On Brauer p-dimensions and index-exponent relations over finitely-generated field extensions*

I.D. Chipchakov
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Acad. G. Bonchev Str., bl. 8
1113, Sofia, Bulgaria; email: chipchak@math.bas.bg

August 1, 2014

Abstract

Let E be a field of absolute Brauer dimension $\operatorname{abrd}(E)$, and F / E a transcendental finitely-generated extension. This paper shows that the Brauer dimension $\operatorname{Brd}(F)$ is infinite, if $\operatorname{abrd}(E)=\infty$. When the absolute Brauer p-dimension $\operatorname{abrd}_{p}(E)$ is infinite, for some prime number p, it proves that for each pair (n, m) of integers with $n \geq m>0$, there is a central division F-algebra of Schur index p^{n} and exponent p^{m}. Lower bounds on the Brauer p-dimension $\operatorname{Brd}_{p}(F)$ are obtained in some important special cases where $\operatorname{abrd}_{p}(E)<\infty$. These results solve negatively a problem posed by Auel, Brussel, Garibaldi and Vishne in Transform. Groups 16, 219-264 (2011).

Keywords: Brauer group, Schur index, exponent, Brauer/absolute Brauer p-dimension, finitely-generated extension, valued field MSC (2010): $16 \mathrm{~K} 20,16 \mathrm{~K} 50$ (primary); 12F20, 12J10, 16K40 (secondary).

1 Introduction

Let E be a field, $s(E)$ the class of finite-dimensional associative central simple E-algebras, $d(E)$ the subclass of division algebras $D \in s(E)$, and for each $A \in s(E)$, let $[A]$ be the equivalence class of A in the Brauer group $\operatorname{Br}(E)$. It is known that $\operatorname{Br}(E)$ is an abelian torsion group (cf. [35], Sect. 14.4), whence it decomposes into the direct sum of its p-components $\operatorname{Br}(E)_{p}$, where p runs across the set \mathbb{P} of prime numbers. By Wedderburn's structure theorem (see, e.g., [35], Sect. 3.5), each $A \in s(E)$ is isomorphic to the full matrix ring $M_{n}\left(D_{A}\right)$ of order n over some $D_{A} \in d(E)$; the order n is uniquely determined by A and so is D_{A}, up-to an E-isomorphism. This implies the dimension $[A: E]$ is a square of a positive integer $\operatorname{deg}(A)$. The main numerical invariants of A are the degree

[^0]$\operatorname{deg}(A)$, the Schur index $\operatorname{ind}(A)=\operatorname{deg}\left(D_{A}\right)$, and the exponent $\exp (A)$, i.e. the order of $[A]$ in $\operatorname{Br}(E)$. The following statements describe basic divisibility relations between $\operatorname{ind}(A)$ and $\exp (A)$, and give an idea of their behaviour under the scalar extension map $\operatorname{Br}(E) \rightarrow \operatorname{Br}(R)$, in case R / E is a field extension of finite degree $[R: E]$ (see, e.g., [35], Sects. 13.4, 14.4 and 15.2, and [5], Lemma 3.5):
(1.1) (a) $(\operatorname{ind}(A), \exp (A))$ is a Brauer pair, i.e. $\exp (A)$ divides $\operatorname{ind}(A)$ and is divisible by every $p \in \mathbb{P}$ dividing $\operatorname{ind}(A)$.
(b) $\operatorname{ind}\left(A \otimes_{E} B\right)$ is divisible by l.c.m. $\{\operatorname{ind}(A), \operatorname{ind}(B)\} /$ g.c.d. $\{\operatorname{ind}(A), \operatorname{ind}(B)\}$ and divides ind (A) ind (B), for each $B \in s(E)$; in particular, if $A, B \in d(E)$ and g.c.d. $\{\operatorname{ind}(A), \operatorname{ind}(B)\}=1$, then the tensor product $A \otimes_{E} B$ lies in $d(E)$.
(c) $\operatorname{ind}(A), \operatorname{ind}\left(A \otimes_{E} R\right), \exp (A)$ and $\exp \left(A \otimes_{E} R\right)$ divide $\operatorname{ind}\left(A \otimes_{E} R\right)[R: E]$, $\operatorname{ind}(A), \exp \left(A \otimes_{E} R\right)[R: E]$ and $\exp (A)$, respectively.

Statements (1.1) (a), (b) imply Brauer's Primary Tensor Product Decomposition Theorem, for any $\Delta \in d(E)$ (cf. [35], Sect. 14.4), and (1.1) (a) fully describes general restrictions on index-exponent relations, in the following sense:
(1.2) Given a Brauer pair $\left(m^{\prime}, m\right) \in \mathbb{N}^{2}$, there is a field F with $(\operatorname{ind}(D), \exp (D))=$ (m^{\prime}, m), for some $D \in d(F)$ (Brauer, see [35], Sect. 19.6). One may take as F any rational (i.e. purely transcendental) extension in infinitely many variables over any fixed field F_{0} (see also Corollary 4.4 and Remark 4.5).

As in [2], Sect. 4, we say that a field E is of finite Brauer p-dimension $\operatorname{Brd}_{p}(E)=n$, for a fixed $p \in \mathbb{P}$, if n is the least integer ≥ 0, for which $\operatorname{ind}(D) \leq \exp (D)^{n}$ whenever $D \in d(E)$ and $[D] \in \operatorname{Br}(E)_{p}$. If no such n exists, we set $\operatorname{Brd}_{p}(E)=\infty$. The absolute Brauer p-dimension of E is defined as the supremum $\operatorname{abrd}_{p}(E)=\sup \left\{\operatorname{Brd}_{p}(R): \quad R \in \operatorname{Fe}(E)\right\}$, where $\operatorname{Fe}(E)$ is the set of finite extensions of E in a separable closure $E_{\text {sep }}$. Clearly, $\operatorname{Brd}_{p}(E) \leq \operatorname{abrd}_{p}(E), p \in \mathbb{P}$. Note that if E is a virtually perfect field, i.e. $\operatorname{char}(E)=0$ or $\operatorname{char}(E)=q>0$ and E is a finite extension of its subfield $E^{q}=\left\{e^{q}: e \in E\right\}$, then:
(1.3) $\operatorname{Brd}_{p}\left(E^{\prime}\right) \leq \operatorname{abrd}_{p}(E)$, for all finite extensions E^{\prime} / E and $p \in \mathbb{P}$.

Since in the case of $\operatorname{char}(E)=q>0,\left[E^{\prime}: E^{\prime q}\right]=\left[E: E^{q}\right]$ (cf. [24], Ch. VII, Sect. 7), (1.3) can be deduced from (1.1) (c) and Albert's theory of q-algebras [1], Ch. VII, Theorem 28 (see also Lemma 4.1).

It is known that $\operatorname{Brd}_{p}(E)=\operatorname{abrd}_{p}(E)=1$, for all $p \in \mathbb{P}$, if E is a global or local field (cf. [36], (31.4) and (32.19)), or the function field of an algebraic surface defined over an algebraically closed field E_{0} [20], [25] (see also Remark 5.8). As shown in [28], we have $\operatorname{abrd}_{p}(E)<p^{n-1}, p \in \mathbb{P}$, provided that E is the function field of an n-dimensional algebraic variety defined over an algebraically closed field E_{0}. Similarly, $\operatorname{abrd}_{p}(E)<p^{n}, p \in \mathbb{P}$, if E_{0} is a finite field, the maximal unramified extension of a local field, or a perfect pseudo algebraically closed (PAC) field (concerning the C_{1}-type of E_{0}, used in [28] for proving these inequalities, see [23] and [22], [16], Theorem 21.3.6, respectively). The suprema $\operatorname{Brd}(E)=\sup \left\{\operatorname{Brd}_{p}(E): p \in \mathbb{P}\right\}$ and $\operatorname{abrd}(E)=\sup \{\operatorname{Brd}(R): R \in \operatorname{Fe}(E)\}$ are called a Brauer dimension and an absolute Brauer dimension of E, respectively. In view of (1.1), the definition of $\operatorname{Brd}(E)$ is the same as the one given in [2], Sect. 4. It has recently been proved [17], [34] (see also [9], Propositions 6.1 and 7.1), that $\operatorname{abrd}\left(K_{m}\right)<\infty$, provided $m \in \mathbb{N}$ and $\left(K_{m}, v_{m}\right)$ is an m-dimensional local field, in the sense of [15], with a finite m-th residue field \widehat{K}_{m}.

The present research is devoted to the study of index-exponent relations over transcendental FG-extensions F of a field E and their dependence on $\operatorname{abrd}_{p}(E)$, $p \in \mathbb{P}$. It is motivated mainly by two questions concerning the dependence of $\operatorname{Brd}(F)$ upon $\operatorname{Brd}(E)$, stated as open problems in Section 4 of the survey [2].

2 The main results

While the study of index-exponent relations makes interest in its own right, it is worth noting that fields E with $\operatorname{abrd}_{p}(E)<\infty$, for all $p \in \mathbb{P}$, are singled out by Galois cohomology (see [21] and [8], Remark 4.2, with further references there), and in the virtually perfect case, by the following result (see (1.3), [4] and [5]):
(2.1) Every locally finite dimensional associative central division E-algebra R possesses an E-subalgebra \widetilde{R} with the following properties:
(a) \widetilde{R} decomposes into a tensor product $\otimes_{p \in \mathbb{P}} R_{p}$, where $\otimes=\otimes_{E}, R_{p} \in d(E)$ and $\left[R_{p}\right] \in \operatorname{Br}(E)_{p}$, for each $p \in \mathbb{P}$;
(b) Finite-dimensional E-subalgebras of R are embeddable in \widetilde{R};
(c) \widetilde{R} is isomorphic to R, if the dimension $[R: E]$ is countably infinite.

It would be of definite interest to know whether function fields of algebraic varieties over a global, local or algebraically closed field are of finite absolute Brauer dimensions. This draws our attention to the following open question:
(2.2) Is the class of fields E of finite absolute Brauer p-dimensions, for a fixed $p \in \mathbb{P}, p \neq \operatorname{char}(E)$, closed under the formation of FG-extensions?

The main result of this paper shows, for a transcendental FG-extension F / E, the strong influence of p-dimensions $\operatorname{abrd}_{p}(E)$ on $\operatorname{Brd}_{p}(F)$, and on indexexponent relations over F, as follows:

Theorem 2.1. Let E be a field, $p \in \mathbb{P}$ and F / E an FG -extension of transcendency degree $\operatorname{trd}(F / E)=\kappa \geq 1$. Then:
(a) $\operatorname{Brd}_{p}(F) \geq \operatorname{abrd}_{p}(E)+\kappa-1$, if $\operatorname{abrd}_{p}(E)<\infty$ and F / E is rational;
(b) If $\operatorname{abrd}_{p}(E)=\infty$, then $\operatorname{Brd}_{p}(F)=\infty$ and for each $n, m \in \mathbb{N}$ with $n \geq$ $m>0$, there exists $D_{n, m} \in d(F)$ with $\operatorname{ind}\left(D_{n, m}\right)=p^{n}$ and $\exp \left(D_{n, m}\right)=p^{m}$;
(c) $\operatorname{Brd}_{p}(F)=\infty$, provided $p=\operatorname{char}(E)$ and $\left[E: E^{p}\right]=\infty$; if $\operatorname{char}(E)=p$ and $\left[E: E^{p}\right]=p^{\nu}<\infty$, then $\nu+\kappa-1 \leq \operatorname{Brd}_{p}(F) \leq \operatorname{abrd}_{p}(F) \leq \nu+\kappa$.

It is known (cf. [24], Ch. X) that each FG-extension F of a field E possesses a subfield F_{0} that is rational over E with $\operatorname{trd}\left(F_{0} / E\right)=\operatorname{trd}(F / E)$. This ensures that $\left[F: F_{0}\right]<\infty$, so (1.1) and Theorem 2.1 imply the following:
(2.3) If (2.2) has an affirmative answer, for some $p \in \mathbb{P}, p \neq \operatorname{char}(E)$, and each FG-extension F / E with $\operatorname{trd}(F / E)=\kappa \geq 1$, then there exists $c_{\kappa}(p) \in \mathbb{N}$, depending on E, such that $\operatorname{Brd}_{p}(\Phi) \leq c_{\kappa}(p)$ whenever Φ / E is an FG-extension and $\operatorname{trd}(\Phi / E)<\kappa$. For example, this applies to $c_{k}(p)=\operatorname{Brd}_{p}\left(E_{\kappa}\right)$, where E_{κ} / E is a rational FG-extension with $\operatorname{trd}\left(E_{\kappa} / E\right)=\kappa$.

