
ar
X

iv
:1

71
2.

08
17

9v
2 

 [
m

at
h.

A
G

] 
 2

7 
D

ec
 2

01
7

A CLOSEDNESS THEOREM

OVER HENSELIAN VALUED FIELDS

WITH ANALYTIC STRUCTURE

KRZYSZTOF JAN NOWAK

Abstract. We give a closedness theorem over Henselian valued
fields K of equicharacteristic zero (possibly non algebraically closed)
with separated analytic structure. It asserts that every projection
with a projective fiber is a definably closed map. This remains
valid for valued fields with analytic structures induced by strictly
convergent Weierstrass systems, including the classical, complete
rank one valued fields with the Tate algebras of strictly convergent
power series.

1. Introduction

Throughout the paper, we shall deal with Henselian valued fields
K with separated analytic structure, possibly non algebraically closed.
We shall always assume that the ground field K is of equicharacteristic
zero. A separated analytic structure is determined by a certain sepa-
rated Weierstrass system A defined on an arbitrary commutative ring
A with unit (cf. [3, 4]), and the involved analytic language L is the
two sorted, semialgebraic language LHen augmented by the reciprocal
function 1/x and the names of all functions of the system A, construed
via the analytic A-structure on their natural domains and as zero out-
side them. For convenience, we remind the reader of these concepts
in Section 2. The theory of valued fields with analytic structure was
developed in the papers [7, 8, 9, 5, 3, 4].

Given a valued field K, denote by v, Γ = ΓK , K◦, K◦◦ and K̃ the
valuation, its value group, the valuation ring, maximal ideal and residue
field, respectively. By the K-topology on Kn we mean the topology
induced by the valuation v.

The main result of this article is the following closedness theorem.
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Theorem 1.1. Given an L-definable subset D of Kn, the canonical
projection

π : D × (K◦)m −→ D

is definably closed in the K-topology, i.e. if B ⊂ D × (K◦)m is an
L-definable closed subset, so is its image π(B) ⊂ D.

It immediately yields five corollaries stated below. One of them, the
descent property (Corollary 1.6), enables application of resolution of
singularities and transformation to a normal crossing by blowing up in
much the same way as over the locally compact ground field.

Corollary 1.2. Let D be an L-definable subset of Kn and Pm(K) stand
for the projective space of dimension m over K. Then the canonical
projection

π : D × Pm(K) −→ D

is definably closed. ✷

Corollary 1.3. Let A be a closed L-definable subset of Pm(K) or Rm.
Then every continuous L-definable map f : A → Kn is definably closed
in the K-topology.

Corollary 1.4. Let φi, i = 0, . . . , m, be regular functions on Kn, D
be an L-definable subset of Kn and σ : Y −→ KAn the blow-up of
the affine space KAn with respect to the ideal (φ0, . . . , φm). Then the
restriction

σ : Y (K) ∩ σ−1(D) −→ D

is a definably closed quotient map.

Proof. Indeed, Y (K) can be regarded as a closed algebraic subvariety
of Kn × Pm(K) and σ as the canonical projection. �

Corollary 1.5. Let X be a smooth K-variety, φi, i = 0, . . . , m, regular
functions on X, D be an L-definable subset of X(K) and σ : Y −→ X
the blow-up of the ideal (φ0, . . . , φm). Then the restriction

σ : Y (K) ∩ σ−1(D) −→ D

is a definably closed quotient map. ✷

Corollary 1.6. (Descent property) Under the assumptions of the above
corollary, every continuous L-definable function

g : Y (K) ∩ σ−1(D) −→ K

that is constant on the fibers of the blow-up σ descends to a (unique)
continuous L-definable function f : D −→ K. ✷
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The closedness theorem will be proven in Section 3. The strategy
of proof in the analytic settings will generally follow the one in the
algebraic case from my papers [10, 11]. We rely, in particular, on fiber
shrinking and the local behavior of definable functions of one variable.
Again, we make use of relative quantifier elimination for ordered abelian
groups (in a many-sorted language with imaginary auxiliary sorts) due
to Cluckers–Halupczok [2]. But now we apply elimination of valued
field quantifiers for the theory THen,A and b-minimal cell decomposi-
tions with centers (cf. [6]).

Remark 1.7. The closedness theorem holds also for analytic structures
induced by strictly convergent Weierstrass systems, because every such
structure can be extended in a definitional way (extension by Henselian
functions) to a separated analytic structure (cf. [4]). Examples of such
structures are the classical, complete rank one valued fields with the
Tate algebras of strictly convergent power series.

