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Abstract

The concepts of tropical semiring and tropical hypersurface, are
extended to the case of an arbitrary ordered group. Then, we define
the tropicalization of a polynomial with coefficients in a Krull-valued
field.

After a close study of the properties of the operator “tropicaliza-
tion” we conclude with an extension of Kapranov’s theorem to alge-
braically closed fields together with a valuation over an ordered group.

Introduction

The tropical semi-ring is the set T := R∪ {∞} together with the operations
a⊕ b := min{a, b} and a� b := a+ b. A tropical hypersurface is a subset of
RN defined by a polynomial with coefficients in T. A valuation of a field into
the real numbers is used to tropicalize algebraic geometry propositions. A
naturally real-valued algebraically closed field is the field of Puiseux series.

Let K be an algebraically closed real-valued field. In [2] M. Einsieder, M.
Kapranov and D. Lind show that the image of an algebraic hypersurface via
a valuation into the reals coincides with the non-linearity locus of its tropical
map.

Valuations into the real numbers are just a particular type of valuations
called classical (see for example [8]). In 1932 W. Krull extended the classical
definition considering valuations with values in an arbitrary ordered group
[7]. Krull’s definition is the one currently used in most articles and reference
texts (see for example [12, 3, 11]).

∗MSC:12.70,14B99. Key words: Krull valuations, Tropical geometry, algebraic variety,
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Replacing R by another totally ordered group Γ, the tropical semi-ring
G := Γ∪{∞} may be defined naturally. The same happens with the concept
of tropical hypersurface and the tropicalization of a polynomial. A first step
in this direction has been done in [1] where an example is given.

In this note we extend these concepts and prove some properties of the
tropicalization map. Using these properties we extend the so called Kapra-
nov’s theorem. Our proof is not just an extension of an existing proof in the
classical case but it is essentially different.

In [2], a tropical hypersurface is defined as the closure in RN of the image,
via valuation, of an algebraic hypersurface. Defining the tropical hypersur-
face as a subset of ΓN has the advantage (even when Γ ⊂ R) that we do not
need to deal with topological arguments. This idea is already present in [6].

Sections 1 and 2 are devoted to extending the definitions of tropical semi-
ring and tropical hypersurface. In sections 3 and 4 we recall the definition
of Krull valuation and extend the definition of tropicalization and tropical
hypersurface of a polynomial with coefficients in a valued field.

In section 5 we prove that the hypersurface associated to the tropicaliza-
tion of a product is the union of the hypersurfaces of the tropicalization of
its factors. Kapranov’s theorem in one variable is a consequence of this fact.

Sections 6 and 7 are devoted to finding polynomials f for which the value
val(f(x)) of f evaluated at a point x equals the tropicalization of f , evaluated
at the point val(x).

In section 8 we give a proof of the extension of Kapranov’s theorem.
I would like to thank Jesús del Blanco Maraña for answering all my naive,

and not so naive, questions about valuations. I also thank Martha Takane
and Lućıa López de Medrano for fruitful discussions during the preparation
of this note.

1 Ordered groups, tropical semi-rings and trop-

ical polynomials.

A totally ordered group is an abelian group (Γ,+) equipped with a total
order such that for all x, y, z ∈ Γ if x ≤ y then x+ z ≤ y + z. For a > 0 we
have a+ a > 0 + a, therefore a totally ordered group is torsion free.

The following definition is an extension of a classical definition for the
ordered group (R,+,≤) [5, 9, 4].

Definition 1.1. A totally ordered group (Γ,+,≤) induces an idempotent
semi-ring G := (Γ ∪ {∞},⊕,�). Here

• a⊕ b := min{a, b} and a⊕∞ := a for a, b ∈ Γ.
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• a� b := a+ b and a�∞ := ∞ for a, b ∈ Γ.

This semiring is called the min-plus algebra induced by Γ or the tropical
semi-ring.

A non-zero Laurent polynomial F ∈ G[x∗] := G[x1, x
−1
1 , . . . , xN , x

−1
N ] is

an expression of the form

F =
⊕

α∈E(F )⊂ZN

aα � xα, aα ∈ Γ, #E(F ) <∞. (1.1)

These polynomials are called tropical polynomials.
The set of tropical polynomials is a semi-ring with the natural operations:

Given F as above and G =
⊕

β∈E(G)⊂ZN bβ � xβ, we define

F �G :=
⊕

η∈E(F )+E(G)

( ⊕
α+β=η

aα � bβ

)
� xη

and
F ⊕G :=

⊕
η∈E(F )∪E(G)

aη ⊕ bη � xη

where aη := ∞ for all η ∈ E(G) \ E(F ) and bη := ∞ for all η ∈ E(F ) \ E(G).