The application of Theorem 2.1 is facilitated by the following result of [8] (see Example 6.2 below, for an alternative proof in characteristic zero):

Proposition 2.2. For each $q \in \mathbb{P} \cup\{0\}$ and $k \in \mathbb{N}$, there exists a field $E_{q, k}$ with $\operatorname{char}\left(E_{q, k}\right)=q, \operatorname{Brd}\left(E_{q, k}\right)=k$ and abrd $\left(E_{q, k}\right)=\infty$, for all $p \in \mathbb{P} \backslash P_{q}$, where $P_{0}=\{2\}$ and $P_{q}=\{p \in \mathbb{P}: p \mid q(q-1)\}, q \in \mathbb{P}$. Moreover, if $q>0$, then $E_{q, k}$ can be chosen so that $\left[E_{q, k}: E_{q, k}^{q}\right]=\infty$.

Theorem 2.1, Proposition 2.2 and statement (1.1) (b) imply the following:
(2.4) There exist fields $E_{k}, k \in \mathbb{N}$, such that $\operatorname{char}\left(E_{k}\right)=2, \operatorname{Brd}\left(E_{k}\right)=k$ and all Brauer pairs $\left(m^{\prime}, n^{\prime}\right) \in \mathbb{N}^{2}$ are index-exponent pairs over any transcendental FG-extension of E_{k}.

It is not known whether (2.4) holds in any characteristic $q \neq 2$. This is closely related to the following open problem:
(2.5) Find whether there exists a field E containing a primitive p-th root of unity, for a given $p \in \mathbb{P}$, such that $\operatorname{Brd}_{p}(E)<\operatorname{abrd}_{p}(E)=\infty$.

Statement (1.1) (b), Theorem 2.1 and Proposition 2.2 imply the validity of (2.4) in zero characteristic, for Brauer pairs of odd positive integers. When $q>2$, they show that if $\left[E_{q, k}: E_{q, k}^{q}\right]=\infty$, then Brauer pairs $\left(m^{\prime}, m\right) \in \mathbb{N}^{2}$ relatively prime to $q-1$ are index-exponent pairs over every transcendental FG-extension of $E_{q, k}$. This solves in the negative [2], Problem 4.4, proving (in the strongest presently known form) that the class of fields of finite Brauer dimensions is not closed under the formation of FG-extensions.

Theorem 2.1 (a) makes it easy to prove that the solution to [2], Problem 4.5, on the existence of a "good" definition of a dimension $\operatorname{dim}(E)<\infty$, for some fields E, is negative whenever $\operatorname{abrd}(E)=\infty$ (see Corollary 5.4). It implies that if Problem 4.5 of [2] is solved affirmatively, for all FG-extensions F / E, then each F satisfies, for all $p \in \mathbb{P}$, the following stronger inequalities than those conjectured by (2.3) (see also Remark 5.5 and [2], Sect. 4):
(2.6) $\operatorname{Brd}(F)<\operatorname{dim}(F), \operatorname{abrd}(F) \leq \operatorname{dim}(F)$ and $\operatorname{abrd}(F) \leq \operatorname{Brd}\left(E_{t+1}\right) \leq$ $\operatorname{abrd}(E)+t+c(E)$, for some integer $c(E) \leq \operatorname{dim}(E)-\operatorname{abrd}(E)$, where $t=$ $\operatorname{trd}(F / E), E_{t+1} / E$ is a rational extension and $\operatorname{trd}\left(E_{t+1} / E\right)=t+1$.

The proof of Theorem 2.1 is based on Merkur'ev's theorem about central division algebras of prime exponent [30], Sect. 4, Theorem 2, and on a characterization of fields of finite absolute Brauer p-dimensions generalizing Albert's theorem [1], Ch. XI, Theorem 3. It strongly relies on results of valuation theory, like theorems of Grunwald-Hasse-Wang type, Morandi's theorem on tensor products of valued division algebras [32], Theorem 1, lifting theorems over Henselian (valued) fields and Ostrowski's theorem. As shown in [8], Sect. 6, the flexibility of this approach enables one to obtain the following results:
(2.7) (a) There exists a field E_{1} with $\operatorname{abrd}\left(E_{1}\right)=\infty, \operatorname{abrd}_{p}\left(E_{1}\right)<\infty, p \in \mathbb{P}$, and $\operatorname{Brd}\left(L_{1}\right)<\infty$, for every finite extension L_{1} / E_{1};
(b) For any integer $n \geq 2$, there is a Galois extension L_{n} / E_{n}, such that $\left[L_{n}: E_{n}\right]=n, \operatorname{Brd}_{p}\left(L_{n}\right)=\infty$, for all $p \in \mathbb{P}, p \equiv 1(\bmod n)$, and $\operatorname{Brd}\left(M_{n}\right)<\infty$, provided that M_{n} is an extension of E in $L_{n, \text { sep }}$ not including L_{n}.

Our basic notation and terminology are standard, as used in [6]. For any field K with a Krull valuation v, unless stated otherwise, we denote by $O_{v}(K)$, \widehat{K} and $v(K)$ the valuation ring, the residue field and the value group of (K, v),
respectively; $v(K)$ is supposed to be an additively written totally ordered abelian group. As usual, \mathbb{Z} stands for the additive group of integers, $\mathbb{Z}_{p}, p \in \mathbb{P}$, are the additive groups of p-adic integers, and $[r]$ is the integral part of any real number $r \geq 0$. We write $I\left(\Lambda^{\prime} / \Lambda\right)$ for the set of intermediate fields of a field extension $\Lambda^{\prime} / \Lambda$, and $\operatorname{Br}\left(\Lambda^{\prime} / \Lambda\right)$ for the relative Brauer group of $\Lambda^{\prime} / \Lambda$. By a Λ-valuation of Λ^{\prime}, we mean a Krull valuation v with $v(\lambda)=0$, for all $\lambda \in \Lambda^{*}$. Given a field E and $p \in \mathbb{P}, E(p)$ denotes the maximal p-extension of E in $E_{\text {sep }}$, and $r_{p}(E)$ the rank of the Galois group $\mathcal{G}(E(p) / E)$ as a pro- p-group $\left(r_{p}(E)=0\right.$, if $\left.E(p)=E\right)$. Brauer groups are considered to be additively written, Galois groups are viewed as profinite with respect to the Krull topology, and by a homomorphism of profinite groups, we mean a continuous one. We refer the reader to [14], [19], [24], [35] and [40], for any missing definitions concerning valuation theory, field extensions, simple algebras, Brauer groups and Galois cohomology.

The rest of the paper proceeds as follows: Section 3 includes preliminaries used in the sequel. Theorem 2.1 is proved in Sections 4 and 5. In Section 6 we show that the answer to (2.2) will be affirmative, if this is the case in zero characteristic.

3 Preliminaries on valuation theory

The results of this Section are known and will often be used without an explicit reference. We begin with a lemma essentially due to Saltman [37].

Lemma 3.1. Let (K, v) be a height 1 valued field, K_{v} a Henselization of K in $K_{\text {sep }}$ relative to v, and $\Delta_{v} \in d\left(K_{v}\right)$ an algebra of exponent $p \in \mathbb{P}$. Then there exists $\Delta \in d(K)$ with $\exp (\Delta)=p$ and $\left[\Delta \otimes_{K} K_{v}\right]=\left[\Delta_{v}\right]$.

Proof. By [30], Sect. 4, Theorem 2, Δ_{v} is Brauer equivalent to a tensor product of degree p algebras from $d\left(K_{v}\right)$, so one may consider only the case of $\operatorname{deg}\left(\Delta_{v}\right)=$ p. Then, by Saltman's theorem (cf. [37]), there exists $\Delta \in d(K)$, such that $\operatorname{deg}(\Delta)=p$ and $\Delta \otimes_{K} K_{v}$ is K_{v}-isomorphic to Δ_{v}, which proves Lemma 3.1.

In what follows, we shall use the fact that the Henselization K_{v} of a field K with a valuation v of height 1 is separably closed in the completion of K relative to the topology induced by v (cf. [14], Theorem 15.3.5 and Sect. 18.3). For example, our next lemma is a consequence of Galois theory, this fact and LorenzRoquette's valuation-theoretic generalization of Grunwald-Wang's theorem (cf. [24], Ch. VIII, Theorem 4, and [27], page 176 and Theorems 1 and 2).

Lemma 3.2. Let F be a field, $S=\left\{v_{1}, \ldots, v_{s}\right\}$ a finite set of non-equivalent height 1 valuations of F, and for each index j, let $F_{v_{j}}$ be a Henselization of K in $K_{\text {sep }}$ relative to v_{j}, and $L_{j} / F_{v_{j}}$ a cyclic field extension of degree $p^{\mu_{j}}$, for some $p \in P$ and $\mu_{j} \in \mathbb{N}$. Put $\mu=\max \left\{\mu_{1}, \ldots, \mu_{s}\right\}$, and in the case of $p=2$ and $\operatorname{char}(F)=0$, suppose that the extension $F\left(\delta_{\mu}\right) / F$ is cyclic, where $\delta_{\mu} \in F_{\text {sep }}$ is a primitive 2^{μ}-th root of unity. Then there is a cyclic field extension L / F of degree p^{μ}, whose Henselization $L_{v_{j}^{\prime}}$ is $F_{v_{j}}$-isomorphic to L_{j}, where v_{j}^{\prime} is a valuation of L extending v_{j}, for $j=1, \ldots, s$.

Assume that $K=K_{v}$, or equivalently, that (K, v) is a Henselian field, i.e. v is a Krull valuation on K, which extends uniquely, up-to an equivalence, to a valuation v_{L} on each algebraic extension L / K. Put $v(L)=v_{L}(L)$ and denote by \widehat{L} the residue field of $\left(L, v_{L}\right)$. It is known that $\widehat{L} / \widehat{K}$ is an algebraic extension and $v(K)$ is a subgroup of $v(L)$. When $[L: K]$ is finite, Ostrowski's theorem states the following (cf. [14], Theorem 17.2.1):
(3.1) $[\widehat{L}: \widehat{K}] e(L / K)$ divides $[L: K]$ and $[L: K][\widehat{L}: \widehat{K}]^{-1} e(L / K)^{-1}$ is not divisible by any $p \in \mathbb{P}$ different from $\operatorname{char}(\widehat{K}), e(L / K)$ being the index of $v(K)$ in $v(L)$; in particular, if $\operatorname{char}(\widehat{K}) \dagger[L: K]$, then $[L: K]=[\widehat{L}: \widehat{K}] e(L / K)$.

Statement (3.1) and the Henselity of v imply the following:
(3.2) The quotient groups $v(K) / p v(K)$ and $v(L) / p v(L)$ are isomorphic, if $p \in \mathbb{P}$ and L / K is a finite extension. When $\operatorname{char}(\widehat{K}) \dagger[L: K]$, the natural embedding of K into L induces canonically an isomorphism $v(K) / p v(K) \cong v(L) / p v(L)$.

A finite extension R / K is said to be defectless, if $[R: K]=[\widehat{R}: \widehat{K}] e(R / K)$. It is called inertial, if $[R: K]=[\widehat{R}: \widehat{K}]$ and \widehat{R} is separable over \widehat{K}. We say that R / K is totally ramified, if $[R: K]=e(R / K) ; R / K$ is called tamely ramified, if $\widehat{R} / \widehat{K}$ is separable and $\operatorname{char}(\widehat{K}) \dagger e(R / K)$. The Henselity of v ensures that the compositum $K_{\text {ur }}$ of inertial extensions of K in $K_{\text {sep }}$ has the following properties:
(3.3) (a) $v\left(K_{\text {ur }}\right)=v(K)$ and finite extensions of K in $K_{\text {ur }}$ are inertial;
(b) $K_{\text {ur }} / K$ is a Galois extension, $\widehat{K}_{\text {ur }} \cong \widehat{K}_{\text {sep }}$ over $\widehat{K}, \mathcal{G}\left(K_{\text {ur }} / K\right) \cong \mathcal{G}_{\widehat{K}}$, and the natural mapping of $I\left(K_{\mathrm{ur}} / K\right)$ into $I\left(\widehat{K}_{\text {sep }} / \widehat{K}\right)$ is bijective.

