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Abstract

In this paper we prove that there is an immersion of every ultrametric space X into a Hahn
space associated to X. It is not assumed that the set of distances of X is totally ordered.

Introduction

In Ultrametric Dynamics one of the most central theorems is the Fixed Point Theorem. In
its original formulation it states that if X is an ultrametric space, if ϕ is a self-map of X, which
is contracting and strictly contracting on orbits, then ϕ has a fixed point in X, provided X is
spherically complete.

The dynamic situation when X is not spherically complete calls for an immersion of X into
a spherically complete ultrametric space X ′ which therefore contains the fixed points of ϕ. The
elements of X ′, not in X, should be approched arbitrarily close by the elements of X and X ′

ought to be described explicitly.
A very special case is offered by the ultrametric space Q of rational numbers, with the

ultrametric associated to the p-adic valuation; Q is embedded into the spherically complete
ultrametric space Qp of p-adic numbers.

The immersion of an ultrametric space with totally ordered set of distances into a spheri-

Subject classification: 13F25
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cally complete ultrametric space was proved independently by Priess & Ribenboim [4] and by
Schörner [6]. In this paper we prove the theorem for ultrametric spaces having set of distances
which is not assumed to be totally ordered. We also prove the similar theorem for ultrametric
torsion-free abelian additive groups.

This paper consists of several parts:

(A) Preliminaries

(B) The skeleton of an ultrametric space

(C) The immersion into a Hahn product

(D) The special case of ultrametric groups and vector spaces

Notes

(A) Preliminaries

§1. Ultrametric Spaces

(1o¯) Definitions and Relevant Results.

We give the definitions and results which are required in the sequel. For more details, the
reader may consult the papers listed in the references.

(1.1) Let (Γ,≤) be an ordered set with smallest element 0. Let X be a non-empty set. A
mapping d : X×X → Γ is called an ultramectric distance function when the following properties
are satisfied for all x, y, z ∈ X:

d1) d(x, y) = 0 if and only if x = y.

d2) d(x, y) = d(y, x).

d3) If d(x, y) ≤ γ and d(y, z) ≤ γ then d(x, z) ≤ γ, for all γ ∈ Γ.

(X, d,Γ) is called an ultrametric space and d(x, y) is the ultrametric distance between x
and y.

The ultrametric space is trivial, if there exists γ ∈ Γ such that for all x, y ∈ X, x 6= y,
d(x, y) = γ.
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X is said to be solid, if for every γ ∈ Γ and x ∈ X there exists y ∈ X such that d(x, y) = γ.
If X is solid then d(X ×X) = Γ.

If (Γ,≤) is totally ordered, (d3) becomes:

d3’) d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

Let (X, d,Γ) and (X ′, d′,Γ′) be ultrametric spaces such that X ⊆ X ′ and Γ ⊆ Γ′. Assume
that Γ has the induced order, the same 0 as Γ′ and that moreover, for all x, y ∈ X, d(x, y) =

d′(x, y). Then we say that (X, d,Γ) is a subspace of (X ′, d′,Γ′), or also that (X ′, d′,Γ′) is an
extension of (X, d,Γ).

(1.2) Let Γ• = Γ\{0}, γ ∈ Γ• and let Bγ(x) = {y ∈ X | d(y, x) ≤ γ}.

A set B ⊆ X is called a ball if there exists γ ∈ Γ• and x ∈ X such that B = Bγ(x). In this
situation x is a center of B and γ is a radius of B.

(1.3) An ultrametric space X is said to be spherically complete when every chain of balls of X
(that is, every set of balls which is totally ordered by inclusion) has a non-empty intersection.

(1.4) An ultrametric space X is spherically complete if and only if the following property
is satisfied: for every limit ordinal λ, every strictly decreasing family (Bι)ι<λ of balls has a
non-empty intersection.

(1.5) Let (X, d,Γ) and (X ′, d′,Γ′) be ultrametric spaces, let θ : X → X ′ and θ : Γ→ Γ′. The
pair (θ, θ) is called an expanding mapping from X to X ′ when the following conditions are
satisfied:

1) θ is order-preserving and θ(0) = 0′ (the smallest element of Γ′).

2) θ(d(x, y)) ≤ d′(θx, θy) for all x, y ∈ X.

The pair (θ, θ) is called a contracting mapping when condition (1) above is satisfied as well
as:

3) θ(d(x, y)) ≥ d′(θx, θy) for all x, y ∈ X.
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If θ(d(x, y)) = d′(θx, θy) the pair (θ, θ) is called a morphism from X to X ′.
If (θ, θ) is a morphism and θ and θ are injective, we say that (θ, θ) is an immersion from

X to X ′.
A morphism (θ, θ) such that both θ and θ are bijections is called an isometry.
An isometry (θ, θ) such that (θ−1, θ−1) is also an isometry is called an isomorphism.

(1.6) Lemma. Let (θ, θ) be an immersion from (X, d,Γ) into (X ′, d′,Γ′). Then there exists
an extension (X̂, d̂, Γ̂) of (X, d,Γ) which is isomorphic to (X ′, d′,Γ′).

Proof. Let X̂ be the disjoint union of X and X ′\θ(X) and let Γ̂ be the disjoint union of Γ

and Γ′\θ(Γ). Let θ̂ : X̂ → X ′ be defined as follows:θ̂(x) = θ(x) if x ∈ X,

θ̂(x̂) = x̂ if x̂ ∈ X̂\X = X ′\θ(X).

Let θ̂ : Γ̂→ Γ′ be defined as follows:θ̂(γ) = θ(γ) for all γ ∈ Γ,

θ̂(γ̂) = γ̂ for all γ̂ ∈ Γ̂\Γ = Γ′\θ(Γ).

