, deg(Θu) = pu, [Θu] ∈ Br(Tu/K) and Θu ⊗K ∆k ∈ d(K).

This ensures that exp(Θu ⊗K ∆k) = p and deg(Θu ⊗K ∆k) = pn
′
, where

n′ = 2k + u = n− [n/3], which completes the proof of Theorem 2.1.

Remark 4.5. An HDV-field (K, v) with char(K) = 0, char(K̂) = p > 0,

and [K̂ : K̂p] = pn < ∞ satisfies Brdp(K) ≥ n − [n/3] also in the case of
e(K(ε)/K) = 1, ε being a primitive p-th root of unity in Ksep. In view of
Theorem 2.1, one may assume, for the proof, that v(p) ∈ p2v(K) and n ≥ 5.
Then there is π ∈ K∗p, such that 0 < v(π) ≤ v(p)/(p2−p), which implies K
has an extension claimed by Lemma 4.3, and so proves the stated inequality.

Theorem 2.1, [4], Proposition 4.5, and (2.1) raise interest in the question of

whether Brdp(K) = n, if (K, v) is an HDV-field, char(K̂) = p > 0, K̂sep = K̂

and [K̂ : K̂p] = pn, for some n ∈ N. An affirmative answer would agree with
the well-known conjecture that abrdp(F ) < ν whenever F is a field of type
(Cν), for some ν ∈ N, i.e. each homogeneous polynomial f(X1, . . . , Xm) ∈
F [X1, . . . , Xm] of degree d > 0, dν < m, has a nontrivial zero over F . This
is particularly clear in the special case where F/E is a finitely-generated
field extension of transcendency degree n, and E has a Henselian discrete

valuation ω, such that Ê is algebraically closed, char(Ê) = p, and in case
char(E) = p, E is complete relative to the topology of ω. Indeed, then E
is of type (C1), by Lang’s theorem [20], so it follows from the Lang-Nagata-
Tsen theorem [26], that F is of type (Cn+1) (for more information on the
(Cν) property, see [33], Ch. II, 3.2 and 4.5). The assumptions on F and
E also imply the existence of a discrete valuation ω′ of F extending ω with

F̂ /Ê a finitely-generated extension of transcendency degree n; in particular,

[F̂ ′ : F̂ ′p] = pn, for every finite extension F ′/F . This enables one to deduce
(e.g., from [8], Lemmas 3.1 and 4.3) that if (L,w) is a Henselization of
(F, ω′), then abrdp(L) ≤ Brdp(F ). Therefore, the stated conjecture requires
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that abrdp(L) ≤ n. On the other hand, (L,w)/(F, ω′) is immediate, so

[L̂ : L̂p] = pn, and by Theorem 2.1 (b), abrdp(L) ≥ n. Moreover, one obtains
by the method of proving [8], Proposition 6.3, that Brdp(L) ≥ n. Thus the
assertion that Brdp(L) = n can be viewed as a special case of the conjecture.

5. HDV-fields with almost perfect residue fields

This Section is devoted to the proof of Theorem 2.2. Let (K, v) be an

HDV-field with char(K̂) = p > 0. Theorem 2.1 and [6], Proposition 2.1,

show that Brdp(K) ≥ 2, if [K̂ : K̂p] ≥ p2 or K̂ is not p-quasilocal. Therefore,

we assume that K̂ is p-quasilocal with char(K̂) = p > 0 and [K̂ : K̂p] ≤ p,
and we prove that Brdp(K) is determined by Theorem 2.2. Our argument
is facilitated by (2.3) (a), (b) and (4.3), which indicate that it is sufficient

to settle the special case where (K, v) = (Kv, v̄). Suppose first that K̂ is

perfect and rp(K̂) = 0. Then Br(K̂)p = {0}, by [2], Ch. VII, Theorem 22,
so it follows from Witt’s theorem that Br(K)p = {0}, i.e. Brdp(K) = 0,

as claimed. Next we consider the case of K̂ perfect and rp(K̂) > 0. Then
Witt’s theorem ensures the existence of a nicely semiramified (abbr, NSR)
algebra ∆p ∈ d(K), in the sense of [16], of degree p and thereby proves that
Brdp(K) ≥ 1. On the other hand, (3.4) and [2], Ch. VII, Theorem 22, imply
e(Dp/K) = deg(Dp/K), for each Dp ∈ d(K) with [Dp] ∈ Br(K)p. Hence,
by (3.2) (a), (3.4), [29], (3.19), and the cyclicity of the group v(Dp)/v(K),
deg(Dp) | exp(Dp), which yields Brdp(K) ≤ 1. It remains to be seen that

Brdp(K) ≤ 1, if [K̂ : K̂p] = p. Our proof relies on the following lemma.