Recall that the compositum $K_{\text {tr }}$ of tamely ramified extensions of K in $K_{\text {sep }}$ is a Galois extension of K with $v\left(K_{\mathrm{tr}}\right)=p v\left(K_{\mathrm{tr}}\right)$, for every $p \in \mathbb{P}$ not equal to $\operatorname{char}(\widehat{K})$. It is therefore clear from (3.1) that if $K_{\operatorname{tr}} \neq K_{\text {sep }}$, then $\operatorname{char}(\widehat{K})=q \neq$ 0 and $\mathcal{G}_{K_{\mathrm{tr}}}$ is a pro- q-group. When this holds, it follows from (3.3) and Galois cohomology (cf. [40], Ch. II, 2.2) that $\operatorname{cd}_{q}\left(\mathcal{G}\left(K_{\text {tr }} / K\right)\right) \leq 1$. Hence, by [40], Ch. I, Proposition 16, there is a closed subgroup $\mathcal{H} \leq \mathcal{G}_{K}$, such that $\mathcal{G}_{K_{\mathrm{tr}}} \mathcal{H}=\mathcal{G}_{K}$, $\mathcal{G}_{K_{\text {tr }}} \cap \mathcal{H}=\{1\}$ and $\mathcal{H} \cong \mathcal{G}\left(K_{\text {tr }} / K\right)$. In view of Galois theory and the Mel'nikovTavgen' theorem [29], these results imply in the case of $\operatorname{char}(\widehat{K})=q>0$ the existence of a field $K^{\prime} \in I\left(K_{\text {sep }} / K\right)$ satisfying the following conditions:
(3.4) $K^{\prime} \cap K_{\text {tr }}=K, K^{\prime} K_{\text {tr }}=K_{\text {sep }}$ and $K_{\text {sep }} \cong K_{\text {tr }} \otimes_{K} K^{\prime}$ over K; the field \widehat{K}^{\prime} is a perfect closure of \widehat{K}, finite extensions of K in K^{\prime} are of q-primary degrees, $K_{\text {sep }}=K_{\text {tr }}^{\prime}, v\left(K^{\prime}\right)=q v\left(K^{\prime}\right)$, and the natural embedding of K into K^{\prime} induces isomorphisms $v(K) / p v(K) \cong v\left(K^{\prime}\right) / p v\left(K^{\prime}\right), p \in \mathbb{P} \backslash\{q\}$.

Assume as above that (K, v) is Henselian. Then each $\Delta \in d(K)$ has a unique, up-to an equivalence, valuation v_{Δ} extending v so that the value group $v(\Delta)$ of $\left(\Delta, v_{\Delta}\right)$ is totally ordered and abelian (cf. [39], Ch. 2, Sect. 7). It is known that $v(K)$ is a subgroup of $v(\Delta)$ of index $e(\Delta / K) \leq[\Delta: K]$, and the residue division ring $\widehat{\Delta}$ of $\left(\Delta, v_{\Delta}\right)$ is a \widehat{K}-algebra. Moreover, by the Ostrowski-Draxl theorem [11], $[\Delta: K]$ is divisible by $e(\Delta / K)[\widehat{\Delta}: \widehat{K}]$, and in case $\operatorname{char}(\widehat{K}) \dagger[\Delta: K]$, $[\Delta: K]=e(\Delta / K)[\widehat{\Delta}: \widehat{K}]$. An algebra $D \in d(K)$ is called inertial, if $[D: K]=$ [$\widehat{D}: \widehat{K}]$ and $\widehat{D} \in d(\widehat{K})$. Similarly to inertial extensions, the defined algebras have a lifting property described by the following result (see [19], Theorem 2.8):
(3.5) (a) Each $\widetilde{D} \in d(\widehat{K})$ has an inertial lift over K, i.e. $\widetilde{D}=\widehat{D}$, for some $D \in$ $d(K)$ inertial over K, that is uniquely determined by \widetilde{D}, up-to a K-isomorphism.
(b) The set $\operatorname{IBr}(K)=\{[I] \in \operatorname{Br}(K): I \in d(K)$ is inertial $\}$ is a subgroup of $\operatorname{Br}(K)$; the canonical mapping $\operatorname{IBr}(K) \rightarrow \operatorname{Br}(\widehat{K})$ is an isomorphism.

4 Proof of Theorem 2.1 (a) and (c)

The role of Lemma 3.1 in the study of Brauer p-dimensions of FG-extensions of a field E is connected with the following result of [8], which characterizes the condition $\operatorname{abrd}_{p}(E) \leq \mu$, for a given $\mu \in \mathbb{N}$. When E is virtually perfect, by (1.3), this result is in fact equivalent to [34], Lemma 1.1, and in case $\mu=1$, it restates Theorem 3 of [1], Ch. XI.

Lemma 4.1. Let E be a field, $p \in \mathbb{P}$ and $\mu \in \mathbb{N}$. Then $\operatorname{abrd}_{p}(E) \leq \mu$ if and only if, for each $E^{\prime} \in \operatorname{Fe}(E)$, $\operatorname{ind}(\Delta) \leq p^{\mu}$ whenever $\Delta \in d\left(E^{\prime}\right)$ and $\exp (\Delta)=p$.

Let now F / E be a transcendental FG-extension and $F_{0} \in I(F / E)$ a rational extension of E with $\operatorname{trd}\left(F_{0} / E\right)=\operatorname{trd}(F / E)=t$. Clearly, an ordering on a fixed transcendency basis of F_{0} / E gives rise to a height $t E$-valuation v_{0} of F_{0} with $v_{0}\left(F_{0}\right)=\mathbb{Z}^{t}$ and $\widehat{F}_{0}=E$. Considering any prolongation of v_{0} on F, and taking into account that $\left[F: F_{0}\right]<\infty$, one obtains the following:
(4.1) F has an E-valuation v of height t, such that $v(F) \cong \mathbb{Z}^{t}$ and \widehat{F} is a finite extension of E; in particular, $v(F) / p v(F)$ is a group of order p^{t}, for every $p \in \mathbb{P}$.
When $\operatorname{char}(E)=p,(4.1)$ implies $\left[\widehat{F}: \widehat{F}^{p}\right]=\left[E: E^{p}\right]$, so the former assertion of Theorem 2.1 (c) can be deduced from the following lemma.

Lemma 4.2. Let (K, v) be a valued field with $\operatorname{char}(K)=q>0$ and $v(K) \neq$ $q v(K)$, and let $\tau(q)$ be the dimension of $v(K) / q v(K)$ as a vector space over the field \mathbb{F}_{q} with q elements. Then:
(a) For each $\pi \in K^{*}$ with $v(\pi) \notin q v(K)$, there are degree q extensions L_{m} of K in $K(q), m \in \mathbb{N}$, such that the compositum $M_{m}=L_{1} \ldots L_{m}$ has a unique valuation v_{m} extending v, up-to an equivalence, $\left(M_{m}, v_{m}\right) /(K, v)$ is totally ramified, $\left[M_{m}: K\right]=q^{m}$ and $v(\pi) \in q^{m} v_{m}\left(M_{m}\right)$, for each m;
(b) Given an integer $n \geq 2$, there exists $T_{n} \in d(K)$ with $\exp \left(T_{n}\right)=q$ and $\operatorname{ind}\left(T_{n}\right)=q^{n-1}$ except, possibly, if $\tau(q)<\infty$ and $\left[\widehat{K}: \widehat{K}^{q}\right]<q^{n-\tau(q)}$.

Proof. It suffices to consider the special case of $v(\pi)<0$. Fix a Henselization $\left(K_{v}, \bar{v}\right)$ of (K, v), put $\rho\left(K_{v}\right)=\left\{u^{q}-u: u \in K_{v}\right\}$, and for each $m \in \mathbb{N}$, denote by L_{m} the root field in $K_{\text {sep }}$ over K of the polynomial $f_{m}(X)=X^{q}-X-\pi_{m}$, where $\pi_{m}=\pi^{1+q m}$. Also, let \mathbb{F} be the prime subfield of $K, \Phi=\mathbb{F}(\pi), \omega$ the valuation of Φ induced by v, and $\left(\Phi_{\omega}, \bar{\omega}\right)$ a Henselization of (Φ, ω), such that $\Phi_{\omega} \subseteq K_{v}$ and \bar{v} extends $\bar{\omega}$ (the existence of ($\Phi_{\omega}, \bar{\omega}$) follows from [14], Theorem 15.3.5). Identifying K_{v} with its K-isomorphic copy in $K_{\text {sep }}$, put $L_{m}^{\prime}=L_{m} K_{v}$ and $M_{m}^{\prime}=$ $M_{m} K_{v}$, for every index m. It is easily verified that $\rho\left(K_{v}\right)$ is an \mathbb{F}-subspace of K_{v} and $\bar{v}\left(u^{q}-u\right) \in q \bar{v}\left(K_{v}\right)$, for every $u \in K_{v}$ with $\bar{v}(u)<0$. As $\bar{v}\left(K_{v}\right)=v(K)$, this
observation and the choice of π indicate that the cosets $\pi_{m}+\rho\left(K_{v}\right), m \in \mathbb{N}$, are linearly independent over \mathbb{F}. In view of the Artin-Schreier theorem and Galois theory (cf. [24], Ch. VIII, Sect. 6), this implies $f_{m}(X)$ is irreducible over K_{v}, L_{m}^{\prime} / K_{v} and L_{m} / K are cyclic extensions of degree $q, M_{m}^{\prime} / K_{v}$ and M_{m} / K are abelian, and $\left[M_{m}^{\prime}: K_{v}\right]=\left[M_{m}: K\right]=q^{m}$, for each $m \in \mathbb{N}$. Moreover, our argument proves that degree q extensions of K_{v} in the compositum of the fields $L_{m}^{\prime}, m \in \mathbb{N}$, are cyclic and totally ramified over K_{v}. At the same time, it follows from the Henselity of \bar{v} and the equality $\widehat{K}_{v}=\widehat{K}$ that M_{m}^{\prime} contains as a subfield an inertial lift over K_{v} of the separable closure of \widehat{K} in \widehat{M}_{m}^{\prime}. When v is discrete and \widehat{K} is perfect, the obtained results imply the assertions of Lemma 4.2 (a), since finite extensions of K_{v} in $K_{\text {sep }}$ are defectless (relative to \bar{v}, see [24], Ch. XII, Sect. 6, Corollary 2).

To prove Lemma 4.2 (a) in general it remains to be seen that, for any fixed $m \in \mathbb{N}, M_{m}$ has a unique, up-to an equivalence, valuation v_{m} extending v, $\left(M_{m}, v_{m}\right) /(K, v)$ is totally ramified and $v(\pi) \in q^{m} v\left(M_{m}\right)$. The extendability of v to a valuation v_{m} of M_{m} is well-known (cf. [24], Ch. XII, Sect. 4), so our assertions can be deduced from the concluding one, the equality $\left[M_{m}: K\right]=$ $\left[M_{m} K_{v}: K_{v}\right]=q^{m}$ and statement (3.1). Our proof also relies on the fact that (Φ, ω) is a discrete valued field and $\widehat{\Phi} / \mathbb{F}$ is a finite extension (see [3], Ch. II, Lemma 3.1, or [14], Example 4.1.3); in particular, $\widehat{\Phi}$ is perfect. Let now $\Psi_{m} \in$ $I\left(K_{\mathrm{sep}} / \Phi\right)$ be the root field of $f_{m}(X)$ over Φ. Then $L_{m}=\Psi_{m} K,\left[\Psi_{m}: \Phi\right]=q$, $M_{m}=\Theta_{m} K$ and $\left[\Theta_{m}: \Phi\right]=q^{m}$, where $\Theta_{m}=\Psi_{1} \ldots \Psi_{m}$. Therefore, $\Theta_{m} \Phi_{\omega} / \Phi_{\omega}$ is totally ramified relative to $\bar{\omega}$. Equivalently, the integral closure of $O_{\omega}(\Phi)$ in Θ_{m} contains a primitive element t_{m}^{\prime} of Θ_{m} / Φ, whose minimal polynomial $\theta_{m}(X)$ over $O_{\omega}(\Phi)$ is Eisensteinian (cf. [3], Ch. I, Theorem 6.1, and [24], Ch. XII, Sects. 2, 3 and 6). Hence, ω has a unique prolongation ω_{m} on Θ_{m}, up-to an equivalence, $\omega\left(t_{m}\right) \notin q \omega(\Phi)$ and $q^{m} \omega_{m}\left(t_{m}^{\prime}\right)=\omega\left(t_{m}\right)$, where t_{m} is the free term of $\theta_{m}(X)$. As $\pi \in \Phi, v(\pi) \notin q v(K)$ and Θ_{m} / Φ is a Galois extension, this implies t_{m}^{\prime} is a primitive element of M_{m} / K and $M_{m}^{\prime} / K_{v}, q^{m} v_{m}\left(t_{m}^{\prime}\right)=v\left(t_{m}\right)=\omega\left(t_{m}\right)$ and $v(\pi) \in q^{m} v_{m}\left(M_{m}\right)$, which completes the proof of Lemma 4.2 (a).