The mappings θ̂ and θ̂ are bijections.
We define the relation ≤ on Γ̂ as follows:

γ̂1 ≤ γ̂2 when θ̂(γ̂1) ≤ θ̂(γ̂2) .

Then (Γ̂,≤) is an ordered set with smallest element 0.
We define d̂ : X̂ × X̂ → Γ̂ as follows: d̂(x̂, ŷ) = θ̂

−1
(d′(θ̂(x̂), θ̂(ŷ))). Then (X̂, d̂, Γ̂) is

an ultrametric space and it is straightforward to verify that (θ̂, θ̂) is an isomorpism between
(X̂, d̂, Γ̂) and (X ′, d′,Γ′).

(1.7) Let (Γ,≤) be an ordered set. A subset ∆ of Γ is said to be noetherian when either one
of the following two equivalent conditions is satisfied:

a) every strictly increasing sequence of elements of ∆ is finite,
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b) every non-empty subset of ∆ has a maximal element.
If ∆1,∆2, . . . ,∆n are noetherian subsets of Γ, then ∆1 ∪∆2 ∪ · · · ∪∆n is noetherian.

(1.8) Let (Γ,≤) be an ordered set. A subset ∆ of Γ consisting of pairwise order incomparable
elements is called an antichain of Γ. In particular, the empty set is an antichain of Γ.

(2o¯) Examples of Ultrametric Spaces

(1.9) Example when (Γ,≤) is totally ordered. Let ∆ be a totally ordered abelian additive
group, let ∞ be a symbol such that ∞ /∈ ∆, and δ +∞ = ∞ + δ = ∞, ∞ +∞ = ∞, δ < ∞
for all δ ∈ ∆. We denote by 0 the neutral element of ∆, that is 0 + δ = δ for every δ ∈ ∆. Let
K be a commutative field, let v : K → ∆ ∪ {∞} be a valuation of K, so we have:

v1) v(x) =∞ if and only if x = 0.
v2) v(xy) = v(x) + v(y) for all x, y ∈ K.
v3) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

Let Γ• be a totally ordered abelian multiplicative group with neutral element 1, let 0 be a
symbol such that 0 /∈ Γ•, 0γ = γ0 = 0, 0 · 0 = 0, 0 < γ for every γ ∈ Γ•. Let θ : ∆ ∪ {∞} →
Γ = Γ• ∪ {0} be an order reversing bijection such that θ(∞) = 0, θ(δ + δ′) = θ(δ) · θ(δ′), so
θ(0) = 1.

Let d : K ×K → Γ be defined by d(x, y) = θ(v(x− y)).
Then (K, d,Γ) is an ultrametric space which is said to be associated to the valued field

(K, v,∆ ∪ {∞}).

(1.10) Another example where Γ is totally ordered. Let Γ be a totally ordered set with
smallest element 0, let Γ• = Γ\{0}. Let R be a non-empty set with a distinguished element
0. For each f : Γ• → R let supp(f) = {γ ∈ Γ• | f(γ) 6= 0} be the support of f . Let
R[[Γ]] be the set of all f : Γ• → R with support which is empty or anti-well ordered. Let
d : R[[Γ]]× R[[Γ]]→ Γ be defined by d(f, f) = 0 and if f 6= g, d(f, g) is the largest element of
the set {γ ∈ Γ• | f(γ) 6= g(γ)}. Then (R[[Γ]], d,Γ) is an ultrametric space which is solid and
spherically complete.

(1.11) Examples when Γ is not totally ordered. Let I be a set with at least two elements,
let (Xi)i∈I be a family of sets Xi , each one having at least two elements. Let X =

∏
i∈I
Xi . Let
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P(I) be the set of all subsets of I, ordered by inclusion. And let d : X ×X → P(I) be defined
by d(f, g) = {i ∈ I | fi 6= gi}, where f = (fi)i∈I and g = (gi)i∈I . Then (X, d,P(I)) is a solid
and spherically complete ultrametric space. If each Xi = {0, 1} we obtain the ultrametric space
(P(I), d,P(I)) with d(A,B) = (A ∪B)\(A ∩B) for all A,B ⊆ I.

(1.12) Other examples. Let X be a topological space, let Y be a discrete topological space,
let C(X, Y ) denote the set of continuous functions from X to Y and let C`(X) denote the
set of clopen (i.e. closed and open) subsets of X. The mapping d : C(X, Y ) × C(X, Y ) →
C`(X) is defined by d(f, g) = {x ∈ X | f(x) 6= g(x)}. Then (C(X, Y ), d, C`(X)) is a solid
ultrametric space. If C`(X) is a complete sub-Boolean algebra of P(X) then (C(X, Y ), d, C`(X))

is spherically complete (see [4]).

(B) The Skeleton of an Ultrametric Space

Let (X, d,Γ) be a non-trivial ultrametric space with surjective distance, that is d(X×X) =

Γ. We shall define the skeleton of X. It is the family E = (Ev)v∈V where V and each set Ev will
be introduced in §3.

§2. Compatible Equivalence Relations on (X, d,Γ)

An equivalence relation α on X is identified with the set {(x, y) ∈ X ×X | xα y}; this set
shall also be denoted by α. The set of all equivalence relations on X is ordered by inclusion,
thus α ⊆ β means that if x, y ∈ X and xα y then x β y. The equality relation is the smallest
equivalence relation, the largest equivalence relation is the trivial relation, that is x(tr)y for all
x, y ∈ X. The ordered set of equivalence relations is a complete lattice, the intersection of an
arbitrary family of equivalence relations is an equivalence relation.

