KAHLER DIFFERENTIALS OF EXTENSIONS OF VALUATION
RINGS AND DEEPLY RAMIFIED FIELDS

STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

ABSTRACT. Assume that (L,v) is a finite Galois extension of a valued field
(K, v). We give an explicit construction of the valuation ring Of, of L as an O-
algebra, and an explicit description of the module of relative Kahler differentials
Qo,|0x When L|K is a Kummer extension of prime degree or an Artin-Schreier
extension, in terms of invariants of the valuation and field extension. The case
when this extension has nontrivial defect was solved in a recent paper by the
authors with Anna Rzepka. The present paper deals with the complementary
(defectless) case. The results are known classically for (rank 1) discrete valua-
tions, but our systematic approach to non-discrete valuations (even of rank 1) is
new.

Using our results from the prime degree case, we characterize when Qo |0, =
0 holds for an arbitrary finite Galois extension of valued fields. As an application
of these results, we give a simple proof of a theorem of Gabber and Ramero, which
characterizes when a valued field is deeply ramified. We further give a simple
characterization of deeply ramified fields with residue fields of characteristic p > 0
in terms of the Kahler differentials of Galois extensions of degree p.

1. INTRODUCTION

The main goal of this paper is to study for algebraic extensions of valued fields
the relation between their properties and the vanishing of the Kéhler differentials
of the extensions of their valuation rings.

All of our results are for arbitrary valuations; in particular, we have no restric-
tions on their rank or value groups. Ranks higher than 1 appear in a natural way
when local uniformization, the local form of resolution of singularities, is studied.
Deeply ramified fields of infinite rank appear in model theoretic investigations of
the tilting construction, as presented by Jahnke and Kartas in [9]. Therefore, we do
not restrict our computations to rank 1, thereby indicating how Kéhler differentials
can be computed in higher rank.
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The notation we use is mostly standard in valuation theory or commutative
algebra. We review notation and some main notions in Section 2.1.

Our principal result is the following Theorem 1.1, which deals with extensions
L|K which are Kummer extensions of prime degree or Artin-Schreier extensions.
In this paper we compute the Kahler differentials Q0, |0, for such extensions when
they are unibranched and defectless, which means that the extension of v from
K to L is unique and [L : K] = (vL : vK)[Lv : Kv] holds. For the complementary
case of such extensions with nontrivial defect, which in this special case means
that (vL : vK) =1 = [Lv : Kv|, see Theorems 4.5 and 4.6 in the recent paper [2]
by the authors with Anna Rzepka. The description of these Kéahler differentials is
known classically for (rank 1) discrete valuations, but our systematic and detailed
description is new, even for arbitrary valuations of rank 1. By 2p 4 we denote the
Kéhler differentials, i.e., the module of relative differentials, when A is a ring and
B is an A-algebra.

Theorem 1.1. Let (L|K,v) be a finite Galois extension of valued fields where L|K
is a Kummer extension of prime degree or an Artin-Schreier extension. Then there
is an explicit description of Qo, |0, in terms of invariants of the valuation v and
field extension L|K. This gives a characterization of when Qo, 0, = 0.

The proof of Theorem 1.1 is given in Section 5, after Proposition 5.7. The analysis
of the cases in Theorem 1.1 begins with explicit constructions of the extensions
O1|Ok of valuation rings, as a chain of simple ring extensions. This construction
depends strongly on the type of extension. For the case of defectless extensions it
is given in Section 3.1; to the best of our knowledge, it is new and of independent
interest. A result from [2], stated in Proposition 4.2 of the present paper, is then
used to give the explicit description of Qp, o, in Sections 4.3 to 4.7.

Annihilators of Qo, |0, differents Dy, |0, and traces of the maximal ideal M,
of O, for the extensions appearing in Theorem 1.1 have been determined in [2] in
the case of nontrivial defect. (Note that before [2, Theorem 1.6] we meant to write
“We denote the annihilator of an Og-module M by ann M”.) The case of defectless
extensions will be addressed in [12].

As an application of Theorem 1.1, we prove in Section 5 a criterion for the
vanishing of the Kéhler differentials for arbitrary finite Galois extensions; see part
2) of Theorem 5.3. Finally, in Section 6 all of these results are combined into the
proof of the next theorem.

Take a valued field (K,v) with valuation ring Ok . Choose any extension of v
to the separable-algebraic closure K*? of K and denote the valuation ring of K*%
with respect to this extension by Ogse . Note that Qo,.., |0, does not depend on
the choice of the extension of v since all of the possible extensions are conjugate.
Gabber and Ramero prove the following result (see [7, Theorem 6.6.12 (vi)]):

Theorem 1.2. For a valued field (K, v),

(1) Qoo =0
holds if and only if it satisfies the following:

(DRvg) whenever I'y C I'y are convex subgroups of the value group v, then I'y /T
is not isomorphic to Z (that is, no archimedean component of vK is discrete);



(DRuwvr) if char Kv = p > 0, then the homomorphism
(2) Ok/pOKBxpreOk/p(’)K

is surjective, where (K, 0) is the completion of (K,v) for the valuation topology and
Oy denotes its valuation ring.

Theorem 1.2 and the papers [29, 30] of Thatte were the motivation for our work
in the present paper and in [2].

For the purpose of the proof of Theorem 1.2, we define (as we have done in [13])
a nontrivially valued field (K, v) to be a deeply ramified field if the conditions
(DRvg) and (DRvr) hold. In [13], related classes of valued fields are introduced by
weakening or strengthening condition (DRvg).

Note that by [26, Definition 3.1] a perfectoid field is a complete nondiscrete rank
1 valued field of positive residue characteristic such that the Frobenius is surjective
on Ok /pOk . In rank 1, condition (DRvg) just says that the value group is not
discrete. Consequently, when using (DRvg) and (DRvr) for the definition of deeply
ramified fields, it is immediately seen that every perfectoid field is a deeply ramified
field.

The proof of Theorem 1.2 in [7] is a demonstration of the power of the techniques
of almost ring theory, and uses a large part of the theory developed in [7]. The
proof is by reduction to the rank 1 case, where the techniques of almost ring theory
are most applicable.

Our alternative proof of Theorem 1.2 in the present paper uses only methods
from valuation theory and commutative algebra, and does not rely on techniques
or results from almost ring theory. We hope that our proof makes this beautiful
theorem accessible to a wider audience. Further, our proof yields the following
additional new result. A criterion for a valued field (K, v) to be deeply ramified
that only works with extensions of prime degree p = char Kv appears to be more
easily accessible than the criterion Qo |0, = 0, in particular from the model
theoretic point of view.

Theorem 1.3. Let (K,v) be a valued field of residue characteristic p > 0. If K
has characteristic 0, then assume in addition that it contains all p-th roots of unity.
Then (K,v) is a deeply ramified field if and only if Qo, 0, = 0 for all unibranched
Galois extensions (L|K,v) of prime degree p.

Let us mention two main ingredients of the proof. Theorem 1.10 (1) of [13]
implies that if (K, v) is a deeply ramified field with char Kv = p > 0, then each of
its Galois defect extensions of degree p has independent defect. Hence we can infer
the following result from [2, Theorem 1.4]:

Theorem 1.4. Take a deeply ramified field (K,v) with char Kv = p > 0; if
char K = 0, then assume that K contains all p-th roots of unity. Then every
Galois extension (L|K,v) of degree p with nontrivial defect satisfies Qo, 0, = 0.

This result will be complemented in the present paper by showing that for a
deeply ramified field (K, v), every unibranched defectless Galois extension (L|K, v)
of prime degree p satisfies (2o, |0, = 0. Then Section 5 connects our results for
Galois extensions of prime degree with Qo ,.,j0,- There, the main approach is the
study of Kahler differentials of towers of Galois extensions. In order to go upward
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through such towers, we make use of the following fact, which Gabber and Ramero
deduce from Theorem 1.2 (see [7, Corollary 6.6.16 (i)]). However, as we want to
prove Theorem 1.2, we refer the reader to Theorem 1.5 of [13] whose proof is done
by a direct valuation theoretical computation not involving any Kahler differentials.

Theorem 1.5. Fvery algebraic extension of a deeply ramified field is again a deeply
ramified field.

It should be noted that Theorem 1.5 also holds for the roughly deeply ramified
and the semitame fields that are introduced in [13].

In [22], Novacoski and Spivakovsky use the theory of key polynomials to derive
a presentation of Qo, |0, for finite pure extensions (L|K,v) under the condition
vL = vK. Applying this presentation to Artin-Schreier and Kummer extensions,
they derive results similar to our results presented in [2] and in this paper. Recently
they also dealt with the case of v # vK by a different approach, not based on the
use of key polynomials. See also [18; 19, 21].

To conclude this introduction, let us give some interesting examples. Let (,
denote a primitive p-th root of unity.

Example 1.6. Choose a prime p > 2. The field K = Q,(¢,,p"?" | n € N),
equipped with the unique extension of the p-adic valuation of Q,, is known to be a
deeply ramified field. The Kummer extension (K (y/p)|k, vp) is tamely ramified, as
(v, K(/P) : vpK) =2 # p. By an application of Theorem 4.8 below, Qoy ok =
0. The fact that this holds in spite of the ramification is due to the value group
v, KX being dense, as it is p-divisible.

Analoguously, we can consider the field K = F,((t))(t'/?" | n € N), equipped
with the unique extension of the t-adic valuation of F,((¢)). This field is a deeply
ramified field since it is perfect of positive characteristic. Again, the extension
(K (V)| K,v,) is tamely ramified as (v, K(vt) : v,K) = 2 # p, and v, K is dense.

By Theorem 4.8 below, QOK(m\OK = 0.

Finally, here is an example of a Kummer extension (L|K,v) with wild ramifica-
tion and Q@L|@K = 0.

Example 1.7. Take a prime p > 2 and set K = Q((,)(t/?" | n € N). Let
v, denote the p-adic valuation on Q((,) and v; the t-adic valuation on K. Now
consider the valuation v := v, o v, on K, where “v; o v,” denotes the valuation
associated with the composition of the t-adic place on K and the p-adic place on
Q(&p). Set L = K(t'/7) and extend v to L. Then (L|K,v) is a Kummer extension
of degree p with ramification index p = char Kv. Nevertheless, Theorem 4.8 shows
that QOL\OK =0.

2. PRELIMINARIES

2.1. Notation.

By (L|K,v) we denote a field extension L|K where v is a valuation on L and K is
endowed with the restriction of v. The valuation ring of v on L will be denoted by
Op, and that on K by O . Similarly, M and M denote the unique maximal
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ideals of Oy, and Ok. The value group of the valued field (L, v) will be denoted by
vL, and its residue field by Lv. The value of an element a will be denoted by wa,
and its residue by av. In order to simplify notation by reducing the use of brackets,
our convention will be that v... denotes the value of the term following “v”, and
... v denotes the residue of the term preceding “v”; for example, vzy = v(zy) and
xyv = (zy)v. A final segment of vL is a subset S C vL such that v < ¢ with
v,0 € vL and v € S implies that § € S.

The rank of a valued field (K, v) is the order type of the chain of proper convex
subgroups of its value group vK. We say that (L|K,v) is unibranched if the

extension of v from K to L is unique.

2.2. Convex subgroups and archimedean components.

Take an ordered abelian group I Two elements a,3 € I' are archimedean
equivalent if there is some n € N such that n|a| > || and n|5| > |a|, where
la| := max{«a, —a}. Note that if 0 < a < 8 < na for some n € N, then «, §
and na are (mutually) archimedean equivalent. If every two nonzero elements of I'
are archimedean equivalent, then we say that I' is archimedean ordered. This
holds if and only if I' admits an order preserving embedding in the ordered additive
group of the real numbers.