We prove Lemma 4.2 (b). Put $\pi_{1}=\pi$ and suppose that there exist elements $\pi_{j} \in K^{*}, j=2, \ldots, n$, and an integer $\mu \leq n$, such that the cosets $v\left(\pi_{i}\right)+q v(K)$, $i=1, \ldots, \mu$, are linearly independent over \mathbb{F}_{q}, and in case $\mu<n, v\left(\pi_{u}\right)=0$ and the residue classes $\hat{\pi}_{u}, u=\mu+1, \ldots, n$, generate an extension of \widehat{K}^{q} of degree $q^{n-\mu}$. Fix a generator λ_{m} of $\mathcal{G}\left(L_{m} / K\right)$, for each $m \in \mathbb{N}$, denote by T_{n} the K algebra $\otimes_{j=2}^{n}\left(L_{j-1} / K, \lambda_{j-1}, \pi_{j}\right)$, where $\otimes=\otimes_{K}$, and put $T_{n}^{\prime}=T_{n} \otimes_{K} K_{v}$. We show that $T_{n} \in d(K)$ (whence $\exp \left(T_{n}\right)=q$ and $\operatorname{ind}\left(T_{n}\right)=q^{n-1}$). Clearly, there is a K_{v}-isomorphism $T_{n}^{\prime} \cong \otimes_{j=2}^{n}\left(L_{j-1}^{\prime} / K_{v}, \lambda_{j-1}^{\prime}, \pi_{j}\right)$, where $\otimes=\otimes_{K_{v}}$ and λ_{j-1}^{\prime} is the unique $K_{v^{\prime}}$-automorphism of L_{j-1}^{\prime} extending λ_{j-1}, for each j. Therefore, it suffices for the proof of Lemma 4.2 (b) to show that $T_{n}^{\prime} \in d\left(K_{v}\right)$. Since K_{v} and $L_{m}^{\prime}, m \in \mathbb{N}$, are related as K and $L_{m}, m \in \mathbb{N}$, this amounts to proving that $T_{n} \in d(K)$, for (K, v) Henselian. Suppose first that $n=2$. As L_{1} / K is totally ramified, it follows from the Henselity of v that $v(l) \in q v\left(L_{1}\right)$, for every element l of the norm group $N\left(L_{1} / K\right)$. One also concludes that if $l \in N\left(L_{1} / K\right)$ and $v_{L}(l)=0$, then $\hat{l} \in \widehat{K}^{q}$. These observations prove that $\pi_{2} \notin N\left(L_{1} / K\right)$, so it follows from [35], Sect. 15.1, Proposition b, that $T_{2} \in d(K)$. Henceforth, we assume that $n \geq 3$ and view all value groups considered in the rest of the proof as (ordered) subgroups of a fixed divisible hull of $v(K)$. Note that the centralizer C_{n} of L_{n} in T_{n} is L_{n}-isomorphic to $T_{n-1} \otimes_{K} L_{n}$ and $\otimes_{j=2}^{n-1}\left(L_{j-1} L_{n}, \lambda_{j-1, n}, \pi_{j}\right)$,
where $\otimes=\otimes_{L_{n}}$ and $\lambda_{j-1, n}$ is the unique L_{n}-automorphism of $L_{j-1} L_{n}$ extending λ_{j-1}, for each index j. Therefore, using (3.1) and Lemma 4.2 (a), one obtains inductively that it suffices to prove that $T_{n} \in d(K)$, provided $C_{n} \in d\left(L_{n}\right)$.

Denote by w_{n} the valuation of C_{n} extending $v_{L_{n}}$, and by \widehat{C}_{n} its residue division ring. It follows from the Ostrowski-Draxl theorem that $w_{n}\left(C_{n}\right)$ equals the sum of $v\left(M_{n}\right)$ and the group generated by $q^{-1} v\left(\pi_{i^{\prime}}\right), i^{\prime}=2, \ldots, n-1$. Similarly, it is proved that \widehat{C}_{n} is a field and $\widehat{C}_{n}^{q} \subseteq \widehat{K}$. One also sees that $\widehat{C}_{n} \neq \widehat{K}$ if and only if $\mu<n-1$, and in this case, $\left[\widehat{C}_{n}: \widehat{K}\right]=q^{n-1-\mu}$ and $\hat{\pi}_{u} \in \widehat{C}_{n}^{q}, u=\mu+1, \ldots, n-1$. These results show that $v\left(\pi_{n}\right) \notin q w_{n}\left(C_{n}\right)$, if $\mu=n$, and $\hat{\pi}_{n} \notin \widehat{C}_{n}^{q}$ when $\mu<n$. Let now $\bar{\lambda}_{n}$ be the K-automorphism of C_{n} extending both λ_{n} and the identity of the natural K-isomorphic copy of T_{n-1} in C_{n}, and let $t_{n}^{\prime}=\prod_{\kappa=0}^{q-1} \bar{\lambda}_{n}^{\kappa}\left(t_{n}\right)$, for each $t_{n} \in C_{n}$. Then, by Skolem-Noether's theorem (cf. [35], Sect. 12.6), $\bar{\lambda}_{n}$ is induced by an inner K-automorphism of T_{n}. This implies $w_{n}\left(t_{n}\right)=w_{n}\left(\bar{\lambda}_{n}\left(t_{n}\right)\right)$ and $w_{n}\left(t_{n}^{\prime}\right) \in q w_{n}\left(C_{n}\right)$, for all $t_{n} \in C_{n}$, and yields $\hat{t}_{n}^{\prime} \in \widehat{C}_{n}^{q}$ when $w_{n}\left(t_{n}\right)=0$. Therefore, $t_{n}^{\prime} \neq \pi_{n}, t_{n} \in C_{n}$, so it follows from [1], Ch. XI, Theorems 11 and 12, that $T_{n} \in d(K)$. Lemma 4.2 is proved.

Proof of the latter assertion of Theorem 2.1 (c). Assume that F / E is an FG-extension, such that $\operatorname{char}(E)=p,\left[E: E^{p}\right]=p^{\nu}<\infty$ and $\operatorname{trd}(F / E)=t \geq 1$. This implies $\left[F: F^{p}\right]=p^{\nu+t}$, so it follows from Lemma 4.1 and [1], Ch. VII, Theorem 28, that $\operatorname{Brd}_{p}(F) \leq \operatorname{abrd}_{p}(F) \leq \nu+t$. At the same time, it is clear from (4.1) and Lemma 4.2 that there exists $\Delta \in d(F)$ with $\exp (\Delta)=p$ and $\operatorname{ind}(\Delta)=p^{\nu+t-1}$, which yields $\operatorname{Brd}_{p}(F) \geq \nu+t-1$ and so completes our proof.

Our next lemma is implied by (3.5), Lemma 3.1 and the immediacy of Henselizations of valued fields (cf. [14], Theorems 15.2.2 and 15.3.5).

Lemma 4.3. Let E be a field, $F=E(X)$ a rational extension of E with $\operatorname{trd}(F / E)=1, f(X) \in E[X]$ an irreducible polynomial over E, M an extension of E generated by a root of f in $E_{\text {sep }}, v$ a discrete E-valuation of F with a uniform element f, and $\left(F_{v}, \bar{v}\right)$ a Henselization of (F, v). Also, let $\widetilde{D} \in d(M)$ be an algebra of exponent $p \in \mathbb{P}$. Then M is E-isomorphic to the residue field of (F, v) and $\left(F_{v}, \bar{v}\right)$, and there exists $D \in d(F)$ with $\exp (D)=p$ and $\left[D \otimes_{F} F_{v}\right]=\left[D^{\prime}\right]$, where $D^{\prime} \in d\left(F_{v}\right)$ is an inertial lift of \widetilde{D} over F_{v}.

Proof of Theorem 2.1 (a). Let $\operatorname{abrd}_{p}(E)=\lambda \in \mathbb{N}$ and $F=E\left(X_{1}, \ldots, X_{\kappa}\right)$. Then, by Lemma 4.1 , there exists $M \in \mathrm{Fe}(E)$, such that $d(M)$ contains an algebra $\widetilde{\Delta}$ with $\exp (\widetilde{\Delta})=p$ and $\operatorname{ind}(\widetilde{\Delta})=p^{\lambda}$. We show that there is $\Delta \in d(F)$ with $\exp (\Delta)=p$ and $\operatorname{ind}(\Delta) \geq p^{\lambda+\kappa-1}$. Suppose first that $\kappa=1$, take a primitive element α of M / E, and denote by $f\left(X_{1}\right)$ its minimal monic polynomial over E. Attach to f a discrete valuation v of F and fix $\left(F_{v}, \bar{v}\right)$ as in Lemma 4.3. Then, by Lemma 3.1, there exists $\Delta_{1} \in d(F)$ with $\left[\Delta_{1} \otimes_{F} F_{v}\right]=[\bar{\Delta}]$, in $\operatorname{Br}\left(F_{v}\right)$, where $\bar{\Delta}$ is an inertial lift of $\widetilde{\Delta}$ over F_{v}. Since $\bar{\Delta} \in d\left(F_{v}\right), \exp (\bar{\Delta})=p$ and $\operatorname{ind}(\bar{\Delta})=p^{\lambda}$, this indicates that $p^{\lambda} \mid \operatorname{ind}\left(\Delta_{1}\right)$, which proves Theorem 2.1 (a) when $\kappa=1$. In addition, Lemma 3.2 implies that there exist infinitely many degree p cyclic extensions of F in F_{v}. Hence, F_{v} contains as a subfield a Galois extension R_{κ} of F with $\mathcal{G}\left(R_{\kappa} / F\right)$ of order $p^{\kappa-1}$ and exponent p. When $\operatorname{ind}\left(\Delta_{1}\right)=p^{\lambda}$, this makes it easy to deduce the existence of Δ, for an arbitrary κ, from (4.1) (with a ground field $E\left(X_{1}\right)$ instead of E) and [32], Theorem 1,
or else, by repeatedly using the Proposition in [35], Sect. 19.6. It remains to consider the case where $\kappa \geq 2$ and there exists $D_{1} \in d\left(E\left(X_{1}\right)\right)$ with $\exp \left(D_{1}\right)=p$ and $\operatorname{ind}\left(D_{1}\right)=p^{\lambda^{\prime}}>p^{\lambda}$. It is easily verified that $D_{1} \otimes_{E\left(X_{1}\right)} E\left(X_{1}\right)\left(\left(X_{2}\right)\right) \in$ $d\left(E\left(X_{1}\right)\left(\left(X_{2}\right)\right)\right)$, and it follows from Lemma 3.2 that there are infinitely many degree p cyclic extensions of $E\left(X_{1}, X_{2}\right)$ in $E\left(X_{1}\right)\left(\left(X_{2}\right)\right)$. As in the case of $\kappa=1$, this enables one to prove the existence of $\Delta^{\prime} \in d(F)$ with $\exp \left(\Delta^{\prime}\right)=p$ and $\operatorname{ind}\left(\Delta^{\prime}\right)=p^{\lambda^{\prime}+\kappa-2} \geq p^{\lambda+\kappa-1}$. Thus Theorem 2.1 (a) is proved.