If (αi)i∈I is any family of equivalence relations, the supremum of the family contains, but
may not be equal to

⋃
i∈I
αi . However, if {αi | i ∈ I} is totally ordered, the

⋃
i∈I
αi is an equivalence

relation, which is therefore the supremum of (αi)i∈I .
We denote by [x]α the α-equivalence class which contains x ∈ X and by X/α the set of all

α-equivalence classes in X.
The equivalence relation α is compatible with the distance d when the following property

is satisfied: if xα y, and d(x′, y′) ≤ d(x, y) then x′αy′. We denote by ≡ (X, d,Γ), or simply
by ≡ (X), the set of compatible equivalence relations. The equality relation and the trivial
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relation are compatible with the distance and ≡ (X) is a complete lattice. The intersection of
any family of compatible equivalence relations is again a compatible equivalence relation. If
(αi)i∈I is a family of compatible equivalence relations such that {αi | i ∈ I} is totally ordered
then

⋃
i∈I
αi is a compatible equivalence relation.

For every γ ∈ Γ let (≡γ) be the relation defined by x(≡γ)y when d(x, y) ≤ γ. Then (≡γ) is
a compatible equivalence relation. For simplicity we shall write [x]γ instead of [x]≡γ and X/γ
instead of X/(≡γ). We observe that if γ ∈ Γ• then [x]γ = Bγ(x) (the ball with center x and
radius γ).

We shall repeatedly use the following remark:

(2.1) Remark. If α ∈≡ (X), α ⊂ (≡γ) and d(x, y) = γ then x (not α)y.

Proof. We assume that xα y. If d(x′, y′) ≤ γ = d(x, y) then x′ α y′, hence (≡γ) ⊆ α. This is
absurd.

§3 Virtual Points and the Skeleton.

Let α, β ∈≡ (X). We say that β covers α, or α is covered by β when α ⊂ β and there does
not exist α′ ∈≡ (X) such that α ⊂ α′ ⊂ β.

Let V = V (X) be the set of pairs (α, β) such that α, β ∈≡ (X) and β covers α. The
elements of V are called the virtual points of X, or simply the virtuals∗ of X.

(3.1) Lemma. Let α, β ∈≡ (X) be such that α ⊂ β, let x, y ∈ X be such that x β y, x (not
α)y. Then there exists (α0, β0) ∈ V such that α ⊆ α0 ⊂ β0 ⊆ β, x β0 y and x (not α0)y. In
particular V 6= ∅.

Proof. We consider the set S of all ᾱ ∈≡ (X) such that α ⊆ ᾱ ⊂ β, and x (not ᾱ)y. Thus
S 6= ∅ because α ∈ S. If T is a chain of elements of S then α′ =

⋃
ᾱ∈T

ᾱ ∈≡ (X), α ⊆ α′ ⊆ β,

x (not α′)y, so α′ ⊂ β, hence α′ ∈ S. Thus S is inductive. By Zorn’s Lemma there exists a
maximal element α0 ∈ S, so α ⊆ α0 ⊂ β. Let β0 be the intersection of all β̄ ∈≡ (X) such that
α0 ⊂ β̄ ⊆ β and x β̄ y. So α0 ⊆ β0 , but x (not α0)y, and x β0 y, so α0 ⊂ β0 .

*One often says “primes” instead of “prime numbers” even though “prime” is not a noun. By a similar
grammatical abuse, we shall say “virtuals” instead of “virtual points”.
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We show that β0 covers α0 . If β′ ∈≡ (X) and α0 ⊆ β′ ⊂ β0 then x (not β′)y, so by the
maximality of α0 , β′ = α0 . Thus (α0, β0) ∈ V , x β0 y and x (not α0)y.

Taking α = (=), β = (tr) and x 6= y, we deduce that V 6= ∅.

(3.2) Lemma. Let γ ∈ Γ• and α ∈≡ (X) be such that α ⊂ (≡γ). Then there exists α0 ∈≡ (X)

such that α ⊆ α0 and α0 is covered by (≡γ).

Proof. Let x, y ∈ X be such that d(x, y) = γ, so x(≡γ)y. By (2.1), x (not α)y. By (3.1) there
exists a virtual (α0, β0) ∈ V such that α ⊆ α0 ⊂ β0 ⊆ (≡γ), with x β0 y, x (not α0)y. Then
(≡γ) ⊆ β0 , so β0 = (≡γ) and α0 is covered by (≡γ).

If γ ∈ Γ• let PrV (γ) be the set of all virtuals (α,≡γ). By (3.2) PrV (γ) 6= ∅. We shall
write (α, γ) instead of (α,≡γ).

If γ 6= γ′ then PrV (γ) ∩ PrV (γ′) = ∅. The elements of PrV =
⋃
γ∈Γ•

PrV (γ) are called the

principal virtual points of X, or simply the principal virtuals of X.
In general PrV ⊂ V .
For each γ ∈ Γ• let V (γ) be the set of virtuals (α, β) ∈ V such that there exist x, y ∈ X

satisfying d(x, y) = γ, x β y, x (not α)y. Since the distance is surjective, it is equivalent to state
that if d(x, y) = γ then x β y and x (not α)y.

(3.3) Lemma. 1) For every γ ∈ Γ•, PrV (γ) ⊆ V (γ).
2) The mapping γ 7→ V (γ) is injective.

Proof. 1) Let (α, γ) ∈ PrV (γ), let x, y ∈ X be such that d(x, y) = γ. By (2.1) x (not α)y, so
(α, γ) ∈ V (γ).
2) Let V (γ) = V (γ′). Since PrV (γ) 6= ∅, let (α, γ) ∈ PrV (γ) ⊆ V (γ) = V (γ′). So there exist
x′, y′ ∈ X such that d(x′, y′) = γ′, d(x′, y′) ≤ γ, x′(notα)y′. So γ′ ≤ γ and similarly γ ≤ γ′,
hence γ = γ′.