Lemma 5.1. Let (K, v) be an HDV-field with char(K̂) = p and [K̂ : K̂p] =

p, and let Y/K be a field extension, such that [Y : K] = [Ŷ : K̂] = p. Suppose

that K̂ is p-quasilocal and Ŷ is normal over K̂. Then Br(Y/K) includes the
group pBr(K) ∩ IBr(K), and the homomorphism πY/K : Br(K) → Br(Y ),
maps Br(K)p ∩ IBr(K) surjectively upon Br(Y )p ∩ IBr(Y ).

Proof. It follows from [6], Theorem 4.1, and Albert-Hochschild’s theorem

(cf. [33], Ch. II, 2.2) that π
K̂/Ŷ

maps Br(K̂)p surjectively upon Br(Ŷ )p. At

the same time, we have Br(Ŷ /K̂) = pBr(K̂), by [6], Theorem 4.1, if Ŷ /K̂

is separable, and by [2], Ch. VII, Theorem 28, when Ŷ /K̂ is inseparable.
Note further that IBr(Y ) includes the image of IBr(K) under πK/Y , and the

natural mappings r
K/K̂

: IBr(K) → Br(K̂), and r
Y/Ŷ

: IBr(Y ) → IBr(Ŷ ),

are index-preserving group isomorphisms (see [16], Theorems 5.6 and 2.8).

Observing also that (π
K̂/Ŷ

◦ r
K/K̂

)([D]) = (r
Y/Ŷ
◦ πK/Y )([D]) (in Br(Ŷ ))

whenever D ∈ d(K) is inertial over K, one proves the latter part of the
assertion of Lemma 5.1, as well as the fact that ind(Dp⊗K Y ) = deg(Dp)/p,
for each Dp ∈ d(K) with [Dp] 6= 0 and [Dp] ∈ (Br(K)p ∩ IBr(K)). In view
of the Corollary in [28], Sect. 13.4, this completes our proof. �

Next we show that Theorem 2.2 will be proved, if we deduce the equality
deg(∆) = p, assuming that ∆ ∈ d(K) and exp(∆) = p. It follows from (3.4)
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and [16], Proposition 1.7, that each D ∈ d(K) with deg(D) = p possesses

a maximal subfield Y satisfying the conditions of Lemma 5.1. Hence, Ŷ is
p-quasilocal (cf. [6], Theorem 4.1 and Proposition 4.4), which enables one
to obtain from the claimed property of ∆, by the method of proving [7],
Lemma 4.1, that if ∆n ∈ d(K) and exp(∆n) = pn, then ∆n has a splitting

field Yn with [Yn : K] = pn, v(Yn) = v(K) and Ŷn ∈ I(Ŷ ′/K̂), where Ŷ ′ is

a perfect closure of K̂(p). This result gives the desired reduction. Since,
by Merkur’ev’s theorem [23], Sect. 4, Theorem 2, each ∆ ∈ d(K) with
exp(∆) = p is Brauer equivalent to a tensor product of degree p algebras
from d(K), we need only prove that if Dj ∈ d(K) and deg(Dj) = p, j = 1, 2,
then D1 ⊗K D2 /∈ d(K). This can be deduced from the following lemma.

Lemma 5.2. Let (K, v) be an HDV-field with char(K̂) = p, K̂ p-quasilocal

and [K̂ : K̂p] = p. Then exp(∆) = p2, for any ∆ ∈ d(K) of degree p2.