2. Fields with analytic structure

In this section we recall the concept of an analytic structure (cf. [6,
Section 4.1]). Let A be a commutative ring with unit and with a fixed
proper ideal I  A. A separated (A, I)-system is a certain system A of
A-subalgebras Am,n ⊂ A[[ξ, ρ]], m,n ∈ N; here A0,0 = A. Two kinds of
variables, ξ and ρ, play different roles. Roughly speaking, the variables
ξ vary over the valuation ring (or the closed unit disc) K◦ of a valued
field K, and the variables ρ vary over the maximal ideal (or the open
unit disc) K◦◦ of K. A is called a separated pre-Weierstrass system if
two usual Weierstrass division theorems hold in each Am,n. When, in
addition, such a pre-Weierstrass system A satisfies a condition referring
to the so-called rings of A-fractions, it is called a separated Weierstrass
system (loc. cit.). This condition may be regarded as a kind of weak
Noetherian property, because it implies, in particular, that if

f =
∑

µ,ν

aµν ξ
µρν ∈ Am,n,

then the ideal of A generated by the aµν is finitely generated.

Let A be a separated Weierstrass system and K be a valued field.
A separated analytic A-structure on K (loc. cit.) is a collection of
homomorphisms σm,n from Am,n to the ring of K◦-valued functions on
(K◦)m × (K◦◦)n, m,n ∈ N, such that

1) σ0,0(I) ⊂ K◦◦;
2) σm,n(ξi) and σm,n(ρj) are the i-th and (m+ j)-th coordinate func-

tions on (K◦)m × (K◦◦)n, respectively;
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3) σm+1,n and σm,n+1 extend σm,n, where functions on (K◦)m×(K◦◦)n

are identified with those functions on

(K◦)m+1 × (K◦◦)n or (K◦)m × (K◦◦)n+1

which do not depend on the coordinate ξm+1 or ρn+1, respectively.

Further, consider a separated pre-Weierstrass (A, I)-system A and
assume that A = F ◦ and I = F ◦◦ for a valued field F . Then A is a
Weierstrass system iff for every f ∈ Am,n, f 6= 0, m,n ∈ N, there is
an element c ∈ F such that cf ∈ Am,n and the Gauss norm ‖cf‖ = 1
(loc. cit.).

Now let us recall some properties of analytic structures. Analytic
A-structures preserve composition (op. cit., Proposition 4.5.3). If the
ground field K is non-trivially valued, then the function induced by a
power series from Am,n, m,n ∈ N, is the zero function iff the image in
K of each of its coefficients is zero (op. cit., Proposition 4.5.4).

Remark 2.1. When considering a particular field K with analytic A-
structure, one may assume that ker σ0,0 = (0). Indeed, replacing A
by A/ker σ0,0 yields an equivalent analytic structure on K with this
property. Then A = A0,0 can be regarded as a subring of K◦. Moreover,
by extension of parameters, one can get a separated Weierstrass system
A(K) over (K◦, K◦◦) and K has separated analytic A(K)-structure.
A similar extension of parameters can be performed for any subfield
F ⊂ K of parameters (op. cit., Theorem 4.5.7 f.f.). Finally, every
valued field with separated analytic structure is Henselian (op. cit.,
Proposition 4.5.10). The forgoing properties remain valid in the case
of strictly convergent Weierstrass systems too.

Now we can describe the analytic language L of an analytic structure
K determined by a separated Weierstrass system A. We begin by
defining the semialgebraic language LHen. It is a two sorted language
with the main, valued field sort K, and the auxiliary RV -sort

RV = RV (K) := RV ∗ ∪ {0}, RV ∗(K) := K×/(1 + K◦◦);

here A× denotes the set of units of a ring A. The language of the valued
field sort is the language of rings (0, 1,+,−, ·). The language of the
auxiliary sort is the so-called inclusion language (op. cit., Section 6.1).
The only map connecting the sorts is the canonical map

rv : K → RV (K), 0 7→ 0.

Since
K̃× ≃ (K◦)×/(1 + K◦◦) and Γ ≃ K×/(K◦)×,
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we get the canonical exact sequence

1 → K̃ → RV (K) → Γ → 0.

This sequence splits iff the valued field K has an angular component
map.

The analytic language L = LHen,A is the semialgebraic language
LHen augmented on the valued field sort K by the reciprocal function
1/x (with 1/0 := 0) and the names of all functions of the system A,
together with the induced language on the auxiliary sort RV (op. cit.,
Section 6.2). A power series f ∈ Am,n is construed via the analytic
A-structure on their natural domains and as zero outside them. More
precisely, f is interpreted as a function

σ(f) : (K◦)m × (K◦◦)n → K◦,

extended by zero on Km+n \ (K◦)m × (K◦◦)n.