If (α, β) and (α′, β′) are virtuals, we define (α, β) < (α′, β′) when β ⊆ α′. It is easy to verify
that the relation ≤ is an order on the set V of virtuals.

Let A(V ) be the set of antichains A of V , that is, the subsets A of V which are trivially
ordered. On the set A(V ) we consider the relation < defined as follows: if A,A′ ∈ A(V )

then A < A′ when for every (α, β) ∈ A there exists (α′, β′) ∈ A′ such that β ⊆ α′, that is

8



(α, β) < (α′, β′) in V . As easily seen, the relation ≤ is an order relation on A(V ). Since each
set {(α, β)}, where (α, β) ∈ V , is an antichain, then V ⊆ A(V ) (up to this identification) and
the order on V is extended to the order on A(V ).

We also note that if A,A′ ∈ A(V ) and A ⊆ A′ (as subsets of V ) then A ≤ A′.

(3.4) Lemma. 1) For every γ ∈ Γ• the sets PrV (γ) and V (γ) are antichains of V .
2) If 0 < γ < γ′ then V (γ) < V (γ′) and PrV (γ) < PrV (γ′).
3) If V (γ) < V (γ′) then γ′ 6≤ γ. If PrV (γ) < PrV (γ′) then γ < γ′.

Proof. 1) Let (α, β), (α′, β′) ∈ V (γ) and assume that (α, β) < (α′, β′), so β ⊆ α′. Let x, y ∈ X
be such that d(x, y) = γ, then x β y, x(not α)y, x β′ y and x(not α′)y, which is a contradiction.
So V (γ) is an antichain.

It is obvious that PrV (γ) is an antichain.
2) Let (α, β) ∈ V (γ); we show that there exists (α′, β′) ∈ V (γ′) such that (α, β) ≤ (α′, β′).

This implies that V (γ) ≤ V (γ′) and since γ 6= γ′ then by (3.3) V (γ) < V (γ′).
If (α, β) ∈ V (γ′) we take (α′, β′) = (α, β). Let (α, β) /∈ V (γ′). By assumption, there exist

x, y ∈ X such that d(x, y) = γ, x β y, x (not α)y.
Let x′, y′ ∈ X be such that d(x′, y′) = γ′. We have x′ (not α)y′, otherwise (≡γ) ⊂ (≡γ′) ⊆ α,

hence xα y, which is absurd. Since (α, β) /∈ V (γ′) then x′ (not β)y′. By (3.1), applied to (β, tr),
there exists (α′, β′) ∈ V such that (α, β) < (α′, β′), x′ β′ y′, x′ (not α′)y′, so (α′, β′) ∈ V (γ′).

Let (α, γ) ∈ PrV (γ). Since γ < γ′ by (3.2) there exists α′ ∈≡ (X) such that (≡γ) ⊆ α′ ⊂
≡γ′ and (α′, γ′) ∈ PrV (γ′), with (α, γ) < (α′, γ′).

3) Let V (γ) < V (γ′). If γ′ ≤ γ then V (γ′) ≤ V (γ) < V (γ′) which is impossible. So γ′ 6≤ γ.
It is clear that if PrV (γ) < PrV (γ′) then γ < γ′.

Now we define the skeleton of X.
For each v = (α, β) ∈ V let Ev = X/α.
Let x, y ∈ X be such that x β y but x (not α)y. Then [x]α 6= [y]α, so E(α,β) has at least two

elements.
The family EX = (Ev)v∈V is called the skeleton of (X, d,Γ). We often write E instead of EX .

Special case when Γ is totally ordered

(3.5) Lemma. If Γ is totally ordered, then ≡ (X) is totally ordered.
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Proof. Let α, β ∈≡ (X) with α 6⊆ β. Let x, y ∈ X be such that xα y but x (not β)y. Let
x′, y′ ∈ X be such that x′ β y′, then d(x, y) 6≤ d(x′, y′).

Hence d(x′, y′) < d(x, y), so x′ α y′ and this proves that β ⊆ α.

For every γ ∈ Γ• we define the binary relation (≡−γ ) as follows: x(≡−γ )y whenever d(x, y) < γ.

(3.6) Lemma. Let Γ be totally ordered. For every γ ∈ Γ•, (≡−γ ) ∈≡ (X) and (≡γ) covers
(≡−γ ).

Proof. We show that (≡−γ ) is a transitive relation. If x(≡−γ )y and y(≡−γ )z then d(x, y) < γ

and d(y, z) < γ. Hence d(x, z) ≤ max{d(x, y), d(y, z)} < γ, because Γ is totally ordered; thus
x(≡−γ )z. It is now obvious that (≡−γ ) is an equivalence relation which moreover is compatible
with the distance. If there exists α ∈≡ (X) such that ≡−γ⊂ α ⊂≡γ, let x, y ∈ X be such that
xα y but d(x, y) 6< γ, so d(x, y) ≥ γ. But α ⊂≡γ , so d(x, y) ≤ γ, thus d(x, y) = γ. By (2.1) x
(not α)y, which is a contradiction. This shows that ≡γ covers ≡−γ .

We shall write (γ−, γ) instead of (≡−γ , γ) or (≡−γ ,≡γ).

(3.7) Lemma. Let Γ be totally ordered. Then the sets PrV , V and Γ̃ = {(γ−, γ) | γ ∈ Γ•}
coincide.

Proof. We have Γ̃ ⊆ PrV ⊆ V and we show that if (α, β) ∈ V then there exists γ ∈ Γ• such
that (α, β) = (γ−, γ).

