On Brauer p-dimensions and index-exponent relations over finitely-generated field extensions^{*}

I.D. Chipchakov

Institute of Mathematics and Informatics Bulgarian Academy of Sciences Acad. G. Bonchev Str., bl. 8 1113, Sofia, Bulgaria; email: chipchak@math.bas.bg

August 1, 2014

Abstract

Let E be a field of absolute Brauer dimension $\operatorname{abrd}(E)$, and F/E a transcendental finitely-generated extension. This paper shows that the Brauer dimension $\operatorname{Brd}(F)$ is infinite, if $\operatorname{abrd}(E) = \infty$. When the absolute Brauer p-dimension $\operatorname{abrd}_p(E)$ is infinite, for some prime number p, it proves that for each pair (n,m) of integers with $n \ge m > 0$, there is a central division F-algebra of Schur index p^n and exponent p^m . Lower bounds on the Brauer p-dimension $\operatorname{Brd}_p(F)$ are obtained in some important special cases where $\operatorname{abrd}_p(E) < \infty$. These results solve negatively a problem posed by Auel, Brussel, Garibaldi and Vishne in Transform. Groups 16, 219-264 (2011).

Keywords: Brauer group, Schur index, exponent, Brauer/absolute Brauer *p*-dimension, finitely-generated extension, valued field *MSC (2010):* 16K20, 16K50 (primary); 12F20, 12J10, 16K40 (secondary).

1 Introduction

Let E be a field, s(E) the class of finite-dimensional associative central simple E-algebras, d(E) the subclass of division algebras $D \in s(E)$, and for each $A \in s(E)$, let [A] be the equivalence class of A in the Brauer group Br(E). It is known that Br(E) is an abelian torsion group (cf. [35], Sect. 14.4), whence it decomposes into the direct sum of its p-components $Br(E)_p$, where p runs across the set \mathbb{P} of prime numbers. By Wedderburn's structure theorem (see, e.g., [35], Sect. 3.5), each $A \in s(E)$ is isomorphic to the full matrix ring $M_n(D_A)$ of order n over some $D_A \in d(E)$; the order n is uniquely determined by A and so is D_A , up-to an E-isomorphism. This implies the dimension [A: E] is a square of a positive integer deg(A). The main numerical invariants of A are the degree

^{*}Throughout this paper, we write for brevity "FG-extension(s)" instead of "finitely-generated [field] extension(s)".

deg(A), the Schur index ind(A) = deg(D_A), and the exponent exp(A), i.e. the order of [A] in Br(E). The following statements describe basic divisibility relations between ind(A) and exp(A), and give an idea of their behaviour under the scalar extension map Br(E) \rightarrow Br(R), in case R/E is a field extension of finite degree [R: E] (see, e.g., [35], Sects. 13.4, 14.4 and 15.2, and [5], Lemma 3.5):

(1.1) (a) $(\operatorname{ind}(A), \exp(A))$ is a Brauer pair, i.e. $\exp(A)$ divides $\operatorname{ind}(A)$ and is divisible by every $p \in \mathbb{P}$ dividing $\operatorname{ind}(A)$.

(b) $\operatorname{ind}(A \otimes_E B)$ is divisible by l.c.m. $\operatorname{ind}(A), \operatorname{ind}(B)$ /g.c.d. $\operatorname{ind}(A), \operatorname{ind}(B)$ } and divides $\operatorname{ind}(A)\operatorname{ind}(B)$, for each $B \in s(E)$; in particular, if $A, B \in d(E)$ and g.c.d. $\operatorname{ind}(A), \operatorname{ind}(B)$ = 1, then the tensor product $A \otimes_E B$ lies in d(E).

(c) ind(A), ind($A \otimes_E R$), exp(A) and exp($A \otimes_E R$) divide ind($A \otimes_E R$)[R: E], ind(A), exp($A \otimes_E R$)[R: E] and exp(A), respectively.

Statements (1.1) (a), (b) imply Brauer's Primary Tensor Product Decomposition Theorem, for any $\Delta \in d(E)$ (cf. [35], Sect. 14.4), and (1.1) (a) fully describes general restrictions on index-exponent relations, in the following sense:

(1.2) Given a Brauer pair $(m', m) \in \mathbb{N}^2$, there is a field F with $(\operatorname{ind}(D), \exp(D)) = (m', m)$, for some $D \in d(F)$ (Brauer, see [35], Sect. 19.6). One may take as F any rational (i.e. purely transcendental) extension in infinitely many variables over any fixed field F_0 (see also Corollary 4.4 and Remark 4.5).

As in [2], Sect. 4, we say that a field E is of finite Brauer *p*-dimension $\operatorname{Brd}_p(E) = n$, for a fixed $p \in \mathbb{P}$, if *n* is the least integer ≥ 0 , for which $\operatorname{ind}(D) \leq \exp(D)^n$ whenever $D \in d(E)$ and $[D] \in \operatorname{Br}(E)_p$. If no such *n* exists, we set $\operatorname{Brd}_p(E) = \infty$. The absolute Brauer *p*-dimension of *E* is defined as the supremum $\operatorname{abrd}_p(E) = \sup\{\operatorname{Brd}_p(R): R \in \operatorname{Fe}(E)\}$, where $\operatorname{Fe}(E)$ is the set of finite extensions of *E* in a separable closure E_{sep} . Clearly, $\operatorname{Brd}_p(E) \leq \operatorname{abrd}_p(E), p \in \mathbb{P}$. Note that if *E* is a virtually perfect field, i.e. $\operatorname{char}(E) = 0$ or $\operatorname{char}(E) = q > 0$ and *E* is a finite extension of its subfield $E^q = \{e^q: e \in E\}$, then:

(1.3) $\operatorname{Brd}_p(E') \leq \operatorname{abrd}_p(E)$, for all finite extensions E'/E and $p \in \mathbb{P}$.

Since in the case of char(E) = q > 0, $[E': E'^q] = [E: E^q]$ (cf. [24], Ch. VII, Sect. 7), (1.3) can be deduced from (1.1) (c) and Albert's theory of q-algebras [1], Ch. VII, Theorem 28 (see also Lemma 4.1).

It is known that $\operatorname{Brd}_p(E) = \operatorname{abrd}_p(E) = 1$, for all $p \in \mathbb{P}$, if E is a global or local field (cf. [36], (31.4) and (32.19)), or the function field of an algebraic surface defined over an algebraically closed field E_0 [20], [25] (see also Remark 5.8). As shown in [28], we have $\operatorname{abrd}_p(E) < p^{n-1}$, $p \in \mathbb{P}$, provided that E is the function field of an n-dimensional algebraic variety defined over an algebraically closed field E_0 . Similarly, $\operatorname{abrd}_p(E) < p^n$, $p \in \mathbb{P}$, if E_0 is a finite field, the maximal unramified extension of a local field, or a perfect pseudo algebraically closed (PAC) field (concerning the C_1 -type of E_0 , used in [28] for proving these inequalities, see [23] and [22], [16], Theorem 21.3.6, respectively). The suprema $\operatorname{Brd}(E) = \sup\{\operatorname{Brd}_p(E): p \in \mathbb{P}\}$ and $\operatorname{abrd}(E) = \sup\{\operatorname{Brd}(R): R \in \operatorname{Fe}(E)\}$ are called a Brauer dimension and an absolute Brauer dimension of E, respectively. In view of (1.1), the definition of $\operatorname{Brd}(E)$ is the same as the one given in [2], Sect. 4. It has recently been proved [17], [34] (see also [9], Propositions 6.1 and 7.1), that $\operatorname{abrd}(K_m) < \infty$, provided $m \in \mathbb{N}$ and (K_m, v_m) is an m-dimensional local field, in the sense of [15], with a finite m-th residue field \widehat{K}_m . The present research is devoted to the study of index-exponent relations over transcendental FG-extensions F of a field E and their dependence on $\operatorname{abrd}_p(E)$, $p \in \mathbb{P}$. It is motivated mainly by two questions concerning the dependence of $\operatorname{Brd}(F)$ upon $\operatorname{Brd}(E)$, stated as open problems in Section 4 of the survey [2].

2 The main results

While the study of index-exponent relations makes interest in its own right, it is worth noting that fields E with $\operatorname{abrd}_p(E) < \infty$, for all $p \in \mathbb{P}$, are singled out by Galois cohomology (see [21] and [8], Remark 4.2, with further references there), and in the virtually perfect case, by the following result (see (1.3), [4] and [5]):

(2.1) Every locally finite dimensional associative central division *E*-algebra R possesses an *E*-subalgebra \tilde{R} with the following properties:

(a) \hat{R} decomposes into a tensor product $\otimes_{p \in \mathbb{P}} R_p$, where $\otimes = \otimes_E$, $R_p \in d(E)$ and $[R_p] \in Br(E)_p$, for each $p \in \mathbb{P}$;

(b) Finite-dimensional E-subalgebras of R are embeddable in \overline{R} ;

(c) \overline{R} is isomorphic to R, if the dimension [R: E] is countably infinite.

It would be of definite interest to know whether function fields of algebraic varieties over a global, local or algebraically closed field are of finite absolute Brauer dimensions. This draws our attention to the following open question:

(2.2) Is the class of fields E of finite absolute Brauer *p*-dimensions, for a fixed $p \in \mathbb{P}, p \neq \operatorname{char}(E)$, closed under the formation of FG-extensions?

The main result of this paper shows, for a transcendental FG-extension F/E, the strong influence of p-dimensions $\operatorname{abrd}_p(E)$ on $\operatorname{Brd}_p(F)$, and on indexexponent relations over F, as follows:

Theorem 2.1. Let E be a field, $p \in \mathbb{P}$ and F/E an FG-extension of transcendency degree $\operatorname{trd}(F/E) = \kappa \geq 1$. Then:

(a) $\operatorname{Brd}_p(F) \ge \operatorname{abrd}_p(E) + \kappa - 1$, if $\operatorname{abrd}_p(E) < \infty$ and F/E is rational;

(b) If $\operatorname{abrd}_p(E) = \infty$, then $\operatorname{Brd}_p(F) = \infty$ and for each $n, m \in \mathbb{N}$ with $n \ge m > 0$, there exists $D_{n,m} \in d(F)$ with $\operatorname{ind}(D_{n,m}) = p^n$ and $\exp(D_{n,m}) = p^m$;

(c) $Brd_p(F) = \infty$, provided p = char(E) and $[E: E^p] = \infty$; if char(E) = pand $[E: E^p] = p^{\nu} < \infty$, then $\nu + \kappa - 1 \leq Brd_p(F) \leq abrd_p(F) \leq \nu + \kappa$.