2 Tropical maps and non-linearity locus.

Let G be the min-plus algebra induced by the group (Γ,≤).
Given g ∈ G and a natural number k, we will use the standard notation

gk :=

k times︷ ︸︸ ︷
g � · · · � g and g−k =

(
g−1
)k

;

and, for γ ∈ ΓN and α ∈ ZN we will denote

γα := γ1
α1 � · · · � γN

αN .

A tropical polynomial F =
⊕

α∈E(F )⊂ZN aα�xα induces a map F : ΓN −→
Γ given by

F : γ 7→
⊕

α∈E(F )

aα � γα.

A map induced by a tropical polynomial is called a tropical map.
For each γ ∈ ΓN there exists at least one α ∈ E(F ) such that F (γ) =

aα � γα. The set of α’s with this property will be denoted by Dγ(F ). That
is

Dγ(F ) := {α ∈ E(F ) | F (γ) = aα � γα}. (2.1)

3



Definition 2.1. The hypersurface associated to F is the subset of ΓN

given by
V(F ) := {γ ∈ Γ | #Dγ(F ) > 1}. (2.2)

For α ∈ E(F ), the restriction F |{γ∈ΓN |α∈Dγ(F )} is given by an affine linear
function γ 7→ aα � γα. We say that F defines a piecewise linear function on
ΓN . The hypersurface associated to F is called the non-linearity locus.

3 Valuations.

Let (Γ,≤,+) be a totally ordered group and let (G,⊕,�) be its min-plus al-
gebra. A valuation of a field (K,+K, ·) with values in (Γ,≤,+) is a surjective
map val : K −→ G such that

1. val(x) = ∞⇔ x = 0,

2. val(x · y) = val(x)� val(y) for all x, y ∈ K, and

3. val(x+K y) ≥ val(x)⊕ val(y).

We say that K has values in Γ. A field together with a valuation is called
a valued field and (Γ,≤,+) is called the group of values.

Note that

• val(1) = val(1 · 1) = val(1)� val(1)
Γ is torsion free

=⇒ val(1) = 0.

• 0 = val((−1)(−1)) = val(−1)� val(−1)
Γ is torsion free

=⇒ val(−1) = 0.

• val(−b) = val((−1)b) = val(−1)� val(b) = val(b).

Lemma 3.1. Let E ⊂ K be a finite set. If val
(∑

ϕ∈E ϕ
)
> ⊕ϕ∈Evalϕ then

the set of elements in E where the valuation attains its minimum has at least
two elements.

Proof. Let Emin be the subset of E consisting of elements where the valuation
attains its minimum:

Emin = {ϕ ∈ E | valϕ = ⊕ϕ∈Evalϕ}.

Suppose that Emin = {a} and set b :=
∑

ϕ∈E\{a} ϕ. We have val(b) > val(a)
and

val

(∑
ϕ∈E

ϕ

)
> ⊕ϕ∈Evalϕ⇐⇒ val(a+ b) > val(a).

Then val(a) = val((a + b) − b) ≥ val(a + b) ⊕ val(b) > val(a) which is a
contradiction.
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4 The tropicalization.

Let (K, val) be a valued field with values in a group Γ and let G be the
min-plus algebra induced by Γ.

A non-zero Laurent polynomial in N variables with coefficients in K,
f ∈ K[x∗], is written in the form:

f =
∑

α∈E(f)⊂ZN

ϕαx
α ϕα ∈ K \ {0}, #E(f) <∞. (4.1)

The polynomial f via the valuation val induces an element of G[x∗]

T f :=
⊕

α∈E(f)⊂ZN

val(ϕα)� xα

this polynomial is called the tropicalization of f .

Remark 4.1. Since val(a+b) ≥ val(a)⊕val(b) and val(ab) = val(a)�val(b),
we have

val(f(x)) ≥ T f(val(x)) for all x ∈ KN .

Given a Laurent polynomial in N variables with coefficients in K, f ∈
K[x∗] := K[x1, x

−1
1 , . . . , xN , x

−1
N ], the set of zeroes of f is defined as

V(f) := {x ∈ (K \ {0})N | f(x) = 0}.

The tropical hypersurface associated to f is the set of values of V(f).
That is:

TVf := val(V(f)).