We call I discretely ordered if every element in I has an immediate successor;
this holds if and only if I contains a smallest positive element. In contrast, I' is
called dense if I' # {0} and for every two elements o« < v in I" there is § € T’
such that o < g < ~. If I is archimedean ordered and dense, then for every : € N
there is even some (3; € I' such that a < i3; < 7; this can be easily proven via an
embedding of I" in the real numbers. Every ordered abelian group is discrete if and
only if it is not dense.

For v € T', we define Cr(7) to be the smallest convex subgroup of I' containing ~,
and for v # 0, C{f () to be the largest convex subgroup of I' not containing . Note
that Cr(0) = {0}. The convex subgroups of I' form a chain under inclusion, and
the union and intersection of any collection of convex subgroups are again convex
subgroups; this guarantees the existence of Cr(v) and C (7).

We have that Cff (v) € Cr(v) and that C{ (y) and Cr(v) are consecutive, that is,
there is no convex subgroup of I' lying properly between them. As a consequence,

Ar(v) = Cr(7)/CE (v)

for v # 0 is an archimedean ordered group; we call it the archimedean compo-
nent of I' associated with v. Two elements a, 5 € I' are archimedean equivalent
if and only if

Cr(a) = Cr(B),

and then it follows that Ar(a) = Arp(f5). In particular, Cr(a) = Cr(na) and
Ar(a) = Ar(na) for all @« € T and all n € Z \ {0}.

Assume now that I is an ordered abelian group containing a subgroup A # {0}.
We say that A is dense in I if for every two elements @ < v in I there is § € A
such that a < < ~; this implies that I' and A are dense. If I' is archimedean
ordered, then so is A, and A is dense in I' if and only if it is dense.
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For every v € T, Cr(y) N A and C{(y) N A are convex subgroups of A; the
quotient Cr(y) N A/Cf(vy) N A is either trivial or archimedean ordered. If ~ is
archimedean equivalent to § € A, then this quotient is equal to Aa(9).

For each § € A the function given by

Aa(8) 3 a+ CL() — a+CE(5) € Ar(6)

is an injective order preserving homomorphism. This follows from the fact that
the kernel of the homomorphism Ca () > a — a + C{(§) € Ap(d) is the convex
subgroup CA(8) = Cf(6) N A. In abuse of notation, we write Aa(6) = Ar(9) if this
homomorphism is surjective.

2.3. Artin-Schreier and Kummer extensions.

We say that a valued field (K, v) has equal characteristic if char K = char Kv,
and mixed characteristic if char X' = 0 and char Kv > 0. Every Galois extension
of degree p of a field K of characteristic p > 0 is an Artin-Schreier extension,
that is, generated by an Artin-Schreier generator ¢ which is the root of an
Artin-Schreier polynomial X? — X — b with b € K. For every ¢ € K, also ¥ —¢
is an Artin-Schreier generator as its minimal polynomial is X? — X — b+ ¢? — c.
Every Galois extension of prime degree ¢ of a field K of characteristic different
from ¢ which contains all g-th roots of unity is a Kummer extension, that is,
generated by a Kummer generator n which satisfies n? € K. For these facts, see
[15, Chapter VI, §6].

A 1-unit in a valued field (K,v) is an element of the form u = 1 + b with
b € Mk ; in other words, u is a unit in Ok with residue 1. We note that if u is a
1-unit, then also ™! is a 1-unit, and if v(u — ¢) > vu = 0 for some ¢ € K, then
also ¢ is a 1-unit. Conversely, if u and ¢ are 1-units, then v(u — ¢) > 0.

Remark 2.1. Take a Kummer extension (L|K,v) of degree p with any Kummer
generator 7. Assume that vn € vK, so that there is ¢; € K such that ve; = —vn,
whence veyn = 0. Assume further that cynv € Ko, so that there is ¢o € K such that
cov = (c1m)~t. Then veyern = 0 and cpeynv = 1. Furthermore, K(cocin) = K(n)
and (coc1n)? = Adn? € K. Hence cacqn is a Kummer generator of (L|K,v) and
a l-unit. Therefore v(cocin — 1) > 0, whence v(n — (cac1)™!) > v(cacy)™! = vn.
Consequently, for ¢ := (cyc;)™' € K we have v(n —¢) > un.

We will need the following facts. If (L| K, v) is a unibranched defectless extension
of prime degree p, then either e (L|K,v) = 1 and f(L|K,v) = p, or f(L|K,v) =1
and e (L|K,v) = p. For ¢ € N let (, denote a primitive g-th root of unity. We note
that if L|K is a Kummer extension of degree ¢, then K contains all g-th roots of
unity. For a proof of the next well known results, see 2, Lemma 2.5].

Lemma 2.2. Take ¢ € N and a valued field (K, v) containing ;. Then

q—1

(3) [[a-¢) =q.

=1

If in addition q is prime, then
(4) v(G—1) =
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Lemma 2.3. Take a unibranched Kummer extension (L|K,v) of prime degree q
with Kummer generator n. Then for all c € K,
vq

(5) v(n—C)Svn(Cq—l)ZvnﬂLq_l'

Assume in addition that f(L|K,v) = q = char Kv and ¢,¢ € K are such that
ve(n —c) = 0 and é(n — ¢)v generates the residue field extension Lv|Kv. Then
Lv|Kv is inseparable if and only if v(n —c¢) < vn(¢, — 1), and it is separable if and
only if v(n —¢) = vn(¢, — 1).

Proof. Take ¢ € K and ¢ € Gal L|K such that on = (,n. Then

(6) n—c—om—c) =n—on=nl-¢).
Hence if v(n —¢) > vn(1 — (,), then

vo(n—c) = v(n—c—n(l1=¢;)) = minfv(n—c),on(l—¢)} = vn(1-¢) < v(n—c),
which shows that vo # v, i.e., the extension is not unibranched. This contradiction
proves the first assertion.

Now assume the situation as in the second part of the lemma. Since L|K is a
Galois extension, Lv|Kwv is a normal extension, with its automorphisms induced
by those of L|K. Take o to be a generator of Gal L|K. Via the residue map, its
action on O induces a generator ¢ of the automorphism group of Lv|Kv. From
(6) we infer that

én—c)—ocn—c) = (1 —¢,).
It follows that & is the identity, i.e, Lv|Kv is inseparable, if and only if vén(1—(,) >
0. This is equivalent to v(n — ¢) = —vé < vn(1 — (,). Since v(n —c¢) > vn(l — ;)
is impossible according to (5), we can conclude that the residue field extension is
separable if and only if v(n — ¢) = vn(1 — (). O

Proposition 2.4. Take a Kummer extension (L|K,v) of prime degree q¢ # char Kv.

1) If £(L|K,v) = q, then there is a Kummer generator n € Of such that nv is a
Kummer generator of Lv|Kwv.

2) If e (L|K,v) = q, then there is a Kummer generatorn € L such that vy generates
the value group extension, that is, vL = vK + Zvn.

Proof. Since q # char Kv, we have vg = 0 and thus v(1 — (,) = 0.

1): Take a Kummer generator 7. Since f(L|K,v) = ¢, we have that vL = vK.
Therefore, as shown in Remark 2.1, we can assume that vn = 0. The reduction of
the minimal polynomial of  over K to the residue field is X? — n%v with nfv #
0. Suppose that this polynomial has a root in Kv. Since Gal Lv|Kwv is cyclic
(generated by the reduction of a generator of Gal L|K), it follows that X7 — n%v
splits. Hence its root nu lies in Kv and there is ¢ € K such that cv = nv. It follows
that v(n —c¢) > 0 =ovn(1 — (), so by Lemma 2.3, (L|K,v) is not unibranched. As
this contradicts our assumption, X ?—n% must be irreducible (cf. [27]), which means
that nv generates the extension Lv|Kwv. Since n? € K, we have that (nv)? € Kwv,
i.e., nv is a Kummer generator of Lv|Kwv.

2) Take a Kummer generator n. We will show that vn ¢ vK; as ¢ is prime, it then
follows that vL = vK + Zvn. Suppose that vn € vK. Since e (L|K,v) =q = [L:
K], we have that Lv = Kv. Thus as shown in Remark 2.1, there is some ¢ € K
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such that v(n —¢) > vnp = vn(l — (,). As in the proof of part 1), this leads to a
contradiction. Hence vn ¢ vK, as asserted. O

For the next lemma, see [14, Lemma 2.1] and the proof of [10, Theorem 2.19].

Lemma 2.5. If (L|K,v) is a finite unibranched defectless extension, then for every
element x € L the set

vix—K) = {v(r—c)|ce K}

admits a mazimal element. If c € K is such that v(x—c) is mazximal, then v(x—c) ¢
vK or otherwise, for every ¢ € K such that vé(x — ¢) = 0 we have ¢(x — c)v ¢ Kv.

Using this lemma, we prove:

Proposition 2.6. 1) Take a valued field (K,v) of equal positive characteristic p
and a unibranched defectless Artin-Schreier extension (LK, v).

If {(L|K,v) = p, then the extension has an Artin-Schreier generator ¥ of value
v < 0 such that Lv = Kv(édv) for every ¢ € K with véd = 0; the extension
Lv|Kv is separable if and only if v = 0.

If e (L|K,v) = p, then the extension has an Artin-Schreier generator ¥ such that
vL = vK + Zvv. FEvery such 9 satisfies v} < 0.

2) Take a valued field (K,v) of mized characteristic and a unibranched defectless
Kummer extension (L|K,v) of degree p = char Kv. Then the extension has a
Kummer generator n such that:

a) if £(L|K,v) = p, then either nu generates the residue field extension, in which
case it is inseparable, or n is a 1-unit and for some ¢ € K, ¢(n — 1)v generates the
residue field extension;

b) if e(L|K,v) = p, then either vy generates the value group extension, or 1 is a
1-unit and v(n — 1) generates the value group extension.

Proof. 1): Take any Artin-Schreier generator y of (L|K,v). Then by Lemma 2.5
there is ¢ € K such that either v(y — ¢) ¢ vK, or for every ¢ € K such that
vé(x —¢) = 0 we have é(y — c)v ¢ Kwv. Since p is prime, in the first case it
follows that e (L|K,v) = p and that v(y — ¢) generates the value group extension.
In the second case it follows that f(L|K,v) = p and that é(y — ¢)v generates the
residue field extension. In both cases, ¥ = y — ¢ is an Artin-Schreier generator. Let
W—9=be K.

Assume that f(L|K,v) = p. If v < 0, then v(9 —b) = v > pvi = vi?,
whence v((¢0)P — &b) = vePY > v(¢I)P for ¢ € K with véd) = 0 and therefore,
(¢9)Pv = bv € Kwv. In this case, the residue field extension is inseparable. Now
assume that v > 0 and hence also vb > 0. The reduction of X? — X —b to Kv[X]
is a separable polynomial, so Lv|Kv is separable. The polynomial X? — X — bv
cannot have a zero in Kwv, since otherwise the p distinct roots of this polynomial
give rise to p distinct extensions of v from K to L, contradicting our assumption
that (L|K,v) is unibranched. Consequently, bv # 0, whence vb = 0 and vd = 0.

Assume that e (L|K,v) = p. If v > 0, then vb > 0 and v is a root of
XP — X — bu. If this polynomial does not have a zero in Kv, then Yv generates a
nontrivial residue field extension, contradicting our assumption that e (L| K, v) = p.
If the polynomial has a zero in Kwv, then similarly as before one deduces that
(L|K,v) is not unibranched, contradiction. Hence vt} < 0.
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2): Take any Kummer generator y of (L|K,v). If there is a Kummer generator
n such that vn ¢ vK, then it follows as before that e (L|K,v) = p and that vn
generates the value group extension. Now assume that there is no such 7.

If there is a Kummer generator y and some ¢ € K such that vécy = 0 and
cyv ¢ Kuv, then it follows as before that f(L|K,v) = p and that éyv generates
the residue field extension. We set n = ¢y and observe that also 7 is a Kummer
generator. Since (nv)? € Kv, Lv|Kwv is purely inseparable in this case.