In the equicharacteristic case, however, the induced language on the
auxiliary sort RV further coincides with the semialgebraic inclusion
language. It is so because then [6, Lemma 6.3.12] can be strengthen
as follows, whereby [6, Lemma 6.3.14] can be directly reduced to its
algebraic analogue. Consider a strong unit on the open ball B = K◦◦

alg.
Then rv(Eσ)(x) is constant when x varies over B. This is no longer true
in the mixed characteristic case, where the weaker conclusion asserts
that the functions rvn(Eσ)(x) depend only on rvn(x) when x varies

over B. Under the circumstances, the residue field K̃ is orthogonal
to the value group ΓK , whenever the ground field K has an angular
component map or, equivalently, the auxiliary sort RV splits (in a
non-canonical way):

RV (K) ≃ K̃ × ΓK .

This means that every definable set in the auxiliary sort RV (K) is
a finite union of the Cartesian products of some sets definable in the

residue field sort K̃ (in the language of rings) and in the value group sort
ΓK (in the language of ordered groups). The orthogonality property
will often be used in the paper, similarly as it was in the algebraic case
treated in our papers [10, 11].

Remark 2.2. Not all valued fields K have an angular component map,
but it exists if K has a cross section, which happens whenever K is
ℵ1-saturated (cf. [1, Chap. II]). Moreover, a valued field K has an
angular component map whenever its residue field k is ℵ1-saturated
(cf. [13, Corollary 1.6]). In general, unlike for p-adic fields and their
finite extensions, adding an angular component map does strengthen
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the family of definable sets. Since the K-topology is L-definable, the
closedness theorem is a first order property. Therefore it can be proven
using elementary extensions, and thus one may assume that an angular
component map exists.

Let THen,A be the theory of all Henselian valued fields of character-
istic zero with analytic A-structure. The crucial result about analytic
structures is the following [6, Theorem 6.3.7].

Theorem 2.3. The theory THen,A eliminates valued field quantifiers,
is b-minimal with centers and preserves all balls. Moreover, THen,A has
the Jacobian property. ✷

Therefore the theory THen,A admits b-minimal cell decompositions
with centers (cf. [6]).

3. Proof of the closedness theorem

From now on we shall assume that the ground field K with sepa-
rated analytic structure A is of equicharacteristic zero, and that K
has an angular component map. In the algebraic case, the proofs of
the closedness theorem given in our papers [10, 11]) make use of the
following three main tools: the theorem on existence of the limit ([10,
Proposition 5.2] and [11, Theorem 5.1]), fiber shrinking ([10, 11, Propo-
sition 6.1]) and cell decomposition in the sense of Pas.

Fiber shrinking was reduced, by means of elimination of valued field
quantifiers, to Lemma 3.1 below ([11, Lemma 6.2]), which, in turn, was
obtained via relative quantifier elimination for ordered abelian groups.
That approach can be repeated verbatim in the analytic settings.

Lemma 3.1. Let Γ be an ordered abelian group and P be a definable
subset of Γn. Suppose that (∞, . . . ,∞) is an accumulation point of P ,
i.e. for any δ ∈ Γ the set

{x ∈ P : x1 > δ, . . . , xn > δ} 6= ∅

is non-empty. Then there is an affine semi-line

L = {(r1t + γ1, . . . , rnt + γn) : t ∈ Γ, t ≥ 0} with r1, . . . , rn ∈ N,

passing through a point γ = (γ1, . . . , γn) ∈ P and such that (∞, . . . ,∞)
is an accumulation point of the intersection P ∩ L too. ✷

Similarly, one can obtain the following

Lemma 3.2. Let P be a definable subset of Γn and

π : Γn → Γ, (x1, . . . , xn) 7→ x1
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be the projection onto the first factor. Suppose that ∞ is an accumu-
lation point of π(P ). Then there is an affine semi-line

L = {(r1t+γ1, . . . , rnt+γn) : t ∈ Γ, t ≥ 0} with r1, . . . , rn ∈ N, r1 > 0,

passing through a point γ = (γ1, . . . , γn) ∈ P and such that ∞ is an
accumulation point of π(P ∩ L) too.

In this paper, however, a suitable analytic version of the theorem on
existence of the limit and application of b-minimal cell decompositions
require some new ideas and work. The proof of the former relies on the
theorem on term structure ([6, Theorem 6.3.8]), which we recall below.
In further reasonings, we shall often make use of Lemmas 3.1 and 3.2.