Proposition 4.2. Let f be a non-zero polynomial in K[x1, x
−1
1 , . . . , xN , x

−1
N ].

If φ ∈ KN is a zero of f , then valφ is in the hypersurface associated to the
tropicalization of f . That is:

TVf ⊂ VT f.

Proof. For f =
∑

α∈E(f) ϕαx
α, we have

T f = ⊕α∈E(f)val(ϕα)� xα.

Since
∑

α∈E(f) ϕαφ
α = 0, by lemma 3.1, the set

Emin := {α0 ∈ E(f) | val(ϕα0φ
α0) = ⊕α∈E(f)val(ϕαφ

α)}

has at least two elements.
Now val(ϕαφ

α) = val(ϕα)� (valφ)α, then Emin = Dvalφ(T f) and we have
the result.
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5 The tropicalization of a product.

The map T : K[x1, . . . , xN ] −→ G[x1, . . . , xN ] may not preserve sum nor
product. Nevertheless, the tropical variety of the product may be described.

Lemma 5.1. Let K be a valued field and let Γ be its group of values. Given
ω ∈ RN with rationally independent coordinates, f, g ∈ K[x∗] and γ ∈ ΓN ;
set α0 ∈ Dγ(T f) and β0 ∈ Dγ(T g) such that

ω · α0 = min
α∈Dγ(T f)

ω · α and ω · β0 = min
β∈Dγ(T g)

ω · β. (5.1)

Set η0 := α0 + β0. We have:

η0 ∈ Dγ(T (fg)) and ω · η0 = min
η∈Dγ(T fg)

ω · η.

Proof. Write f =
∑

α∈E(f) ϕαx
α and g =

∑
β∈E(g) ϕ

′
βx

β. Then

fg =
∑

η∈E(f)∪E(g)

( ∑
α+β=η

ϕαϕ
′
β

)
xη.

By (5.1), we have

ω · η0 = min
η∈Dγ(T f)+Dγ(T g)

ω · η. (5.2)

Since α0 ∈ Dγ(T f) and β0 ∈ Dγ(T g), by definition (2.1), we have
val(ϕα0)� γα0 ≤ val(ϕα)� γα, ∀α ∈ E(f)

and
val(ϕ′β0

)� γβ0 ≤ val(ϕ′β)� γβ, ∀β ∈ E(g).
(5.3)

and
val(ϕα0)� γα0 < val(ϕα)� γα, ∀α ∈ E(f) \ Dγ(T f)

and
val(ϕ′β0

)� γβ0 < val(ϕ′β)� γβ, ∀β ∈ E(g) \ Dγ(T g).
(5.4)

Let α ∈ E(f) and β ∈ E(f) be such that η0 = α+β. If α0 6= α then either
ω · α < ω · α0 or ω · β < ω · β0. Then, by (5.1), α /∈ Dγ(T f) or β /∈ Dγ(T g),
and then

α+ β = η0

and
α 6= α0

⇒


val(ϕα0)� γα0 < val(ϕα)� γα

or
val(ϕ′β0

)� γβ0 < val(ϕ′β)� γβ.
(5.5)
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Inequalities (5.5) together with (5.3) give
α+ β = η0

and
α 6= α0

⇒ val(ϕα0ϕ
′
β0

)� γη0 < val(ϕαϕ
′
β)� γη0 .

Therefore, by lemma 3.1,

val

( ∑
α+β=η0

ϕαϕ
′
β

)
= val(ϕα0ϕ

′
β0

). (5.6)

Inequalities (5.3) give

val
(
ϕα0ϕ

′
β0

)
� γη0 ≤ val

(
ϕαϕ

′
β

)
� γα+β, ∀α ∈ E(f), β ∈ E(g). (5.7)

Equality (5.6) together with (5.7) gives

val

( ∑
α+β=η0

ϕαϕ
′
β

)
� γη0 ≤ val

( ∑
α+β=η

ϕαϕ
′
β

)
� γη, ∀η ∈ E(f) + E(g).

In other words:
η0 ∈ Dγ(T fg) (5.8)

and

T fg(γ) = val

( ∑
α+β=η0

ϕαϕ
′
β

)
� γη0 = val(ϕα0ϕ

′
β0

)� γη0 . (5.9)

By (5.4) and (5.9), we have

Dγ(T fg) ⊂ Dγ(T f) +Dγ(T g) (5.10)

(5.2), (5.8) and (5.10) give

ω · η0 = min
η∈Dγ(T fg)

ω · η. (5.11)

Proposition 5.2. The hypersurface associated to the tropicalization of a
finite product of polynomials is equal to the union of the hypersurfaces asso-
ciated to the tropicalization of each polynomial. That is

VT (fg) = V(T f) ∪ V(T g).
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Proof. Take ω ∈ RN with rationally independent coordinates. Set α0 ∈
Dγ(T f) and β0 ∈ Dγ(T g) such that

ω · α0 = min
α∈Dγ(T f)

ω · α and ω · β0 = min
β∈Dγ(T g)

ω · β.