Now assume that the above cases do not appear, and choose an arbitrary Kum-
mer generator y of (L|K,v). Consequently, we have that vy € vK and ¢yv € Kv
for all ¢ € K with vcy = 0. Then as described in Remark 2.1, there are ¢q,c, € K
such that cyciy is a Kummer generator of (L| K, v) which is a 1-unit. We replace y
by cac1y.

By Lemma 2.5 there is ¢ € K such that v(y—c) is maximal in v(y— K) and either
v(y — ¢) ¢ vK or there is some ¢ € K such that vé(y —¢) = 0 and é(y — ¢)v ¢ Kwv.
Since y is a 1-unit, we know that v(y—1) > 0, hence also v(y—c) > 0 = vy, showing
that also ¢ is a 1-unit. Then 7 := ¢!y is again a Kummer generator of (L|K,v)
which is a l-unit. Since ve = 0, we know that v(n — 1) = ve(n — 1) = v(y — ¢).
Hence if v(y — ¢) ¢ vK, then v(n — 1) generates the value group extension.

Now assume that there is ¢ € K such that vé(y — ¢) = 0 and é(y — ¢)v ¢ K.
Since ¢ is a l-unit, it follows that vé(n — 1) = vée(n — 1) = vé(y — ¢) = 0 and
¢(n—1)v = éc(n — 1)v = é(y — c)v. We find that é(n — 1)v generates the residue
field extension. O

2.4. Ramification ideals.

Take a unibranched Galois extension £ = (L|K,v) and let G = Gal L|K denote its
Galois group. An Op-ideal

(7) (Ubb_b\aeH,beLX),

where H is a nontrivial subgroup of G, is called a ramification ideal of £. Hence
if £ is of prime degree, then it has a unique ramification ideal, which we denote

by I¢. For further background on ramification ideals, see [2, 13, 11]. In [11], the
following is shown:

Proposition 2.7. Take a unibranched defectless Galois extension € = (L|K,v) of
prime degree q.

1) Let (L|K,v) be an Artin-Schreier extension and 9 an Artin-Schreier generator
as in part 1) of Proposition 2.6. Then

(8) I = (%) |

We have I = Op, if and only if v9 = 0, and this holds if and only if Lv|Kv is
separable of degree q.

2) Let (L|K,v) be a Kummer extension. Then there are two cases:

a) Let n be a Kummer generator as in part 2)a) of Proposition 2.6. Then
(9) Ie = (G —1).



10 STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

b) Let n be a Kummer generator as in part 2) b) of Proposition 2.6. Then

(10) = (227).

We have Ig = Oy, if and only if v(n — 1) = v(¢, — 1), and this holds if and only if
Lv|Kwv is separable of degree q.

Also the ramification ideals of Artin-Schreier defect extensions and Kummer
defect extensions of prime degree are computed in [11].

3. GENERATION OF EXTENSIONS OF VALUATION RINGS

In this section we will assume that € = (L| K, v) is a finite unibranched defectless
extension and develop the groundwork needed for the computation of the Kahler
differential of £ in Sections 4.4 to 4.7.

3.1. Generating the Og-algebra O;.

In order to use Proposition 4.2 below to compute o, |0, , We need to present O, as
a union over a chain of simple ring extensions of Ok . We consider finite extensions
€ = (L|K,v) of degree q that satisfy

[L:K] = [Lv:Kv] or |[L:K|]= (vL:vK).

Such extensions are unibranched and defectless. We distinguish the following two
cases:

Case (DL1): [L : K] = [Lv : Kv|. In this case, we can choose elements
ai,...,a; € OF such that ayv,... a0 form a basis of Lv|Kv. Then ay,...,aq,
form a valuation basis of (L|K,v), which by definition means that every element
of z € L can be written as

(11) 2 = cia +...+ca, with vz = minvga,,
K2

and we have that vc;a; = ve; . Consequently, 2 € Op if and only if ¢1,...,¢, € Ok .
This shows that O, is a free Og-module with basis a4,...,q,.

In the case where Lv|Kw is simple, that is, there is £ € Lv such that Lv = Kv(§),
we can choose € L such that zv = &; then 1,2,...,29 ! form a valuation basis
of (L|K,v). In this special case (which by the Primitive Element Theorem always
appears when Lv|Kwv is separable), we have

(12) O = Oklz].

Case (DL2): [L : K] = (vL : vK). We assume in addition that ¢ is a prime.
In this case we define He to be the largest convex subgroup of vL which is also a
convex subgroup of vK; it exists since unions over arbitrary collections of convex
subgroups are again convex subgroups. The subgroup Hg defined here has impor-
tant similarities with the convex subgroup Hg defined in the defect case in [2]. We
will discuss them in detail in [12]. In case (DL1) we set He := {0}.
Now we diivide (DL2) into three mutually exclusive cases:
(DL2a): there is no smallest convex subgroup of vL that properly contains Hg ;

(DL2b): there is a smallest convex subgroup Hg of vL that properly contains He ,
and the archimedean quotient Hg/Hg is dense;
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(DL2c¢): there is a smallest convex subgroup H¢ of vL that properly contains H ,
and the archimedean quotient H ¢/ Heg is discrete.
We will freely use the facts outlined in Section 2.2.

Pick any = € L such that vz ¢ vK. Then vL = vK + Zvz with qur € vK, and
we have that 1,z,...,297" form a valuation basis of (L|K,v). This means that
every element of L can be written as a K-linear combination of these elements and
for every choice of ¢y, ...,c1 € K,

q—1
v ¢zt = minvex'.
Again, the sum is an element of Oy, if and only if all summands ¢;z° are, but the
latter does not necessarily imply that ¢; € O . We set

A, = {eix' | ¢; € K* and 1 < i < ¢ such that ve;z' > 0}
and
vA, = {vala€cA,}.
(Note that ve;z® = 0 is impossible for 1 <4 < g.) We obtain that
However, we wish to derive a much more useful representation of O, . Our goal is
to find an element x as above such that
ce K with vex>0
If ¢, € K with ve > vc’, then cx = §cv € Ok[c'z], hence Ok[cx] C Oglc'z]. So
the right hand side is an increasing union of rings and thus is itself a ring. For (14)
to hold, it suffices that

(15) Az C U Oklex] .
ceEK with vex>0

This in turn will hold if

{ for every element c;z’ € A, there is ¢ € K with cx € A,

(16) such that ¢;z" € (cz)'Of .

Lemma 3.1. The convex subgroup He of vL is the largest that has empty inter-
section with vA, .

Proof. From (13) it follows that the positve values in vL \ vK all lie in the smallest
final segment of vL generated by vA,. On the other hand, from the definition of
H¢ it follows that it is the largest convex subgroup of vL that does not contain
elements of vL \ vK. This proves our assertion. UJ

As a preparation for what follows, let us prove two useful facts.

(F1) For each ¢,,z™ € A, , there is ¢ € K such that cx € A, and C,(ve,a™) =
Cor(vex).

Proof. As q is prime, there is k € N such that mk = 1+ rq for some r € Z. Taking
c:=ck b € K where b € K with vb = qua, we obtain ver = v(¢,,z™)F > 0 and
Cor(vex) = Cyr(kv(cma™)) = Cyr(vema™). O
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(F2) If ¢z, ¢z € A and veir® ¢ Cop(vex), then ¢zt € (¢x)' Ok C Oklcx).

Proof. Since vé'z" = ivéx € Cyr(véx) and vea’ ¢ Cyr(vér), we have vé's" < verg .
Thus vé* < ve; and therefore, ¢;z* € (¢x)'Ok. O

Inspired by case (DL1) we ask whether (15) will hold with = z( for any xy € L

such that vzy ¢ vK. We choose such an x4 and set Ay := A,,. It can be shown
that the element x we are looking for cannot always be chosen to be equal to x .
However, we will show that in cases (DL2a) and (DL2b) it can.
(DL2a): Take any c;zi € Ay. By assumption, C;; (ve;zl) properly contains He.
By Lemma 3.1, this means that C; (vezd) NvAg # 0, so take some ¢, x5 € Ag
such that ve,z] € Cf; (vezh) NvAy. By (F1), there is é € K such that éxg € Ag
and C,z(véxg) = Cor(vemal) C Cly (veizd). Hence vegzl ¢ Cor(vérg) and by (F2),
cirh € (¢r9)'Ox C Okléxg]. Hence in this case, (16) and thus also (15) and (14)
hold for z = xg .

(DL2b): By Lemma 3.1, Hg is the smallest convex subgroup of vL that contains
some element of vAg, say ve,xy'. The archimedean component A,r(vep,xy)') is
equal to Heg /Hg, which is dense. The archimedean component A,k (vge,x) is
equal to (He NvK)/Hg. Since (vL : vK) is finite, so is this quotient. This
shows that also A,k (vge,xl') is dense, so it is dense in A, (ve,zft). We have
Ch(cmxd) NvAg = He NwAy = 0. From (F1) we know that there is ¢ € K such
that ¢zp € A and C,p(véxo) = Cyr(venaf).

Take any element c;z}y € Ag. If vezl € Cor(vixy), then izl € Ok|éxg] by (F2).
So let us assume that ve;xf) € Cyr(véxg). Denote by « the image of véxg and by 3
the image of ve;x in A, 1 (véxg). Note that both of them are positive, so

—ita < [ —ia.

By the density of A,k (quézy) = Ayx(quenay) in A, (vemagt) = AyL(vézy) there
is ¢p € K such that the image v of vcg in A, (véxy) satisfies

—ia < 1y < [ —ia,
whence 0 < iy +ia < 8. This leads to 0 < vcjc'al < vexf. Setting ¢ = c¢oc, we

obtain that 0 < vc'al < vegrl, whence ¢zl € (cxo)'Ox C Oklexg| with very > 0.
We have proved that also in this case, (16), (15) and (14) hold for xz = z .

In case (DL2a), fact (F2) shows that (14) holds for z = z because for every
cizh € Ay there is some érg € Ay with C,r(véxg) C Cf; (ve;xf). In case (DL2b) the
latter is not true, but using density we were able to show c;z, € Ok|cxo] for some
¢ € K with verg > 0 even when ve;zhy € Cor(vézg). In cases (DL2a) and (DL2b)
we set x := xy. The next case treats the instance where we do not have density at
hand.

(DL2¢): In this case, He/Hg is discrete. Choose the element ¢z} as in case
(DL2b). Now we have that A, (ve,2y') and A,k (quen,ay') are discrete. From
(F1) we know that there is ¢ € K such that ¢xg € Ag and Cyr(véxg) = Cyr(vemzl).
The image « of véxg in A, (véry) may not be its smallest positive element, which
creates the problem that not all elements c;x{, € Ay with vegr) € Cor(vérg) may lie
in Op[éxg). Sotake any c;x) € Ag (j € {1,...,q—1}) with ve;af, € Cypr(véxg) whose
image v in A, (véxg) is its smallest positive element. Since j € {1,...,q— 1}, also
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1,z,...,2971 form a valuation basis of (L|K,v). Hence we may set x := a:% and
from now on work with A, in place of Aq.

Now we have that vc;x is the smallest positive element in A, (vejz) = A, (vézy)
and quc;x is the smallest positive element in A, x(que;x). Further, the only ele-
ments strictly between 0 and ¢y are 7, 27,..., (¢ — 1)7.

Take any element ¢;z* € A. If vzt ¢ Cyr(vejx), then ¢z’ € (¢;x)' Ok C Okleja]
by (F2). So let us assume that ve;a' € Cyp(vejz), and denote the image of ve;a! in
Aur(ve;z) by 8. Write ¢zt = deia’ with d = ¢;c;”, and denote by § the image of
d in A, (ve;x), so that 0 < 5 =6 + 7. Suppose that § < 0; then § + iy = kv for
some k € {0,...,7i—1}, but as 6 € A,k (quc;x), this is impossible. Hence § > 0. If
§ > 0, then vd > 0, whence c¢;z' € (¢;z)'Ox C Ok|c;x].