It is known (cf. [24], Ch. X) that each FG-extension F of a field E possesses a subfield F_0 that is rational over E with $trd(F_0/E) = trd(F/E)$. This ensures that $[F: F_0] < \infty$, so (1.1) and Theorem 2.1 imply the following:

(2.3) If (2.2) has an affirmative answer, for some $p \in \mathbb{P}$, $p \neq \operatorname{char}(E)$, and each FG-extension F/E with $\operatorname{trd}(F/E) = \kappa \geq 1$, then there exists $c_{\kappa}(p) \in \mathbb{N}$, depending on E, such that $\operatorname{Brd}_p(\Phi) \leq c_{\kappa}(p)$ whenever Φ/E is an FG-extension and $\operatorname{trd}(\Phi/E) < \kappa$. For example, this applies to $c_k(p) = \operatorname{Brd}_p(E_{\kappa})$, where E_{κ}/E is a rational FG-extension with $\operatorname{trd}(E_{\kappa}/E) = \kappa$.

The application of Theorem 2.1 is facilitated by the following result of [8] (see Example 6.2 below, for an alternative proof in characteristic zero):

Proposition 2.2. For each $q \in \mathbb{P} \cup \{0\}$ and $k \in \mathbb{N}$, there exists a field $E_{q,k}$ with $char(E_{q,k}) = q$, $Brd(E_{q,k}) = k$ and $abrd_p(E_{q,k}) = \infty$, for all $p \in \mathbb{P} \setminus P_q$, where $P_0 = \{2\}$ and $P_q = \{p \in \mathbb{P}: p \mid q(q-1)\}, q \in \mathbb{P}$. Moreover, if q > 0, then $E_{q,k}$ can be chosen so that $[E_{q,k}: E_{q,k}^q] = \infty$.

Theorem 2.1, Proposition 2.2 and statement (1.1) (b) imply the following:

(2.4) There exist fields E_k , $k \in \mathbb{N}$, such that $\operatorname{char}(E_k) = 2$, $\operatorname{Brd}(E_k) = k$ and all Brauer pairs $(m', n') \in \mathbb{N}^2$ are index-exponent pairs over any transcendental FG-extension of E_k .

It is not known whether (2.4) holds in any characteristic $q \neq 2$. This is closely related to the following open problem:

(2.5) Find whether there exists a field E containing a primitive p-th root of unity, for a given $p \in \mathbb{P}$, such that $\operatorname{Brd}_p(E) < \operatorname{abrd}_p(E) = \infty$.

Statement (1.1) (b), Theorem 2.1 and Proposition 2.2 imply the validity of (2.4) in zero characteristic, for Brauer pairs of odd positive integers. When q > 2, they show that if $[E_{q,k}: E_{q,k}^q] = \infty$, then Brauer pairs $(m', m) \in \mathbb{N}^2$ relatively prime to q - 1 are index-exponent pairs over every transcendental FG-extension of $E_{q,k}$. This solves in the negative [2], Problem 4.4, proving (in the strongest presently known form) that the class of fields of finite Brauer dimensions is not closed under the formation of FG-extensions.

Theorem 2.1 (a) makes it easy to prove that the solution to [2], Problem 4.5, on the existence of a "good" definition of a dimension $\dim(E) < \infty$, for some fields E, is negative whenever $\operatorname{abrd}(E) = \infty$ (see Corollary 5.4). It implies that if Problem 4.5 of [2] is solved affirmatively, for all FG-extensions F/E, then each F satisfies, for all $p \in \mathbb{P}$, the following stronger inequalities than those conjectured by (2.3) (see also Remark 5.5 and [2], Sect. 4):

(2.6) $\operatorname{Brd}(F) < \dim(F)$, $\operatorname{abrd}(F) \leq \dim(F)$ and $\operatorname{abrd}(F) \leq \operatorname{Brd}(E_{t+1}) \leq \operatorname{abrd}(E) + t + c(E)$, for some integer $c(E) \leq \dim(E) - \operatorname{abrd}(E)$, where $t = \operatorname{trd}(F/E)$, E_{t+1}/E is a rational extension and $\operatorname{trd}(E_{t+1}/E) = t + 1$.

The proof of Theorem 2.1 is based on Merkur'ev's theorem about central division algebras of prime exponent [30], Sect. 4, Theorem 2, and on a characterization of fields of finite absolute Brauer *p*-dimensions generalizing Albert's theorem [1], Ch. XI, Theorem 3. It strongly relies on results of valuation theory, like theorems of Grunwald-Hasse-Wang type, Morandi's theorem on tensor products of valued division algebras [32], Theorem 1, lifting theorems over Henselian (valued) fields and Ostrowski's theorem. As shown in [8], Sect. 6, the flexibility of this approach enables one to obtain the following results:

(2.7) (a) There exists a field E_1 with $\operatorname{abrd}(E_1) = \infty$, $\operatorname{abrd}_p(E_1) < \infty$, $p \in \mathbb{P}$, and $\operatorname{Brd}(L_1) < \infty$, for every finite extension L_1/E_1 ;

(b) For any integer $n \geq 2$, there is a Galois extension L_n/E_n , such that $[L_n: E_n] = n$, $\operatorname{Brd}_p(L_n) = \infty$, for all $p \in \mathbb{P}$, $p \equiv 1 \pmod{n}$, and $\operatorname{Brd}(M_n) < \infty$, provided that M_n is an extension of E in $L_{n, \text{sep}}$ not including L_n .

Our basic notation and terminology are standard, as used in [6]. For any field K with a Krull valuation v, unless stated otherwise, we denote by $O_v(K)$, \hat{K} and v(K) the valuation ring, the residue field and the value group of (K, v),

respectively; v(K) is supposed to be an additively written totally ordered abelian group. As usual, \mathbb{Z} stands for the additive group of integers, \mathbb{Z}_p , $p \in \mathbb{P}$, are the additive groups of *p*-adic integers, and [r] is the integral part of any real number $r \geq 0$. We write $I(\Lambda'/\Lambda)$ for the set of intermediate fields of a field extension Λ'/Λ , and $\operatorname{Br}(\Lambda'/\Lambda)$ for the relative Brauer group of Λ'/Λ . By a Λ -valuation of Λ' , we mean a Krull valuation v with $v(\lambda) = 0$, for all $\lambda \in \Lambda^*$. Given a field Eand $p \in \mathbb{P}$, E(p) denotes the maximal *p*-extension of E in E_{sep} , and $r_p(E)$ the rank of the Galois group $\mathcal{G}(E(p)/E)$ as a pro-*p*-group $(r_p(E) = 0, \text{ if } E(p) = E)$. Brauer groups are considered to be additively written, Galois groups are viewed as profinite with respect to the Krull topology, and by a homomorphism of profinite groups, we mean a continuous one. We refer the reader to [14], [19], [24], [35] and [40], for any missing definitions concerning valuation theory, field extensions, simple algebras, Brauer groups and Galois cohomology.

The rest of the paper proceeds as follows: Section 3 includes preliminaries used in the sequel. Theorem 2.1 is proved in Sections 4 and 5. In Section 6 we show that the answer to (2.2) will be affirmative, if this is the case in zero characteristic.

3 Preliminaries on valuation theory

The results of this Section are known and will often be used without an explicit reference. We begin with a lemma essentially due to Saltman [37].

Lemma 3.1. Let (K, v) be a height 1 valued field, K_v a Henselization of K in K_{sep} relative to v, and $\Delta_v \in d(K_v)$ an algebra of exponent $p \in \mathbb{P}$. Then there exists $\Delta \in d(K)$ with $\exp(\Delta) = p$ and $[\Delta \otimes_K K_v] = [\Delta_v]$.

Proof. By [30], Sect. 4, Theorem 2, Δ_v is Brauer equivalent to a tensor product of degree p algebras from $d(K_v)$, so one may consider only the case of $\deg(\Delta_v) = p$. Then, by Saltman's theorem (cf. [37]), there exists $\Delta \in d(K)$, such that $\deg(\Delta) = p$ and $\Delta \otimes_K K_v$ is K_v -isomorphic to Δ_v , which proves Lemma 3.1. \Box

In what follows, we shall use the fact that the Henselization K_v of a field K with a valuation v of height 1 is separably closed in the completion of K relative to the topology induced by v (cf. [14], Theorem 15.3.5 and Sect. 18.3). For example, our next lemma is a consequence of Galois theory, this fact and Lorenz-Roquette's valuation-theoretic generalization of Grunwald-Wang's theorem (cf. [24], Ch. VIII, Theorem 4, and [27], page 176 and Theorems 1 and 2).

Lemma 3.2. Let F be a field, $S = \{v_1, \ldots, v_s\}$ a finite set of non-equivalent height 1 valuations of F, and for each index j, let F_{v_j} be a Henselization of K in K_{sep} relative to v_j , and L_j/F_{v_j} a cyclic field extension of degree p^{μ_j} , for some $p \in P$ and $\mu_j \in \mathbb{N}$. Put $\mu = \max\{\mu_1, \ldots, \mu_s\}$, and in the case of p = 2and char(F) = 0, suppose that the extension $F(\delta_{\mu})/F$ is cyclic, where $\delta_{\mu} \in F_{sep}$ is a primitive 2^{μ} -th root of unity. Then there is a cyclic field extension L/Fof degree p^{μ} , whose Henselization $L_{v'_j}$ is F_{v_j} -isomorphic to L_j , where v'_j is a valuation of L extending v_j , for $j = 1, \ldots, s$. Assume that $K = K_v$, or equivalently, that (K, v) is a Henselian field, i.e. v is a Krull valuation on K, which extends uniquely, up-to an equivalence, to a valuation v_L on each algebraic extension L/K. Put $v(L) = v_L(L)$ and denote by \hat{L} the residue field of (L, v_L) . It is known that \hat{L}/\hat{K} is an algebraic extension and v(K) is a subgroup of v(L). When [L: K] is finite, Ostrowski's theorem states the following (cf. [14], Theorem 17.2.1):

(3.1) $[\hat{L}:\hat{K}]e(L/K)$ divides [L:K] and $[L:K][\hat{L}:\hat{K}]^{-1}e(L/K)^{-1}$ is not divisible by any $p \in \mathbb{P}$ different from char (\hat{K}) , e(L/K) being the index of v(K) in v(L); in particular, if char $(\hat{K}) \dagger [L:K]$, then $[L:K] = [\hat{L}:\hat{K}]e(L/K)$.

Statement (3.1) and the Henselity of v imply the following:

(3.2) The quotient groups v(K)/pv(K) and v(L)/pv(L) are isomorphic, if $p \in \mathbb{P}$ and L/K is a finite extension. When $\operatorname{char}(\widehat{K}) \dagger [L:K]$, the natural embedding of K into L induces canonically an isomorphism $v(K)/pv(K) \cong v(L)/pv(L)$.