Proof. Let ∆ be a K-algebra satisfying the conditions of the lemma. As

K̂ is almost perfect, this implies p2 is divisible by the dimension of any

commutative K̂-subalgebra of ∆̂. At the same time, it follows from (3.4)
and the cyclicity of v(∆) that e(∆/K) | p2. Suppose first that e(∆/K) =
1. Then ∆/K is inertial, by (3.4), which makes it easy to deduce from
[16], Theorem 2.8, [2], Ch. VII, Theorem 28, and [6], Theorem 3.1, that
deg(∆) = exp(∆), as claimed by Lemma 5.2. Henceforth, we assume that
e(∆/K) 6= 1. Our first objective is to prove the following:

(5.1) (a) If U is a central K-subalgebra of ∆ of degree p, then U is neither
an inertial nor an NSR-algebra over K;

(b) If e(∆/K) = p, then totally ramified extensions of K of degree p are
not embeddable in ∆ as K-subalgebras.

The proof of (5.1) (a) relies on the Double Centralizer Theorem (see [28],
Sect. 12.7), which implies that ∆ is K-isomorphic to U ⊗K U ′, for some
U ′ ∈ d(K) with deg(U ′) = p. Suppose for a moment that U/K is inertial.
Applying (3.2) (a), (3.4) and [16], Theorem 2.8 and Proposition 1.7, one

concludes that e(U ′/K) = p, Û ′/K̂ is a normal field extension of degree

p, and U ′ contains as a K-subalgebra an extension Y of K with Ŷ = Û ′.
Therefore, by Lemma 5.1, Y is embeddable in U as a K-subalgebra, which
means that U ⊗K Y /∈ d(Y ). Since ∆ ∈ d(K) and U ⊗K Y is a K-subalgebra
of ∆, this is a contradiction ruling out the possibility that U/K be inertial.

We turn to the proof of (5.1) (b), so we assume that e(∆/K) = p. Suppose
that our assertion is false, i.e. ∆ contains as a K-subalgebra a totally
ramified extension T of K of degree p, and let W ′ be the centralizer of
T in ∆. It is clear from the Double Centralizer Theorem that W ′ ∈ d(T )
and deg(W ′) = p, and it follows from (3.4) and the assumptions on ∆/K and

T/K that [Ŵ ′ : T̂ ] = p2. As K̂ is almost perfect, these facts show that Ŵ ′ ∈
d(T̂ ). Taking into account that T̂ = K̂, and applying [16], Theorem 2.8, one
concludes that W ′ ∼= W ⊗K T as a T -algebra, where W ∈ d(K) is an inertial

lift of Ŵ ′ over K. Our conclusion, however, contradicts (5.1) (a), since it
requires that W embed in ∆ as a K-subalgebra, so (5.1) (b) is proved.
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We continue with the proof of Lemma 5.2 in the case of e(∆/K) = p.

Clearly, (3.4) yields [∆̂ : K̂] = p3, so the assumption that [K̂ : K̂p] = p

implies that ∆̂ is noncommutative. This means that [∆̂ : Z(∆̂)] = p2 and

[Z(∆̂) : K̂] = p, where Z(∆̂) is the centre of ∆̂. First we prove that exp(∆) =
p2, under the extra hypothesis that ∆ possesses a K-subalgebra ∆0, such

that [∆0 : K] = p3 and ∆̂0 is K̂-isomorphic to ∆̂; by [16], Theorem 2.9,

this holds in the special case where Z(K̂) is a separable extension of K̂. It
follows from [16], Proposition 1.7, our extra hypothesis and the cyclicity of

v(K) that Z(∆̂)/K̂ is a normal extension of degree p. Hence, by Lemma 5.1,
we have [∆0] = [D ⊗K Z(∆0)] (in Br(Z(∆0))), for some D ∈ d(K) inertial
over K. The obtained result indicates that [∆ ⊗K Dop] ∈ Br(Z(∆0)/K),
which requires that exp(∆ ⊗K Dop) | p. Taking finally into account that
deg(D) = exp(D) = p2, one concludes that exp(∆) = p2, as claimed.

We are now prepared to consider the case of e(∆/K) = p in general.