Denote by L∗ the analytic language L augmented by all Henselian
functions

hm : Km+1 × RV (K) → K, m ∈ N,

which are defined by means of a version of Hensel’s lemma (cf. [6],
Section 6.1).

Theorem 3.3. Let K be a Henselian field with analytic A-structure.
Let f : X → K, X ⊂ Kn, be an L(B)-definable function for some set of
parameters B. Then there exist an L(B)-definable function g : X → S
with S auxiliary and an L∗(B)-term t such that

f(x) = t(x, g(x)) for all x ∈ X.

✷

We turn to the following analytic version of the theorem on existence
of the limit, which also may be regarded as a version of Puiseux’s
theorem.

Theorem 3.4. Let f : E → K be an L-definable function on a subset
E of K and suppose 0 is an accumulation point of E. Then there is
an L-definable subsets F ⊂ E with accumulation point 0 and a point
w ∈ P1(K) such that

lim
x→0

f |F (x) = w.

Moreover, we can require that

{(x, f(x)) : x ∈ F} ⊂ {(xr, φ(x)) : x ∈ G},

where r is a positive integer and φ is a definable function, a composite
of some functions induced by series from A and of some algebraic power
series (coming, in a certain way, from Henselian functions hm). Then,
in particular, the definable set

{(v(x), v(f(x))) : x ∈ (F \ {0}} ⊂ Γ × (Γ ∪ {∞})
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is contained in an affine line with rational slope

l =
p

q
· k + β,

with p, q ∈ Z, q > 0, β ∈ Γ, or in Γ × {∞}.

Proof. In view of Remark 2.1, we may assume that K has separated
analytic A(K)-structure. We apply Theorem 3.3 and proceed with
induction with respect to the complexity of the term t. Since an angular

component map exists, the sorts K̃ and Γ are orthogonal in

RV (K) ≃ K̃ × ΓK .

Therefore, after shrinking F , we can assume that ac (F ) = {1} and

the function g goes into {ξ} × Γs with a ξ ∈ K̃s, and next that ξ =
(1, . . . , 1); similar reductions were considered in our papers [10, 11]. For
simplicity, we look at g as a function into Γs. We shall briefly explain
the most difficult case where

t(x, g(x)) = hm(a0(x), . . . , am(x), g0(x)),

assuming that the theorem holds for the terms a0, . . . , am; here g0 is
one of the components of g. By Lemma 3.2, we can assume that

(3.1) pv(x) + qg0(x) + v(a) = 0

for some p, q ∈ Z, a ∈ K \ {0}. By the induction hypothesis, we get

{(x, ai(x)) : x ∈ F} ⊂ {(xr, αi(x)) : x ∈ G}, i = 0, 1, . . . , m.

Put

P (x, T ) :=

m∑

i=0

ai(x)T i.

By the very definition of hm and since we are interested in the vicinity
of zero, we may assume that there is i0 = 0, . . . , m such that

∀ x ∈ F ∃ u ∈ K v(u) = g0(x), ac u = 1,

(3.2) v(ai0(x)ui0) = min {v(ai(x)ui), i = 1, . . . , m},

v(P (x, u)) > v(ai0(x)ui0), v

(
∂ P

∂ T
(x, u)

)
= v(ai0(x)ui0).

Then hm(a0(x), . . . , am(x), g0(x)) is a unique b(x) ∈ K such that

P (x, b(x)) = 0, v(b(x)) = g0(x), ac b(x) = 1.

By [11, Remarks 7.2, 7.3], the set F contains the set of points of the
form crtNqr for some c ∈ K with ac c = 1, a positive integer N and all
t ∈ K◦ with ac t = 1. Hence and by equation (3.1), we get

g0(c
rtNqr) = g0(c

r) − v(tNpr).
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Take d ∈ K such that g0(c
r) = v(d) and ac d = 1. Then

g0(c
rtNqr) = v(dt−Npr).

Thus the homothetic change of variable

Z = T/dt−Npr = tNprT/d

transforms the polynomial

P (crtNqr, T ) =

m∑

i=0

αi(ct
Nq)T i

into a polynomial Q(t, Z) to which Hensel’s lemma applies (cf. [12,
Lemma 3.5]):

(3.3) P (crtNqr, T ) = P (crtNqr, dt−NprZ) =

αi0(ct
Nq) · (dt−Npr)i0 ·Q(t, Z).

Indeed, the formulas (3.2) imply that the coefficients of the polynomial
Q are power series (of order ≥ 0) in the variable t, and that

v(Q(0, 1)) > 0 and v

(
∂ Q

∂ Z
(0, 1)

)
= 0.