Let x, y ∈ X be such that x β y, x (not α)y and let d(x, y) = γ. It follows that (≡γ) ⊆ β.
We show that α ⊆ (≡−γ ). Indeed, let t, u ∈ X be such that t α u, if t (not ≡−γ )u then d(t, u) ≥
γ = d(x, y) hence xα y, which is a contradiction. From α ⊆ (≡−γ ) ⊂ (≡γ) ⊆ β and since α is
covered by β, it follows that (α, β) = (γ−, γ).

(C) The Immersion into a Hahn Product

Our purpose is to define a Hahn product H associated to the ultrametric space X and to
prove that there is an immersion from X into H.

§4. Construction of a Hahn Product

We shall construct a Hahn product which depends on the choice of a set
∑

as described
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below. For each equivalence relation β ∈≡ (X), let Sβ be a set of representatives of X/β. We
write Sγ instead of S≡γ .

The family
∑

= (Sβ)β∈≡(X) is said to be coherent when Sβ ⊆ Sβ′ for β′ ⊆ β.

(4.1) Lemma. For each well-ordering of the set X there exists a coherent family
∑

.

Proof. (See [4]):
Let {xi | i < ρ} be a well-ordering on X. For each β ∈≡ (X) we define Sβ . If C ∈ X/β

let λC = min{λ < ρ | xλ ∈ C} and let Sβ = {xλC | C ∈ X/β}, so Sβ is a set of representatives
of X/β. Let β, β′ ∈≡ (X) and β′ ⊆ β. If xλC ∈ Sβ , where C ∈ X/β, then there exists an
equivalence class C ′ ⊆ C. This implies that λC = λC′ , so xλC = xλC′ ∈ Sβ′ . Thus Sβ ⊆ Sβ′

proving that
∑

is coherent.

Henceforth we choose a coherent family
∑

.
For every β ∈≡ (X) and x ∈ X let sβ(x) be the unique element in Sβ such that x β sβ(x).
If x ∈ Sβ then sβ(x) = x. If x, x′ ∈ X and x β x′ then sβ(x) = sβ(x′). So for each D ∈ X/β

we define sβ(D) = sβ(x) for any x ∈ D. For each v = (α, β) ∈ V let Ωv =
{

[sβ(D)]
α
|

D ∈ X/β
}
⊆ Ev . For each v ∈ V let 0v be a new symbol such that 0v /∈ Ev\Ωv and let

Ev = (Ev\Ωv) ∪ {0v}. Let 0 = (0v)v∈V .
Now we define the Hahn product H of the family (Ev)v∈V with respect to 0. For each

h ∈
∏
v∈V

Ev let the support of h be defined by supp(h) = {v ∈ V | hv 6= 0v}.

Let H be the set of all h ∈
∏
v∈V

Ev such that supp(h) is a noetherian subset of V .

If h, h′ ∈ H and h 6= h′ the set D(h, h′) = {v ∈ V | hv 6= h′v} is non-empty and noetherian.
The set of maximal elements of D(h, h′) is an antichain of V .

Let dH : H ×H → A(V ) be defined as follows for any h, h′ ∈ H : dH(h, h) = ∅ (the empty
antichain), if h 6= h′ let dH(h, h′) = Max D(h, h′) ∈ A(V ). Often, we write d instead of dH .

We verify that d is an ultrametric distance. Clearly, it suffices to verify the property (d3).
Let d(h, h′) ≤ A and d(h′, h′′) ≤ A (where A ∈ A(V )). We show that d(h, h′′) ≤ A and it
suffices to consider the case where h, h′ and h′′ are distinct. Let v ∈ d(h, h′′), so either hv 6= h′v

or h′v 6= h′′v , say hv 6= h′v ; hence there exists v̄ ∈ d(h, h′) such that v ≤ v̄; again there exists
ṽ ∈ A such that v̄ ≤ ṽ. This shows that d(h, h′′) ≤ A.

The ultrametric space (H, dH ,A(V )) is called the Hahn product of (Ev)v∈V with respect to
0. It is also called the Hahn space associated toX (with respect to

∑
). We shall often write
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H instead of (H, dH ,A(V )).

(4.2) Proposition. (H, d,A(V )) is a solid and spherically complete ultrametric space. In
particular, the distance is surjective.

Proof. This proposition has been proved in [4].

§5. The Immersion Theorem

We shall define mappings λ : X → H and λ : Γ→ A(V ). For each v ∈ V and x ∈ X let

λ(x)v =

[x]α if x /∈ [sβ(x)]α

0v if x ∈ [sβ(x)]α

and λ(x) = (λ(x)v)v∈V ∈
∏
v∈V

Ev . We define λ : Γ → A(V ) as follows: λ(0) = ∅ and if γ ∈ Γ•

then λ(γ) = V (γ), so λ(γ) is an antichain of V (by (3.4)).
We are ready to prove the Immersion Theorem:

(5.1) Theorem.

1) λ(X) ⊆ H.
2) (λ, λ) is an immersion from X into H.

Proof. 1) We show that for every x ∈ X, λ(x) has noetherian support, so λ(x) ∈ H. We
assume the contrary, let v0 < v1 < v2 < . . . with vi = (αi, βi) ∈ V and assume that each vi is

in the support of λ(x). Let δ =
∞⋃
i=0

βi so δ ∈≡ (X); let t ∈ Sδ be such that x δ t. Then there

exists i ≥ 0 such that x βi t. Hence xαi+1 t because βi ⊆ αi+1 . From Sδ ⊆ Sβi+1 ⊆ Sβi then
t ∈ Sβi+1

, so t = sβi+1(t). Therefore [x]αi+1
= [t]αi+1

=
[
sβi+1

(t)
]
αi+1

=
[
sβi+1

(x)
]
αi+1

. This
means that λ(x)vi+1

= 0vi+1
which is a contradiction.