The preceding part of our proof allows us to assume that Z(∆̂) is a purely

inseparable extension of K̂. Note also that [Z(∆̂) : K̂] = p, and it follows

from [6], Theorem 3.1, and [2], Ch. VII, Theorem 28, that ∆̂ is a cyclic

Z(∆̂)-algebra of degree p. Therefore, there exists η ∈ ∆, which generates
an inertial cyclic extension of K of degree p. Hence, by the Skolem-Noether
theorem (cf. [28], Sect. 12.6), there is ξ ∈ ∆∗, such that ξη′ξ−1 = ϕ(η′), for
every η′ ∈ K(η), where ϕ is a generator of G(K(η)/K). Denote by B the K-
subalgebra of ∆ generated by η and ξ. It is easy to see that K(ξp) = Z(B),
deg(B) = p and B is either an inertial or an NSR-algebra over K(ξp). In
view of (5.1) (a), this means that ξp /∈ K which gives [K(ξp) : K] = p,
and combined with (5.1) (b), proves that v(K(ξp)) = v(K). In other words,
K(ξp)∗ = Ov(K(ξp))∗K∗. As e(∆/K) = p, the obtained properties of B and
K(ξp) indicate that if B/K(ξp) is inertial (equivalently, if v∆(ξ) ∈ v(K), see

[16], Theorem 5.6 (a)), then B̂ ∼= ∆̂ over K̂. This means that ∆/K is subject
to the extra hypothesis, which yields exp(∆) = p2. When B/K(ξp) is NSR,
these properties imply with (5.1) (b) and [28], Sect. 15.1, Proposition b, the
existence of an algebra Θ ∈ d(K) satisfying the following conditions:

(5.2) (a) Θ is isomorphic to the cyclic K-algebra (K(η)/K,ϕ, π′), for some
π′ ∈ K∗; Θ/K is NSR, whence Θ does not embed in ∆ as a K-subalgebra;

(b) ind(∆⊗K Θ) = p2 (see also [28], Sect. 13.4, and [8], (1.1)(b)), the un-
derlying division K-algebra ∆′ of ∆⊗KΘ has a K-subalgebra Z ′ isomorphic
to Z(B), and the centralizer C∆′(Z

′) := C is an inertial Z ′-algebra.

Note here that [∆′] ∈ Br(K(ξp, η)/K). Using (3.2) (a), (3.4) and (5.2), one
concludes that [C : K] = p3 (see also [28], Sect. 12.7) and either ∆′/K is

inertial or e(∆′/K) = p and Ĉ ∼= ∆̂′ as a K̂-algebra. As shown above, this
alternative on ∆′ requires that exp(∆′) = p2. In view of (5.2) (b) and the
equality deg(Θ) = exp(Θ) = p, it thereby proves that exp(∆) = p2 as well.

It remains to consider the case where e(∆/K) = p2. We first show that

one may assume without loss of generality that Brdp(K̂) = 0. It follows from

(5.1) (a), (3.4) and the equality e(∆/K) = p2 that ∆̂/K̂ is a field extension
of degree p2. Using [16], Theorem 3.1, one obtains that ∆⊗K U ∈ d(U) and
e((∆⊗K U)/U) = p2 whenever U is an extension of K in K(p) ∩Kur, such
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that no proper extension of K̂ in Û is embeddable in ∆̂ as a K̂-subalgebra.

Note also that ∆̂ ⊗
K̂
Û is Û -isomorphic to the residue field of ∆ ⊗K U ,

which enables one to prove (by applying Galois theory and Zorn’s lemma)

that U can be chosen so as to satisfy the condition rp(Û) ≤ 1. Then, by

[17], Proposition 4.4.8, Br(Û)p = {0}, which leads to the desired reduction.

We suppose further that Brdp(K̂) = 0 and prove the following assertion:

(5.3) If ∆ possesses a K-subalgebra Z, such that [Z : K] = [Ẑ : K̂] = p

and Ẑ is purely inseparable over K̂, then ∆̂/K̂ is purely inseparable.