A finite extension R/K is said to be defectless, if $[R: K] = [\widehat{R}: \widehat{K}]e(R/K)$. It is called inertial, if $[R: K] = [\widehat{R}: \widehat{K}]$ and \widehat{R} is separable over \widehat{K} . We say that R/K is totally ramified, if [R: K] = e(R/K); R/K is called tamely ramified, if \widehat{R}/\widehat{K} is separable and char $(\widehat{K}) \dagger e(R/K)$. The Henselity of v ensures that the compositum $K_{\rm ur}$ of inertial extensions of K in $K_{\rm sep}$ has the following properties:

(3.3) (a) $v(K_{ur}) = v(K)$ and finite extensions of K in K_{ur} are inertial;

(b) $K_{\rm ur}/K$ is a Galois extension, $\widehat{K}_{\rm ur} \cong \widehat{K}_{\rm sep}$ over \widehat{K} , $\mathcal{G}(K_{\rm ur}/K) \cong \mathcal{G}_{\widehat{K}}$, and the natural mapping of $I(K_{\rm ur}/K)$ into $I(\widehat{K}_{\rm sep}/\widehat{K})$ is bijective.

Recall that the compositum $K_{\rm tr}$ of tamely ramified extensions of K in $K_{\rm sep}$ is a Galois extension of K with $v(K_{\rm tr}) = pv(K_{\rm tr})$, for every $p \in \mathbb{P}$ not equal to $\operatorname{char}(\widehat{K})$. It is therefore clear from (3.1) that if $K_{\rm tr} \neq K_{\rm sep}$, then $\operatorname{char}(\widehat{K}) = q \neq$ 0 and $\mathcal{G}_{K_{\rm tr}}$ is a pro-q-group. When this holds, it follows from (3.3) and Galois cohomology (cf. [40], Ch. II, 2.2) that $\operatorname{cd}_q(\mathcal{G}(K_{\rm tr}/K)) \leq 1$. Hence, by [40], Ch. I, Proposition 16, there is a closed subgroup $\mathcal{H} \leq \mathcal{G}_K$, such that $\mathcal{G}_{K_{\rm tr}}\mathcal{H} = \mathcal{G}_K$, $\mathcal{G}_{K_{\rm tr}} \cap \mathcal{H} = \{1\}$ and $\mathcal{H} \cong \mathcal{G}(K_{\rm tr}/K)$. In view of Galois theory and the Mel'nikov-Tavgen' theorem [29], these results imply in the case of $\operatorname{char}(\widehat{K}) = q > 0$ the existence of a field $K' \in I(K_{\rm sep}/K)$ satisfying the following conditions:

(3.4) $K' \cap K_{\text{tr}} = K$, $K'K_{\text{tr}} = K_{\text{sep}}$ and $K_{\text{sep}} \cong K_{\text{tr}} \otimes_K K'$ over K; the field \widehat{K}' is a perfect closure of \widehat{K} , finite extensions of K in K' are of q-primary degrees, $K_{\text{sep}} = K'_{\text{tr}}, v(K') = qv(K')$, and the natural embedding of K into K' induces isomorphisms $v(K)/pv(K) \cong v(K')/pv(K'), p \in \mathbb{P} \setminus \{q\}$.

Assume as above that (K, v) is Henselian. Then each $\Delta \in d(K)$ has a unique, up-to an equivalence, valuation v_{Δ} extending v so that the value group $v(\Delta)$ of (Δ, v_{Δ}) is totally ordered and abelian (cf. [39], Ch. 2, Sect. 7). It is known that v(K) is a subgroup of $v(\Delta)$ of index $e(\Delta/K) \leq [\Delta: K]$, and the residue division ring $\widehat{\Delta}$ of (Δ, v_{Δ}) is a \widehat{K} -algebra. Moreover, by the Ostrowski-Draxl theorem [11], $[\Delta: K]$ is divisible by $e(\Delta/K)[\widehat{\Delta}: \widehat{K}]$, and in case char $(\widehat{K})\dagger[\Delta: K]$, $[\Delta: K] = e(\Delta/K)[\widehat{\Delta}: \widehat{K}]$. An algebra $D \in d(K)$ is called inertial, if [D: K] = $[\widehat{D}: \widehat{K}]$ and $\widehat{D} \in d(\widehat{K})$. Similarly to inertial extensions, the defined algebras have a lifting property described by the following result (see [19], Theorem 2.8): (3.5) (a) Each $\widetilde{D} \in d(\widehat{K})$ has an inertial lift over K, i.e. $\widetilde{D} = \widehat{D}$, for some $D \in d(K)$ inertial over K, that is uniquely determined by \widetilde{D} , up-to a K-isomorphism.

(b) The set $\operatorname{IBr}(K) = \{[I] \in \operatorname{Br}(K): I \in d(K) \text{ is inertial}\}\$ is a subgroup of $\operatorname{Br}(K)$; the canonical mapping $\operatorname{IBr}(K) \to \operatorname{Br}(\widehat{K})$ is an isomorphism.

4 Proof of Theorem 2.1 (a) and (c)

The role of Lemma 3.1 in the study of Brauer *p*-dimensions of FG-extensions of a field *E* is connected with the following result of [8], which characterizes the condition $\operatorname{abrd}_p(E) \leq \mu$, for a given $\mu \in \mathbb{N}$. When *E* is virtually perfect, by (1.3), this result is in fact equivalent to [34], Lemma 1.1, and in case $\mu = 1$, it restates Theorem 3 of [1], Ch. XI.

Lemma 4.1. Let E be a field, $p \in \mathbb{P}$ and $\mu \in \mathbb{N}$. Then $\operatorname{abrd}_p(E) \leq \mu$ if and only if, for each $E' \in \operatorname{Fe}(E)$, $\operatorname{ind}(\Delta) \leq p^{\mu}$ whenever $\Delta \in d(E')$ and $\exp(\Delta) = p$.

Let now F/E be a transcendental FG-extension and $F_0 \in I(F/E)$ a rational extension of E with $\operatorname{trd}(F_0/E) = \operatorname{trd}(F/E) = t$. Clearly, an ordering on a fixed transcendency basis of F_0/E gives rise to a height t E-valuation v_0 of F_0 with $v_0(F_0) = \mathbb{Z}^t$ and $\widehat{F}_0 = E$. Considering any prolongation of v_0 on F, and taking into account that $[F: F_0] < \infty$, one obtains the following:

(4.1) F has an E-valuation v of height t, such that $v(F) \cong \mathbb{Z}^t$ and \widehat{F} is a finite extension of E; in particular, v(F)/pv(F) is a group of order p^t , for every $p \in \mathbb{P}$.

When $\operatorname{char}(E) = p$, (4.1) implies $[\widehat{F}:\widehat{F}^p] = [E:E^p]$, so the former assertion of Theorem 2.1 (c) can be deduced from the following lemma.

Lemma 4.2. Let (K, v) be a valued field with $\operatorname{char}(K) = q > 0$ and $v(K) \neq qv(K)$, and let $\tau(q)$ be the dimension of v(K)/qv(K) as a vector space over the field \mathbb{F}_q with q elements. Then:

(a) For each $\pi \in K^*$ with $v(\pi) \notin qv(K)$, there are degree q extensions L_m of K in K(q), $m \in \mathbb{N}$, such that the compositum $M_m = L_1 \dots L_m$ has a unique valuation v_m extending v, up-to an equivalence, $(M_m, v_m)/(K, v)$ is totally ramified, $[M_m: K] = q^m$ and $v(\pi) \in q^m v_m(M_m)$, for each m;

(b) Given an integer $n \geq 2$, there exists $T_n \in d(K)$ with $\exp(T_n) = q$ and $\operatorname{ind}(T_n) = q^{n-1}$ except, possibly, if $\tau(q) < \infty$ and $[\widehat{K}:\widehat{K}^q] < q^{n-\tau(q)}$.

Proof. It suffices to consider the special case of $v(\pi) < 0$. Fix a Henselization (K_v, \bar{v}) of (K, v), put $\rho(K_v) = \{u^q - u \colon u \in K_v\}$, and for each $m \in \mathbb{N}$, denote by L_m the root field in K_{sep} over K of the polynomial $f_m(X) = X^q - X - \pi_m$, where $\pi_m = \pi^{1+qm}$. Also, let \mathbb{F} be the prime subfield of K, $\Phi = \mathbb{F}(\pi)$, ω the valuation of Φ induced by v, and $(\Phi_\omega, \bar{\omega})$ a Henselization of (Φ, ω) , such that $\Phi_\omega \subseteq K_v$ and \bar{v} extends $\bar{\omega}$ (the existence of $(\Phi_\omega, \bar{\omega})$ follows from [14], Theorem 15.3.5). Identifying K_v with its K-isomorphic copy in K_{sep} , put $L'_m = L_m K_v$ and $M'_m = M_m K_v$, for every index m. It is easily verified that $\rho(K_v)$ is an \mathbb{F} -subspace of K_v and $\bar{v}(u^q - u) \in q\bar{v}(K_v)$, for every $u \in K_v$ with $\bar{v}(u) < 0$. As $\bar{v}(K_v) = v(K)$, this

observation and the choice of π indicate that the cosets $\pi_m + \rho(K_v)$, $m \in \mathbb{N}$, are linearly independent over \mathbb{F} . In view of the Artin-Schreier theorem and Galois theory (cf. [24], Ch. VIII, Sect. 6), this implies $f_m(X)$ is irreducible over K_v , L'_m/K_v and L_m/K are cyclic extensions of degree q, M'_m/K_v and M_m/K are abelian, and $[M'_m: K_v] = [M_m: K] = q^m$, for each $m \in \mathbb{N}$. Moreover, our argument proves that degree q extensions of K_v in the compositum of the fields $L'_m, m \in \mathbb{N}$, are cyclic and totally ramified over K_v . At the same time, it follows from the Henselity of \bar{v} and the equality $\hat{K}_v = \hat{K}$ that M'_m contains as a subfield an inertial lift over K_v of the separable closure of \hat{K} in \hat{M}'_m . When v is discrete and \hat{K} is perfect, the obtained results imply the assertions of Lemma 4.2 (a), since finite extensions of K_v in K_{sep} are defectless (relative to \bar{v} , see [24], Ch. XII, Sect. 6, Corollary 2).