Now assume that § = 0. Then vd € Cf, (vejx). If d € Ok, then we are
done again. So assume that vd < 0 and write ¢;z* = dca’ = d'~*(de;x)’. Then
d'~" € Ok, hence for ¢ := dc;, ¢z’ € (cx)'Ox C Oklcz]. As vd € C; (vejz) and
vejo > 0, we have vex = vd + vejxr > 0.

We have proved that in this case, (16), (15) and (14) hold for = = .

Remark 3.2. Assume that vK is i-divisible for all ¢ € {2,...,q — 1}, with ¢ not
necessarily prime. Take ¢z € Ag. Then there is ¢ € K such that ve; = dve.
We obtain that ve'z = vezfy > 0, hence also vexy > 0. Consequently, ¢;z)y €
(cx0)'OF C Oglcxo). Tt follows that (16), (14) and (16) hold for = = g .

This case appears when ¢ = char Kv > 0 and (K, v) is equal to its own absolute
ramification field, since then vK is divisible by all primes other than q.

Assume that £ is of type (DL2c¢) and, using the notation of that case, that
Cl (vérg) = {0} or equivalently, He = {0}. Then in the case of 6 = 0 we have
vd = 0, whence ve;r’ = veia’ and ¢;a* € (¢;x)' Ok € Oklcjz]. This shows that
Or = Oklcjx]. The assumption He = {0} holds in case (DL2c) if and only if
[L : K| = (vL : vK) equals the initial index of the extension (L|K,v), which is
the number of nonnegative values of v that are smaller than any positive element
in vK. Therefore, our result is a proof of Knaf’s conjecture about essentially
finite generation of O over Ok for the case of extensions of prime degree. The
formulation and the (considerably more involved) full proof of Knaf’s conjecture is
given in [4]. See also [3, 21| for proofs of important special cases.

We summarize what we have shown in case (DL2):
Theorem 3.3. Take an extension € = (L|K,v) of prime degree q = e (L|K,v),
with xg € L such that vy ¢ vK.
1) If € is of type (DL2a) or (DL2b), then (14) - (16) hold for x = x .

2) If € is of type (DL2c), then (14) - (16) hold for x = ) with suitable j €
{1,...,q— 1}. Ifin addition He = {0}, then O = Oklcx] for suitable c € K.

The assumption of part 1) holds in particular when every archimedean component
of vK is dense, and this in turn holds for every deeply ramified field (K,v).

In all cases, 1,x,...,277" form a valuation basis of (L|K,v), and for allc,cd € K,

Oxklex] C Okldx] & ve<vd.



14 STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

Proof. Only the implication “=" of the last assertion needs a proof. Take ¢, € K.

If Oklex] € Ok|dx], then cx € Ok[cdz]. Since the elements 1,cx, ..., (dx)" !
form a valuation basis of (L|K,v), it follows that cx = S’z with 5 € Ok, whence
ve < vc. O

3.2. Valuation rings and ideals associated with the generation of O |Ok.

The convex subgroup Hg of vL and the associated valuation ring and maximal
ideal turn out to be important invariants of the extension £. We take a closer look
at them in this section.

The convex subgroups H of vL are in one-to-one correspondence with the coars-
enings vy of v on L in such a way that vyL = vL/H. The valuation ring of
vgon Lis Oy, = {a € L | Iy € H: va > 7}, and its maximal ideal is
M,, = {a € L | va > H}. We write O¢ for Ouy,, Mg for M, , and ve
for vy, .

We note that Mg is a nonprincipal Og-ideal if £ is of type (DL2a) or (DL2b),
and a principal Og-ideal if £ is of type (DL2c). Indeed, the value group velL is
(up to equivalence) the quotient vL/Hg. In case (DL2a), this does not have a
smallest convex subgroup and thus no smallest positive element. In case (DL2b)
the quotient has a smallest convex subgroup. As it is dense, it does not have
a smallest positive element, and therefore the same holds for veL. Also in case
(DL2c) the quotient has a smallest convex subgroup. As now it is discrete, it has
a smallest positive element, and the same holds for vg L.

Proposition 3.4. Take an extension €& = (L|K,v) of prime degree ¢ = e (L|K,v),
with x determined by Theorem 3.3. Then for every a € L such that va > Hg there
is c € K with 0 < vex < wa. Further, Mg is equal to the Or-ideal

(17) I, .= (cx | c € K with vex > 0) .

Proof. Take a € L such that va > Hg and write a = Zg;é c;x' with ¢; € K. Since
1,o,...,297! form a valuation basis, we have vzt > va > 0 for 0 < i < g —1
with va = min; ve;z° . In particular, ¢z’ € A, for 1 < i < ¢ — 1. Hence it follows
from (16) that for each such i there is d; € K with 0 < vd;z < v(d;z)" < veat. Tt
remains to consider the case of © = 0. We have vcy > va > Hg .

If He C C}; (vc), then there is some ¢z’ € A, with vez® € Cf; (vey). By (16)
there is dy € K with 0 < vdpz < v(dpr)’ < veert < vey.

Now assume that He = C, (vep), so € is of type (DL2b) or (DL2c). We will
use the notation as in the computations for these two cases in Section 3.1. With
the element ¢, x)" appearing in these cases, we have C,1(vcy) = Cpr(vey,xgt) and
A, r(vey) = Ay (vepxlt).

In case (DL2b), A,k (quen,xy) is dense in A, (ve,xy') = A,p(veg). Denote by
a the image of ve,zf' and by v the image of vey in A, L (veg). By density, there is
b € K such that « — v < < a with 8 the image of vb in A, (vcg). This leads
to ven ey < vb < ve,at, that is, veg > vepxlt — vb > 0. Since x = x4 in the
present case, we obtain that b~'c,,af" = b~'¢,,2™ € A,. Hence by (16) there is
dy € K with 0 < vdpr < v(dpx)™ < vble,a™ < vep.
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In case (DL2c), A,k (quemxy) is not dense in A,r(venxy') = Ayr(vey). With
c;zl € Ay chosen as in case (DL2c), the image v of vead in A,z (ve, i) is its
smallest positive element. Then the image ¢y of qvcjxg is the smallest positive
element of Ay (quenzi) = Ay (vey). Since 2 = z7) in the present case, we obtain
that vey > qvcjx% > vcjx{) = vc;x, and we set dy = ¢; .

We have now proved that in all cases there is dy € K such that 0 < vdyz < vey .
We choose some iy € {0,...,q — 1} such that vd;, = min{vd; | 0 < i < ¢ — 1} and
set ¢ :=d;,. Then

(18) ver < vdir < ver' for 0<i<qg—1.
Hence 0 < vex < va as required.

Now we prove the second assertion. All elements cx as in (17) lie in A, and
therefore have value > Hg. It follows that all elements in I, have value > H¢ and
thus lie in Mg . This proves the inclusion I, C Mg .

For the converse, take a € Mg, so va > Hg. By the first assertion of our
proposition, there is ¢ € K with 0 < vex < va. This implies a € cxOp, C I, O

We give an application of this proposition.

Corollary 3.5. Take an extension € = (L|K,v) of prime degree ¢ = e (L|K,v),
with x € L determined by Theorem 3.3. If € is of type (DL2a) or (DL2b), then for
every a € Mg there is ¢ € K such that a Oy, C Oklcx].

Proof. Since a € Mg, we have va > Hg. In case (DL2a), He C C.} (va). Then
there is an element ¢,z € A, N CJ; (va). By Proposition 3.4, there is ¢ € K such
that 0 < ver < ver® < va. It follows that vex € Cfj (va), hence quex € CJf} (va)
and therefore, qucr < va.

In case (DL2b), He = C;; (va) and A, (va) is dense. Hence there is b € L such
that He = C.l; (va) < vb (so b € Mg) and qub < va. By Proposition 3.4 there is
¢ € K such that 0 < vex < vb, whence again, qucxr < va.

Take any o' € a Oy, so va’ > va. Write ' = Z?;é c;z'. Then ve;xt > va' >
va > quer > vetat for 0 < i < g—1, hence ¢;2' € ¢a'O C Ok|ex]. Since also ¢ €
Ok C OkJex], we obtain that o’ € Oklcz], which shows that a Op C Oglex]. O
Note that the assertions of this corollary are trivially satisfied if ¢ = f(L|K,v).
Moreover, the last assertion also holds if £ is of type (DL2c) with He = {0}.

The ideal Mg will be useful in the computation of the Kéhler differentials in
Theorems 4.6 and 4.8. In preparation, we need a small technical lemma.

Lemma 3.6. Take a valuation ring O with mazimal ideal M. Whenever2 <n € N
and a € Oy, then

1) aM = M if and only if a ¢ M,
2) M"™ = M if and only if M is a nonprincipal O-ideal,
3) (aM)" = aM if and only if a ¢ M and M is a nonprincipal O-ideal.

Proof. Denote by w the valuation associated with O.

1): We have a ¢ aM, hence if a € M, then aM # M. If a ¢ M, then a is a unit
in O, so aM = M.
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2): The value group of w is not discrete, and hence dense, if and only if M is a
nonprincipal O-ideal. If it is discrete and + is its smallest positive element, then
M={be K|wb>~}and M" ={ce K | wec>ny} C M since ny > . If it
is dense, then for every b € M there is ¢ € K such that 0 < nwc < wb, whence
b € M"; therefore, M" C M C M" and consequently, M" = M.

3): If a ¢ M and M is a nonprincipal O-ideal, then by parts 1) and 2), (aM)" =
M' =M =aM. If a € M, then wa > 0, whence aM = {c € K | we > wa} and
(aM)" C a"M = {c € K | we > nwa} € aM since nwa > wa. If M is a principal
O-ideal, say M = bO with b € M, then aM = abO = {c¢ € K | we > wab}
and (aM)" = (abO)" = {c € K | we > nwab} C aM since nwab > wab and
ab € aM. O

3.3. Differents of generators for Artin-Schreier and Kummer extensions.
The proofs in Sections 4.3 to 4.7 make use of the differents of the chosen generators
for O as an Og-algebra. In this section we compute those differents.

If b € L and h; is its minimal polynomial over K, then 6(b) := hj(b) is called the
different of b. The Or-ideal

(19) Do(OL|OK) = (hg(b) ’ be OL \ OK) .

generated by the differents of all elements in Op \ Ok will be called the naive
different ideal.

Proposition 3.7. Assume that (L|K,v) is a nontrivial finite unibranched Galois
extension and that

O = | Oklbd

for some (possibly finite) index set S and elements b, € Op\Ok . Then Dy(Or|Ok)
is equal to the Op-ideal (6(b,) | v € 5).

Proof. In the proof of [2, Proposition 4.1] it is shown that b € Oklb,] implies
vd(b) > vd(b,). Hence,

(5(b) | b€ 0L\OK) = | J(6(b) | b € Ok ba]\Ok) = [ J(6(ba)) = (3(ba) | @ € ).
a€esS a€esS

O

In the case of Artin-Schreier and Kummer extensions (L|K,v) with Galois group
G we have sufficient information about the minimal polynomials f of the various
generators z we have worked with in the previous sections, and about their conju-
gates, to work out the values vf’(z) of their differents f’(x). In order to do this,
we can either compute f/, or we can use the formula

(20) fllo)y = [ @—o2).
ceG\{id}

We keep the notations from the previous sections.
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3.3.1. Artin-Schreier extensions.