Corollary 4.4. Let E be a field and F / E a rational extension with $\operatorname{trd}(F / E)$ $=\infty$. Then $\operatorname{Brd}_{p}(F)=\infty$, for every $p \in \mathbb{P}$.

Proof. This follows from Theorem 2.1 (a) and the fact that, for any rational field extension F^{\prime} / F with $\operatorname{trd}\left(F^{\prime} / F\right)=2$, there is an E-isomorphism $F \cong F^{\prime}$, whence $\operatorname{Brd}_{p}(F)=\operatorname{Brd}_{p}\left(F^{\prime}\right)$, for each $p \in \mathbb{P}$.

Remark 4.5. Let E be a field with $\operatorname{abrd}_{p}(E)=\infty, p \in \mathbb{P}$, and let F / E be a transcendental $F G$-extension. Then it follows from (1.1) (b), (c) and Theorem 2.1 (b) that Brauer pairs $(m, n) \in \mathbb{N}^{2}$ are index-exponent pairs over F. Therefore, Corollary 4.4 with its proof implies the latter assertion of (1.2).

Alternatively, it follows from Galois theory, Lemmas 3.2, 4.3 and basic theory of valuation prolongations that $r_{p}(\Phi)=\infty, p \in \mathbb{P}$, for every transcendental $F G$ extension Φ / E. Hence, by [12] and Witt's lemma (cf. [10], Sect. 15, Lemma 2), finite abelian groups are realizable as Galois groups over Φ, so both parts of (1.2) can be proved by the method used in [35], Sect. 19.6.

Proposition 4.6. Let F / E be an FG-extension with $\operatorname{trd}(F / E)=t \geq 1$ and $\operatorname{abrd}_{p}(E)<\infty, p \in P$, for some subset $P \subseteq \mathbb{P}$. Then P possesses a finite subset $P(F / E)$, such that $\operatorname{Brd}_{p}(F) \geq \operatorname{abrd}_{p}(E)+t-1, p \in P \backslash P(F / E)$.

Proof. It follows from (1.1) (c) and Theorem 2.2 (a) that one may take as $P(F / E)$ the set of divisors of $\left[F: F_{0}\right]$ lying in P, for some rational extension F_{0} of E in F with $\operatorname{trd}\left(F_{0} / E\right)=t$.

Example 4.7. There exist field extensions F / E satisfying the conditions of Proposition 4.6, for $P=\mathbb{P}$, such that $P(F / E)$ is nonempty. For instance, let E be a real closed field, Φ the function field of the Brauer-Severi variety attached to the symbol E-algebra $A=A_{-1}(-1,-1 ; E)$, and F / Φ a finite field extension with $\sqrt{-1} \notin F$. Then abrd $(F)=0<\operatorname{abrd}_{2}(E)=1$ (see the example in [7]) and $\operatorname{abrd}_{p}(E)=0, p>2$, which implies $P(F / E)=\{2\}$ and $P=\mathbb{P}$.

5 Proof of Theorem 2.1 (b)

The former claim of Theorem 2.1 (b) is implied by the following lemma.

Lemma 5.1. Let K be a field with $\operatorname{abrd}_{p}(K)=\infty$, for some $p \in \mathbb{P}$, and let F / K be an FG-extension with $\operatorname{trd}(F / K) \geq 1$. Then there exist $D_{\nu} \in d(F)$, $\nu \in \mathbb{N}$, such that $\exp \left(D_{\nu}\right)=p$ and $\operatorname{ind}\left(D_{\nu}\right) \geq p^{\nu}$.

Proof. Statement (1.1) (c) implies the class of fields Φ with $\operatorname{abrd}_{p}(\Phi)=\infty$ is closed under the formation of finite extensions. Since K has a rational extension F_{0} in F with $\operatorname{trd}\left(F_{0} / K\right)=\operatorname{trd}(F / K)$, whence $\left[F: F_{0}\right]<\infty$, this shows that it is sufficient to prove Lemma 5.1 in the case of $F=F_{0}$. Note also that $\operatorname{ind}\left(T_{0} \otimes_{K} F_{0}\right)=\operatorname{ind}\left(T_{0}\right)$ and $\exp \left(T_{0} \otimes_{K} F_{0}\right)=\exp \left(T_{0}\right)$, for each $T_{0} \in d(K)$, so one may assume, for the proof, that $F=F_{0}$ and $\operatorname{trd}(F / K)=1$. It follows from Lemma 4.1 and the equality $\operatorname{abrd}_{p}(K)=\infty$ that there are $M_{\nu} \in \mathrm{Fe}(K)$ and $\widetilde{D}_{\nu} \in d\left(M_{\nu}\right), \nu \in \mathbb{N}$, with $\exp \left(\widetilde{D}_{\nu}\right)=p$ and $\operatorname{ind}\left(\widetilde{D}_{\nu}\right) \geq p^{\nu}$, for each index ν. Hence, by Lemmas 4.3 and 3.1, there exist a discrete K-valuation v_{ν} of F, and an algebra $D_{\nu} \in d(F)$, such that the residue field of $\left(F, v_{\nu}\right)$ is K-isomorphic to $M_{\nu}, \exp \left(D_{\nu}\right)=p$, and $\left[D_{\nu} \otimes_{F} F_{v}\right]=\left[D_{\nu}^{\prime}\right]$, where D_{ν}^{\prime} is an inertial lift of \widetilde{D}_{ν} over F_{ν}. This implies $\operatorname{ind}\left(\widetilde{D}_{\nu}\right) \mid \operatorname{ind}\left(D_{\nu}\right), \nu \in \mathbb{N}$, proving Lemma 5.1.

To prove the latter part of Theorem 2.1 (b) we need the following lemma.

Lemma 5.2. Let A, B and C be algebras over a field F, such that $A, B, C \in$ $s(F), A=B \otimes_{F} C, \exp (C)=p \in \mathbb{P}$, and $\exp (B)=\operatorname{ind}(B)=p^{m}$, for some $m \in \mathbb{N}$. Assume that $\operatorname{ind}(A)=p^{n}>p^{m}$ and k is an integer with $m<k \leq n$. Then there exists $T_{k} \in s(F)$ with $\exp \left(T_{k}\right)=p^{m}$ and $\operatorname{ind}\left(T_{k}\right)=p^{k}$.

Proof. When $k=n$, there is nothing to prove, so we assume that $k<n$. By [30], Sect. 4, Theorem 2, $[C]=\left[\Delta_{1} \otimes_{F} \cdots \otimes_{F} \Delta_{\nu}\right]$, where $\nu \in \mathbb{N}$ and for each index $j, \Delta_{j} \in d(F)$ and $\operatorname{ind}\left(\Delta_{j}\right)=p$. Put $T_{j}=B \otimes_{F}\left(\Delta_{1} \otimes_{F} \cdots \otimes_{F} \Delta_{j}\right)$ and $t_{j}=\operatorname{deg}\left(T_{j}\right) / \operatorname{ind}\left(T_{j}\right), j=1, \ldots, \nu$, and let $S(A)$ be the set of those j, for which $\operatorname{ind}\left(T_{j}\right) \geq p^{k}$. Clearly, $S(A) \neq \phi$ and the set $S_{0}(A)=\left\{i \in S(A): t_{i} \leq t_{j}, j \in\right.$ $S(A)\}$ contains a minimal index γ. The conditions of Lemma 5.2 ensure that $\exp \left(T_{j}\right)=p^{m}$, so $\operatorname{ind}\left(T_{j}\right)=p^{m(j)}$, where $m(j) \in \mathbb{N}$, for each $j \in S(A)$. We show that $\operatorname{ind}\left(T_{\gamma}\right)=p^{k}$. If $\gamma=1$, then (1.1) (c) and the inequality $m<k$ imply $k=m+1$ and $\operatorname{ind}\left(T_{1}\right)=p^{k}$, as claimed. Suppose now that $\gamma \geq 2$. Then it follows from (1.1) (b) that $\operatorname{ind}\left(T_{\gamma}\right)=\operatorname{ind}\left(T_{\gamma-1}\right) \cdot p^{\mu}$, for some $\mu \in\{-1,0,1\}$. The possibility that $\mu \neq 1$ is ruled out, since it contradicts the fact that $\gamma \in S_{0}(A)$. This yields $\operatorname{ind}\left(T_{\gamma}\right)=\operatorname{ind}\left(T_{\gamma-1}\right) \cdot p$ and $t_{\gamma}=t_{\gamma-1}$. As γ is minimal in $S_{0}(A)$, it is now easy to see that $\operatorname{ind}\left(T_{\gamma-u}\right)=p^{k-u}, u=0,1$, which proves Lemma 5.2.

The conditions of Lemma 5.2 are fulfilled, for each $m \in \mathbb{N}$ and infinitely many integers $n>m$, if $\operatorname{char}(E)=p, E$ is not virtually perfect and F / E satisfies the conditions of Theorem 2.1. Since, by Witt's lemma, cyclic p-extensions of F are realizable as intermediate fields of \mathbb{Z}_{p}-extensions of F, this can be obtained by applying (1.1) (b), (4.1) and Lemma 4.2 together with general properties of cyclic F-algebras, see [35], Sect. 15.1, Corollary b and Proposition b. Thus Theorem 2.1 is proved in the case of $p=\operatorname{char}(E)$. For the proof of the latter assertion of Theorem 2.1 (b), when $p \neq \operatorname{char}(E)$, we need the following lemma.

Lemma 5.3. Let K be a field and F / K an FG -extension with $\operatorname{trd}(F / K)=1$. Then, for each $p \in \mathbb{P}$ different from char (K), there exist non-equivalent discrete K-valuations v_{m} of $F, m \in \mathbb{N}$, satisfying the following:
(a) For any $m \in \mathbb{N},\left(F, v_{m}\right)$ possesses a totally ramified extension $\left(F_{m}, w_{m}\right)$, such that $F_{m} \in I\left(F_{\mathrm{sep}} / F\right), F_{m} / F$ is cyclic and $\left[F_{m}: F\right]=p^{m}$;
(b) The valued fields $\left(F_{m}, w_{m}\right)$ can be chosen so that $F_{m^{\prime}} \cap F_{\bar{m}}=F, m^{\prime} \neq \bar{m}$.

Proof. Let $X \in F$ be a transcendental element over K. Then $F / K(X)$ is a finite extension, and the separable closure of $K(X)$ in F is unramified relative to every discrete K-valuation of $K(X)$, with at most finitely many exceptions (up-to an equivalence, see [3], Ch. I, Sect. 5). This reduces the proof of Lemma 5.3 to the special case of $F=K(X)$. For each $m \in \mathbb{N}$, let $\delta_{m} \in F_{\text {sep }}$ be a primitive p^{m}-th root of unity, $K_{m}=K\left(\delta_{m}\right), f_{m}(X) \in K[X]$ the minimal polynomial of δ_{m} over K, and ρ_{m} a discrete K-valuation of F with a uniform element f_{m}. Clearly, the valuations $\rho_{m}, m \in \mathbb{N}$, are pairwise non-equivalent. Also, it is well-known (see [24], Ch. V, Theorem 6; Ch. VIII, Sect. 3, and [18], Ch. 4, Sect. 1) that if $m^{\prime}, \bar{m} \in \mathbb{N}$, then the extension $K_{m^{\prime}}\left(\delta_{\bar{m}}\right) / K_{m^{\prime}}$ are cyclic except, possibly, in the case where $m^{\prime}=1, \bar{m}>2, p=2, \operatorname{char}(K)=0$ and $\delta_{2} \notin K$. Denote by v_{m} the valuation ρ_{m+1}, for each m, if $p=2, \operatorname{char}(K)=0$ and $\delta_{2} \notin K$, and put $v_{m}=\rho_{m}, m \in \mathbb{N}$, otherwise. Since $p \neq \operatorname{char}(K)$, and by Lemma 4.5, K_{m} is K-isomorphic to the residue field of $\left(F, \rho_{m}\right)$, we have $\delta_{m} \in F_{v_{m}}$, where $F_{v_{m}}$ is a Henselization of F in $F_{\text {sep }}$ relative to v_{m}. This enables one to deduce from Kummer theory that $F_{v_{m}}$ possesses a totally ramified cyclic extension $L_{v_{m}}$ of degree p^{m}. Furthermore, it follows from the choice of v_{m} and the observation on the extensions $K_{m^{\prime}}\left(\delta_{\bar{m}}\right) / K_{m^{\prime}}$ that $F_{m^{\prime}}\left(\delta_{\bar{m}}\right) / F_{m^{\prime}}$ are cyclic, for all pairs $m^{\prime}, \bar{m} \in \mathbb{N}$. Hence, by the generalized Grunwald-Wang theorem (cf. [27], Theorems 1 (ii) and 2) and the note preceding the statement of Lemma 3.2, there exist totally ramified extensions $\left(F_{m}, w_{m}\right) /\left(F, v_{m}\right), m \in \mathbb{N}$, such that $F_{m} \in I\left(F_{\text {sep }} / F\right), F_{m} / F$ is cyclic with $\left[F_{m}: F\right]=p^{m}$, for each m, and in case $m \geq 2, F_{m} / F$ is unramified relative to v_{1}, \ldots, v_{m-1}. This ensures that $F_{m^{\prime}} \cap F_{\bar{m}}=F, m^{\prime} \neq \bar{m}$, and so completes the proof of Lemma 5.3.