Assuming the opposite and using (3.2) (a) and (3.4), one obtains that Z
has an inertial extension M which is a maximal subfield of ∆. As v is
Henselian, the assumptions on Z and M ensure that M = LZ, for some
inertial extension L of K in M of degree p. Note further that

[M : K] = [M̂ : K̂] = [∆̂ : K̂] = p2, which means that M̂ = ∆̂. The obtained
result enables one to deduce from [16], Proposition 1.7, and the Henselity of v

that L/K is a cyclic extension. At the same time, the equality Brdp(K̂) = 0

and the Albert-Hochschild theorem, applied to the extension Ẑ/K̂, indicate

that Brdp(Ẑ) = 0. Therefore, the norm group N(M/Z) includes Ov(Z)∗

(cf. [28], Sect. 15.1, Proposition b), which enables one to deduce from the
Skolem-Noether theorem and the Double Centralizer Theorem that there
is a Z-isomorphism C∆(Z) ∼= (M/Z,ψ′, γ), for some γ ∈ K∗ and some
generator ψ′ of G(M/Z). This in turn implies ∆ ∼= D1⊗KD2 as a K-algebra,
where D1 = (L/K,ψ, γ), ψ being the K-automorphism of L induced by ψ′,
D2 ∈ d(K) and [D2] ∈ Br(Z/K). As Brdp(K) = 0 and deg(D2) = p, one
obtains further that D2 contains as a subfield a totally ramified extension
T of K of degree p. It is now easy to see that (L ⊗K T )/T is an inertial
and cyclic extension of degree p, and to deduce consecutively from here that
N((L ⊗K T )/T ) includes Ov(T )∗ and K∗. Observing also that D1 ⊗K T
is T -isomorphic to ((L ⊗K T )/T, ψT , γ), where ψT is the T -isomorphism of
L⊗K T extending ψ, one obtains from [28], Sect. 15.1, Proposition b, that
D1⊗KT /∈ d(T ). Since D1⊗KT is a K-subalgebra of D1⊗KD2

∼= ∆ ∈ d(K),
this is a contradiction proving (5.3).

It is now easy to prove Lemma 5.2. If ∆̂/K̂ is a purely inseparable field
extension, then it follows from [38], Proposition 2.1, that exp(∆) = p2.

Suppose finally that ∆̂ is a field and ∆̂/K̂ is not purely inseparable. In
view of [16], Proposition 1.7 and Theorem 2.9, this ensures the existence
of an inertial cyclic extension Λ of K of degree p, which embeds in ∆ as a
K-subalgebra. Our goal is to show that there is an infinite extension W of
K in an algebraic closure K, satisfying the following conditions:

(5.4) v(W ) = v(K), Ŵ is purely inseparable over K̂ and ∆⊗KW ∈ d(W ).

Note that (5.4) implies exp(∆) = p2. Indeed, it follows from (3.2) (a), (5.4)

and the equality [K̂ : K̂p] = p that Ŵ is perfect and (∆⊗K W )/W is NSR.
Hence, exp(∆⊗KW ) = deg(∆⊗KW ) = p2, and since exp(∆⊗KW ) | exp(∆)
and exp(∆) | deg(∆) = p2, this gives exp(∆) = p2, as required.

Finally, we prove (5.4). Fix an element a0 ∈ Ov(K)∗ so that â0 /∈ K̂p,
take a system an ∈ K, n ∈ N, satisfying apn = an−1, for each n, and let
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W be the union of the fields Wn = K(an), n ∈ N. It is easily verified that

[Wn : K] = [Ŵn : K̂] = pn and Ŵn/K̂ is purely inseparable, for every n ∈ N,

so it follows from (3.2) (a), the equality [K̂ : K̂p] = p and the inclusions

Wn ⊂ Wn+1, n ∈ N, that W is a field, v(W ) = v(K) and Ŵ a perfect

closure of K̂. Arguing by induction on n, taking into account that
∆⊗K Wn+1

∼= (∆⊗K Wn)⊗Wn Wn+1 as Wn-algebras, and using (5.3), the
noted properties of Wn, and the behaviour of Schur indices under scalar
extensions of finite degrees (cf. [28], Sect. 13.4), one obtains that, for each
n ∈ N, ∆ ⊗K Wn ∈ d(Wn), and Λ ⊗K Wn is an inertial cyclic extension of
Wn of degree p, embeddable in ∆ ⊗K Wn as a Wn-subalgebra. Therefore,
∆⊗K W ∈ d(W ), so (5.4), Lemma 5.2 and Theorem 2.2 are proved. �

Corollary 5.3. Assume that (K, v) is an HDV-field, such that K̂ is of type
(C1). Then K is absolutely stable.