To prove Lemma 4.2 (a) in general it remains to be seen that, for any fixed $m \in \mathbb{N}, M_m$ has a unique, up-to an equivalence, valuation v_m extending v_n $(M_m, v_m)/(K, v)$ is totally ramified and $v(\pi) \in q^m v(M_m)$. The extendability of v to a valuation v_m of M_m is well-known (cf. [24], Ch. XII, Sect. 4), so our assertions can be deduced from the concluding one, the equality $[M_m: K] =$ $[M_m K_v: K_v] = q^m$ and statement (3.1). Our proof also relies on the fact that (Φ, ω) is a discrete valued field and Φ/\mathbb{F} is a finite extension (see [3], Ch. II, Lemma 3.1, or [14], Example 4.1.3); in particular, $\widehat{\Phi}$ is perfect. Let now $\Psi_m \in$ $I(K_{sep}/\Phi)$ be the root field of $f_m(X)$ over Φ . Then $L_m = \Psi_m K$, $[\Psi_m \colon \Phi] = q$, $M_m = \Theta_m K$ and $[\Theta_m : \Phi] = q^m$, where $\Theta_m = \Psi_1 \dots \Psi_m$. Therefore, $\Theta_m \Phi_\omega / \Phi_\omega$ is totally ramified relative to $\bar{\omega}$. Equivalently, the integral closure of $O_{\omega}(\Phi)$ in Θ_m contains a primitive element t'_m of Θ_m/Φ , whose minimal polynomial $\theta_m(X)$ over $O_{\omega}(\Phi)$ is Eisensteinian (cf. [3], Ch. I, Theorem 6.1, and [24], Ch. XII, Sects. 2, 3 and 6). Hence, ω has a unique prolongation ω_m on Θ_m , up-to an equivalence, $\omega(t_m) \notin q\omega(\Phi)$ and $q^m \omega_m(t'_m) = \omega(t_m)$, where t_m is the free term of $\theta_m(X)$. As $\pi \in \Phi$, $v(\pi) \notin qv(K)$ and Θ_m/Φ is a Galois extension, this implies t'_m is a primitive element of M_m/K and M'_m/K_v , $q^m v_m(t'_m) = v(t_m) = \omega(t_m)$ and $v(\pi) \in q^m v_m(M_m)$, which completes the proof of Lemma 4.2 (a).

We prove Lemma 4.2 (b). Put $\pi_1 = \pi$ and suppose that there exist elements $\pi_j \in K^*, j = 2, \ldots, n$, and an integer $\mu \leq n$, such that the cosets $v(\pi_i) + qv(K)$, $i = 1, \ldots, \mu$, are linearly independent over \mathbb{F}_q , and in case $\mu < n, v(\pi_u) = 0$ and the residue classes $\hat{\pi}_u$, $u = \mu + 1, \dots, n$, generate an extension of K^q of degree $q^{n-\mu}$. Fix a generator λ_m of $\mathcal{G}(L_m/K)$, for each $m \in \mathbb{N}$, denote by T_n the Kalgebra $\otimes_{j=2}^{n} (L_{j-1}/K, \lambda_{j-1}, \pi_j)$, where $\otimes = \otimes_K$, and put $T'_n = T_n \otimes_K K_v$. We show that $T_n \in d(K)$ (whence $\exp(T_n) = q$ and $\operatorname{ind}(T_n) = q^{n-1}$). Clearly, there is a K_v -isomorphism $T'_n \cong \bigotimes_{j=2}^n (L'_{j-1}/K_v, \lambda'_{j-1}, \pi_j)$, where $\bigotimes = \bigotimes_{K_v}$ and λ'_{j-1} is the unique K_v -automorphism of L'_{j-1} extending λ_{j-1} , for each j. Therefore, it suffices for the proof of Lemma 4.2 (b) to show that $T'_n \in d(K_v)$. Since K_v and $L'_m, m \in \mathbb{N}$, are related as K and $L_m, m \in \mathbb{N}$, this amounts to proving that $T_n \in d(K)$, for (K, v) Henselian. Suppose first that n = 2. As L_1/K is totally ramified, it follows from the Henselity of v that $v(l) \in qv(L_1)$, for every element l of the norm group $N(L_1/K)$. One also concludes that if $l \in N(L_1/K)$ and $v_L(l) = 0$, then $l \in K^q$. These observations prove that $\pi_2 \notin N(L_1/K)$, so it follows from [35], Sect. 15.1, Proposition b, that $T_2 \in d(K)$. Henceforth, we assume that $n \geq 3$ and view all value groups considered in the rest of the proof as (ordered) subgroups of a fixed divisible hull of v(K). Note that the centralizer C_n of L_n in T_n is L_n -isomorphic to $T_{n-1} \otimes_K L_n$ and $\bigotimes_{j=2}^{n-1} (L_{j-1}L_n, \lambda_{j-1,n}, \pi_j)$,

where $\otimes = \otimes_{L_n}$ and $\lambda_{j-1,n}$ is the unique L_n -automorphism of $L_{j-1}L_n$ extending λ_{j-1} , for each index j. Therefore, using (3.1) and Lemma 4.2 (a), one obtains inductively that it suffices to prove that $T_n \in d(K)$, provided $C_n \in d(L_n)$.

Denote by w_n the valuation of C_n extending v_{L_n} , and by \widehat{C}_n its residue division ring. It follows from the Ostrowski-Draxl theorem that $w_n(C_n)$ equals the sum of $v(M_n)$ and the group generated by $q^{-1}v(\pi_{i'})$, $i' = 2, \ldots, n-1$. Similarly, it is proved that \widehat{C}_n is a field and $\widehat{C}_n^q \subseteq \widehat{K}$. One also sees that $\widehat{C}_n \neq \widehat{K}$ if and only if $\mu < n-1$, and in this case, $[\widehat{C}_n : \widehat{K}] = q^{n-1-\mu}$ and $\widehat{\pi}_u \in \widehat{C}_n^q$, $u = \mu + 1, \ldots, n-1$. These results show that $v(\pi_n) \notin qw_n(C_n)$, if $\mu = n$, and $\widehat{\pi}_n \notin \widehat{C}_n^q$ when $\mu < n$. Let now $\overline{\lambda}_n$ be the K-automorphism of C_n extending both λ_n and the identity of the natural K-isomorphic copy of T_{n-1} in C_n , and let $t'_n = \prod_{\kappa=0}^{q-1} \overline{\lambda}_n^{\kappa}(t_n)$, for each $t_n \in C_n$. Then, by Skolem-Noether's theorem (cf. [35], Sect. 12.6), $\overline{\lambda}_n$ is induced by an inner K-automorphism of T_n . This implies $w_n(t_n) = w_n(\overline{\lambda}_n(t_n))$ and $w_n(t'_n) \in qw_n(C_n)$, for all $t_n \in C_n$, and yields $\widehat{t}'_n \in \widehat{C}_n^q$ when $w_n(t_n) = 0$. Therefore, $t'_n \neq \pi_n$, $t_n \in C_n$, so it follows from [1], Ch. XI, Theorems 11 and 12, that $T_n \in d(K)$. Lemma 4.2 is proved.

Proof of the latter assertion of Theorem 2.1 (c). Assume that F/E is an FG-extension, such that $\operatorname{char}(E) = p$, $[E:E^p] = p^{\nu} < \infty$ and $\operatorname{trd}(F/E) = t \ge 1$. This implies $[F:F^p] = p^{\nu+t}$, so it follows from Lemma 4.1 and [1], Ch. VII, Theorem 28, that $\operatorname{Brd}_p(F) \le \operatorname{abrd}_p(F) \le \nu + t$. At the same time, it is clear from (4.1) and Lemma 4.2 that there exists $\Delta \in d(F)$ with $\exp(\Delta) = p$ and $\operatorname{ind}(\Delta) = p^{\nu+t-1}$, which yields $\operatorname{Brd}_p(F) \ge \nu + t - 1$ and so completes our proof.

Our next lemma is implied by (3.5), Lemma 3.1 and the immediacy of Henselizations of valued fields (cf. [14], Theorems 15.2.2 and 15.3.5).

Lemma 4.3. Let E be a field, F = E(X) a rational extension of E with $\operatorname{trd}(F/E) = 1$, $f(X) \in E[X]$ an irreducible polynomial over E, M an extension of E generated by a root of f in E_{sep} , v a discrete E-valuation of F with a uniform element f, and (F_v, \overline{v}) a Henselization of (F, v). Also, let $\widetilde{D} \in d(M)$ be an algebra of exponent $p \in \mathbb{P}$. Then M is E-isomorphic to the residue field of (F, v) and (F_v, \overline{v}) , and there exists $D \in d(F)$ with $\exp(D) = p$ and $[D \otimes_F F_v] = [D']$, where $D' \in d(F_v)$ is an inertial lift of \widetilde{D} over F_v .

Proof of Theorem 2.1 (a). Let $\operatorname{abrd}_p(E) = \lambda \in \mathbb{N}$ and $F = E(X_1, \ldots, X_{\kappa})$. Then, by Lemma 4.1, there exists $M \in \operatorname{Fe}(E)$, such that d(M) contains an algebra $\widetilde{\Delta}$ with $\exp(\widetilde{\Delta}) = p$ and $\operatorname{ind}(\widetilde{\Delta}) = p^{\lambda}$. We show that there is $\Delta \in d(F)$ with $\exp(\Delta) = p$ and $\operatorname{ind}(\Delta) \geq p^{\lambda+\kappa-1}$. Suppose first that $\kappa = 1$, take a primitive element α of M/E, and denote by $f(X_1)$ its minimal monic polynomial over E. Attach to f a discrete valuation v of F and fix (F_v, \overline{v}) as in Lemma 4.3. Then, by Lemma 3.1, there exists $\Delta_1 \in d(F)$ with $[\Delta_1 \otimes_F F_v] = [\overline{\Delta}]$, in $\operatorname{Br}(F_v)$, where $\overline{\Delta}$ is an inertial lift of $\widetilde{\Delta}$ over F_v . Since $\overline{\Delta} \in d(F_v)$, $\exp(\overline{\Delta}) = p$ and $\operatorname{ind}(\overline{\Delta}) = p^{\lambda}$, this indicates that $p^{\lambda} \mid \operatorname{ind}(\Delta_1)$, which proves Theorem 2.1 (a) when $\kappa = 1$. In addition, Lemma 3.2 implies that there exist infinitely many degree p cyclic extensions of F in F_v . Hence, F_v contains as a subfield a Galois extension R_{κ} of F with $\mathcal{G}(R_{\kappa}/F)$ of order $p^{\kappa-1}$ and exponent p. When $\operatorname{ind}(\Delta_1) = p^{\lambda}$, this makes it easy to deduce the existence of Δ , for an arbitrary κ , from (4.1) (with a ground field $E(X_1)$ instead of E) and [32], Theorem 1, or else, by repeatedly using the Proposition in [35], Sect. 19.6. It remains to consider the case where $\kappa \geq 2$ and there exists $D_1 \in d(E(X_1))$ with $\exp(D_1) = p$ and $\operatorname{ind}(D_1) = p^{\lambda'} > p^{\lambda}$. It is easily verified that $D_1 \otimes_{E(X_1)} E(X_1)((X_2)) \in d(E(X_1)((X_2)))$, and it follows from Lemma 3.2 that there are infinitely many degree p cyclic extensions of $E(X_1, X_2)$ in $E(X_1)((X_2))$. As in the case of $\kappa = 1$, this enables one to prove the existence of $\Delta' \in d(F)$ with $\exp(\Delta') = p$ and $\operatorname{ind}(\Delta') = p^{\lambda' + \kappa - 2} \geq p^{\lambda + \kappa - 1}$. Thus Theorem 2.1 (a) is proved.

