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Abstract

The concepts of tropical semiring and tropical hypersurface, are
extended to the case of an arbitrary ordered group. Then, we define
the tropicalization of a polynomial with coefficients in a Krull-valued
field.

After a close study of the properties of the operator “tropicaliza-
tion” we conclude with an extension of Kapranov’s theorem to alge-
braically closed fields together with a valuation over an ordered group.

Introduction

The tropical semi-ring is the set T := R U {oo} together with the operations
a®b:=min{a,b} and a ©b:=a+b. A tropical hypersurface is a subset of
RY defined by a polynomial with coefficients in T. A valuation of a field into
the real numbers is used to tropicalize algebraic geometry propositions. A
naturally real-valued algebraically closed field is the field of Puiseux series.

Let K be an algebraically closed real-valued field. In [2] M. Einsieder, M.
Kapranov and D. Lind show that the image of an algebraic hypersurface via
a valuation into the reals coincides with the non-linearity locus of its tropical
map.

Valuations into the real numbers are just a particular type of valuations
called classical (see for example [8]). In 1932 W. Krull extended the classical
definition considering valuations with values in an arbitrary ordered group
[7]. Krull’s definition is the one currently used in most articles and reference
texts (see for example [12, 3, 11]).
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Replacing R by another totally ordered group I', the tropical semi-ring
G :=TU{oc0} may be defined naturally. The same happens with the concept
of tropical hypersurface and the tropicalization of a polynomial. A first step
in this direction has been done in [1] where an example is given.

In this note we extend these concepts and prove some properties of the
tropicalization map. Using these properties we extend the so called Kapra-
nov’s theorem. Our proof is not just an extension of an existing proof in the
classical case but it is essentially different.

In [2], a tropical hypersurface is defined as the closure in RY of the image,
via valuation, of an algebraic hypersurface. Defining the tropical hypersur-
face as a subset of I'V has the advantage (even when I' C R) that we do not
need to deal with topological arguments. This idea is already present in [6].

Sections 1 and 2 are devoted to extending the definitions of tropical semi-
ring and tropical hypersurface. In sections 3 and 4 we recall the definition
of Krull valuation and extend the definition of tropicalization and tropical
hypersurface of a polynomial with coefficients in a valued field.

In section 5 we prove that the hypersurface associated to the tropicaliza-
tion of a product is the union of the hypersurfaces of the tropicalization of
its factors. Kapranov’s theorem in one variable is a consequence of this fact.

Sections 6 and 7 are devoted to finding polynomials f for which the value
val(f(z)) of f evaluated at a point x equals the tropicalization of f, evaluated
at the point val(x).

In section 8 we give a proof of the extension of Kapranov’s theorem.

I would like to thank Jesis del Blanco Marana for answering all my naive,
and not so naive, questions about valuations. I also thank Martha Takane
and Lucia Lépez de Medrano for fruitful discussions during the preparation
of this note.

1 Ordered groups, tropical semi-rings and trop-
ical polynomials.

A totally ordered group is an abelian group (I', +) equipped with a total
order such that for all z,y,z €e 'if 2 <y then x + 2 <y + 2. For a > 0 we
have a + a > 0 + a, therefore a totally ordered group is torsion free.

The following definition is an extension of a classical definition for the
ordered group (R, +, <) [5, 9, 4].

Definition 1.1. A totally ordered group (I',+,<) induces an idempotent
semi-ring G := (I' U {oco}, ®, ®). Here

e a®b:=minf{a,b} and a® oo :=a fora,bel.
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e a®Ob:=a+banda® oo :=o00 fora,bel.

This semiring 1s called the min-plus algebra induced by I' or the tropical
semi-ring.

A non-zero Laurent polynomial F' € Gz*] := Glxy, 27", ..., 2n, 25 ] is
an expression of the form
F = @ Ao © 2%, a, €T, #E(F) < 0. (1.1)
acl(F)czZN

These polynomials are called tropical polynomials.
The set of tropical polynomials is a semi-ring with the natural operations:
Given [ as above and G = @ sce(ycan bs © 2P, we define

FoG= B (@ aa®b6> © 2"

nE€E(F)+E(G) \a+pB=n
and
FoG .= EB a, ® b, ® 2"
neE(F)UE(G)

where a, := oo for all n € E(G) \ E(F) and b, := oo for all n € E(F) \ E(G).

2 'Tropical maps and non-linearity locus.

Let G be the min-plus algebra induced by the group (I, <).
Given g € G and a natural number k, we will use the standard notation

k times
—_—N— — _ k
=90--0g and g"=(¢7")"
and, for v € I'N and o € Z" we will denote
,ya — fylal ®--- @nyOlN‘
A tropical polynomial F' = @QGS(F)CZJV ao®x® induces amap F : 'V —
[’ given by
F:vw— @ ae © Y.
a€&(F)
A map induced by a tropical polynomial is called a tropical map.