Proof of the latter statement of Theorem 2.1 (b). Let $\operatorname{abrd}_{p}(E)=\infty$, for some $p \in \mathbb{P}$. In view of (1.1)(b), Lemmas 3.1, 5.1 and 5.2 , it is sufficient to show that there exists $A_{m} \in d(F)$ with $\exp \left(A_{m}\right)=\operatorname{ind}\left(A_{m}\right)=p^{m}$, for any fixed $m \in \mathbb{N}$. As in the proof of Lemma 5.1, our considerations reduce to the special case of $\operatorname{trd}(F / K)=1$. Analyzing this proof, one obtains that there is $M \in \mathrm{Fe}(E)$, such that $d(M)$ contains a cyclic M-algebra \widetilde{A}_{1} of degree p, and when $p \neq \operatorname{char}(E), M$ contains a primitive p^{m}-th root of unity δ_{m}. Note further that M can be chosen so as to be E-isomorphic to the residue field \widehat{F} of F relative to some discrete E-valuation v. In view of Kummer theory (see [24], Ch. VIII, Sect. 6) and Witt's lemma, the assumptions on M ensure that each degree p cyclic extension Y_{1} of M lies in $I\left(Y_{m} / M\right)$, for some degree p^{m} cyclic extension Y_{m} / M. Suppose now that Y_{1} embeds in \widetilde{A}_{1} as an M-subalgebra, fix a generator τ_{1} of $\mathcal{G}\left(Y_{1} / M\right)$ and an automorphism τ_{m} of Y_{m} extending τ_{1}. Then \widetilde{A}_{1} is isomorphic to the cyclic M-algebra $\left(Y_{1} / M, \tau_{1}, \tilde{\beta}\right)$, for some $\tilde{\beta} \in M^{*}, \tau_{m}$ generates $\mathcal{G}\left(Y_{m} / M\right)$, the M-algebra $\widetilde{A}_{m}=\left(Y_{m} / M, \tau_{m}, \tilde{\beta}\right)$ lies in $s(M)$, and we have $p^{m-1}\left[\widetilde{A}_{m}\right]=\left[\widetilde{A}_{1}\right]$ (cf. [35], Sect. 15.1, Corollary b). Therefore, $\widetilde{A}_{m} \in d(M)$
and $\operatorname{ind}\left(\widetilde{A}_{m}\right)=\exp \left(\widetilde{A}_{m}\right)=p^{m}$. Assume now that (F, v) has a valued extension $\left(L, v_{L}\right)$, such that L / F is cyclic, $[L: F]=p^{m}$ and the residue field of $\left(L, v_{L}\right)$ is E-isomorphic to Y_{m}. Then $\mathcal{G}(L / F) \cong \mathcal{G}\left(Y_{m} / M\right)$, and for each generator σ of $\mathcal{G}(L / F)$ and pre-image β of $\tilde{\beta}$ in $O_{v}(F)$, the algebra $A_{m}=(L / F, \sigma, \beta)$ lies in $d(F)$ (see [35], Sect. 15.1, Proposition b, and [19], Theorem 5.6). Note also that $\operatorname{ind}\left(A_{m}\right)=\exp \left(A_{m}\right)=p^{m}$ and σ can be chosen so that $A_{m} \otimes_{F} F_{v}$ be an inertial lift of \widetilde{A}_{m} over F_{v}. When $p>2$, this completes the proof of Theorem 2.1 (b), since Lemma 3.2 guarantees in this case the existence of a valued extension $\left(L, v_{L}\right)$ of (F, v) with the above-noted properties.

Similarly, one concludes that if $p=2$, then it suffices to prove Theorem 2.1 (b), provided $\operatorname{char}(E)=0$ and $\mathcal{G}\left(E\left(\delta_{m}\right) / E\right)$ is noncyclic, where δ_{m} is a primitive 2^{m}-th root of unity in $E_{\text {sep }}$. This implies the group $E_{1}^{*} / E_{1}^{* 2^{\nu}}$ has exponent 2^{ν}, for each $\nu \in \mathbb{N}, E_{1} \in \operatorname{Fe}(E)$ (cf. [24], Ch. VIII, Sects. 3 and 9). Take a valued extension $\left(F_{m}, w_{m}\right) /\left(F, v_{m}\right)$ as required by Lemma 5.3 , and denote by \widehat{F}_{m} the residue field of $\left(F, v_{m}\right)$. Fix a generator ψ_{m} of $\mathcal{G}\left(F_{m} / F\right)$ and an element $\tilde{\beta}_{m} \in$ \widehat{F}_{m}^{*} so that $\tilde{\beta}_{m}^{2 m-1} \notin \widehat{F}_{m}^{* 2^{m}}$, and put $A_{m}=\left(F_{m} / F, \psi_{m}, \beta_{m}\right)$, for some pre-image β_{m} of $\tilde{\beta}_{m}$ in $O_{v_{m}}(F)$. As $\left(F_{m}, w_{m}\right) /\left(F, v_{m}\right)$ is totally ramified, w_{m} is uniquely determined by v_{m}, up-to an equivalence. Therefore, $w_{m}\left(\lambda_{m}\right)=w_{m}\left(\psi_{m}\left(\lambda_{m}\right)\right)$, for all $\lambda_{m} \in F_{m}$, and when $w_{m}\left(\lambda_{m}\right)=0, \widehat{F}_{m}^{* 2^{m}}$ contains the residue class of the norm $N_{F}^{F_{m}}\left(\lambda_{m}\right)$. Now it follows from [35], Sect. 15.1, Proposition b, that $A_{m} \in d(F)$ and $\operatorname{ind}\left(A_{m}\right)=\exp \left(A_{m}\right)=2^{m}$, so Theorem 2.1 is proved.

Corollary 5.4. Let E be a field with $\operatorname{abrd}(E)=\infty$. Then $\operatorname{Brd}(F)=\infty$, for every transcendental FG-extension F / E.

Proof. The equality $\operatorname{abrd}(E)=\infty$ means that either $\operatorname{abrd}_{p^{\prime}}(E)=\infty$, for some $p^{\prime} \in \mathbb{P}$, or $\operatorname{abrd}_{p}(E), p \in \mathbb{P}$, is an unbounded number sequence. In view of Theorem 2.1 (b) and Proposition 4.6, this proves our assertion.

Corollary 5.4 shows that a field E satisfies abrd $(E)<\infty$, if its FG-extensions have finite dimensions, in the sense of [2], Sect. 4. In view of (2.7) (a), this proves that Problem 4.4 of [2] is solved, generally, in the negative, even when finite extensions of E have finite Brauer dimensions. Statements (2.7) also imply that both cases pointed out in the proof of Corollary 5.4 can be realized.

Remark 5.5. Statement (2.6) indicates that if [2], Problem 4.5, is solved affirmatively in the class \mathcal{A} of virtually perfect fields E with abrd $(E)<\infty$, then $\operatorname{abrd}(E) \leq \operatorname{dim}(E)$. We show that such a solvability would imply the numbers $c(E)$, in (2.6), depend on the choice of E and may be arbitrarily large. Let C be an algebraically closed field, ν a positive integer and $C_{\nu}=C\left(\left(X_{1}\right)\right) \ldots\left(\left(X_{\nu}\right)\right)$ the iterated formal Laurent formal power series field in ν variables over C. We prove that $c\left(C_{\nu}\right) \geq[\nu / 2]-1$. Note first that each $F G$-extension F / C_{ν} with $\operatorname{trd}\left(F / C_{\nu}\right)=1$ has a C-valuation f_{ν}, such that $\operatorname{trd}(\widehat{F} / C)=1$ and $f_{\nu}(F)=\mathbb{Z}^{\nu}$. Indeed, if $T \in F$ is a transcendental element over $C_{\nu}, F_{0}=C_{\nu}(T)$, and f_{0} is the restricted Gauss valuation of F_{0} extending the natural \mathbb{Z}^{ν}-valued C-valuation of C_{ν} (see [14], Example 4.3.2), then one may take as f_{ν} any prolongation of f_{0} on F. The equality $\operatorname{trd}(\widehat{F} / C)=1$ ensures that $r_{p}(\widehat{F})=\infty$, for all $p \in \mathbb{P}$, which enables one to deduce from [32], Theorem 1, and [26], Corollary 1.4, that
$\operatorname{Brd}_{p}(F)=\operatorname{abrd}_{p}(F)=\nu, p \in \mathbb{P}$ and $p \neq \operatorname{char}(C)$ (see [26], page 37, for more details in case F / C_{ν} is rational). At the same time, it follows from [9], Proposition 7.1, that if $\operatorname{char}(C)=0$, then $\operatorname{Brd}\left(C_{\nu}\right)=\operatorname{abrd}\left(C_{\nu}\right)=[\nu / 2]$; hence, by (2.6), $c\left(C_{\nu}\right) \geq \operatorname{abrd}(F)-\operatorname{abrd}\left(C_{\nu}\right)=[\nu / 2]-1$, as claimed.

Corollary 5.6. Let F be a rational extension of an algebraically closed field F_{0}. Then $\operatorname{trd}\left(F / F_{0}\right)=\infty$ if and only if each Brauer pair $(m, n) \in \mathbb{N}^{2}$ is realizable as an index-exponent pair over F.

Proof. If $\operatorname{trd}\left(F / F_{0}\right)=n<\infty$, then finite extensions of F are C_{n}-fields, by Lang-Tsen's theorem [23], so Lemma 4.1 and [28] imply $\operatorname{Brd}_{p}(F)<p^{n-1}, p \in \mathbb{P}$ (see [31], (16.10), for case $p=2$). In view of (1.2), this completes our proof.

Theorem 2.1 and Example 4.7 lead naturally to the question of whether $\operatorname{Brd}_{p}(F) \geq k+\operatorname{trd}(F / E)$, provided that F / E is an FG -extension and $\operatorname{Brd}_{p}\left(E^{\prime}\right)=$ $k<\infty, E^{\prime} \in \mathrm{Fe}(E)$, for a given $p \in \mathbb{P}$. Our next result gives an affirmative answer to this question in several frequently used special cases:

Proposition 5.7. Let E be a field and F an FG -extension of E with $\operatorname{trd}(F / E)=$ $n>0$. Suppose that there exists $M \in \mathrm{Fe}(E)$ satisfying the following condition, for some $p \in \mathbb{P}$ and $k \in \mathbb{N}$:
(c) For each $M^{\prime} \in \mathrm{Fe}(M)$, there are $D^{\prime} \in d\left(M^{\prime}\right)$ and $L^{\prime} \in I\left(M^{\prime}(p) / M^{\prime}\right)$, such that $\exp \left(D^{\prime}\right)=\left[L^{\prime}: M^{\prime}\right]=p, \operatorname{ind}\left(D^{\prime}\right)=p^{k}$ and $D^{\prime} \otimes_{M^{\prime}} L^{\prime} \in d\left(L^{\prime}\right)$.