Corollary 4.4. Let *E* be a field and F/E a rational extension with $trd(F/E) = \infty$. Then $Brd_p(F) = \infty$, for every $p \in \mathbb{P}$.

Proof. This follows from Theorem 2.1 (a) and the fact that, for any rational field extension F'/F with $\operatorname{trd}(F'/F) = 2$, there is an *E*-isomorphism $F \cong F'$, whence $\operatorname{Brd}_p(F) = \operatorname{Brd}_p(F')$, for each $p \in \mathbb{P}$.

Remark 4.5. Let *E* be a field with $abrd_p(E) = \infty$, $p \in \mathbb{P}$, and let F/E be a transcendental FG-extension. Then it follows from (1.1) (b), (c) and Theorem 2.1 (b) that Brauer pairs $(m, n) \in \mathbb{N}^2$ are index-exponent pairs over *F*. Therefore, Corollary 4.4 with its proof implies the latter assertion of (1.2).

Alternatively, it follows from Galois theory, Lemmas 3.2, 4.3 and basic theory of valuation prolongations that $r_p(\Phi) = \infty$, $p \in \mathbb{P}$, for every transcendental FGextension Φ/E . Hence, by [12] and Witt's lemma (cf. [10], Sect. 15, Lemma 2), finite abelian groups are realizable as Galois groups over Φ , so both parts of (1.2) can be proved by the method used in [35], Sect. 19.6.

Proposition 4.6. Let F/E be an FG-extension with $trd(F/E) = t \ge 1$ and $abrd_p(E) < \infty$, $p \in P$, for some subset $P \subseteq \mathbb{P}$. Then P possesses a finite subset P(F/E), such that $Brd_p(F) \ge abrd_p(E) + t - 1$, $p \in P \setminus P(F/E)$.

Proof. It follows from (1.1) (c) and Theorem 2.2 (a) that one may take as P(F/E) the set of divisors of $[F: F_0]$ lying in P, for some rational extension F_0 of E in F with $trd(F_0/E) = t$.

Example 4.7. There exist field extensions F/E satisfying the conditions of Proposition 4.6, for $P = \mathbb{P}$, such that P(F/E) is nonempty. For instance, let E be a real closed field, Φ the function field of the Brauer-Severi variety attached to the symbol E-algebra $A = A_{-1}(-1, -1; E)$, and F/Φ a finite field extension with $\sqrt{-1} \notin F$. Then $abrd(F) = 0 < abrd_2(E) = 1$ (see the example in [7]) and $abrd_p(E) = 0$, p > 2, which implies $P(F/E) = \{2\}$ and $P = \mathbb{P}$.

5 Proof of Theorem 2.1 (b)

The former claim of Theorem 2.1 (b) is implied by the following lemma.

Lemma 5.1. Let K be a field with $\operatorname{abrd}_p(K) = \infty$, for some $p \in \mathbb{P}$, and let F/K be an FG-extension with $\operatorname{trd}(F/K) \geq 1$. Then there exist $D_{\nu} \in d(F)$, $\nu \in \mathbb{N}$, such that $\exp(D_{\nu}) = p$ and $\operatorname{ind}(D_{\nu}) \geq p^{\nu}$.

Proof. Statement (1.1) (c) implies the class of fields Φ with $\operatorname{abrd}_p(\Phi) = \infty$ is closed under the formation of finite extensions. Since K has a rational extension F_0 in F with $\operatorname{trd}(F_0/K) = \operatorname{trd}(F/K)$, whence $[F:F_0] < \infty$, this shows that it is sufficient to prove Lemma 5.1 in the case of $F = F_0$. Note also that $\operatorname{ind}(T_0 \otimes_K F_0) = \operatorname{ind}(T_0)$ and $\exp(T_0 \otimes_K F_0) = \exp(T_0)$, for each $T_0 \in d(K)$, so one may assume, for the proof, that $F = F_0$ and $\operatorname{trd}(F/K) = 1$. It follows from Lemma 4.1 and the equality $\operatorname{abrd}_p(K) = \infty$ that there are $M_\nu \in \operatorname{Fe}(K)$ and $\widetilde{D}_\nu \in d(M_\nu), \nu \in \mathbb{N}$, with $\exp(\widetilde{D}_\nu) = p$ and $\operatorname{ind}(\widetilde{D}_\nu) \ge p^\nu$, for each index ν . Hence, by Lemmas 4.3 and 3.1, there exist a discrete K-valuation v_ν of F, and an algebra $D_\nu \in d(F)$, such that the residue field of (F, v_ν) is K-isomorphic to M_ν , $\exp(D_\nu) = p$, and $[D_\nu \otimes_F F_\nu] = [D'_\nu]$, where D'_ν is an inertial lift of \widetilde{D}_ν over F_ν . This implies $\operatorname{ind}(\widetilde{D}_\nu) \mid \operatorname{ind}(D_\nu), \nu \in \mathbb{N}$, proving Lemma 5.1.

To prove the latter part of Theorem 2.1 (b) we need the following lemma.

Lemma 5.2. Let A, B and C be algebras over a field F, such that $A, B, C \in s(F)$, $A = B \otimes_F C$, $\exp(C) = p \in \mathbb{P}$, and $\exp(B) = \operatorname{ind}(B) = p^m$, for some $m \in \mathbb{N}$. Assume that $\operatorname{ind}(A) = p^n > p^m$ and k is an integer with $m < k \le n$. Then there exists $T_k \in s(F)$ with $\exp(T_k) = p^m$ and $\operatorname{ind}(T_k) = p^k$.

Proof. When k = n, there is nothing to prove, so we assume that k < n. By [30], Sect. 4, Theorem 2, $[C] = [\Delta_1 \otimes_F \cdots \otimes_F \Delta_\nu]$, where $\nu \in \mathbb{N}$ and for each index $j, \Delta_j \in d(F)$ and $\operatorname{ind}(\Delta_j) = p$. Put $T_j = B \otimes_F (\Delta_1 \otimes_F \cdots \otimes_F \Delta_j)$ and $t_j = \operatorname{deg}(T_j)/\operatorname{ind}(T_j), j = 1, \ldots, \nu$, and let S(A) be the set of those j, for which $\operatorname{ind}(T_j) \ge p^k$. Clearly, $S(A) \neq \phi$ and the set $S_0(A) = \{i \in S(A) : t_i \le t_j, j \in$ $S(A)\}$ contains a minimal index γ . The conditions of Lemma 5.2 ensure that $\exp(T_j) = p^m$, so $\operatorname{ind}(T_j) = p^{m(j)}$, where $m(j) \in \mathbb{N}$, for each $j \in S(A)$. We show that $\operatorname{ind}(T_\gamma) = p^k$. If $\gamma = 1$, then (1.1) (c) and the inequality m < k imply k = m + 1 and $\operatorname{ind}(T_1) = p^k$, as claimed. Suppose now that $\gamma \ge 2$. Then it follows from (1.1) (b) that $\operatorname{ind}(T_\gamma) = \operatorname{ind}(T_{\gamma-1}).p^{\mu}$, for some $\mu \in \{-1, 0, 1\}$. The possibility that $\mu \neq 1$ is ruled out, since it contradicts the fact that $\gamma \in S_0(A)$. This yields $\operatorname{ind}(T_\gamma) = \operatorname{ind}(T_{\gamma-1}).p$ and $t_\gamma = t_{\gamma-1}$. As γ is minimal in $S_0(A)$, it is now easy to see that $\operatorname{ind}(T_{\gamma-u}) = p^{k-u}$, u = 0, 1, which proves Lemma 5.2. \Box

The conditions of Lemma 5.2 are fulfilled, for each $m \in \mathbb{N}$ and infinitely many integers n > m, if char(E) = p, E is not virtually perfect and F/E satisfies the conditions of Theorem 2.1. Since, by Witt's lemma, cyclic *p*-extensions of Fare realizable as intermediate fields of \mathbb{Z}_p -extensions of F, this can be obtained by applying (1.1) (b), (4.1) and Lemma 4.2 together with general properties of cyclic F-algebras, see [35], Sect. 15.1, Corollary b and Proposition b. Thus Theorem 2.1 is proved in the case of $p = \operatorname{char}(E)$. For the proof of the latter assertion of Theorem 2.1 (b), when $p \neq \operatorname{char}(E)$, we need the following lemma. **Lemma 5.3.** Let K be a field and F/K an FG-extension with trd(F/K) = 1. Then, for each $p \in \mathbb{P}$ different from char(K), there exist non-equivalent discrete K-valuations v_m of F, $m \in \mathbb{N}$, satisfying the following:

(a) For any $m \in \mathbb{N}$, (F, v_m) possesses a totally ramified extension (F_m, w_m) , such that $F_m \in I(F_{sep}/F)$, F_m/F is cyclic and $[F_m: F] = p^m$;

(b) The valued fields (F_m, w_m) can be chosen so that $F_{m'} \cap F_{\bar{m}} = F, m' \neq \bar{m}$.