For each v € T'V there exists at least one a € &(F) such that F(vy) =
aq ® 7*. The set of a’s with this property will be denoted by D, (F'). That
is

D,(F) = {a € &(F) | F(7) = a0 © 7). 2.1)



Definition 2.1. The hypersurface associated to F' is the subset of 'V
given by
V(F) ={yel|#D,(F)>1}. (2.2)

For a € E(F), the restriction F'|(yernjaep, (ryy is given by an affine linear
function v — a, © v*. We say that I’ defines a piecewise linear function on
I'V. The hypersurface associated to F is called the non-linearity locus.

3 Valuations.

Let (T', <,+) be a totally ordered group and let (G, @, ®) be its min-plus al-
gebra. A valuation of a field (K, +x, -) with values in (I, <, +) is a surjective
map val : K — G such that

1. val(zx) =00 & x =0,
2. val(z - y) = val(x) ©® val(y) for all x,y € K, and
3. val(z +x y) > val(x) & val(y).

We say that K has values in I'. A field together with a valuation is called
a valued field and (T', <, +) is called the group of values.
Note that

e val(l) =wval(1-1) =val(1l) ®val(1) Fis torsion free val(1) = 0.
o 0=val((—1)(=1)) = val(—1) ® val(—1) " * ‘22" ¥ y41(—1) = 0.
e val(—b) = val((—1)b) = val(—1) ® val(b) = val(b).

Lemma 3.1. Let E C K be a finite set. If val <Z¢€E <p> > Dpepvaly then

the set of elements in E where the valuation attains its minimum has at least
two elements.

Proof. Let E.;, be the subset of E consisting of elements where the valuation
attains its minimum:

Enin = {p € E | valp = ®,cpvalp}.

Suppose that Ewin = {a} and set b:= 3" p .y . We have val(b) > val(a)
and

val (Z gp) > Bpepvaly <= val(a+b) > val(a).
peLE

Then val(a) = val((a + b) — b) > wval(a + b) & val(b) > val(a) which is a
contradiction. O



4 The tropicalization.

Let (K, val) be a valued field with values in a group I' and let G be the
min-plus algebra induced by I'.

A non-zero Laurent polynomial in N variables with coefficients in K,
f € K[z*], is written in the form:

F= D @ar®  @a€K\{0}, #E&(f) <. (4.1)
ac&(f)czN
The polynomial f via the valuation val induces an element of G[z*]
Tf:= @ val(ps) © ¢
ac&(f)czN
this polynomial is called the tropicalization of f.

Remark 4.1. Since val(a+b) > val(a)®Bval(b) and val(ab) = val(a)®val(b),
we have
val(f(x)) > T f(val(x)) for all z €KY,

Given a Laurent polynomial in N variables with coefficients in K, f &€
K[z*] := Klzy, 27", ..., 2n, 75 ], the set of zeroes of f is defined as

V(f) = {z e (K\{0})" | f(z) = 0}.

The tropical hypersurface associated to f is the set of values of V(f).
That is:
TV f :=val(V(f)).

Proposition 4.2. Let f be a non-zero polynomial in Klay, 27", ... 2, x]’vl].
If ¢ € KN is a zero of f, then valg is in the hypersurface associated to the
tropicalization of f. That is:

TVfCcVTf.
Proof. For f =3 ce(p) par®, we have

T [ = Bace(pval(pa) © z*.

Since Y ce(p) Pad® = 0, by lemma 3.1, the set

acg(
Emin = {CYO S E(f) | ’Ual(goaogbao) - @aeg(f)val(goaqsa)}

has at least two elements.
Now val(pa¢®) = val(ps) @ (vald)®, then Enn = Dyae(7 f) and we have
the result. 0



5 The tropicalization of a product.

The map 7 : Klzy,...,2n] — Glzy,...,2x] may not preserve sum nor
product. Nevertheless, the tropical variety of the product may be described.

Lemma 5.1. Let K be a valued field and let T be its group of values. Given
w € RY with rationally independent coordinates, f,g € K[z*] and v € TV ;
set ag € Dy (T f) and By € Dy(T g) such that

Ww-rap= min w-a and w-Fy= min w-pf. 5.1
* 7 aeny (1) bo= i WP (5.1)

Set ng := ag + Po. We have:

e DT d w-ny = i .
o € Dy(T(fg)) and w-no Lemin w1

Proof. Write f = 3" ey Pat® and g = 3 5ce @x7. Then

fo= > (Z %%) 2",

neE(fIUE(g) \a+p=n

By (5.1), we have

w-ny = min w-n. (5.2)
n€D~ (T f)+D~(Tg)

Since ag € D(T f) and [y € D,(7T g), by definition (2.1), we have

val(Pa,) © 7 < val(ps) ©® 7%, Va € E(Ff)
and (5.3)
val(ly,) © 7% <wal(gl) ©7°, VB € E(g).

and

val(ay) © 7% < val(pa) ©7%, Va € E(f)\ Dy(T )
and (5.4)
val(pf,) © 7 <wal(plh) @47, VB € E(g) \ D,(Tg).