Then there exist $D \in d(F)$, such that $\exp (D)=p$ and $\operatorname{ind}(D) \geq p^{k+n} ;$ in particular, $\operatorname{Brd}_{p}(F) \geq k+n$.

Proposition 5.7 is proved along the lines drawn in the proofs of Theorem 2.1 (a) and (b), so we omit the details. Note only that if $n \geq 2$ or $k=1$, then D can be chosen so that $D \otimes_{F} F_{v} \in d\left(F_{v}\right),\left[D \otimes_{F} F_{v}\right] \in \operatorname{Br}\left(F_{v, \text { un }} / F_{v}\right)$ and $p^{n-1}\left|e\left(D \otimes_{F} F_{v} / F_{v}\right)\right| p^{n}$, for some E-valuation v of F with $\mathbb{Z}^{n-1} \leq v(F) \leq \mathbb{Z}^{n}$.

Remark 5.8. Condition (c) of Proposition 5.7 is fulfilled, for $k=1=\operatorname{abrd}(E)$ and any $p \in \mathbb{P}$, if E is a global field or an $F G$-extension of an algebraically closed field E_{0}^{\prime} with $\operatorname{trd}\left(E / E_{0}^{\prime}\right)=2$. It also holds when $k=1, p \in \mathbb{P}$ and E is an $F G$-extension of a perfect PAC-field E_{0} with $\operatorname{trd}\left(E / E_{0}\right)=1=\operatorname{cd}_{p}\left(E_{0}\right)$ (see [13], Sect. 3, [35], Sect. 19.3, and the proof of [9], Proposition 4.3). In these cases, it can be deduced from (3.1) and [32], Theorem 1, that the power series fields $E_{m}=E\left(\left(X_{1}\right)\right) \ldots\left(\left(X_{m}\right)\right), m \in \mathbb{N}$, satisfy (c), for $k=1+m=\operatorname{abrd}_{p}\left(E_{m}\right)$ (cf. [26], Appendix A, or [9], (4.10) and Proposition 4.3). In addition, the conclusion of Proposition 5.7 is valid, if E is a local field, $k=1$ and $p \in \mathbb{P}$, although (c) is then violated, for every p (see Proposition 6.3 with its proof, and the appendices to [38] and [3], Ch. VI, Sect. 1).

For a proof of the concluding result of this Section, we refer the reader to [7]. When F / E is a rational extension and $r_{p}(E) \geq \operatorname{trd}(F / E)$, this result is contained in [33]. Combined with Lemma 3.2, it implies Nakayama's inequalities $\operatorname{Brd}_{p^{\prime}}\left(F^{\prime}\right) \geq \operatorname{trd}\left(F^{\prime} / E^{\prime}\right)-1, p^{\prime} \in \mathbb{P}$, for any FG-extension F^{\prime} / E^{\prime}.

Proposition 5.9. Let F / E be an FG-extension with $\operatorname{trd}(F / E)=n \geq 1$ and $\operatorname{cd}_{p}\left(\mathcal{G}_{E}\right) \neq 0$, for some $p \in \mathbb{P}$. Then $\operatorname{Brd}_{p}(F) \geq n$ except, possibly, if $p=2$, the Sylow pro-2-subgroups of \mathcal{G}_{E} are of order 2, and F is a nonreal field.

It is not known whether an FG-extension F / E with $\operatorname{trd}(F / E)=n \geq 3$ satisfies $\operatorname{abrd}_{p}(F)=\operatorname{Brd}_{p}(F)=n-1$, provided that $p \in \mathbb{P}, \operatorname{cd}_{p}\left(\mathcal{G}_{E}\right)=0$, and E is perfect in the case where $p=\operatorname{char}(E)$. It follows from (1.1) (c) that this question is equivalent to the Standard Conjecture on F / E (stated by Colliot-Thélène, see [26] and [25], Sect. 1) when E is algebraically closed. The question is also open in the case excluded by Proposition 5.9. Results like [28], Theorem 6.3 and Corollary 7.3, as well as statements (2.1) and (2.3) attract interest in the problem of finding exact upper bounds on $\operatorname{abrd}_{p}(F)$, $p \in \mathbb{P}$. Specifically, it is worth noting that if E is algebraically closed and $\operatorname{Brd}_{p}(F) \geq p^{n-2}$, for infinitely many $p \in \mathbb{P}$, then this would solve negatively [2], Problem 4.5, by showing that $\operatorname{Br}(F)=\infty$ whenever $n \geq 3$.

6 Reduction of (2.2) to the case of $\operatorname{char}(E)=0$

In this Section we show that if \mathcal{C} is a class of profinite groups and n is a positive integer, then the answer to (2.2) would be affirmative, for FG-extensions F / E with $\mathcal{G}_{E} \in \mathcal{C}$ and $\operatorname{trd}(F / E) \leq n$, if this holds when $\operatorname{char}(E)=0$. This result can be viewed as a refinement of [14], Corollary 22.2.3, in the spirit of [25], 4.1.2.

Proposition 6.1. Let E be a field of characteristic $q>0$ and F / E an FGextension. Then there exists an FG-extension L / E^{\prime} satisfying the following:
(a) $\operatorname{char}\left(E^{\prime}\right)=0, \mathcal{G}_{E^{\prime}} \cong \mathcal{G}_{E}$ and $\operatorname{trd}\left(L / E^{\prime}\right)=\operatorname{trd}(F / E)$;
(b) $\operatorname{Brd}_{p}(L) \geq \operatorname{Brd}_{p}(F), \operatorname{abrd}_{p}(L) \geq \operatorname{abrd}_{p}(F), \operatorname{Brd}_{p}\left(E^{\prime}\right)=\operatorname{Brd}_{p}(E)$ and $\operatorname{abrd}_{p}\left(E^{\prime}\right)=\operatorname{abrd}_{p}(E)$, for each $p \in \mathbb{P}$ different from q.

Proof. Fix an algebraic closure \bar{F} of F and denote by $E_{\text {ins }}$ the perfect closure of E in \bar{F}. The extension $E_{\text {ins }} / E$ is purely inseparable, so it follows from the Albert-Hochschild theorem (cf. [40], Ch. II, 2.2) that the scalar extension map of $\operatorname{Br}(E)$ into $\operatorname{Br}\left(E_{\text {ins }}\right)$ is surjective. Since finite extensions of E in $E_{\text {ins }}$ are of q-primary degrees, one obtains from (1.1) (c) that $\operatorname{ind}\left(D \otimes_{E} E_{\text {ins }}\right)=\operatorname{ind}(D)$ and $\exp \left(D \otimes_{E} E_{\text {ins }}\right)=\exp (D)$, provided $D \in d(E)$ and $q \dagger \operatorname{ind}(D)$. Therefore, $\operatorname{Brd}_{p}(E)=\operatorname{Brd}_{p}\left(E_{\text {ins }}\right)$ and $\operatorname{abrd}_{p}(E)=\operatorname{abrd}_{p}\left(E_{\text {ins }}\right)$, for each $p \in \mathbb{P}, p \neq q$. As $\mathcal{G}_{E_{\mathrm{ins}}} \cong \mathcal{G}_{E}$ (see [24], Ch. VII, Proposition 12) and $F E_{\mathrm{ins}} / E_{\mathrm{ins}}$ is an FGextension, this reduces the proof of Proposition 6.1 to the case where E is perfect. It is known (cf. [14], Theorems 12.4.1 and 12.4.2) that then there exists a Henselian field (K, v) with $\operatorname{char}(K)=0$ and $\widehat{K} \cong E$, which can be chosen so that $v(K)=\mathbb{Z}$ and $v(q)=1$. Moreover, it follows from (3.4), [29] and Galois theory (see also the proof of [14], Corollary 22.2.3) that there is $E^{\prime} \in I\left(K_{\text {sep }} / K\right)$, such that $E^{\prime} \cap K_{\text {ur }}=K$ and $E^{\prime} K_{\text {ur }}=K_{\text {sep }}$. This ensures that $v\left(E^{\prime}\right)=\mathbb{Q}, \widehat{E}^{\prime}=\widehat{K}=E$ and $E_{\text {ur }}^{\prime}=E_{\text {sep }}^{\prime}=K_{\text {sep }}$. Hence, by (3.3) and (3.5), $\mathcal{G}_{E^{\prime}} \cong \mathcal{G}_{E}, \operatorname{Brd}_{p}\left(E^{\prime}\right)=\operatorname{Brd}_{p}(E)$ and $\operatorname{abrd}_{p}\left(E^{\prime}\right)=\operatorname{abrd}_{p}(E), p \in \mathbb{P} \backslash\{q\}$. Observe that, since E is perfect, F / E is separably generated, i.e. there is $F_{0} \in I(F / E)$, such that F_{0} / E is rational and $F \in \operatorname{Fe}\left(F_{0}\right)$ (cf. [24], Ch. X). Note further that
each rational extension L_{0} of E^{\prime} with $\operatorname{trd}\left(L_{0} / E^{\prime}\right)=\operatorname{trd}\left(F_{0} / E\right)$ has a restricted Gauss valuation ω_{0} extending $v_{E^{\prime}}$ with $\widehat{L}_{0}=F_{0}$ (cf. [14], Example 4.3.2). Fixing $\left(L_{0}, \omega_{0}\right)$, one can take its valued extension (L, ω) so that $L_{\omega} \cong L \otimes_{L_{0}} L_{0, \omega_{0}}$ is an inertial lift of F over $L_{0, \omega_{0}}$. This yields $\omega(L)=\omega_{0}\left(L_{0}\right)=\mathbb{Q}, \widehat{L} \cong F$ over $F_{0},\left[L: L_{0}\right]=\left[F: F_{0}\right]$ and $\operatorname{trd}(L / K)=\operatorname{trd}(F / E)$. It also becomes clear that, for each $F^{\prime} \in \mathrm{Fe}(F)$, there exists a valued extension $\left(L^{\prime}, \omega^{\prime}\right)$ of (L, ω) with $\left[L^{\prime}: L\right]=\left[F^{\prime}: F\right]$ and $\widehat{L^{\prime}} \cong F^{\prime}$. Observing now that $L^{\prime} / E^{\prime}, F^{\prime} \in \mathrm{Fe}(F)$, are FGextensions, applying (3.3) and (3.5) to a Henselization $L_{\omega^{\prime}}^{\prime}$, for any admissible F^{\prime}, and using Lemmas 3.1 and 4.1, one concludes that $\operatorname{Brd}_{p}\left(L^{\prime}\right) \geq \operatorname{Brd}_{p}\left(F^{\prime}\right)$ and $\operatorname{abrd}_{p}(L) \geq \operatorname{abrd}_{p}(F)$, for all $p \in \mathbb{P} \backslash\{q\}$. Proposition 6.1 is proved.

We show that in zero characteristic Proposition 2.2 can be deduced from Proposition 6.1.