Take an Artin-Schreier polynomial f with ¢ as its root. Then its minimal polyno-
mial is f(X) = X? — X — 9 + ¢ with f'(X) = —1, whence

(21) F9)=-1.
For ¢ € K*, denote by f. the minimal polynomial of c¢}. Then
(22) filed)y = ] (0 =ocd) = & f/(9) = ="

oeG\{id}

Lemma 3.8. Take an Artin-Schreier extension € = (L|K,v) of prime degree p =
f(L|K,v). If the extension Lv|Kv is purely inseparable, then £ admits an Artin-
Schreier generator ¥ of value v < 0 and ¢ € K such that véd = 0, Lv = Kv(év),
OL = OK[élg] and

(23) Do(OL|Ok) = fUe)Op, = @10, = 127",

[

Proof. The first assertions follow from part 1) of Proposition 2.6 and case (DL1).
Applying Proposition 3.7 with S = {1} and b; = &/, we obtain the first equality
of (23). Since vé = —vd, we have Dy(Or|Ok) = fi(c¥9)Or = 1O = (9~ H)P 1 =
127" by (22) and part 1) of Proposition 2.7. This proves (23). O
Lemma 3.9. Take an Artin-Schreier extension € = (L|K,v) of prime degree p =
e (L|K,v). Then € admits an Artin-Schreier generator 9 of value v < 0 such that
vL = vK + Zvd, (14) holds for x = ¥ with suitable j € {1,...,p — 1}, and we
have the equality of O -ideals

(24) Do(OL|0x) = (97 )P~ = (IeMe)P~t

Proof. The existence of such ¢ and j follows from part 1) of Proposition 2.6 together
with Theorem 3.3. Since (14) holds for z = 19/, we can apply Proposition 3.7 with
S={ce K* | v’ >0} and b. = ¢’ to obtain:

Do(OL|0k) = (W) (e?V) | c € K* with vet’ > 0)
where h; . denotes the minimal polynomial of ¢/. Now we compute:
i,
W —oct = (¥ — (09)) = e — (D +kY) = > (], )w’-%i

- 2
=1

for suitable k& € F7. The summand of least value in the sum on the right hand side
is the one for ¢ = 1. Using (20), we obtain:

(25) Uh}}c(cﬁj) = (p—1)(ve’ ™).
Hence,
Dy(OL|0k) = (e |ve? > 0P = (01 y)P ! = (IeMg)P !,

where the last two equalities follow from part 1) of Proposition 2.7 and Proposi-
tion 3.4. This proves (24). O
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3.3.2. Kummer extensions.

In what follows, (, will denote a primitive p-th root of unity. If L|K is a Kummer
extension, then ¢, € K. Take a Kummer polynomial f of degree ¢ with 1 as its
root. Then f(X) = X?—n? and f/(X) = ¢X? !, whence

(26) fitn) = an"

Lemma 3.10. Take a Kummer extension € = (L|K,v) of degree p = char Kv.
Assume that f(L|K,v) = p. Then there exists a Kummer generator n € L such
that one of the following cases holds:

i) vn =0, Lv = Kv(nv) with Lv|Kv inseparable, and O, = Ok][n],

i) n is a 1-unit, vé(n — 1) = 0, Lv = Kv(é(n — 1)v) and O = Ok[é(n — 1)] for
suitable ¢ € K*.

In case i), for f the minimal polynomial of 1,

(27) DO(OL|0K) = f/(T])OL = p(’)L = Ig_l .
In case ii), for hz the minimal polynomial of ¢(n — 1),
(28) Do(OL|Ok) = hi(é(n —1))Op = p@ 'Oy, = 127",

Proof. The existence of such n and ¢ follows from part 2)a) of Proposition 2.6.
The presentation of Oy, follows from case (DL1). Applying Proposition 3.7 with
S = {1} and setting by = n and by = ¢(n — 1), respectively, we obtain the first
equalities of (27) and (28).

In case i), the second equality of (27) follows from (26) since vn = 0. The third
equality holds since vp = (p — 1)v(¢, — 1) by (4), whence pOy, = IZ~" by part 2)a)
of Proposition 2.7.

For case ii) we compute with o a generator of Gal L| K, using (20):

— p—1
hL(@ H —o'n) = (@) [Ja-¢).
i=1 =1

whence by (3),

(29) vhi(e(n — 1)) = vp(en)’™

This yields the second equality of (28) since vn = 0. The third holds as vé =
—v(n — 1) yields vpé?~* = (p—1)(v(¢, — 1) —v(n — 1)), whence pe?—'Op = I~ by
part 2)b) of Proposition 2.7. O

Lemma 3.11. Take a Kummer extension €& = (L|K,v) of prime degree q =
e (L|K,v). Then there are two possible cases.

i) There is a Kummer generator n € L such that vL = vK + Zvn, (14) holds for
x =mn, and we have the equality

(30) Dy(0L|0k) = qlg™" = gME™
of Or-ideals. If ¢ = char Kv, then
(31) 'DO(OL‘OK) = ([g./\/lg)qil

If ¢ # char Kv, then always this case i) holds, and the factor q can be dropped
in (30) since vg = 0.
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it) There is a Kummer generator n € L which is a 1-unit such that for
n—1

£ = ,
Cq —1

we have that v€ < 0, vL = vK + Zw€, (14) holds for x = & with suitable j €
{1,...,q9 — 1}, and we have the equality of O-ideals

(32)

(33) Dy(Or|0k) = (€ 1u)T = (IeMg)T .

Proof. By part 2) of Proposition 2.4 and part 2)b) of Proposition 2.6, the extension
admits a Kummer generator n such that either vn generates the value group exten-
sion, or 1 is a 1-unit and v(n — 1) generates the value group extension; moreover,
the first case always holds if ¢ # char Kv.

Let us consider the first case. Applying Theorem 3.3 with xq = 7, we find that
(14) holds for # = 1’ with suitable j € {1,...,q — 1}. Since 7’ is again a Kummer
generator and also v’ generates the value group extension as j is prime to ¢, we
may replace 7 by n7. As now (14) holds for x = 7, we can apply Proposition 3.7
with S = {c € K* | ven > 0} and b. = ¢n to obtain:

Do(OL|0k) = (fi(en) | c € K* with ven > 0)

where f. denotes the minimal polynomial of ¢n.
As also ¢n is a Kummer generator, we can apply equation (26) to obtain that

fi(cn) = q(en)9~!. Hence,
Do(OL|Ok) = q(en | c € K with ven > 0)17" = ¢li™! = gME!

where the last equation follows from Proposition 3.4. This proves (30).

If ¢ = char Kv, then gM% " = (({, — )Mg)?™' = (IeMg)? ! since vqg = (q —
1)v(¢; — 1) by (4) and the last equality follows from part 2)a) of Proposition 2.7.
This proves (31).

Now we consider the second case. Since L|K is a Kummer extension, K contains
(;- By Lemma 2.3, v(n—1) < v(¢,—1) € vK because vy = 0. Since v(n—1) ¢ vk,
inequality must hold. Hence with ¢ defined by (32), we have v{ < 0. Further,
applying Theorem 3.3 with zy = £, we find that (14) holds for z = &’ with suitable
je{l,...,q—1}. We apply Proposition 3.7 with S = {¢ € K* | vc&/ > 0} and
b. = c&’ to obtain:

Dy(OL|Ok) = (B} (c€) | c € K* with veg? > 0),

where h;. denotes the minimal polynomial of ¢&’.

We note that v(1 —¢,) = v(1 — ) for each primitive ¢g-th root of unity (. We set
a:=mn— 1. Then for every 0 € G, v(a — oa) = v(n — on) = v(l — (,) > va, hence

-1,
@ —od = a —(0a) = a —(a+oa—a) = — (J)ai(aa —a)’ ",
i
=0

%
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Since va < v(oa — a), the summand of least value in the sum on the right hand
side is the one for + = j — 1. Consequently,

W€ = 0€) = (@l — @) — jo(1 = &) = (= Dva+vla—oa) = jo(1 = &)
= (J—Dva+o(l—¢)—jv(l=¢) = (—1va—ov(l—¢))
= &t

Hence, equation (20) shows that
(34) ol (&) = (q— Lyveg ™!
Hence,
Do(Or|Ok) = (€7 [veg? > 0)17 = (7)™ = (IeMg)T™!

where the last two equalities follow from by part 2)b) of Proposition 2.7 and Propo-
sition 3.4. This proves equation (33). O

4. KAHLER DIFFERENTIALS FOR GALOIS EXTENSIONS OF PRIME DEGREE

4.1. Motivation.

We prove a proposition that will be a main tool for our handling of Kéhler differ-
entials in the subsequent sections. It will provide a motivation for the calculation
of the Kahler differentials for Artin-Schreier extensions and Kummer extensions of
prime degree which will be dealt with in this section.

Given a Galois extension (L|K,v), we denote by (L|K,v)™ its inertia field (cf.
[6, Section 19]).

Proposition 4.1. Let (L|K,v) be a finite Galois extension. Then the following
assertions hold.

1) There ezists a tower of field extensions
(35) KCcK"=K,CcK Cc---CK, =1L

where K™ = (L|K,v)™ and each extension K;11|K; is a Galois extension of prime
degree. Note that‘z'f K is henselian, then the extension K™ v|Kwv is separable of
degree equal to [K™ : K].
2) Further, (L|K,v) can be embedded in a finite Galois extension (M|K,v) having
the following properties:

there exists a tower of field extensions
KcMycM C---CM,=M,
(36) ¢ where My = (M|K,v)™
and each extension M;.1|M; is a Kummer extension of prime degree,
or an Artin-Schreier extension if the extension is of degree p = char K.

Proof. 1): Set Ky := K™ := (L|K,v)™. Since the extension L|K™ is solvable
(cf. Theorems 24 and 25 on pages 77 and 78 of [32]), there exists a tower (35) of
Galois extensions such that each extension K; 1| K; is Galois of prime degree. The

assertions about the extension K™v|Kv are part of the general properties of inertia
fields.
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2): This proof is essentially the same argument as in the Galois characterization
of sovability by radicals. If an extension K;,1|K; in the tower (35) is of degree p =
char K, then it is an Artin-Schreier extension. If it is of prime degree q # char K,
it is a Kummer extension if K; contains a primitive ¢-th root of unity. We will now
explain how to enlarge the extension (L|K,v) so that this will be the case for each
extension of prime degree q # char K in a resulting new tower.

Assume that (K, v) is of characteristic 0 with char Kv = p > 0 and that some
extension K; 1|K; is Galois of degree p, but K does not contain a primitive p-th
root of unity. In this case we will have to replace tower (35) by a larger one. Let
(p denote a primitive p-th root of unity. Then K((,)|K is a Galois extension, and
so is L((,)| K since L|K is assumed to be Galois.

Set K} := (L(¢,)|K,v)™; then Ky = K™ C K. As before, Kj|K is Galois,
hence so are K{)((,)|K and K{((,)|K{ . By part 1) of our proposition, there exists
a tower of Galois extensions Kj C K{ C --- C K, = K{({,) such that each
extension K/ ,|K] is Galois of prime degree. Since [K{((,) : K{] < p, none of the
Galois extensions Kj |K] is of degree p.

We replace the tower (35) by the tower
(37) K(/) C Ki C--C K;’ = K(/)(Cp) C Ki(G) C -+ C K(G) = L(G) -

Now we have that if in mixed characteristic any extension in the tower (35) is
Galois of degree p = char Kv, then it is a Kummer extension.

We now return to the general case, with no restriction on the characteristic of
K, first making the above change if necessary.

In order to also make sure that all Galois extensions of prime degree g # p in
the tower are Kummer extensions, we take () to be the set consisting of all such
primes ¢g. For every ¢ € (), we choose a primitive g-th root of unity ¢, and set
M :=L((, | ¢ € Q). Every extension K((,;)|K is Galois, so M|K is also a Galois
extension.