Let o € E(f) and § € E(f) be such that ny = a+ 3. If ag # « then either
w-a<w-ayorw-fF<w-f. Then, by (5.1), « ¢ D(Tf) or 8¢ D,(Tg),
and then

a+ B =mn val(pa,) © Y < val(pa) © ¥~
and = { or (5.5)
a # g val(ph,) © P < val(¢f) © ~8.
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Inequalities (5.5) together with (5.3) give

a+B=mn

and = val(PayP,) OV < val(paps) ©Y™.

a # ag
Therefore, by lemma 3.1,
val ( > %s@’g) = val(PaoPh,)-
a+p=no
Inequalities (5.3) give
val (Paglh,) © 7™ < val (pals) © 7, Vo€ &(f), 6 € E(g).

Equality (5.6) together with (5.7) gives

val < Z gow};) ™ < wval ( Z %tpk) oy, ¥y € E(f) + E(g).

a+B=no a+06=n

In other words:
no € Do(T f9g)

and

T fg(v) = val ( Z gpagp’ﬁ> O = val(goaogp’ﬂo) ® A,

a+pB=no

By (5.4) and (5.9), we have
D\(Tfg) C DT f)+D,(Tg)
(5.2), (5.8) and (5.10) give

W = min w-
g n€D~(7 fg) "

(5.8)

(5.9)

(5.10)

(5.11)

[]

Proposition 5.2. The hypersurface associated to the tropicalization of a
finite product of polynomials is equal to the union of the hypersurfaces asso-

ciated to the tropicalization of each polynomial. That is

VT(fg) =V(Tf)UV(Ty).



Proof. Take w € RN with rationally independent coordinates. Set ag €
D, (T f) and fy € D,(7T g) such that

w-ap= min w-a and w-fy= min w-f.
Q€D (Tf) BED~(Tg)

Now take ay € D (7 f) and 3, € D,(7 g) such that

—w)-a; = min (—w)-a and (—w)- = min (—w)-/f.
(=w)-an aeDwa)( ) (=) - A ﬁebm)( )0

By lemma 5.1 we have 1y := a9 + fo, 71 := o1 + 51 € D,(T(fg)). And

Ww'n= min w-n. and w-7m = max w-1n. 5.12
P T T en T (5.12)
Now
A VTf Qp 7£ aq
or & ¢ or Sn#FmeyeVTfg.
v eVTyg Bo # b1
0

Corollary 5.3. Let (K, val) be an algebraically closed valued field. For N =1
and f € K|z] we have
VI f=TVf.

Proof. [ = Tl,ev(p(z — a) then VT f = Usev(n)VT (z — a) = {val(a) |
aeV(f)}. O

6 Valuation ring and residue field.

The set
Apar = {a € K | val(a) > 0}

is a ring called the valuation ring. The valuation ring has only one maximal
ideal given by
My, = {a € K | val(a) > 0},

the group of units of A,,; is given by:
Upar := {a € K| val(a) = 0}.
Its residue field is defined as

Rval = Aval/mval-
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There is a natural map

Aval ? Rval

2 = @ = mod Myal - (61)

Lemma 6.1. IfK is algebraically closed, then its residue field is algebraically
closed.

Proof. Given P(z) € Ryqr]\ Rua let Q(z) € Ayaz]\ Ava be a pre-image of
P(z) via the map (6.1). Since A, C K, the polynomial @ has a root k € K.
Write Q = Z?:o u;jz? € Uyglz] with ug, ug # 0. We have

val(ujk?) = jval (k).

Since Z?:o u;k? = 0, by lemma 3.1, there exists j # j' such that jval(k) =
j'wval(k). Then, val(k) = 0 or val(k) = oco. This implies that k is an element
of Ay

The image of k under the map (6.1), is a root of P. O

Remark 6.2. As a consequence of lemma 6.1 we have: If K is algebraically
closed then R,q is infinite.

7 The value of a polynomial at a point.
As we noted in remmark 4.1, we have
val(f(x)) > T f(val(z)) forall z €KY,

in this section we will see that, for each v € 'V, there exist x € val~(y) €
K" for which the equality holds.