2) First we show that λ(d(x, y)) ≤ d(λ(x), λ(y)) for all x, y ∈ X. It is trivial if x = y, so we
assume that d(x, y) = γ > 0. Let v = (α, β) ∈ λ(γ) = V (γ), so x (not α)y and x β y. Hence
[x]α 6= [y]α and [x]β = [y]β , hence sβ(x) = sβ(y). This implies that λ(x)v 6= λ(y)v . Hence there
exists v′ ∈ d(λ(x), λ(y)) such that v ≤ v′; this implies the required relation for the antichains,
that is, λ(d(x, y)) ≤ d(λ(x), λ(y)).

Next we show that d(λ(x), λ(y)) ≤ λ(d(x, y)) for all x, y ∈ X. It is trivial if λ(x) = λ(y).
Now let λ(x) 6= λ(y) and let v = (α, β) ∈ V be maximal such that λ(x)v 6= λ(y)v .

12



i) If x (not β)y, since x(tr)y by (3.1) there exists v′ = (α′, β′) ∈ V such that β ⊆ α′, x
(not α′)y, x β′ y. So [x]β′ = [y]β′ , [x]α′ 6= [y]α′ , therefore λ(x)v′ 6= λ(y)v′ , with v < v′; this is a
contradiction.

ii) Hence x β y, and from λ(x)v 6= λ(y)v then [x]α 6= [y]α , so x (not α)y, hence d(x, y) = γ 6=
0 and v = (α, β) ∈ V (γ) = λ(γ). This proves that d(λ(x), λ(y)) ⊆ λ(d(x, y)) so d(λ(x), λ(y)) ≤
λ(d(x, y)). We conclude that λ(d(x, y)) = d(λ(x), λ(y)) for all x, y ∈ X.

It was seen in (3.3) and (3.4) that λ is an injective order preserving mapping. From the
relation λ(d(x, y)) = d(λ(x), λ(y)) it follows that λ is also injective.

This shows that (λ, λ) is an immersion form X into H.

As a corollary, we obtain:

(5.2) Corollary. Every ultrametric space (X, d,Γ) is a subspace of a solid and spherically
complete ultrametric space (X̂, d̂, Γ̂). Moreover, if Γ is totally ordered, then Γ̂ = Γ.

Proof. By (5.1) (λ, λ) is an immersion from (X, d,Γ) into (H, dH ,A(V )). By (1.6) there exists
(X̂, d̂, Γ̂), isomorphic to (H, dH ,A(V )) which is an extension of (X, d,Γ). By (4.2) (H, dH ,A(V ))

is solid and spherically complete, hence (X̂, d̂, Γ̂) has the same properties. If Γ is totally ordered,
then by (3.7) V is totally ordered and order isomorphic to Γ•. Hence A(V ) is order isomoprhic
to Γ, therefore Γ̂ = Γ.

(D) The Special Case of Ultrametric Groups and Vector Spaces

The results presented above for arbitrary ultrametric spaces may be phrased more specifi-
cally for ultrametric groups and vector spaces.

§6. Ultrametric Groups and Vector Spaces

We shall restrict our attention to abelian additive groups G. The ultrametric space (G, d,Γ)

is said to be an ultrametric group when the following condition is satisfied:

d(z + x, z + y) = d(x, y) for all x, y, z ∈ G.

As easily seen an ultrametric group with surjective distance is solid. There are numerous
examples of ultrametric groups, which may be found in §1.
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Let K be a commutative field, let (G, d,Γ) be an ultrametric abelian additive group and
assume that G is a K-vector space and d(qx, qy) = d(x, y) for all x, y ∈ G and q ∈ K\{0}.
This special type of ultrametric K-vector space is the only one which will be considered here.

If G is a torsion-free abelian additive group, then G is a subgroup of G∗ = Q⊗
Z
G which is

a Q-vector space. If (G, d,Γ) is an ultrametric group and d(nx, ny) = d(x, y) for all x, y ∈ G
and integers n > 0, then the mapping d∗ : G∗ ×G∗ → Γ defined by d∗

(
1
m
x, 1

n
y
)

= d(nx,my) is
well-defined and it is an ultrametric distance function extending d. Moreover (G∗, d∗,Γ) is an
ultrametric Q-vector space. We leave to the reader the verification of these assertions.

§7. The Skeleton of an Ultrametric Group

We describe the virtuals of (G, d,Γ) in terms of convex subgroups of G.
A subgroup C of G is said to be convex when the following property is satisfied. If g ∈ C,

h ∈ G and d(h, 0) ≤ d(g, 0) then h ∈ C.
The set C = C(G) of convex subgroups of G contains {0} and G. The intersection of any

family of convex subgroups of G is a convex subgroup. In particular, for every g ∈ G there
exists the smallest convex subgroup of G containing g. It is denoted by C(g) and called the
principal convex subgroup generated by g.

We say that the convex subgroup D covers the convex subgroup C, or that C is covered
by D when C ⊂ D and there does not exist any convex subgroup C ′ such that C ⊂ C ′ ⊂ D.

(7.1) Lemma. 1) If β ∈≡ (G) then [0]β is a convex subgroup of G. The mapping β 7→ [0]β is
an order isomorphism from ≡ (G) onto C(G).

2) If g ∈ G and d(g, 0) = γ then ≡γ corresponds to [0]≡γ = C(g).
3) If α, β ∈≡ (G) then β covers α if and only if [0]β covers [0]α .
4) If C,D ∈ C(G), C ⊂ D and g ∈ D\C, there exist C0, D0 ∈ C(G) such that C ⊆ C0 ⊂

D0 ⊆ D, D0 covers C0 , g ∈ D0\C0 .
5) If C ∈ C(G), g ∈ G and C ⊂ C(g) there exists C0 ∈ C(G) such that C ⊆ C0 ⊂ C(g)

and C(g) covers C0 .