Let us show that for every ¢ € @, ¢, lies in the inertia field of (M|K,v). This is a
standard fact, but we give a proof for completeness. The reduction of X?—1 modulo
vis X?—1v with 1v being the 1 in Kv. Since ¢ # char Kv, the polynomial X?— 1v
has ¢ distinct roots. The minimal polynomial f of (, over K divides X7 —1, so its
reduction fv divides X? — 1v and has therefore only simple roots. It follows that
if o € Gal M|K with o(, # (,, then (c(,)v # (v, whence v(o(, — (;) = 0. Hence
every automorphism in the inertia group {o € Gal M |K | Vax € Oy : v(oz—z) = 0}
must fix ¢,, which proves our claim. It follows that My := Ky((, | ¢ € @) is the
inertia field of (M|K,v). Finally, we set M, := K;({, | ¢ € Q). By our construction,
now also all extensions of prime degree ¢ # p in the tower are Kummer extensions.
So we have obtained a tower as described in (36). O

4.2. Some calculations of Kahler differentials.

Let L|K be an algebraic field extension. Let A C K be a normal domain whose
quotient field is K. Assume that z € L is integral over A and let f(X) be the min-
imal polynomial of z over K. Then f(X) € A[X] (see [31, Theorem 4, page 260]).
Since f(X) is monic, (f(X)K[X]) N A[X] = f(X)A[X], so Alz] = A[X]/(f(X)).
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Thus,
(38) Qapa = [AX]/(F(X), (X)X = [Al]/(f'(2)]dX

by [16, Example 26.J, page 189] and [16, Theorem 58, page 187|. There is a
universal derivation dap.jja : A[z] = Qa4 defined by

(39) 9(2) = [¢'(2)ldX for g(X) € A[X],
where [¢'(2)] is the class of ¢/(2) in A[z]/(f'(2)).

We will also require the following theorem to calculate Kahler differentials.

Proposition 4.2. ([2, Theorem 1.1]) Take an algebraic field extension L|K of
degree n, a normal domain A with quotient field K and a domain B with quotient
field L such that B|A is an integral extension. Assume that there exist generators
bo € B of L|K, which are indexed by a totally ordered set S, such that A[b,] C Albg]
if a < B and

(40) | Alpa] = B.

acsS

Further assume that there exist a,,ag € A such that ag | aq if o < [ and for
a < B, there exist co 3 € A and expressions

(41) ba = a—abg + Ca,B -
ap

Let hg, be the minimal polynomial of b, over K. Take U and V' to be the B-ideals
(42) U= (a,|ael) and V = (h,(b,)]a€SI).

Then we have a B-module isomorphism
(43) Qpa = U/UV.

For the case where (L|K,v) is a valued field extension and A = Ok and B = Oy,
for arbitrary v € S the isomorphism (43) yields an Or-module isomorphism

A (b
(44) Qo0 = UMU™  with b = M.

n—1
a”Y

Identifying the B-module Qp/4 with U/UV in the above theorem, the universal
derivation dpjs : B — {1p|4 is defined by

(45) dpa(2) = [0a9a(ba)] € U/UV  for z = ga(ba) € Alba]
where [a,g.,(bs)] is the class of ang, (by) in U/UV.

By definition, V' is the B-ideal generated by the differents of all b, . For the case
where (L|K,v) is a valued field extension, we obtain from Proposition 3.7:

Lemma 4.3. Under the assumptions of Proposition 4.2, the Op-ideal V' defined in
(42) is equal to the Op-ideal Do(Op|Ok).

This will be applied in the proofs of Theorems 4.6 and 4.8.
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4.3. Finite extensions (L|K,v) of degree [L : K| = {(L|K) with separable
residue field extension.

Theorem 4.4. Take a finite extension (L|K,v) with Lv|Kv separable of degree
[Lv : Kv] = [L : K|]. Then O = Oklz] for some v € L with vx = 0 and
Lv = Kv(zv), and we have

Proof. By (12), O = Og[z] where x is a lift of a generator x of Lv over Ku.
Let f(X) € K[X] be the minimal polynomial of = over K. Since vx = 0 and
the extension is unibranched, also the conjugates of = have value 0 and thus, f
has coefficients in O . As deg f = [L : K] = [Lv : Kv], the reduction f of f
in Kv[X] is the minimal polynomial of x over Kv. We have that f'(z)v = f'(x)
which is nonzero since y is separable over Kv. Thus f'(z) is a unit in O . By

(38), Qo,jox = Or/(f'(z)) = 0. [
We note that this theorem always applies when (L| K, v) is a Kummer extension

of prime degree ¢ = f (L|K) # char Kv since then Lv|Kv is separable.

4.4. Artin-Schreier extensions (L|K,v) of degree p with {(L|K) = p and
inseparable residue field extension.

Theorem 4.5. Tuke an Artin-Schreier extension € = (L|K,v) of degree p =
f(L|K) = char K with Lv|Kv inseparable. Then there exists an Artin-Schreier
generator ¥ as in Lemma 3.8, and we have

(46) Qoo = Op/(@7") = I/IE
as Or-modules. Consequently, Qo, 0, # 0.

Proof. The first isomorphism in (46) follows from (38) together with Lemma 3.8.

Since v¢ = —vv, we have vé # 0, whence (¢#71) # Op , as well as O /(cP™1) =
(€)/(¢)P = Ig/IE by part 1) of Proposition 2.7. This proves the second isomorphism
in (46). 0

With the notation of the statement and proof of Theorem 4.5, we have that for
z € Or, z = g(¢v) for some g(X) € Og[X], and the universal derivation dp, |0, is
defined by

do,jox(2) = [¢'(e0)] € O/ (&)
by equation (39).

4.5. Artin-Schreier extensions (L|K,v) of degree p with e (L|K,v) = p.

Theorem 4.6. Tuke an Artin-Schreier extension € = (L|K,v) of degree p =
e (L|K). Then there exists an Artin-Schreier generator ¥ as in Lemma 3.9, and
we have

(47) Qoo = VT Me/(0T M) = IeMe/(Ie Me)?

as Op-modules; in particular, Qo, |0, # 0.
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Proof. We will apply Proposition 4.2 with A = O and B = 0. We set S = {a €
vK | @+ v’ > 0}, endowed with the reverse ordering of vK. For each o € S we
choose ¢, € K such that ve, = a. We set by, = ¢, aq = cq, and cap = 0. Then

aglan and A[b,] C A[bg] if o < B, and we have that ¢;97 = 2cy9?. We denote by hy,
the minimal polynomial of b, = ¢,¥’ over K. Thus in the notation of Lemma 3.9,
ho = hjo so that hl(by) = h;,a(caﬁj) and V = Dy(Or|Ok) = (97 1y)P~! by
equation (24) of Lemma 3.9. Further, U = (a, |« € S) = (ca |0 € S) = 97 1y; .
Hence by Proposition 4.2,

Qolox 2 UIUV = 97 Ly [ Lgs (0 Lps P71 = 9 gy /(0 1 )P

Together with part 1) of Proposition 2.7 and Proposition 3.4, this proves (47).
Since 0 < v ! ¢ vK, we have v9~! > Hg and therefore, 9=! € Mg. By
part 3) of Lemma 3.6 it follows that (9"'Mg)? C 9! Mg, which shows that

QOL|OK ;é 0 |:|

With the notation of the statement and proof of Theorem 4.6, we have that for
2 € Op, 2= g(c,) for some g(X) € Ok[X], where ¢, € K is such that v, > 0
and the universal derivation do, |0, is defined by

dOL|OK(Z) = [Cag/(éaﬁjﬂ € ISMS/([&/\AS)p
by equation (45).

4.6. Kummer extensions (L|K,v) of degree p = char Kv with f(L|K) = p.

Theorem 4.7. Let (L|K,v) be a Kummer extension of degree p = f(L|K) =
char Kv.

In case i) of Lemma 3.10,
(48) Qo,j0x = O./(p) = Ig/[?

as Or-modules. Consequently, Qo, |0, 7# 0.
In case ii) of Lemma 3.10,

(49) Qoo = Op/(p@™") = Ig/I}
as Or-modules, and
(50) Qo,lox =0 if and only if Lv|Kv is separable.

Proof. The first isomorphisms in (48) and (49) follow from Lemma 3.10 and (38).
In case i),

Or/(p) = O/((G = 1)) = (G —1/(G— 1) = Ig/If
by part 2)a) of Proposition 2.7.

In case ii), where vé = —v(n — 1),

Op/(pe"™") = Op/(&(¢ = 1) =2 (G — 1)/(E(G = )P = Le/I¢

by part 2)b) of Proposition 2.7.
By Lemma 2.3, Lv|Kwv is separable if and only if —vé = v(n — 1

e

vpcP~! = 0. This is equivalent to (pc?~') = Of, and thus to Qo, |0, = 0. O
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Let the notation be as in the statement and proof of Theorem 4.7. In case i),
we have that for z € Op, z = g(n) for some g(X) € Ok[X] and the universal
derivation do, |0, is defined by

do,jox(2) = [g'(n)] € OL/(p)
by equation (39).
In case ii), we have that for z € Op, z = g(é(n — 1)) for some g(X) € Ox[X]
and the universal derivation do, |0, is defined by
doyjox(2) = [g'(e(n—1))] € Or/(pe)"~!

by equation (39).
4.7. Kummer extensions (L|K,v) of prime degree ¢ with e (L|K) = q.

Theorem 4.8. Let £ = (L|K,v) be a Kummer extension of prime degree q with
e(LIK)=q.
In case i) of Lemma 3.11,

(51) Qoo = Me/qM;
as Op-modules. If q # char Kv, then
(52) Me/gME = Mg/ M.

If ¢ = char Kv, then
(53) Me/qgME = ((g — DMe /(G — D)Me)? = TeMe/(IeMe)? .

We have that Qo, 0, = 0 if and only if ¢ & Mg and Mg is a nonprincipal
Og¢-ideal. The condition q ¢ Mg always holds when q # char Kv.

In case ii) of Lemma 3.11,
(54) Qoo = E Me/(E7Me)! = TeMe/(IeMe)f
as Or-modules; in particular, Qo, 0, # 0.

Proof. Assume that case i) holds. We will apply Proposition 4.2 with A = Ok
and B = Op. Weset S = {a € vK | @+ vn > 0}, endowed with the reverse
ordering of vK. For each a € S we choose ¢, € K such that vec, = . We set
bo = Cal), G = Co, and ¢, 3 = 0. Then agla, and Afb,] C Albg] if & < 3, and we
have that c¢yn = %0277. We denote by h, the minimal polynomial of b, = c¢,n over
K. Thus in the notation of Lemma 3.11, hy = f, so that bl (by) = fi_(can) and
V =Dy(O1|Ok) = qI¢" by equation (30) of Lemma 3.11. Further, U = (aq | @ €
S) = (ca | @ € S) =n~'I,. Hence by Proposition 4.2,

Qoplox = U/juv = 77_1]77/77_1]77 qu_l = In/qu .
From Proposition 3.4 we know that I, = M. This proves (51).

Assume that ¢ # char Kv. Then vg = 0, hence ¢ ¢ Mg and by part 1) of
Lemma 3.6, gM% = (gMg)ME ' = MeME = ME. This proves (52).
Assume that ¢ = char Kv. Then

ME/qu = (Cq_1>M5/(<q_1)qu = (Cq_”ME/(gq_l)qu = ISME/IgMgv
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where we have used that vg = (¢ — 1)v({, — 1) and that I¢ = ((, — 1) by part 2)a)
of Proposition 2.7. This proves (53).

Now we determine when Qp, |0, = 0 holds in the present case. If ¢ € Mg, then
gME C gMg C Mg by part 1) of Lemma 3.6, and if M is a principal Og-ideal,
then gME C ML C Mg by part 2) of Lemma 3.6; hence in both cases, Qo, 0, # 0.
On the other hand, if ¢ ¢ Mg and Mg is a nonprincipal Og-ideal, then by parts 1)
and 2) of Lemma 3.6, gM$ = gM¢ = Mg, whence Qo, 0, = 0. If ¢ # char Kv,
then vg = 0, hence ¢ ¢ Mg .