Example 6.2. Let K_{0} be a field with 2 elements, $K_{n}=K_{0}\left(\left(X_{1}\right)\right) \ldots\left(\left(X_{n}\right)\right)$, $n \in \mathbb{N}$, an inductively defined sequence of iterated formal power series fields in n variables over K_{0}, by the rule $K_{n}=K_{n-1}\left(\left(X_{n}\right)\right)$, for each $n \in \mathbb{N}$, and let Θ be a perfect closure of the union $K_{\infty}=\cup_{n=1}^{\infty} K_{n}$. It is known that the natural \mathbb{Z}^{n}-valued valuations, say v_{n}, of the fields $K_{n}, n \in \mathbb{N}$, extend uniquely to a Henselian K_{0}-valuation v of K_{∞} with $\widehat{K}_{\infty}=K_{0}$ and $v\left(K_{\infty}\right)=\cup_{n=1}^{\infty} v_{n}\left(K_{n}\right)$. Since $r_{p}\left(K_{0}\right)=1, p \in \mathbb{P}$, and finite extensions of K_{∞} in Θ are totally ramified and of 2-primary degrees over K_{∞}, one deduces from [8], Lemma 4.6, that $\operatorname{Brd}_{p}\left(K_{\infty}\right)=\operatorname{Brd}_{p}(\Theta)=1$ and $\operatorname{abrd}_{p}\left(K_{\infty}\right)=\operatorname{abrd}_{p}(\Theta)=\infty$, for every $p>2$. At the same time, it is easily obtained (see, e.g., the proof of [8], Lemma 3.1) that $r_{2}(\Theta)=\infty$. Hence, by Proposition 6.1, there is a field Θ^{\prime} with $\operatorname{char}(\Theta)=0$, $\operatorname{abrd}_{2}\left(\Theta^{\prime}\right)=0$ and $\operatorname{Brd}_{p}\left(\Theta^{\prime}\right)=1$, $\operatorname{abrd}_{p}\left(\Theta^{\prime}\right)=\infty, p>2$. Moreover, by the proof of Proposition 6.1, Θ^{\prime} can be chosen so that its group of roots of unity be of order 2. Put $\Theta_{0}=\Theta^{\prime}, \Theta_{k}=\Theta_{k-1}\left(\left(T_{k}\right)\right), k \in \mathbb{N}$, and for each index k, fix a maximal extension E_{k} of Θ_{k} in $\Theta_{k, \text { sep }}$ with respect to the property that finite extensions of Θ_{k} in E_{k} have odd degrees and are totally ramified over Θ_{k} relative to the natural \mathbb{Z}^{k}-valued Θ_{0}-valuation of Θ_{k}. This ensures that E_{k} does not contain a primitive μ-th root of unity, for any odd $\mu>1$, the group $\theta_{k}\left(E_{k}\right) / 2 \theta_{k}\left(E_{k}\right)$ has order 2^{k}, and $\theta_{k}\left(E_{k}\right)=p \theta_{k}\left(E_{k}\right)$, for every $p>2$. Hence, by [8], Lemma 4.6, $\operatorname{Brd}_{2}\left(E_{k}\right)=\operatorname{abrd}_{2}(K)=k$ and $\operatorname{abrd}_{p}\left(E_{k}\right)=\infty, p>2$, as claimed.

Similarly to Remark 5.5, the proofs of Proposition 6.1 and our concluding result demonstrate the applicability of restricted Gauss valuations in finding lower bounds on $\operatorname{Brd}_{p}(F)$, for FG -extensions F of valued fields E with $\operatorname{abrd}_{p}(E)<\infty$:

Proposition 6.3. Let E be a local field and F / E an FG-extension. Then $\operatorname{Brd}_{p}(F) \geq 1+\operatorname{trd}(F / E)$, for every $p \in \mathbb{P}$.

Proof. As $\operatorname{Brd}_{p}(F)=1$ when $\operatorname{trd}(F / E)=0$, we assume that $\operatorname{trd}(F / E)=n \geq 1$. We show that, for each $p \in \mathbb{P}$, there exists $D_{p} \in d(F)$, such that $\exp \left(D_{p}\right)=p$, $\operatorname{ind}\left(D_{p}\right)=p^{n+1}$ and D_{p} decomposes into a tensor product of cyclic division F algebras of degree p. Let ω be the standard discrete valuation of E, \widehat{E} its residue field, and F_{0} a rational extension of E in F with $\operatorname{trd}\left(F_{0} / E\right)=n$. Considering a discrete restricted Gauss valuation of F_{0} extending ω, and its prolongations on
F, one obtains that F has a discrete valuation v extending ω, such that \widehat{F} is an FG-extension of \widehat{E} with $\operatorname{trd}(\widehat{F} / \widehat{E})=n$. Hence, by the proof of Proposition 5.9, given in [7], there exist $\Delta_{p}^{\prime} \in d(\widehat{F})$ and a degree p cyclic extension $L_{p}^{\prime} / \widehat{F}$, such that $\Delta_{p}^{\prime} \otimes_{\widehat{F}} L_{p}^{\prime} \in d\left(L_{p}^{\prime}\right), \exp \left(\Delta_{p}^{\prime}\right)=p, \operatorname{ind}\left(\Delta_{p}^{\prime}\right)=p^{n}$ and Δ_{p}^{\prime} is a tensor product of cyclic division \widehat{F}-algebras of degree p. Given a Henselization $\left(F_{v}, \bar{v}\right)$ of (F, v), Lemma 3.1 implies the existence of $\Delta_{p} \in d(F)$, such that $\Delta_{p} \otimes_{F} F_{v} \in d\left(F_{v}\right)$ is an inertial lift of Δ_{p}^{\prime} over F_{v}. Also, by Lemma 3.2, there is a degree p cyclic extension L_{p} / F with $L_{p} \otimes_{F} F_{v}$ an inertial lift of L_{p}^{\prime} over F_{v}. Fix a generator σ of $\mathcal{G}\left(L_{p} / F\right)$, take a uniform element β of (F, v), and put $D_{p}=\Delta_{p} \otimes_{F}\left(L_{p} / F, \sigma, \beta\right)$. Then it follows from (3.1) and [32], Theorem 1, that $D_{p} \in d(F), \exp \left(D_{p}\right)=p$, $\operatorname{ind}\left(D_{p}\right)=p^{n+1}$ and $D_{p} \otimes_{F} F_{v} \in d\left(F_{v}\right)$, so Proposition 6.3 is proved.

Note finally that if E is a local field, F / E is an FG-extension and $\operatorname{trd}(F / E)=$ 1 , then $\operatorname{Brd}_{p}(F)=2$, for every $p \in \mathbb{P}$. When $p=\operatorname{char}(E)$, this is implied by Proposition 6.3 and Theorem 2.1 (c), and for a proof in the case of $p \neq \operatorname{char}(E)$, we refer the reader to [34], Theorems 1 and 3, [38] and [26], Corollary 1.4.

Acknowledgements. The concluding part of this research was done during my visit to Tokai University, Hiratsuka, Japan, in 2012. I would like to thank my host-professor Junzo Watanabe, the colleagues at the Department of Mathematics, and Mrs. Yoko Kinoshita and her team for their genuine hospitality.

References

[1] A.A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ., vol. XXIV, 1939.
[2] A. Auel, E. Brussel, S. Garibaldi, U. Vishne, Open problems on central simple algebras, Transform. Groups 16 (2011), 219-264.
[3] J.W.S. Cassels, A. Fröhlich (Eds.), Algebraic Number Theory, Proc. Instruct. Conf., organized by the London Math. Soc. (a NATO Adv. Study Inst.) with the support of IMU, Univ. of Sussex, Brighton, 01.9-17.9, 1965, Academic Press, London-New York, 1967.
[4] I.D. Chipchakov, The normality of locally finite associative division algebras over classical fields, Vestn. Mosk. Univ., Ser. I (1988), No. 2, 15-17 (Russian: English transl. in: Mosc. Univ. Math. Bull. 43 (1988), 2, 18-21).
[5] I.D. Chipchakov, On the classification of central division algebras of linearly bounded degree over global fields and local fields, J. Algebra 160 (1993), 342-379.
[6] I.D. Chipchakov, On the residue fields of Henselian valued stable fields, J. Algebra 319 (2008), 16-49.
[7] I.D. Chipchakov, Lower bounds and infinity criterion for Brauer pdimensions of finitely-generated field extensions, C.R. Acad. Buld. Sci. 66 (2013), 923-932 (available online at http://www.proceedings.bas.bg).
[8] I.D. Chipchakov, On the behaviour of Brauer p-dimensions under finitelygenerated field extensions, Preprint, The Valuation Theory Home Page (submitted).
[9] I.D. Chipchakov, On Brauer p-dimensions and absolute Brauer pdimensions of Henselian fields, Preprint, arXiv:1207.7120v4 [math.RA].
[10] P.K. Draxl, Skew Fields, London Math. Soc. Lecture Notes, vol. 81, Cambridge University Press IX, Cambridge etc., 1983.
[11] P.K. Draxl, Ostrowski's theorem for Henselian valued skew fields, J. Reine Angew. Math. 354 (1984), 213-218.
[12] L. Ducos, Réalisation régulière explicite des groupes abéliens finis comme groupes de Galois, J. Number Theory 74 (1999), 44-55.
[13] I. Efrat, A Hasse principle for function fields over PAC fields, Isr. J. Math. 122 (2001), 43-60.
[14] I. Efrat, Valuations, Orderings, and Milnor K-Theory, Math. Surveys and Monographs, 124, Providence, RI: Amer. Math. Soc., XIII, 2006.
[15] I.B. Fesenko, S.V. Vostokov, Local Fields and Their Extensions, 2nd ed., Transl. Math. Monographs, 121, Amer. Math. Soc., Providence, RI, 2002.
[16] M.J. Fried, M. Jarden, Field Arithmetic, 2nd revised and enlarged ed., Ergebnisse der Math. Und ihrer Grenzgebiete, 3. Folge, Bd. 11, Springer, Berlin, 2005.
[17] D. Harbater, J. Hartmann, D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263.
[18] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Math., vol. 84, Springer-Verlag, XIII, New York-Heidelberg-Berlin, 1982.
[19] B. Jacob, A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179.
[20] A.J. de Jong, The period-index problem for the Brauer group of an algebraic surface, Duke Math. J. 123 (2004), 71-94.
[21] B. Kahn, Comparison of some field invariants, J. Algebra 232 (2000), 485492.
[22] J. Kollár, A conjecture of $A x$ and degenerations of Fano varieties, Isr. J. Math. 162 (2007), 235-251.
[23] S. Lang, On quasi algebraic closure, Ann. Math. (2) 55 (1952), 373-390.
[24] S. Lang, Algebra, Addison-Wesley Publ. Comp., Mass., 1965.
[25] M. Lieblich, Twisted sheaves and the period-index problem, Compos. Math. 144 (2008), 1-31.
[26] M. Lieblich, Period and index in the Brauer group of an arithmetic surface, With an appendix by D. Krashen. J. Reine Angew. Math. 659 (2011), 1-41.
[27] F. Lorenz, P. Roquette, The theorem of Grunwald-Wang in the setting of valuation theory, F.-V. Kuhlmann (ed.) et. al., Valuation theory and its applications, vol. II (Saskatoon, SK, 1999), 175-212, Fields Inst. Commun., 33, Amer. Math. Soc., Providence, RI, 2003.
[28] E. Matzri, Symbol length in the Brauer group of a field, Preprint, arXiv:1402.0332v1 [math.RA].
[29] O.V. Mel'nikov, O.I. Tavgen', The absolute Galois group of a Henselian field, Dokl. Akad. Nauk BSSR 29 (1985), 581-583.
[30] A.S. Merkur'ev, Brauer groups of fields, Comm. Algebra 11 (1983), 26112624.
[31] A.S. Merkur'ev, A.A. Suslin, K-cohomology of Severi-Brauer varieties and norm residue homomomorphisms, Izv. Akad. Nauk SSSR 46 (1982), 10111046 (Russian: English transl. in: Math. USSR Izv. 21 (1983), 307-340).
[32] P. Morandi, The Henselization of a valued division algebra, J. Algebra 122 (1989), 232-243.
[33] T. Nakayama, Über die direkte Zerlegung eines Divisionsalgebra, Jap. J. Math. 12 (1935), 65-70.
[34] R. Parimala, V. Suresh, Period-index and u-invariant questions for function fields over complete discretely valued fields, Preprint, arXiv:1304.2214v1 [math.RA].
[35] R. Pierce, Associative Algebras, Graduate Texts in Math., vol. 88, SpringerVerlag, XII, New York-Heidelberg-Berlin, 1982.
[36] M. Reiner, Maximal Orders, London Math. Soc. Monographs, vol. 5, London-New York-San Francisco: Academic Press, a subsidiary of Harcourt Brace Jovanovich, Publishers, 1975.
[37] D.J. Saltman, Generic algebras, Brauer groups in ring theory and algebraic geometry, Proc., Antwerp, 1981, Lect. Notes in Math. 917 (1982), 96-117.
[38] D.J. Saltman, Division algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25-47 (correction in: ibid. 13 (1998), 125-129).
[39] O.F.G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, Amer. Math. Soc., New York, N.Y., 1950.
[40] J.-P. Serre, Galois Cohomology, Transl. from the French original by Patrick Ion, Springer, Berlin, 1997.
[41] G. Whaples, Algebraic extensions of arbitrary fields, Duke Math. J. 24 (1957), 201-204.

[^0]: *Throughout this paper, we write for brevity "FG-extension(s)" instead of "finitelygenerated [field] extension(s)".