Now take α1 ∈ Dγ(T f) and β1 ∈ Dγ(T g) such that

(−ω) · α1 = min
α∈Dγ(T f)

(−ω) · α and (−ω) · β1 = min
β∈Dγ(T g)

(−ω) · β.

By lemma 5.1 we have η0 := α0 + β0, η1 := α1 + β1 ∈ Dγ(T (fg)). And

ω · η0 = min
η∈Dγ(T fg)

ω · η. and ω · η1 = max
η∈Dγ(T fg)

ω · η. (5.12)

Now 
γ ∈ VT f

or
γ ∈ VT g

⇔


α0 6= α1

or
β0 6= β1

⇔ η0 6= η1 ⇔ γ ∈ VT fg.

Corollary 5.3. Let (K, val) be an algebraically closed valued field. For N = 1
and f ∈ K[x] we have

VT f = TVf.

Proof. f =
∏

a∈V(f)(x − a) then VT f = ∪a∈V(f)VT (x − a) = {val(a) |
a ∈ V(f)}.

6 Valuation ring and residue field.

The set
Aval := {a ∈ K | val(a) ≥ 0}

is a ring called the valuation ring. The valuation ring has only one maximal
ideal given by

mval := {a ∈ K | val(a) > 0},

the group of units of Aval is given by:

Uval := {a ∈ K | val(a) = 0}.

Its residue field is defined as

Rval := Aval/mval.

8



There is a natural map

Aval −→ Rval

ϕ 7→ ϕ̄ = ϕ mod mval.
(6.1)

Lemma 6.1. If K is algebraically closed, then its residue field is algebraically
closed.

Proof. Given P (x) ∈ Rval[x]\Rval let Q(x) ∈ Aval[x]\Aval be a pre-image of
P (x) via the map (6.1). Since Aval ⊂ K, the polynomial Q has a root k ∈ K.

Write Q =
∑d

j=0 ujx
j ∈ Uval[x] with u0, ud 6= 0. We have

val(ujk
j) = j val(k).

Since
∑d

j=0 ujk
j = 0, by lemma 3.1, there exists j 6= j′ such that j val(k) =

j′ val(k). Then, val(k) = 0 or val(k) = ∞. This implies that k is an element
of Aval.

The image of k under the map (6.1), is a root of P .

Remark 6.2. As a consequence of lemma 6.1 we have: If K is algebraically
closed then Rval is infinite.

7 The value of a polynomial at a point.

As we noted in remmark 4.1, we have

val(f(x)) ≥ T f(val(x)) for all x ∈ KN ,

in this section we will see that, for each γ ∈ ΓN , there exist x ∈ val−1(γ) ∈
KN for which the equality holds.

Lemma 7.1. Let f1, . . . , fk be a finite set of non-zero Laurent polynomials
in N variables with coefficients in Rval. There exists an N-tuple of non-zero
elements r ∈ (Rval \ {0})N such that fi(r) is non-zero for each i ∈ 1, . . . , k.

Proof. Set g :=
∏k

i=1 fi, then g is a Laurent polynomial

g =
∑

α=(α1,...,αN )∈Λ⊂ZN

rαx
α, rα ∈ Rval, #Λ <∞

set β := (1, . . . , 1)− (minα∈Λ α1, . . . ,minα∈Λ αN). We have xβg ∈< x(1,...,1) >
Rval[x].
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The set of zeroes of f := xβg − 1 is a hypersurface of Rval
N that doesn’t

intersect the coordinate hyperplanes. Since Rval is an algebraically closed
field (lemma 6.1), there exists a point r ∈ (Rval \ {0})N where f vanishes.

We have:

f(r) = rβg(r)− 1 = 0 ⇒ rβ

k∏
i=0

fi(r) = 1 ⇒ fi(r) 6= 0∀, i = 1 . . . k.