Assume that case ii) holds. Again we will apply Proposition 4.2 with A = O
and B = 0. Weset S ={a € vK | a+v& > 0}, endowed with the reverse
ordering of vK. For each a € S we choose ¢, € K such that vec, = . We set
bo = €o&?, oy = Co, and ¢ 3 = 0. Then agla, and Alb,] C Albg] if o < 3; we have
that & = 2—2028’ . We denote by h, the minimal polynomial of b, = c,&’ over
K. Thus in the notation of Lemma 3.11, hy = hjq so that hl,(bs) = h,(cal?)
and V = Dy(O1|Ok) = (§ ') by equation (33) of Lemma 3.11. Further,
U=(aa|ael)=(ca|ael)=E7I;. Hence by Proposition 4.2, Qo, 0, =
U/UV 2 &g [ e (M e )T =2 & e [§ e (§ e )T = €M e /(§ e )
Again from Proposition 3.4 we know that I;; = Mg . Further, ((71) = Iz by part
2)b) of Proposition 2.7. This proves (54).

Since 0 < v&~! € vK, we have v€~1 > Hg and therefore, €71 € Mg . By part
3) of Lemma 3.6 it follows that (7' Mg)? C €' Mg, which shows that Qo, o, #
0. 0

Let the notation be as in the statement and proof of Theorem 4.8. In case i),
we have that for z € O, z = g(can) for some ¢, € K such that ve,? > 0 and
g(X) € Og[X] and the universal derivation do, o, is defined by

dOL\OK(Z) = [Cagl(coﬂ?)] € Mg/qu

by equation (45).
In case ii), we have that for 2 € O, z = g(c,&’) for some ¢, € K such that
vea&? >0 and g(X) € Og[X] and the universal derivation do, |0, is defined by

do,j0x(2) = [cag(cal’)] € IeMe/(IeMe)
by equation (45).

5. KAHLER DIFFERENTIALS OF TOWERS OF GALOIS EXTENSIONS

In this section, our goal is the proof of the following two theorems, which will be
given in Subsection 5.2. We begin by preparing the ingredients for the proofs.
We first state the “first fundamental exact sequence” of Kéahler differentials.

Theorem 5.1. ([16, Theorem 25.1]) A composite k — A — B of ring homomor-
phisms leads to a natural exact sequence of B-modules

QA|k X4 B — QB|k — QB|A — 0.

We will verify that in relevant situations, the left most homomorphism is injec-
tive, giving a short exact sequence. The following theorem is a consequence of the
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more general Theorem 6.3.32 of [7]. However, we will give an alternate proof in
Section 5.2.

Theorem 5.2. Assume that L|K and M|L are towers of finite Galois extensions
of valued fields. Then there is a natural short exact sequence

0— QOL\OK ®o, On — QOM|OK — QOM\OL — 0.
In particular, Qo,,j0, = 0 if and only if Qo,,10, =0 and Qo, 0, = 0.

Theorem 5.3. Let (K,v) be a valued field. Then
1) Qosnjox = 0 if and only if Qo, |0, = 0 for all finite Galois subextensions
L|K of K*.
2) Let L|K be a finite Galois subextension of K*® and assume that

KcK"=KyCcK,C---CK,=1L
is a tower of field extensions factoring LIK such that K™ is the inertia

field of (LIK,v) and K;1|K; is Galois of prime degree for all i. Then
Qo o =0 if and only if QOKZ.H\OKZ. =0for0<:</¢—1.

Lemma 5.4. Assume that (L|K,v) is a valued field extension. Then Op is a
faithfully flat Og-module.

Proof. We have that O is a flat Ox-module by [24, Theorem 4.33] (see also [25,
Theorem 4.35]), since Ok is a valuation ring and Oy, is a torsion free Ox-module.
Further, Oy is a faithfully flat Ox-module by Theorem 7.2 [16], since MOy, #
Or. O

Lemma 5.5. Let (L|K,v) be a finite valued field extension which is unibranched
and such that there is a tower of field extensions K = Ko C K1 C --- C K, =L
such that for 1 <1i < { one of the following holds:

1) K;|K;_1 is Galois of prime degree or

2) [K; : K1) = [Kv: K;_1v] and K;v is separable over K;_jv.

Then for 2 < i < [, we have natural short exact sequences
(55) 0— (QOKi_lloK) ®@Ki,1 OKi - QOKi|OK — QOKZ-|OK1-_1 — 0.

Proof. By Theorem 4.4, Theorem 3.3 for unibranched defectless extensions of prime
degree and [2, Lemma 2.3, Lemma 3.1, Lemma 3.2 and Proposition 3.3] for exten-
sions of prime degree with nontrivial defect for 1 < ¢ < £ there exist directed sets
S; with associated a(i); € K; for j € S; such that Ok, ,[a(i);] C Ok, ,[a(i)] if
j <k and Ok, = Ujes, Ok, _, [a(i);]. Further, Ok, [a(i);] = Ok,[X]/(f (X)) where
f/(X) is the minimal polynomial a(i); over K;_;.

Let T; be the set of (ky, ko, ..., ki_1,k;) € S; x Sg x -+ x S; such that f*(z) e
Oxla(D)g,, a(2)ky, ..., a(n — 1)k, ,|[z] for 2 < n < i. We define a partial order
on T; by the rule (ky,..., k) < (l,..., ) if ky, <1, for 1 < m <. The T; are
directed sets since the S; are, and setting

Akl ~~~~~ ki — OK[a(1>k17 &(Z)kw s ,Oé(i - 1)1%71704(2.)7%]
for (k1,...,k;) € T}, we have inclusions
i for (ky, .o ki) < (e, ... 1) in TG,
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By our construction, for 2 < m < i, there exist
g (X1, X, Xim) € Ok [X1, Xo, oo, X1, X

such that gfnm(a(1>k17 T ,a(m - ]‘)km717Xm> = fr]fzm(Xm)
By [28, Theorem 1], we have that

ke = OK[Xla s 7Xi]/(gf1<X1)7g§2(X17X2)7 s 7gz]’€i<X1= T 7Xl))
odX1 @ B Ay,

.....

77777777777777

where Uy, .1, is the Ay, p.-submodule of Ay, 5, dX 1@ - Ay, . 1 dX; generated
by
ofm
(56) S lalw)] X,
and

km
57) | S @ atmi)| X+ 4 | P 0o X

for 2 < m < 4. We further have that

(58) ()] = (Y (a)

and

(59 U2l )| = (B ()
for 2 <m <.

By Theorem 5.1, we have a natural exact sequence of Ay,
(60) QAkl ,,,,, k110K ®Ak1 AAAAA ki1
For (ki,...,k;) € T}, let

-----

Ay kg — QA,C1

T QAkl ..... k110K ®Ak1 ,,,,, ki1 Ok,
My, .k = QAkl ,,,,, k;1OK ®Ak1 ,,,,, k; OKN
Nkl ----- ki = 30AR ki ARy kg ®Ak1 ,,,,, k; OKz"

.....

of Ok,-modules
(61) Lk:1 ..... k; i> Mk:1 ..... k; — Nk1
Now QAkl

------

,,,,,,,,,,

quotient of Ok,dX; @ - -- ® Ok,dX; by the relations (56) and (57) for 2 < m <.
Since (f¥)(a(i)y,) # 0 (as K; is separable over K;_;) we have by (59) with m =
that u is injective, so that (61) is actually short exact.
Let (k’l, ce kz) and (ll, e 7lz) in ,_TZ be such that (]{71, ce kz) < (ll, e ,lz> Then
we have a natural commutative diagram of Og,-modules with short exact rows
0 = Li,kw — My, = Nk, — O

(62) i i i
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where the vertical arrows are the natural maps determined by the differentials
of the inclusions of Ay, _x, , into A; 4 , and of Ay, into A;, ;.. By [24,
Theorem 2.18] (see also [25, Proposition 5.33]), we have a short exact sequence of
Or-modules

777777777777

(63) 0— lUm Ly, g — Um My, . — lim Ny,
— — —
all (ky,... k) € T,. Thus im M, = Qo, o, by [5, Theorem 16.8]. We also
_) k2

have that UAy, . , = Ok
(k1,...,k;) € T;. Thus

where the union is over all (ki,...,k;_1) such that

i—17

lim_, Lk1 ~~~~~ ki — lim_, QAkl ..... k110K ® Ak, ok 1 OKz)
a4
= lim, (QAkl ..... k110K ®Ak1 ,,,,, ki1 OKL' 1) Qo L OKL>
~ .
= (11m—>(QAk1 ..... k110K ®Ak1 ..... ki1 OKz 1)) ®0K1 1 Ok,

I

QoKifl 1Ok ®0Ki—l OKI

where the equality of the third row is by [24, Corollary 2.20].
We have that

SO

..... k;

by equation (38). Since fFi is the minimal polynomial of (i), over K;_;, we have
that

o, ati)ox, , = O[]/ (fF) (a(i)r,)dX;
also by (38). Thus

_ ®Ak1 AAAAA k; OKi = (OKZ/(fzkl)/(a(Z)kl)) dX;

= QOKi—l[a(i)ki]loKi—l Box,

i—1la()g,] i

.....

rem 16.8].
In conclusion, for 1 < i < r, the sequence (55) is isomorphic to the short exact
sequence (63). O

In Definition 2 of Chapter I, page 11 [23], an étale algebra is defined. Let A be
a ring and B be an A-algebra. B is étale over A if

1) B is an A-algebra of finite presentation and

2) For all A-algebra D and ideals J of D such that J? = 0, the natural map
HomA—alg(Bv D) — HOHIA_alg(B, D/J) is a bijection.

In Definition IV.17.3.1 [8], an étale morphism of schemes is defined. After the
definition, it is shown that a morphism of affine schemes Spec(B) — Spec(A) is
étale if and only if B is étale over A.
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Proposition 5.6. Let (L|K,v) be a finite Galois extension of valued fields. Let G
be the Galois group of L|K and let H be a subgroup of G which contains the inertia
group of L|K. Denote the fized field of H in L by Ly. Then Qo, 10k = 0.

Proof. Let A = Ok, C be the integral closure of A in O and B = C¥ be the
integral closure of A in Ly = L¥. There exists a maximal ideal r of C' such that
C, = Op. Let n =r N B, the maximal ideal of B, so that O, = B,,. By Theorem
1 of Chapter X, page 103 [23], there exists f € B\ n such that B’ = By is an étale
A-algebra. We have that (B'),, = Or,. Spec(B’) — Spec(A) is an étale morphism,
so the map is formally unramified (Definition IV.17.1.1 [8]). Thus Qp/a = 0 by
Proposition IV.17.2.1 [8]. Thus 0 = (Qp/4)®5 (B')n, = Qo, 0, by [5, Proposition
16.9]. 0

Proposition 5.7. Assume that (L|K,v) is a finite Galois extension. Then
QOL|OK = QOL|0Km
where K™ is the inertia field of (L|K,v).

Proof. This follows from Proposition 5.6 and the exact sequence of Theorem 5.1.
O

We now give the proof of Theorem 1.1. Let p be the characteristic of the residue
field Kv and ¢ = [L : K] a prime number. The description of Qp, |0, and the
characterization of vanishing of this module depend, among other information, on
the invariants of the valued field extension that appear in the following product:

¢ = [L: K] = d(LIK)e (LK) (LK) g (LK)

where e (L|K) = (vL : vK), f(L|K) = [Lv : Kv], g (L|K) is the number of distinct
extensions of v|K to L and d (L|K) is the defect of the extension, which is a power
of p. Since ¢ is a prime, exactly one of the factors will be equal to ¢, and the others
equal to 1. The description of ¢, |0, also depends on the rank and the structure
of the value group of (K,v) if d (L|K) # 1 or e (L|K) # 1, and on whether Lv|Kwv
is separable or inseparable if f(L|K) # 1.

In the case of d (L|K) = p, our results are proven in [2, Theorem 1.2]. In the
case of e (L|K') = ¢, they are obtained in Theorem 4.6 for Artin-Schreier extensions
and Theorem 4.8 for Kummer extensions. If f(L|K) = ¢, then they are obtained
in Theorems 4.4 and 4.5 for Artin-Schreier extensions and Theorems 4.4 and 4.7
for Kummer extensions.