Proof. The field K̂ is almost perfect with abrdp(K̂) = 0: p ∈ P (cf. [33], Ch.

II, 3.2), so K̂ is quasilocal, and by Corollary 2.4, K is absolutely stable. �

When char(K) = char(K̂), the assertion of Corollary 5.3 is contained in

[39], Theorem 2; it is a special case of [5], Corollary 4.6, if K̂ is perfect.

6. An application to m-dimensional local fields

The first result of this Section contains information on the sequence
Brdp′(Km), p′ ∈ P, for an m-dimensional local field Km, which is com-
plete in case char(Km) > 0. Specifically, it shows that K2 is absolutely
stable. As noted in Section 2, this property of K2 is known in characteristic
p > 0; the crucial inequality abrdp(K2) ≤ 1 can be deduced from [2], Ch.
XI, Theorem 3, and results of Aravire, Jacob, Merkurjev and Tignol (see
[3], Theorem 3.3 and Corollary 3.4, as well as the Appendix to [3]).

Proposition 6.1. Let Km be an m-dimensional local field with an m-th
residue field K0. Then:

(a) Brdp′(Km) = 1, if p′ ∈ P, p′ 6= char(K0) and K0 does not contain a
primitive p′-th root of unity; Brdp′(Km) = [(1 +m)/2], when p′ ∈ P and K0

contains a primitive p′-th root of unity;
(b) Brdp(Km) = m− 1, if char(Km) = p > 0 and m ≥ 2;
(c) Km is stable iff m ≤ 2; when this holds, it is absolutely stable.

Proof. Our assumptions imply the existence of a valuation vm of Km, such

that (Km, vm) is maximally complete with K̂m
∼= K0 and vm(Km) is iso-

morphic to the inversely-lexicographically ordered abelian group Zm. Thus
Proposition 6.1 (b) and (a) reduces to a consequence of (2.2) (c) and [10],
Theorem 4.1 (see also [18], for a refinement of the latter part of Proposition
6.1 (a)). It remains to prove Proposition 6.1 (c). In view of Proposition 6.1

(a) and (b), it suffices to consider the special case where char(K̂m) = p > 0
and char(Km) = 0. Moreover, one need only prove that Brdp(Km) ≤ 1 if and
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only if m ≤ 2. If m = 1, then Km is a local field, whence, it is absolutely sta-
ble (e.g., by Corollary 2.4); in particular, Brdp(Km) = 1. We assume further
that m ≥ 2. In this case, Km is complete with respect to some discrete valu-
ation wm whose residue field Km−1 is an (m−1)-dimensional local field with
last residue field isomorphic to K0. Therefore, (Km, wm) is an HDV-field,
and it follows from [16], Theorem 2.8, that Brdp′(Km−1) ≤ Brdp(Km), for
each p′ ∈ P. Suppose now that m = 2. Then, by local class field theory (cf.
[32], Ch. XIII, Sect. 3), K1 is a quasilocal field with Br(K1) ∼= Q/Z; hence,
by Corollary 2.4, K2 is absolutely stable, as claimed. More precisely, it is
easy to see that Brdp′(Ku) = 1, u = 1, 2, p′ ∈ P. Note also that rp(K1) ≥ 2.
Indeed, [8], Lemma 4.2, shows that rp(K1) =∞ if char(K1) = p, and when
char(K1) = 0, our assertion follows from (4.3) and [33], Ch. II, Theorems 3
and 4. The inequality rp(K1) ≥ 2 implies together with (3.3) and [16], Ex-
ercise 4.3 and Theorem 5.15 (a), the existence of ∆p ∈ d(K2) and a cyclic
extension Lp/K, such that ∆p/K is NSR and Lp/K is inertial relative to
w2, ∆p ⊗K Lp ∈ d(Lp) and deg(∆p) = [Lp : K] = p. This means that K2

is not p-quasilocal. Assuming finally that m ≥ 3, summing-up the obtained
results, and using [6], Proposition 2.1 and Theorem 3.1, one concludes that
Brdp(Kj) ≥ 2, j = 3, . . . ,m, which completes our proof. �

Proposition 6.1 describes the sequence Brdp′(Km), p′ ∈ P, p′ 6= char(K0).
In addition, Proposition 6.1 (b), statements (2.3) (a) and the concluding
result of this paper prove (2.1) in the special case where (K, v) is an HDV-

field, such that K̂ is an n-dimensional local field of characteristic p > 0.

Proposition 6.2. In the setting of Proposition 6.1, suppose that m ≥ 3,
char(Km) = 0 and char(K0) = p. Then m−1 ≤ abrdp(Km) ≤ m. Moreover,
Brdp(Km) ≥ m− 1 unless m ≥ 4, char(K1) = 0 and rp(K1) < m− 1, where
K1 is the last but one residue field of Km.

Proof. It is well-known that finite extensions of Km are m-dimensional local
fields, so the equality abrdp(Km) ≤ m reduces to a consequence of [7],
Lemma 4.1, and the Corollary to [19], Theorem 2. To prove the other
inequalities stated in Proposition 6.2, we consider the i-th residue field Km−i
of Km, where i ≥ 0 is the maximal integer for which char(Km−i) = 0.
Clearly, if i > 0, then Km has a Zi-valued Henselian valuation vi with a
residue field Km−i. When i = m−1, Theorem 4.1 of [10], applied to (Km, vi),
gives a formula for Brdp(Km), which indicates that Brdp(Km) ≤ m− 1 and
equality holds if and only if rp(K1) ≥ m− 1. This, combined with (4.3) and
[33], Ch. II, Theorems 3 and 4, proves that abrdp(Km) = m− 1. It remains
to be seen that Brdp(Km) ≥ m− 1, provided that i < m− 1. Then Km−i′ ,
i′ = i, i+ 1, is an (m− i′)-dimensional local field with last residue field K0;
in particular, Km−i′ is complete with respect to a discrete valuation ωm−i′
whose residue field is Km−i′−1. In view of [8], Lemma 4.2, and formula
(2.2)(c), this means that rp(Km−i−1) =∞, and in the case where i < m−2,
Brdp(Km−i−1) = m − i − 2. More precisely, there exist D0 ∈ d(Km−i−1),
defined as in (3.5) when i < m − 2, and totally ramified Galois extensions
M ′n/Km−i−1, n ∈ N, relative to ωm−i−1, such that deg(D0) = pm−i−2,
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[D0] ∈ pBr(Km−i−1), e(D0/K) = pm−i−2, D̂0 is a field with D̂p
0 ⊆ K̂,

and for each index n, D0 ⊗Km−i−1 M
′
n ∈ d(M ′n) and G(M ′n/Km−i−1) is

elementary abelian of order pn. Let D and Mn be inertial lifts over Km−i
(relative to ωm−i) of D0 and M ′n, respectively. Then Mn/Km−i are inertial
Galois extensions, G(Mn/Km−i) ∼= G(M ′n/Km−i−1) and D⊗Km−iMn lies in
d(Mn), for every n ∈ N. This enables one to deduce (in the spirit of the
proof of [8], Proposition 6.3) from [16], Exercise 4.3 (or [7], (3.6) (a)), and
[24], Theorem 1, that there exists T ∈ d(Km−i) with deg(T ) = p, T/Km−i
NSR relative to ωm−i, and Σ ∈ d(Km−i), where Σ = D ⊗Km−i T . Clearly,

exp(Σ) = p and deg(Σ) = pm−i−1, so Brdp(Km−i) ≥ m − i − 1, proving
Proposition 6.2 in case i = 0. Let finally i > 0. Considering inertial lifts over
Km relative to vi of Σ and any Li ∈ I(Mi+1/Km−i) with Σ⊗Km−iLi ∈ d(Li)

and [Li : Km−i] = pi, one obtains similarly that Brdp(Km) ≥ m− 1. �
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