Lemma 7.2. Let f1, . . . , fk be a finite set of Laurent polynomials in N vari-
ables with coefficients in Aval. If one on the coefficients of each fi is a unit,
then there exists an N-tuple of units u ∈ Uval

N such that fi(u) is a unit for
each i ∈ {1, . . . , k}.
Proof. Let f̄i be the image of fi in Rval[x

∗] via the natural morphism. That
is

Φ : Aval[x
∗] −→ Rval[x

∗]∑
α ϕαx

α 7→
∑

α ϕ̄αx
α

where ϕ̄α is the image of ϕα via the map (6.1).
Since at least one of the coefficients of fi is a unit f̄i is not zero. By

lemma 7.1, there exists an N -tuple of non-zero elements r ∈ (Rval \ {0})N

such that f̄i(r) is non-zero for each i ∈ {1, . . . , k}. Take x ∈ Aval
N such that

x̄ = r via the natural map (6.1).
We have x ∈ Uval

N and Φ(fi(x)) = f̄i(r) 6= 0 implies fi(x) ∈ Uval.

Proposition 7.3. Let f1, . . . , fk be Laurent polynomials in N variables with
coefficients in K. Given an N-tuple γ ∈ ΓN there exists x ∈ KN such that

val(x) = γ and val(fi(x)) = T fi(val(x))

for all i ∈ {1, . . . , k}.
Proof. Take φ ∈ KN and ψi ∈ K such that valφ = γ and valψi = T fi(γ).
Set

gi(x1, . . . , xN) :=
1

ψi

fi(φ1x1, . . . , φNxN).

Write gi =
∑

α ϕi,αx
α. We have T gi(0, . . . , 0) =

⊕
α val(ϕi,α) = 0. Then,

for each i, there exists α
(i)
0 such that val(ϕ

(i,α
(i)
0 )

) = 0 and val(ϕi,α) ≥ 0 for

all α. That is gi ∈ Aval[x] and one of the coefficients is a unit. By lemma
7.2, there exists u = (u1, . . . , uN) ∈ Uval

N such that val(gi(u)) = 0. Then

val

(
1

ψi

fi(φ1u1, . . . , φNuN)

)
= 0 ⇒ val(fi(φ1u1, . . . , φNuN)) = val(ψi) = T fi(γ).

Since val((φ1u1, . . . , φNuN)) = γ, we have the result.
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8 The main theorem

Now we are ready to extend the theorem proved by Einsieder, Kapranov and
Lind.

Theorem 8.1. Let K be an algebraically closed valued field. The tropical hy-
persurface associated to a polynomial f ∈ K[x∗] is the hypersurface associated
to the tropicalization of f . That is,

TVf = VT f.

Proof. The inclusion TVf ⊂ VT f is just proposition 4.2.
To see the other inclusion:

Given γ ∈ VT f we want to see that there exists φ = (φ1, . . . , φN) such that
valφ = γ and f(φ) = 0.

γ ∈ VT f if and only if there exist α(0) 6= α(1) ∈ Dγ(T f). The vector α(0)

is different from α(1) if and only if one of the coordinates is different. Let us
suppose that α(0)

N 6= α(1)
N . Write f as in (4.1) and set Λ := {αN ∈ Z | α ∈

E(f)}. The polynomial f may be rewritten in the form

f =
∑
i∈Λ

hi(x1, . . . , xN−1)xN
i wherehi =

∑
(β,i)∈E(f)

ϕ(β,i)x
(β,0).

Write γ = (µ, η) ∈ ΓN−1 × Γ, and choose y ∈ KN−1 such that valy = µ
and val(hi(y)) = T hi(µ) (proposition 7.3). Set

g :=
∑
i∈Λ

hi(y)xN
i ∈ K[xN ].

We have
T f(γ) = ⊕α∈E(f)val(ϕα)� γα

= ⊕i∈Λ

(
⊕(β,i)∈E(f)val(ϕ(β,i))� µβ

)
� ηi

= ⊕i∈ΛT hi(µ)� ηi

= ⊕i∈Λval(hi(y))� ηi

= T g(η).

Write α(k) = (β(k), j(k)) ∈ ZN−1 × Z, k = 0, 1. We have

T g(η) = val(ϕα(k))� γα(k)
= val(ϕ(β(k),j(k)))� µβ(k) � ηj(k)

= T hi(µ)� ηj(k)
= val(hi(y))� ηj(k)

.

Since j(0) 6= j(1), the element η ∈ Γ is in the variety VT g, then, by corollary
5.3, there exists z ∈ K such that valz = η and g(z) = 0.

We have φ := (y, z) ∈ KN , val(y, z) = γ and f(y, z) = g(z) = 0.
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