Proof. Let $X \in F$ be a transcendental element over K. Then F/K(X) is a finite extension, and the separable closure of K(X) in F is unramified relative to every discrete K-valuation of K(X), with at most finitely many exceptions (up-to an equivalence, see [3], Ch. I, Sect. 5). This reduces the proof of Lemma 5.3 to the special case of F = K(X). For each $m \in \mathbb{N}$, let $\delta_m \in F_{sep}$ be a primitive p^m -th root of unity, $K_m = K(\delta_m), f_m(X) \in K[X]$ the minimal polynomial of δ_m over K, and ρ_m a discrete K-valuation of F with a uniform element f_m . Clearly, the valuations $\rho_m, m \in \mathbb{N}$, are pairwise non-equivalent. Also, it is well-known (see [24], Ch. V, Theorem 6; Ch. VIII, Sect. 3, and [18], Ch. 4, Sect. 1) that if $m', \bar{m} \in \mathbb{N}$, then the extension $K_{m'}(\delta_{\bar{m}})/K_{m'}$ are cyclic except, possibly, in the case where m' = 1, $\bar{m} > 2$, p = 2, char(K) = 0 and $\delta_2 \notin K$. Denote by v_m the valuation ρ_{m+1} , for each m, if p = 2, char(K) = 0 and $\delta_2 \notin K$, and put $v_m = \rho_m, m \in \mathbb{N}$, otherwise. Since $p \neq \operatorname{char}(K)$, and by Lemma 4.5, K_m is K-isomorphic to the residue field of (F, ρ_m) , we have $\delta_m \in F_{v_m}$, where F_{v_m} is a Henselization of F in F_{sep} relative to v_m . This enables one to deduce from Kummer theory that F_{v_m} possesses a totally ramified cyclic extension L_{v_m} of degree p^m . Furthermore, it follows from the choice of v_m and the observation on the extensions $K_{m'}(\delta_{\bar{m}})/K_{m'}$ that $F_{m'}(\delta_{\bar{m}})/F_{m'}$ are cyclic, for all pairs $m', \bar{m} \in \mathbb{N}$. Hence, by the generalized Grunwald-Wang theorem (cf. [27], Theorems 1 (ii) and 2) and the note preceding the statement of Lemma 3.2, there exist totally ramified extensions $(F_m, w_m)/(F, v_m), m \in \mathbb{N}$, such that $F_m \in I(F_{sep}/F)$, F_m/F is cyclic with $[F_m: F] = p^m$, for each m, and in case $m \geq 2$, F_m/F is unramified relative to v_1, \ldots, v_{m-1} . This ensures that $F_{m'} \cap F_{\bar{m}} = F, \ m' \neq \bar{m}$, and so completes the proof of Lemma 5.3.

Proof of the latter statement of Theorem 2.1 (b). Let $\operatorname{abrd}_{p}(E) = \infty$, for some $p \in \mathbb{P}$. In view of (1.1) (b), Lemmas 3.1, 5.1 and 5.2, it is sufficient to show that there exists $A_m \in d(F)$ with $\exp(A_m) = \operatorname{ind}(A_m) = p^m$, for any fixed $m \in \mathbb{N}$. As in the proof of Lemma 5.1, our considerations reduce to the special case of trd(F/K) = 1. Analyzing this proof, one obtains that there is $M \in Fe(E)$, such that d(M) contains a cyclic M-algebra A_1 of degree p, and when $p \neq \operatorname{char}(E)$, M contains a primitive p^m -th root of unity δ_m . Note further that M can be chosen so as to be E-isomorphic to the residue field \widehat{F} of F relative to some discrete E-valuation v. In view of Kummer theory (see [24], Ch. VIII, Sect. 6) and Witt's lemma, the assumptions on M ensure that each degree p cyclic extension Y_1 of M lies in $I(Y_m/M)$, for some degree p^m cyclic extension Y_m/M . Suppose now that Y_1 embeds in \widetilde{A}_1 as an M-subalgebra, fix a generator τ_1 of $\mathcal{G}(Y_1/M)$ and an automorphism τ_m of Y_m extending τ_1 . Then A_1 is isomorphic to the cyclic *M*-algebra $(Y_1/M, \tau_1, \hat{\beta})$, for some $\hat{\beta} \in M^*, \tau_m$ generates $\mathcal{G}(Y_m/M)$, the *M*-algebra $\widetilde{A}_m = (Y_m/M, \tau_m, \widetilde{\beta})$ lies in s(M), and we have $p^{m-1}[\widetilde{A}_m] = [\widetilde{A}_1]$ (cf. [35], Sect. 15.1, Corollary b). Therefore, $\widetilde{A}_m \in d(M)$

and $\operatorname{ind}(\widetilde{A}_m) = \exp(\widetilde{A}_m) = p^m$. Assume now that (F, v) has a valued extension (L, v_L) , such that L/F is cyclic, $[L: F] = p^m$ and the residue field of (L, v_L) is *E*-isomorphic to Y_m . Then $\mathcal{G}(L/F) \cong \mathcal{G}(Y_m/M)$, and for each generator σ of $\mathcal{G}(L/F)$ and pre-image β of $\tilde{\beta}$ in $O_v(F)$, the algebra $A_m = (L/F, \sigma, \beta)$ lies in d(F) (see [35], Sect. 15.1, Proposition b, and [19], Theorem 5.6). Note also that $\operatorname{ind}(A_m) = \exp(A_m) = p^m$ and σ can be chosen so that $A_m \otimes_F F_v$ be an inertial lift of \widetilde{A}_m over F_v . When p > 2, this completes the proof of Theorem 2.1 (b), since Lemma 3.2 guarantees in this case the existence of a valued extension (L, v_L) of (F, v) with the above-noted properties.

Similarly, one concludes that if p = 2, then it suffices to prove Theorem 2.1 (b), provided char(E) = 0 and $\mathcal{G}(E(\delta_m)/E)$ is noncyclic, where δ_m is a primitive 2^m -th root of unity in E_{sep} . This implies the group $E_1^*/E_1^{*2^\nu}$ has exponent 2^ν , for each $\nu \in \mathbb{N}$, $E_1 \in \text{Fe}(E)$ (cf. [24], Ch. VIII, Sects. 3 and 9). Take a valued extension $(F_m, w_m)/(F, v_m)$ as required by Lemma 5.3, and denote by \widehat{F}_m the residue field of (F, v_m) . Fix a generator ψ_m of $\mathcal{G}(F_m/F)$ and an element $\widetilde{\beta}_m \in \widehat{F}_m^*$ so that $\widetilde{\beta}_m^{2^{m-1}} \notin \widehat{F}_m^{*2^m}$, and put $A_m = (F_m/F, \psi_m, \beta_m)$, for some pre-image β_m of $\widetilde{\beta}_m$ in $O_{v_m}(F)$. As $(F_m, w_m)/(F, v_m)$ is totally ramified, w_m is uniquely determined by w_m , up-to an equivalence. Therefore, $w_m(\lambda_m) = w_m(\psi_m(\lambda_m))$, for all $\lambda_m \in F_m$, and when $w_m(\lambda_m) = 0$, $\widehat{F}_m^{*2^m}$ contains the residue class of the norm $N_F^{F_m}(\lambda_m)$. Now it follows from [35], Sect. 15.1, Proposition b, that $A_m \in d(F)$ and ind $(A_m) = \exp(A_m) = 2^m$, so Theorem 2.1 is proved.

Corollary 5.4. Let E be a field with $\operatorname{abrd}(E) = \infty$. Then $\operatorname{Brd}(F) = \infty$, for every transcendental FG-extension F/E.

Proof. The equality $\operatorname{abrd}(E) = \infty$ means that either $\operatorname{abrd}_{p'}(E) = \infty$, for some $p' \in \mathbb{P}$, or $\operatorname{abrd}_p(E)$, $p \in \mathbb{P}$, is an unbounded number sequence. In view of Theorem 2.1 (b) and Proposition 4.6, this proves our assertion.

Corollary 5.4 shows that a field E satisfies $\operatorname{abrd}(E) < \infty$, if its FG-extensions have finite dimensions, in the sense of [2], Sect. 4. In view of (2.7) (a), this proves that Problem 4.4 of [2] is solved, generally, in the negative, even when finite extensions of E have finite Brauer dimensions. Statements (2.7) also imply that both cases pointed out in the proof of Corollary 5.4 can be realized.

Remark 5.5. Statement (2.6) indicates that if [2], Problem 4.5, is solved affirmatively in the class \mathcal{A} of virtually perfect fields E with $abrd(E) < \infty$, then $abrd(E) \leq \dim(E)$. We show that such a solvability would imply the numbers c(E), in (2.6), depend on the choice of E and may be arbitrarily large. Let Cbe an algebraically closed field, ν a positive integer and $C_{\nu} = C((X_1)) \dots ((X_{\nu}))$ the iterated formal Laurent formal power series field in ν variables over C. We prove that $c(C_{\nu}) \geq [\nu/2] - 1$. Note first that each FG-extension F/C_{ν} with $trd(F/C_{\nu}) = 1$ has a C-valuation f_{ν} , such that $trd(\widehat{F}/C) = 1$ and $f_{\nu}(F) = \mathbb{Z}^{\nu}$. Indeed, if $T \in F$ is a transcendental element over C_{ν} , $F_0 = C_{\nu}(T)$, and f_0 is the restricted Gauss valuation of F_0 extending the natural \mathbb{Z}^{ν} -valued C-valuation of C_{ν} (see [14], Example 4.3.2), then one may take as f_{ν} any prolongation of f_0 on F. The equality $trd(\widehat{F}/C) = 1$ ensures that $r_p(\widehat{F}) = \infty$, for all $p \in \mathbb{P}$, which enables one to deduce from [32], Theorem 1, and [26], Corollary 1.4, that $Brd_p(F) = abrd_p(F) = \nu, \ p \in \mathbb{P}$ and $p \neq char(C)$ (see [26], page 37, for more details in case F/C_{ν} is rational). At the same time, it follows from [9], Proposition 7.1, that if char(C) = 0, then $Brd(C_{\nu}) = abrd(C_{\nu}) = [\nu/2]$; hence, by (2.6), $c(C_{\nu}) \geq abrd(F) - abrd(C_{\nu}) = [\nu/2] - 1$, as claimed.

Corollary 5.6. Let F be a rational extension of an algebraically closed field F_0 . Then $\operatorname{trd}(F/F_0) = \infty$ if and only if each Brauer pair $(m, n) \in \mathbb{N}^2$ is realizable as an index-exponent pair over F.

Proof. If $\operatorname{trd}(F/F_0) = n < \infty$, then finite extensions of F are C_n -fields, by Lang-Tsen's theorem [23], so Lemma 4.1 and [28] imply $\operatorname{Brd}_p(F) < p^{n-1}, p \in \mathbb{P}$ (see [31], (16.10), for case p = 2). In view of (1.2), this completes our proof. \Box

Theorem 2.1 and Example 4.7 lead naturally to the question of whether $\operatorname{Brd}_p(F) \ge k + \operatorname{trd}(F/E)$, provided that F/E is an FG-extension and $\operatorname{Brd}_p(E') = k < \infty, E' \in \operatorname{Fe}(E)$, for a given $p \in \mathbb{P}$. Our next result gives an affirmative answer to this question in several frequently used special cases:

Proposition 5.7. Let E be a field and F an FG-extension of E with trd(F/E) = n > 0. Suppose that there exists $M \in Fe(E)$ satisfying the following condition, for some $p \in \mathbb{P}$ and $k \in \mathbb{N}$:

(c) For each $M' \in \text{Fe}(M)$, there are $D' \in d(M')$ and $L' \in I(M'(p)/M')$, such that $\exp(D') = [L': M'] = p$, $\operatorname{ind}(D') = p^k$ and $D' \otimes_{M'} L' \in d(L')$.