Proof. The proof is left to the reader, who may also consult [5].

The virtuals (α, β) ∈ V (γ) where γ ∈ Γ• correspond to the pair (C,D) of convex subgroups
of G such that D covers C and there exists g ∈ D\C such that d(g, 0) = γ.
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(7.2) Lemma. Let β ∈≡ (G). Then [x]β = x + [0]β , [x]β + [y]β = [x + y]β for all x, y ∈ G.
With above operation G/β is an abelian additive group which coincides with G/[0]β .

Proof. The proof is left to the reader, who may consult [5].

Now we define the local skeleton of G. For every v = (α, β) ∈ V let E0
v = [0]β

/
[0]α , so E0

v

is an abelian additive group, which is a subgroup of G
/

[0]α . The family E0
G = (E0

v)v∈V is called
the local skeleton of G.

(7.3) Lemma. Let K be a field, let G be an ultrametric K-vector space.
1) Every convex subgroup of G is a K-subspace of G.
2) For every v = (α, β) ∈ V , [0]β and E0

v = [0]β
/

[0]α are K-vector spaces.

Proof. The proof is left to the reader, who may consult [5].

For each h ∈
∏
v∈V

E0
v let supp(h) = {v = (α, β) ∈ V | h(v) 6= [0]α} and let H0 =

{
h ∈∏

v∈V
E0
v | supp(h) is noetherian

}
.

We define d0 : H0 ×H0 → A(V ) as follows.
If h, g ∈ H0 let d0(h, h) = ∅ and if h 6= g let d0(h, g) = Max D0(h, g) where D0(h, g) =

{v ∈ V | h(v) 6= g(v)}.

(7.4) Lemma. If G is an ultrametric group, respectively an ultrametric K-vector space,
then (H0, d0,A(V )) is an ultrametric group, respectively an ultrametric K-vector space and
(H0, d0,A(V )) is solid and spherically complete.

Proof. See [4].

(H0, d0,A(V )) is called the local Hahn space associated to (G, d,Γ).

§8. The Immersion Theorem for Ultrametric K-Vector Spaces

Let G be an ultrametric K-vector space, let H0 be the local Hahn space associated to G.
We shall define an immersion (λ0, λ0) from G into H0, such that λ0 is a K-linear mapping.

We keep the notations of §5. For every β ∈≡ (G) we consider a system of representatives
Sβ of G/β such that sβ(0) = 0.

The following lemma is crucial in the proof of the Immersion Theorem (8.3). (This lemma
is used in our paper [5] and it goes back to Banaschewski [1]).
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(8.1) Lemma. There exists a coherent family of representatives
∑

= (Sβ)
β
∈≡ (G) satisfying

the following conditions:
a) Sβ is a K-subspace of G.
b) G = Sβ ⊕ [0]β .

Proof. For each subset M of G let 〈M〉 denote the K-vector space generated by M .
Let B = {xσ | σ < ρ} (where ρ is an ordinal number) be a basis of the K-vector space G.

For each β ∈≡ (G) let Rβ =
{
xσ ∈ B | xσ /∈ 〈[0]β ∪{xι | ι < σ}〉

}
and let Sβ = 〈Rβ〉. By (7.3),

[0]β is a K-subspace of G.

1o¯) We show that [0]β ∩ Sβ = {0}. We assume, on the contrary, that there exists x 6= 0

such that x ∈ [0]β ∩ Sβ . Thus x =
n∑
i=1

qi xσi with qi ∈ K, q1 6= 0 and xσi ∈ Rβ for all

i = 1, . . . , n. Moreover, we may assume that σ1, . . . , σn are distinct, σn = max{σ1, . . . , σn}.

Hence xσn = q−1
n x−q−1

n

n−1∑
i=1

xσi ∈ 〈[0]β∪{xι | ι < σn}〉, hence xσn /∈ Rβ which is a contradiction.

2o¯) We show that G = [0]β + Sβ . It suffices to show that xσ ∈ [0]β + Sβ for all σ < ρ. If
this is not true, then there exists σ < ρ minimal such that xσ /∈ [0]β + Sβ . So by definition
xσ ∈ Rβ . Hence xσ ∈ Sβ , and this is a contradiction. Thus for all σ < ρ, xσ ∈ [0]β + Sβ.

3o¯) We show that Sβ is a set of representatives of G/β, that is, for every C ∈ G/β there
exists a unique element s ∈ Sβ∩C, such that C = [s]β . Indeed, let c ∈ G be such that C = [0]β .
By (2o¯) there exist elements g ∈ [0]β and s ∈ Sβ such that c = g+ s, hence s = c− g ∈ c+ [0]β

and so [s]β = s+ [0]β = c+ [0]β = C.
If also C = [s′]β with s′ ∈ Sβ then s′ = s+g with g ∈ [0]β . Hence by (1o¯) s′−s ∈ Sβ∩ [0]β =

{0}, so s′ = s. This proves the assertion (3o¯).
4o¯) We show that

∑
= (Sβ)

β
is a coherent family. Let β, β′ ∈≡ (G) be such that β′ ⊆ β.

Then [0]β′ ⊆ [0]β and therefore Rβ = {xσ ∈ B | xσ /∈ 〈[0]β ∪ {xι | ι < σ}〉} ⊆ {xσ ∈ B | xσ /∈
〈[0]β′ ∪ {xι | ι < σ}〉} = Rβ′ , hence Sβ ⊆ Sβ′ . This shows that

∑
is coherent.