Therefore the conclusion of the theorem follows. �

We still need the concept of fiber shrinking introduced in our pa-
per [10]. Let A be an L-definable subset of Kn with accumulation
point

a = (a1, . . . , an) ∈ Kn

and E an L-definable subset of K with accumulation point a1. We call
an L-definable family of sets

Φ =
⋃

t∈E

{t} × Φt ⊂ A

an L-definable x1-fiber shrinking for the set A at a if

lim
t→a1

Φt = (a2, . . . , an),

i.e. for any neighbourhood U of (a2, . . . , an) ∈ Kn−1, there is a neigh-
bourhood V of a1 ∈ K such that ∅ 6= Φt ⊂ U for every t ∈ V ∩ E,
t 6= a1. When n = 1, A is itself a fiber shrinking for the subset A of K
at an accumulation point a ∈ K.

Proposition 3.5. (Fiber shrinking) Every L-definable subset A of Kn

with accumulation point a ∈ Kn has, after a permutation of the coor-
dinates, an L-definable x1-fiber shrinking at a.
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By means of elimination of valued field quantifiers (Theorem 2.3),
this proposition reduces easily to Lemma 3.1 (see [11]). Now we can
readily proceed with the

Proof of the closedness theorem (Theorem 1.1). We must show that if
B is an L-definable subset of D×(K◦)n and a point a lies in the closure
of A := π(B), then there is a point b in the closure of B such that
π(b) = a. As before (cf. [11, Section 8]), the theorem reduces easily to
the case m = 1 and next, by means of fiber shrinking (Proposition 3.5),
to the case n = 1. We may obviously assume that a = 0 6∈ A.

By b-minimal cell decomposition, we can assume that the set B is
a relative cell with center over A. It means that has a presentation of
the form

Λ : B ∋ (x, y) → (x, λ(x, y)) ∈ A× RV (K)s,

where λ : B → RV (K)s is an L-definable function, such that for
each (x, ξ) ∈ Λ(B) the pre-image λ−1

x (ξ) ⊂ K is either a point or
an open ball; here λx(y) := λ(x, y). In the latter case, there is a
center, i.e. an L-definable map ζ : Λ(B) → K, and a (unique) map
ρ : Λ(B) → RV (K) \ {0} such that

λ−1

x (ξ) = {y ∈ K : rv (y − ζ(x, ξ)) = ρ(x, ξ)}.

Again, since the sorts K̃ and Γ are orthogonal in RV (K) ≃ K̃ × ΓK ,
we can assume, after shrinking the sets A and B, that

λ(B) ⊂ {(1, . . . , 1)} × Γs ⊂ K̃s × Γs
K ;

let λ̃(x, y) be the projection of λ(x, y) onto Γs. By Lemma 3.2, we can
assume once again, after shrinking the sets A and B, that the set

{(v(x), v(y), λ̃(x, y)) : (x, y) ∈ B} ⊂ Γs+2

is contained in an affine semi-line with integer coefficients. Hence
λ(x, y) = φ(v(x) is a function of one variable x. We have two cases.

Case I. λ−1
x (ξ) ⊂ K◦ is a point. Since each λx is a constant func-

tion, B is the graph of an L-definable function. The conclusion of the
theorem follows thus from Theorem 3.4.

Case II. λ−1
x (ξ) ⊂ K◦ is a ball. Again, application of Lemma 3.2

makes it possible, after shrinking the sets A and B, to arrange the
center

ζ : Λ(B) ∋ (x, k) → ζ(x, v(x)) = ζ(x) ∈ K
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and the function ρ(x, k) = ρ(v(x)) as functions of one variable x. Like-
wise as it was above, we can assume that the set

P := {(v(x), ρ(v(x))) : x ∈ A} ⊂ Γ2

is contained in an affine line pv(x) + qρ(v(x)) + v(c) = 0 with integer
coefficients p, q, q 6= 0; furthermore, that P contains the set

Q := {(v(ctqN), ρ(v(ctqN))) : t ∈ K◦}

for a positive integer N . Then we easily get

ρ(v(ctqN )) = ρ(c) − pNv(t) = v(ct−pN).

Hence the set B contains the graph

{(ctqN , ζ(ctqN) + ct−pN) : t ∈ K◦}.

As before, the conclusion of the theorem follows thus from Theorem 3.4,
and the proof is complete.

Let us conclude with the following comment. We are currently
preparing subsequent articles, which will provide several applications of
the closedness theorem, possibly over non-algebraically closed ground
fields, including i.al. the analytic, non-Archimedean versions of the
 Lojasiewicz inequalities and of curve selection. The algebraic versions
of these results were established in our papers [10, 11].
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