Then there exist $D \in d(F)$, such that $\exp(D) = p$ and $\operatorname{ind}(D) \ge p^{k+n}$; in particular, $\operatorname{Brd}_p(F) \ge k+n$.

Proposition 5.7 is proved along the lines drawn in the proofs of Theorem 2.1 (a) and (b), so we omit the details. Note only that if $n \ge 2$ or k = 1, then D can be chosen so that $D \otimes_F F_v \in d(F_v)$, $[D \otimes_F F_v] \in \operatorname{Br}(F_{v,un}/F_v)$ and $p^{n-1} \mid e(D \otimes_F F_v/F_v) \mid p^n$, for some E-valuation v of F with $\mathbb{Z}^{n-1} \le v(F) \le \mathbb{Z}^n$.

Remark 5.8. Condition (c) of Proposition 5.7 is fulfilled, for $k = 1 = \operatorname{abrd}(E)$ and any $p \in \mathbb{P}$, if E is a global field or an FG-extension of an algebraically closed field E'_0 with $\operatorname{trd}(E/E'_0) = 2$. It also holds when k = 1, $p \in \mathbb{P}$ and E is an FG-extension of a perfect PAC-field E_0 with $\operatorname{trd}(E/E_0) = 1 = \operatorname{cd}_p(E_0)$ (see [13], Sect. 3, [35], Sect. 19.3, and the proof of [9], Proposition 4.3). In these cases, it can be deduced from (3.1) and [32], Theorem 1, that the power series fields $E_m = E((X_1)) \dots ((X_m)), m \in \mathbb{N}$, satisfy (c), for $k = 1 + m = \operatorname{abrd}_p(E_m)$ (cf. [26], Appendix A, or [9], (4.10) and Proposition 4.3). In addition, the conclusion of Proposition 5.7 is valid, if E is a local field, k = 1 and $p \in \mathbb{P}$, although (c) is then violated, for every p (see Proposition 6.3 with its proof, and the appendices to [38] and [3], Ch. VI, Sect. 1).

For a proof of the concluding result of this Section, we refer the reader to [7]. When F/E is a rational extension and $r_p(E) \ge \operatorname{trd}(F/E)$, this result is contained in [33]. Combined with Lemma 3.2, it implies Nakayama's inequalities $\operatorname{Brd}_{p'}(F') \ge \operatorname{trd}(F'/E') - 1, p' \in \mathbb{P}$, for any FG-extension F'/E'. **Proposition 5.9.** Let F/E be an FG-extension with $\operatorname{trd}(F/E) = n \ge 1$ and $\operatorname{cd}_p(\mathcal{G}_E) \neq 0$, for some $p \in \mathbb{P}$. Then $\operatorname{Brd}_p(F) \ge n$ except, possibly, if p = 2, the Sylow pro-2-subgroups of \mathcal{G}_E are of order 2, and F is a nonreal field.

It is not known whether an FG-extension F/E with $\operatorname{trd}(F/E) = n \geq 3$ satisfies $\operatorname{abrd}_p(F) = \operatorname{Brd}_p(F) = n - 1$, provided that $p \in \mathbb{P}$, $\operatorname{cd}_p(\mathcal{G}_E) = 0$, and E is perfect in the case where $p = \operatorname{char}(E)$. It follows from (1.1) (c) that this question is equivalent to the Standard Conjecture on F/E (stated by Colliot-Thélène, see [26] and [25], Sect. 1) when E is algebraically closed. The question is also open in the case excluded by Proposition 5.9. Results like [28], Theorem 6.3 and Corollary 7.3, as well as statements (2.1) and (2.3) attract interest in the problem of finding exact upper bounds on $\operatorname{abrd}_p(F)$, $p \in \mathbb{P}$. Specifically, it is worth noting that if E is algebraically closed and $\operatorname{Brd}_p(F) \geq p^{n-2}$, for infinitely many $p \in \mathbb{P}$, then this would solve negatively [2], Problem 4.5, by showing that $\operatorname{Br}(F) = \infty$ whenever $n \geq 3$.

6 Reduction of (2.2) to the case of char(E) = 0

In this Section we show that if C is a class of profinite groups and n is a positive integer, then the answer to (2.2) would be affirmative, for FG-extensions F/E with $\mathcal{G}_E \in C$ and $\operatorname{trd}(F/E) \leq n$, if this holds when $\operatorname{char}(E) = 0$. This result can be viewed as a refinement of [14], Corollary 22.2.3, in the spirit of [25], 4.1.2.

Proposition 6.1. Let E be a field of characteristic q > 0 and F/E an FG-extension. Then there exists an FG-extension L/E' satisfying the following:

(a) char(E') = 0, $\mathcal{G}_{E'} \cong \mathcal{G}_E$ and $\operatorname{trd}(L/E') = \operatorname{trd}(F/E)$;

(b) $\operatorname{Brd}_p(L) \geq \operatorname{Brd}_p(F)$, $\operatorname{abrd}_p(L) \geq \operatorname{abrd}_p(F)$, $\operatorname{Brd}_p(E') = \operatorname{Brd}_p(E)$ and $\operatorname{abrd}_p(E') = \operatorname{abrd}_p(E)$, for each $p \in \mathbb{P}$ different from q.

Proof. Fix an algebraic closure \overline{F} of F and denote by E_{ins} the perfect closure of E in \overline{F} . The extension $E_{\rm ins}/E$ is purely inseparable, so it follows from the Albert-Hochschild theorem (cf. [40], Ch. II, 2.2) that the scalar extension map of Br(E) into $Br(E_{ins})$ is surjective. Since finite extensions of E in E_{ins} are of q-primary degrees, one obtains from (1.1) (c) that $\operatorname{ind}(D \otimes_E E_{\operatorname{ins}}) = \operatorname{ind}(D)$ and $\exp(D \otimes_E E_{\text{ins}}) = \exp(D)$, provided $D \in d(E)$ and $q \dagger \operatorname{ind}(D)$. Therefore, $\operatorname{Brd}_p(E) = \operatorname{Brd}_p(E_{\operatorname{ins}})$ and $\operatorname{abrd}_p(E) = \operatorname{abrd}_p(E_{\operatorname{ins}})$, for each $p \in \mathbb{P}, p \neq q$. As $\mathcal{G}_{E_{\text{ins}}} \cong \mathcal{G}_E$ (see [24], Ch. VII, Proposition 12) and $FE_{\text{ins}}/E_{\text{ins}}$ is an FGextension, this reduces the proof of Proposition 6.1 to the case where E is perfect. It is known (cf. [14], Theorems 12.4.1 and 12.4.2) that then there exists a Henselian field (K, v) with char(K) = 0 and $\widehat{K} \cong E$, which can be chosen so that $v(K) = \mathbb{Z}$ and v(q) = 1. Moreover, it follows from (3.4), [29] and Galois theory (see also the proof of [14], Corollary 22.2.3) that there is $E' \in I(K_{sep}/K)$, such that $E' \cap K_{ur} = K$ and $E'K_{ur} = K_{sep}$. This ensures that $v(E') = \mathbb{Q}, \ \hat{E}' = \hat{K} = E \text{ and } E'_{ur} = E'_{sep} = K_{sep}.$ Hence, by (3.3) and (3.5), $\mathcal{G}_{E'} \cong \mathcal{G}_E$, $\operatorname{Brd}_p(E') = \operatorname{Brd}_p(E)$ and $\operatorname{abrd}_p(E') = \operatorname{abrd}_p(E), p \in \mathbb{P} \setminus \{q\}$. Observe that, since E is perfect, F/E is separably generated, i.e. there is $F_0 \in I(F/E)$, such that F_0/E is rational and $F \in Fe(F_0)$ (cf. [24], Ch. X). Note further that each rational extension L_0 of E' with $\operatorname{trd}(L_0/E') = \operatorname{trd}(F_0/E)$ has a restricted Gauss valuation ω_0 extending $v_{E'}$ with $\hat{L}_0 = F_0$ (cf. [14], Example 4.3.2). Fixing (L_0, ω_0) , one can take its valued extension (L, ω) so that $L_\omega \cong L \otimes_{L_0} L_{0,\omega_0}$ is an inertial lift of F over L_{0,ω_0} . This yields $\omega(L) = \omega_0(L_0) = \mathbb{Q}$, $\hat{L} \cong F$ over F_0 , $[L: L_0] = [F: F_0]$ and $\operatorname{trd}(L/K) = \operatorname{trd}(F/E)$. It also becomes clear that, for each $F' \in \operatorname{Fe}(F)$, there exists a valued extension (L', ω') of (L, ω) with [L': L] = [F': F] and $\hat{L}' \cong F'$. Observing now that L'/E', $F' \in \operatorname{Fe}(F)$, are FGextensions, applying (3.3) and (3.5) to a Henselization $L'_{\omega'}$, for any admissible F', and using Lemmas 3.1 and 4.1, one concludes that $\operatorname{Brd}_p(L') \ge \operatorname{Brd}_p(F')$ and $\operatorname{abrd}_p(L) \ge \operatorname{abrd}_p(F)$, for all $p \in \mathbb{P} \setminus \{q\}$. Proposition 6.1 is proved.

We show that in zero characteristic Proposition 2.2 can be deduced from Proposition 6.1.

Example 6.2. Let K_0 be a field with 2 elements, $K_n = K_0((X_1)) \dots ((X_n))$, $n \in \mathbb{N}$, an inductively defined sequence of iterated formal power series fields in *n* variables over K_0 , by the rule $K_n = K_{n-1}((X_n))$, for each $n \in \mathbb{N}$, and let Θ be a perfect closure of the union $K_{\infty} = \bigcup_{n=1}^{\infty} K_n$. It is known that the natural \mathbb{Z}^n -valued valuations, say v_n , of the fields K_n , $n \in \mathbb{N}$, extend uniquely to a Henselian K_0 -valuation v of K_∞ with $\hat{K}_\infty = K_0$ and $v(K_\infty) = \bigcup_{n=1}^\infty v_n(K_n)$. Since $r_p(K_0) = 1$, $p \in \mathbb{P}$, and finite extensions of K_∞ in Θ are totally ramified and of 2-primary degrees over K_{∞} , one deduces from [8], Lemma 4.6, that $Brd_p(K_{\infty}) = Brd_p(\Theta) = 1$ and $abrd_p(K_{\infty}) = abrd_p(\Theta) = \infty$, for every p > 2. At the same time, it is easily obtained (see, e.g., the proof of [8], Lemma 3.1) that $r_2(\Theta) = \infty$. Hence, by Proposition 6.1, there is a field Θ' with $char(\Theta) = 0$, $abrd_2(\Theta') = 0$ and $Brd_p(\Theta') = 1$, $abrd_p(\Theta') = \infty$, p > 2. Moreover, by the proof of Proposition 6.1, Θ' can be chosen so that its group of roots of unity be of order 2. Put $\Theta_0 = \Theta'$, $\Theta_k = \Theta_{k-1}((T_k))$, $k \in \mathbb{N}$, and for each index k, fix a maximal extension E_k of Θ_k in $\Theta_{k,sep}$ with respect to the property that finite extensions of Θ_k in E_k have odd degrees and are totally ramified over Θ_k relative to the natural \mathbb{Z}^k -valued Θ_0 -valuation of Θ_k . This ensures that E_k does not contain a primitive μ -th root of unity, for any odd $\mu > 1$, the group $\theta_k(E_k)/2\theta_k(E_k)$ has order 2^k , and $\theta_k(E_k) = p\theta_k(E_k)$, for every p > 2. Hence, by [8], Lemma 4.6, $Brd_2(E_k) = abrd_2(K) = k$ and $abrd_p(E_k) = \infty$, p > 2, as claimed.