Lemma 7.1. Let f1,..., fr be a finite set of non-zero Laurent polynomials
in N variables with coefficients in R,q. There exists an N-tuple of non-zero
elements r € (Ryq \ {0})" such that f;(r) is non-zero for eachi € 1,... k.

Proof. Set g := Hle fi, then ¢ is a Laurent polynomial

g= Z o, T € Ry, #A < o0
a=(ai,...,an)EACZN
set B:=(1,...,1) — (mingep ag, . . ., Mingep ay). We have 2°g €< 201 >
Rval[x]'



The set of zeroes of f := 2%g — 1 is a hypersurface of R, that doesn’t
intersect the coordinate hyperplanes. Since R,, is an algebraically closed
field (lemma 6.1), there exists a point r € (Ryqy \ {0})" where f vanishes.

We have:

k
fa)y=rPgtr)=1=0= "] filr) =1= fir) #0V,i=1.. k.

i=0
m
Lemma 7.2. Let fi,..., fr be a finite set of Laurent polynomials in N vari-
ables with coefficients in A,q. If one on the coefficients of each f; is a unit,
then there exists an N-tuple of units u € U,y™ such that fi(u) is a unit for

each i€ {1,... k}.

Proof. Let f; be the image of f; in R,y[2*] via the natural morphism. That

18
O : Aval [Qj*] - Rval [.Z'*]

Za gpaxa = Za gp_axa

where ¢, is the image of ¢, via the map (6.1).

Since at least one of the coefficients of f; is a unit f; is not zero. By
lemma 7.1, there exists an N-tuple of non-zero elements r € (Ryq \ {0})"
such that f;(r) is non-zero for each i € {1,...,k}. Take x € A," such that
T = r via the natural map (6.1).

We have x € U,y and ®(f;(x)) = fi(r) # 0 implies f;(x) € Uy O

Proposition 7.3. Let f1,..., fr be Laurent polynomials in N variables with
coefficients in K. Given an N-tuple v € TN there exists v € KV such that

val(x) =~ and wval(fi(z)) =7 fi(val(zx))
forallie{1,...,k}.

Proof. Take ¢ € K¥ and 1; € K such that val¢ = v and valy; = 7T fi(7).
Set

1
gi(.’ll'l, Ce ,IEN) = —

= w'fi(¢1$1> S ONTN).
Write g; = >, ¢iox®. We have 7g;(0,...,0) = @, val(p;) = 0. Then,
for each i, there exists ag) such that val(go(ia(i>)) = 0 and val(p; ) > 0 for
X

all . That is ¢g; € A,ulz] and one of the coefficients is a unit. By lemma
7.2, there exists u = (uy,...,uy) € Uy’ such that val(g;(u)) = 0. Then

val (%fi(%ul, R ¢NUN)) = 0= val(fi(prur, ..., dyun)) = val(;) = T fi(7).
Since val((¢1ug, ..., dnuy)) = 7, we have the result.

[]
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8 The main theorem

Now we are ready to extend the theorem proved by Einsieder, Kapranov and

Lind.

Theorem 8.1. Let K be an algebraically closed valued field. The tropical hy-
persurface associated to a polynomial f € K[z*| is the hypersurface associated
to the tropicalization of f. That is,

TVf =VTY.

Proof. The inclusion TV f C V7 f is just proposition 4.2.

To see the other inclusion:
Given v € VT f we want to see that there exists ¢ = (¢1,...,¢n) such that
valg = and f(¢) =

v € VT f if and only if there exist a® # oV € D (T f). The vector o
is different from o) if and only if one of the coordinates is different. Let us
suppose that a(®y # oM y. Write f asin (4.1) and set A :={ay €Z | a €
E(f)}. The polynomial f may be rewritten in the form

f= Z hi(xh ce 717N—1)9€Ni where h; = Z go(m-)x(ﬁ’o).
ich (BA)EE(S)

Write v = (u,n) € TV=! x T, and choose y € K¥~! such that valy = u
and val(h;(y)) = Th;(p) (proposition 7.3). Set

g:i= Zh ()N € Klzy].

We have
Tf(7) = Bacepral(pa) © 7" ‘
eenval(ppq) © 1) o'

Write a® = (®) j*)) € ZN=1 x 7, k = 0,1. We have

Tg(TD = val(s%(m) ® ,ya k) _ U(Zl(@(ﬁ(k) j(k))) ® Hﬁ(k) ® nj(k)
)

= Thi(p) © " = val(hi(y)) © ™.

Since j(© #£ i the element n € I is in the variety V7T ¢, then, by corollary
5.3, there exists z € K such that valz = n and g(z) = 0.
We have ¢ := (y,2) € KV, val(y,z) =~ and f(y,2) = g(z) = 0. O
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