The proof is complete.

We deduce the following corollary: Let G, K be as above.

(8.2) Corollary. Let
∑

= (Sβ)
β
∈≡ (G) be a coherent family as in the preceding lemma.

For all x, y ∈ G and q ∈ K, sβ(x+ y) = sβ(x) + sβ(y) and sβ(qx) = qsβ(x).
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Proof. From sβ(x) β x it follows sβ(x)− x ∈ [0]β . Similarly, sβ(y)− y ∈ [0]β and sβ(x+ y)−
(x + y) ∈ [0]β . Since [0]β and Sβ are subgroups of G we have sβ(x + y) − sβ(x) − sβ(y) ∈
[0]β ∩ Sβ = {0}. So sβ(x+ y) = sβ(x) + sβ(y). The proof that sβ(qx) = qsβ(x) is similar.

If v = (α, β) ∈ V and x ∈ G we define λ0xv = [x − sβ(x)]α ∈ [0]β
/

[0]α = E0
v . We define

λ0x = (λ0xv)v ∈ V ∈
∏
v∈V

E0
v .

Let λ0 = ∅ (the empty antichain) and if γ > 0 let λ0γ = V (γ).

(8.3) Theorem. With the above assumptions, λ0 is a K-linear mapping and (λ0, λ0) is an
immersion from G into H0.

Proof. We show that for every x ∈ G supp(λ0x) ⊆ supp(λx).
Indeed, let v = (α, β) be such that λ0xv 6= [0]α . By definition x (not α)sβ(x) , hence

λxv 6= 0v . By (5.1) supp(λx) is noetherian, hence supp(λ0x) is noetherian, so λ0x ∈ H0.
We show that λ0 is a K-linear mapping. Let v = (α, β) ∈ V and x, y ∈ G. We have λ0(x+

y)v = [(x+y)−sβ(x+y)]α = [(x−sβ(x))+(y−sβ(x)]α = [x−sβ(x)]α+[y−sβ(y)]α = λ0x+λ0y.
Similarly, if q ∈ K• then λ0(qx)v = [qx − sβ(qx)]α = [qx − qsβ(x)]α = q[x − sβx]α = q(λ0xv).
This shows that λ0 is K-linear.

Now we show that if x, y ∈ G and v ∈ V , if λ0xv 6= λ0yv then λxv 6= λyv .
Indeed, if x β y then sβ(x) = sβ(y). From λ0xv 6= λ0yv , [x − sβ(x)]α 6= [y − sβ(y)]α , so

[x]α 6= [y]α , hence λxv 6= λyv .
If x (not β)y then x (not α)y, so [x]α 6= [y]α . If xα sβ(x) and y α sβ(y) then λ0xv = λ0yv =

[0]α , which is contrary to the assumption. So λxv and λyv are not both equal to 0v ; from
[x]α 6= [y]α then λxv 6= λyv .

We show that d0(λ0x, λ0y) ≤ λ0(d(x, y)). We may assume λ0x 6= λ0y. Let v0 ∈ d0(λ0x, λ0y) ⊆
D(λx, λy) = {v ∈ V | λxv 6= λyv}, so there exists v ∈ d(λx, λy) such that v0 ≤ v. This shows,
by applying (5.1) that d0(λ0x, λ0y) ≤ d(λx, λy) = λ(d(x, y)) = V (γ) = λ0(d(x, y)).

Now we show that λ0(d(x, y)) ≤ d0(λ0x, λ0y). We may assume x 6= y, let d(x, y) = γ, so
λ0(d(x, y)) = V (γ).

Let v = (α, β) ∈ V (γ), so x β y and x (not α)y. So sβ(x) = sβ(y) , hence λ0xv = [x −
sβ(x)]α 6= [y − sβ(y)]α = λ0yv . Hence there exists v′ ∈ d0(λ0x, λ0y) such that v ≤ v′, thus
proving that λ0(d(x, y)) ≤ d0(λ0x, λ0y). We deduce that d0(λ0x, λ0y) = λ0(d(x, y)).

It was shown in (3.3) that λ0 is injective, then λ0 is also injective. The proof is complete.
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>From the theorem we deduce:

(8.4) Corollary. Every ultrametric K-vector space (G, d,Γ) is a subspace of a solid and
spherically complete ultrametric K-vector space (Ĝ, d̂, Γ̂). Moreover, if Γ is totally ordered
then Γ̂ = Γ.

Proof. By (8.3) (λ0, λ0) is an immersion of (G, d,Γ) into theK-vector space (H0, d0,A(V )) and
λ0 is a K-linear mapping. By (7.4) H0 is solid and spherically complete. By (1.6) there exists
(Ĝ, d̂, Γ̂) which is an ultrametric space isomorphic to (H0, d0,A(V )). Since H0 is an K-vector
space, it is straightforward to endow Ĝ with the structure of a K-vector space, making Ĝ into
an ultrametric K-vector space isomorphic to H0 and such that G is a K-subspace of Ĝ. Again,
Ĝ is solid and spherically complete, because H0 has these properties.

Finally, if Γ is totally ordered, with natural identification, Γ = V = A(V ) = Γ̂.

NOTES

The special case of the Immersion Theorem when Γ is totally ordered was proved by Priess-
Crampe and Ribenboim [3]. The notion of a virtual point and the skeleton, as defined here,
were inspired by the work of Conrad on groups with valuations [1]. The definition of virtual and
skeleton used here allowed to prove the much desired Immersion Theorem, without assuming
that the set of distances is totally ordered.

We also obtain the corresponding immersion theorem for ultrametric K-vector spaces (with
K having the trivial distance) which was proved in [5] under the assumption that the set of
distances is totally ordered.
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