Similarly to Remark 5.5, the proofs of Proposition 6.1 and our concluding result demonstrate the applicability of restricted Gauss valuations in finding lower bounds on $\operatorname{Brd}_p(F)$, for FG-extensions F of valued fields E with $\operatorname{abrd}_p(E) < \infty$:

Proposition 6.3. Let *E* be a local field and F/E an FG-extension. Then $\operatorname{Brd}_p(F) \ge 1 + \operatorname{trd}(F/E)$, for every $p \in \mathbb{P}$.

Proof. As $\operatorname{Brd}_p(F) = 1$ when $\operatorname{trd}(F/E) = 0$, we assume that $\operatorname{trd}(F/E) = n \ge 1$. We show that, for each $p \in \mathbb{P}$, there exists $D_p \in d(F)$, such that $\exp(D_p) = p$, $\operatorname{ind}(D_p) = p^{n+1}$ and D_p decomposes into a tensor product of cyclic division F-algebras of degree p. Let ω be the standard discrete valuation of E, \widehat{E} its residue field, and F_0 a rational extension of E in F with $\operatorname{trd}(F_0/E) = n$. Considering a discrete restricted Gauss valuation of F_0 extending ω , and its prolongations on F, one obtains that F has a discrete valuation v extending ω , such that \widehat{F} is an FG-extension of \widehat{E} with $\operatorname{trd}(\widehat{F}/\widehat{E}) = n$. Hence, by the proof of Proposition 5.9, given in [7], there exist $\Delta'_p \in d(\widehat{F})$ and a degree p cyclic extension L'_p/\widehat{F} , such that $\Delta'_p \otimes_{\widehat{F}} L'_p \in d(L'_p)$, $\exp(\Delta'_p) = p$, $\operatorname{ind}(\Delta'_p) = p^n$ and Δ'_p is a tensor product of cyclic division \widehat{F} -algebras of degree p. Given a Henselization (F_v, \overline{v}) of (F, v), Lemma 3.1 implies the existence of $\Delta_p \in d(F)$, such that $\Delta_p \otimes_F F_v \in d(F_v)$ is an inertial lift of Δ'_p over F_v . Also, by Lemma 3.2, there is a degree p cyclic extension L_p/F with $L_p \otimes_F F_v$ an inertial lift of L'_p over F_v . Fix a generator σ of $\mathcal{G}(L_p/F)$, take a uniform element β of (F, v), and put $D_p = \Delta_p \otimes_F (L_p/F, \sigma, \beta)$. Then it follows from (3.1) and [32], Theorem 1, that $D_p \in d(F)$, $\exp(D_p) = p$, $\operatorname{ind}(D_p) = p^{n+1}$ and $D_p \otimes_F F_v \in d(F_v)$, so Proposition 6.3 is proved.

Note finally that if E is a local field, F/E is an FG-extension and trd(F/E) = 1, then $Brd_p(F) = 2$, for every $p \in \mathbb{P}$. When p = char(E), this is implied by Proposition 6.3 and Theorem 2.1 (c), and for a proof in the case of $p \neq char(E)$, we refer the reader to [34], Theorems 1 and 3, [38] and [26], Corollary 1.4.

Acknowledgements. The concluding part of this research was done during my visit to Tokai University, Hiratsuka, Japan, in 2012. I would like to thank my host-professor Junzo Watanabe, the colleagues at the Department of Mathematics, and Mrs. Yoko Kinoshita and her team for their genuine hospitality.

References

- A.A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ., vol. XXIV, 1939.
- [2] A. Auel, E. Brussel, S. Garibaldi, U. Vishne, Open problems on central simple algebras, Transform. Groups 16 (2011), 219-264.
- [3] J.W.S. Cassels, A. Fröhlich (Eds.), Algebraic Number Theory, Proc. Instruct. Conf., organized by the London Math. Soc. (a NATO Adv. Study Inst.) with the support of IMU, Univ. of Sussex, Brighton, 01.9-17.9, 1965, Academic Press, London-New York, 1967.
- [4] I.D. Chipchakov, The normality of locally finite associative division algebras over classical fields, Vestn. Mosk. Univ., Ser. I (1988), No. 2, 15-17 (Russian: English transl. in: Mosc. Univ. Math. Bull. 43 (1988), 2, 18-21).
- [5] I.D. Chipchakov, On the classification of central division algebras of linearly bounded degree over global fields and local fields, J. Algebra 160 (1993), 342-379.
- [6] I.D. Chipchakov, On the residue fields of Henselian valued stable fields, J. Algebra 319 (2008), 16-49.
- [7] I.D. Chipchakov, Lower bounds and infinity criterion for Brauer pdimensions of finitely-generated field extensions, C.R. Acad. Buld. Sci. 66 (2013), 923-932 (available online at http://www.proceedings.bas.bg).

- [8] I.D. Chipchakov, On the behaviour of Brauer p-dimensions under finitelygenerated field extensions, Preprint, The Valuation Theory Home Page (submitted).
- [9] I.D. Chipchakov, On Brauer p-dimensions and absolute Brauer pdimensions of Henselian fields, Preprint, arXiv:1207.7120v4 [math.RA].
- [10] P.K. Draxl, Skew Fields, London Math. Soc. Lecture Notes, vol. 81, Cambridge University Press IX, Cambridge etc., 1983.
- [11] P.K. Draxl, Ostrowski's theorem for Henselian valued skew fields, J. Reine Angew. Math. 354 (1984), 213-218.
- [12] L. Ducos, Réalisation régulière explicite des groupes abéliens finis comme groupes de Galois, J. Number Theory 74 (1999), 44-55.
- [13] I. Efrat, A Hasse principle for function fields over PAC fields, Isr. J. Math. 122 (2001), 43-60.
- [14] I. Efrat, Valuations, Orderings, and Milnor K-Theory, Math. Surveys and Monographs, 124, Providence, RI: Amer. Math. Soc., XIII, 2006.
- [15] I.B. Fesenko, S.V. Vostokov, Local Fields and Their Extensions, 2nd ed., Transl. Math. Monographs, 121, Amer. Math. Soc., Providence, RI, 2002.
- [16] M.J. Fried, M. Jarden, *Field Arithmetic*, 2nd revised and enlarged ed., Ergebnisse der Math. Und ihrer Grenzgebiete, 3. Folge, Bd. 11, Springer, Berlin, 2005.
- [17] D. Harbater, J. Hartmann, D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263.
- [18] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Math., vol. 84, Springer-Verlag, XIII, New York-Heidelberg-Berlin, 1982.
- [19] B. Jacob, A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179.
- [20] A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), 71-94.
- [21] B. Kahn, Comparison of some field invariants, J. Algebra 232 (2000), 485-492.
- [22] J. Kollár, A conjecture of Ax and degenerations of Fano varieties, Isr. J. Math. 162 (2007), 235-251.
- [23] S. Lang, On quasi algebraic closure, Ann. Math. (2) 55 (1952), 373-390.
- [24] S. Lang, Algebra, Addison-Wesley Publ. Comp., Mass., 1965.
- [25] M. Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), 1-31.

- [26] M. Lieblich, Period and index in the Brauer group of an arithmetic surface, With an appendix by D. Krashen. J. Reine Angew. Math. 659 (2011), 1-41.
- [27] F. Lorenz, P. Roquette, The theorem of Grunwald-Wang in the setting of valuation theory, F.-V. Kuhlmann (ed.) et. al., Valuation theory and its applications, vol. II (Saskatoon, SK, 1999), 175-212, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.
- [28] E. Matzri, Symbol length in the Brauer group of a field, Preprint, arXiv:1402.0332v1 [math.RA].
- [29] O.V. Mel'nikov, O.I. Tavgen', The absolute Galois group of a Henselian field, Dokl. Akad. Nauk BSSR 29 (1985), 581-583.
- [30] A.S. Merkur'ev, Brauer groups of fields, Comm. Algebra 11 (1983), 2611-2624.
- [31] A.S. Merkur'ev, A.A. Suslin, K-cohomology of Severi-Brauer varieties and norm residue homomomorphisms, Izv. Akad. Nauk SSSR 46 (1982), 1011-1046 (Russian: English transl. in: Math. USSR Izv. 21 (1983), 307-340).
- [32] P. Morandi, The Henselization of a valued division algebra, J. Algebra 122 (1989), 232-243.
- [33] T. Nakayama, Über die direkte Zerlegung eines Divisionsalgebra, Jap. J. Math. 12 (1935), 65-70.
- [34] R. Parimala, V. Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Preprint, arXiv:1304.2214v1 [math.RA].
- [35] R. Pierce, Associative Algebras, Graduate Texts in Math., vol. 88, Springer-Verlag, XII, New York-Heidelberg-Berlin, 1982.
- [36] M. Reiner, Maximal Orders, London Math. Soc. Monographs, vol. 5, London-New York-San Francisco: Academic Press, a subsidiary of Harcourt Brace Jovanovich, Publishers, 1975.
- [37] D.J. Saltman, *Generic algebras*, Brauer groups in ring theory and algebraic geometry, Proc., Antwerp, 1981, Lect. Notes in Math. **917** (1982), 96-117.
- [38] D.J. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25-47 (correction in: ibid. 13 (1998), 125-129).
- [39] O.F.G. Schilling, *The Theory of Valuations*, Mathematical Surveys, No. 4, Amer. Math. Soc., New York, N.Y., 1950.
- [40] J.-P. Serre, *Galois Cohomology*, Transl. from the French original by Patrick Ion, Springer, Berlin, 1997.
- [41] G. Whaples, Algebraic extensions of arbitrary fields, Duke Math. J. 24 (1957), 201-204.