In the remaining case when g(L|K) = ¢, the extension (L|K,v) is an inertial
extension. Thus Qp, |0, = 0 by Proposition 5.6.

5.1. Henselization.

We now recall some facts about henselization of fields and rings. A valued field
(K,v) is henselian if it satisfies Hensel’s Lemma, or equivalently, all of its algebraic
extensions are unibranched (cf. [6, Section 16]).

An extension (K", v") of a valued field (K, v) is called a henselization of (K, v)
if (K", v") is henselian and for all henselian valued fields (L,w) and all embeddings
A (K,v) = (L,w), there exists a unique embedding \ : (K", v") — (L,w) which
extends .
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A henselization (K", v") of (K,v) can be constructed by choosing an extension
v® of v to a separable closure K*® of K and letting K" be the fixed field of the
decomposition group

GUK*?|K) = {0 € G(K*?|K) | v* o0 = v°}

of v*, and defining v" to be the restriction of v* to K" ([6, Theorem 17.11]). The
valuation ring Ogn of v is then

(64) Opn = Ops N K" = A,

where A is the integral closure of @, in K" and m = M g N K.

The definition of a henselian local ring is given in Definition 1, Chapter I, page 1
of [23]. A local ring A is henselian if all finite A-algebras B are a product of local
rings.

Assume that A is a local ring and ¢(X) € A[X] is a polynomial. Let g(X) €
A/m4[X] be the polynomial obtained by reducing the coefficients of ¢g(X) modulo
my.

By Proposition 5, Chapter I, page 2 [23], a local ring A is a henselian local ring if
and only if it has the following property: Let f(X) € A[X] be a monic polynomial
of degree n. If a(X) and (X)) are relatively prime monic polynomials in A/m 4[X]
of degrees r and n — r respectively such that f(X) = a(X)3(X), then there exist
monic polynomials g(X) and h(X) in A[X] of degrees r and n —r respectively such
that g(X) = a(X), h(X) = A(X) and f(X) = g(X)h(X).

Henselization of a local ring is defined in Definition 1, Chapter VIII, page 80
[23]. If A is a local ring, a local ring A" which dominates A is called a henselization
of A if any local homomorphism from A to a henselian local ring can be uniquely
extended to A". A henselization always exists, as is shown in [23, Theorem 1,
Chapter VIII, page 87]. The construction is particularly nice when A is a normal
local ring, as shown in [23, Theorem 2, Chapter X, page 110] (cf. [17, Theorem
43.5]). We now explain this construction. Let K be the quotient field of A and Let
K* be a separable closure of K. Let A be the integral closure of A in K*® and
let m be a maximal ideal of A.

Let H be the decomposition group

H=GYAn|A) = {0 € GIK*?|K) | 0(An) = Am}.
Then
(65) Al = (A)

where A is the integral closure of A in (K5P)7.

mNA

Lemma 5.8. Assume that (K,v) is a valued field and (K" ,v") is a henselization
of K. Then there is a natural isomorphism

Proof. Let v® be an extension of v to K*® and
H = {0 € Gal(K*?|K) | v’ o0 = 0"},

so that K" is the fixed field of H in K*P. Let 1% be the integral closure of O in
K*P and let m =V N Mkgser, a maximal ideal in V. Since K* is algebraic over
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K, we have that Ogs» = V,, by [32, Theorem 12, page 27]. Now, as is shown on
the bottom of page 68 of [32], H is the decomposition group

H = GOk |Ok) = {0 € GIK*?|K) | 0(Oser) = Ocoen },
so that
O?{ == OKh
by (64) and (65), establishing the lemma. O

Lemma 5.9. Let K be a valued field and L be a field such that K ¢ L C K".
Then Q@L|@K =0.

Proof. Let v* be an extension of v to K*P. The field K*P is the directed union
K®P = U;M; of the finite Galois extensions M; of K in K®P. If M is a finite
Galois extension of K in K®P, then restriction induces a surjection of Galois groups
G(K*P|K) — G(M|K), and an isomorphism G(M|K) = G(K*P|K)/G(KP|M).
We have an isomorphism of profinite groups ([20, Example 1, page 271] or [15,
Theorem VI.14.1, page 313|)

G(K*?|K) 2 lim G(M;|K).
—

Let GY(M|K) be the decomposition group of the valued field extension M|K, for
M a Galois extension of K which is contained in K*P (where the valuation of M is
v¥|M). For M a finite Galois extension of K, restriction induces a homomorphism

(66) GYK*?|K) — GYM|K).

Let 0 € GY(M|K). If N is a finite Galois extension of M contained in K, then
there exists ¢ € G(IN|K) such that |y = 0. Let A be the integral closure of Oy,
in N. There exists a maximal ideal p of A such that A, = Oy. Let ¢ = &(p), a
maximal ideal of A. The group G(N|M) acts transitively on the maximal ideals
of A ([1, Lemma 21.8]) so there exists 7 € G(N|M) such that 7(¢) = p. Thus
76(Oy) = Oy and 76|y = o and so the homomorphism (66) is surjective with
Kernel G4(K*P|K) N G(K*P|M). We have that

Kt = ()G (0 OIR),
Thus
L=Ln UMMy — g,

where L, = LN MiGd(Mi|K). We have that Q@Liw}( = 0 for all < by Proposition 5.6.
Thus

Q(’)L|0K = h_{n(QOLJOK ®OLZ- OL)=0
by [5, Theorem 16.8]. O

Let K be a valued field. Fix an extension v® of v to the separable closure K*%
of K. The field K* is henselian (for instance by the construction before Lemma
5.8); that is, the henselization (K*%)" = K*% and O gsen = Ogsen.

Proposition 5.10. Let (K,v) be a valued field. Then Qo,.,j0x = Q05w |0,h -
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Proof. We may embed K" into K*% (by the construction before Lemma 5.8) giving
a tower of valued field extensions K C K" Cc K*P. By Theorem 5.1, we have
an exact sequence QOKh|OK R0, Orsr — Qoysen|Ox — QOKsep\OKh — 0. The
proposition now follows from Lemma 5.9. 0

Lemma 5.11. Assume that (L|K,v) is a finite separable extension of valued fields.
Then

(67) Qonjon = (Qo,jox) ®o, O -

In particular, by Lemma 5.4, we have that Qo 0, = 0 if and only if Qo ,j0,.,, = 0.
Proof. We have that

(68) Qo,110,0 = Q0,4 j0k

by Lemma 5.9 and the exact sequence of Theorem 5.1. By [23, Theorem 1, page
87], there exist étale extensions A;|O; and maximal ideals m; of A; such that
Opn = lim(A;)m,. We have the exact sequences

4>

QOL\OK Ko, A; 2 QA”@K — QAi|(9L — 0
of Theorem 5.1. Since A;|Oy, is étale, we have that this map is formally étale
([8, Definition IV.17.3.1]) and is thus formally unramified and formally smooth
([8, Definition IV.17.1.1]). Thus Q4,0, = 0 by [8, Proposition IV.17.2.1] and « is
injective by [8, Proposition IV.17.2.3]. By this calculation and [5, Proposition 16.9],
(69) QOL|OK ®o, (At)mz = (QAi|OK) @4, (Al)mz = Q(Ai)mi|OK'
By Theorem 16.8 [5] and equations (68) and (69),
(70) QOZ\O?{ = QoLh|0K = hi)n[(Q(Ai)mi‘OK> ®(Ai)mi OLh]

= liE}n[(QOLK)K) ®o,, O] = (QOL\OK) ®o,, Opn.

5.2. Proofs of Theorems 5.2 and 5.3.
We first prove Theorem 5.2.
The natural sequence of Oy;-modules
(71) 0— QOL|OK ®o, Om — Q(9M|(9K - QOM\OL —0

computed from the extensions of rings O C O C Oy is right exact (but the first
map might not be injective) by Theorem 5.1. Tensor this sequence with O%, over
O to get a right exact sequence of O%,-modules

(72) 0— (QOL‘OK®OLOM)®OIMO?W — QO]M‘OK®OMO?W — QOA4|OL®OJVIO?\4 — 0.
By (67), we have isomorphisms
Q(’)M|OL Qo O?J = QO}AO%? QOM\OK Qo O]@[ = QO}MlO}Q

and
(QOL|OK Koy, OM) Xon O;LJ = QOL|OK Koy, O%
= (Qo,j0x ®o, OF) ®on O = Qo 10, @on Ol

Thus (72) is the right exact sequence

(73) 0— QOthoKh ®0Lh OMh — Qo — QO — 0

]Mh|OKh A{h|OLh
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of Theorem 5.1. Since O% is a faithfully flat Oy-module, we have that (71) is
exact if and only if (73) is exact.
By assumption, L|K and M|L are towers of Galois extensions

K:KOCK1C---CKr:LandL:LOCLlC---CLs:M
SO
K'=K'cK'c...cK'=rL'andL"=L}cLlc...cLl=M"

are towers of Galois extensions. Since each K ,|K is unibranched, there exist
factorizations

K!'cU!cU}cC---cU™ =K,

where U} is the inertia field of K. ,|K!" and U/™"|U/ is Galois of prime degree.
These extensions are all necessarily unibranched, so U K! satisfies 2) of Lemma 5.5
and U/t |U/ satisfies 1) of Lemma 5.5 for 1 < j. Similarly, we have factorizations

L?CVil CV;ZC‘”CVZM :L?H
where V;'|L? satisfies 2) of Lemma 5.5 and V/™'|V7 satisfies 1) of Lemma 5.5 for
1 < j. By Lemma 5.5, we have exact sequences
0— QOU&KQKh ®OU% OU(? — QOU%‘OK}L — QOUng(} —0
0— QOUgloKh ®OU§ OUS’ — QOU%‘OKh — QOUgloUg — 0

0— QOK{L|OKh ®@K{1 OU} — QOUIIIOKh
0— QOU%loKh ®(9U11 OU% — QOU%‘OK’l — Q@U%K)Ull —0

— QOUII‘OK{I — 0

0— QOLh\OKh ®0Lh OVol — Qovol|OKh — QOVO”OLh —0
0— QovolloKh ®(9V01 OVOQ — QOVOZ‘OK’E — QOVOQ‘OV& —0

0— QOL?‘OK}I ®@L? OV11 — QOV11|OKh — Q@V11|@L? — 0
0— QOV11|oKh ®OV11 OVf — Qovf‘oKh — Qovf‘ovll — 0

Oy — Qo — Qo — 0.

-1 Mh‘OKh

1

0—Q
Oys-110kcn ®Ovs”_s ah|Oy a1

In particular, differentiation defines an injection of OVO1—m0dules

QOLh‘OKh ®OLhOV01 - Qovol\of;{'

Since Oyz is a flat Oyi-module, we have injections

QOLh|OKh ®(9Lh OVO2 = (QothoKh ®(9Lh OV01)®OVO1 0V02 — QOVOHOK;L ®OV01 OVO2 — QOVOQ\O?(

and continuing, we obtain that differentiation gives an injection of Oy;»-modules
QOLh\OKh ®(9Lh Opn — QOMHOK}L

so that (73) is short exact and thus (71) is short exact.
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Since Oy is a faithfully flat Op, module, we have that Qo, 0, ®o, Oy = 0
if and only if Qp, 0, = 0, and so Qo,,j0, = 0 if and only if Qp,,j0, = 0 and
QOL|OK =0. 0

We now prove Theorem 5.3. We first prove Statement 1). By [5, Theorem 16.8],
we have an isomorphism of Ogse-modules

QOKS€P|OK = liLnKQOL\OK) Qo OK“P]'

where the limit is over finite Galois subextensions L|K of K*%.

If Qo, 10, = 0 for all finite Galois subextensions of K*P, then it follows immedi-
ately from the above formula that Qo .,j0, = 0.

Assume that Qo .pj0, = 0 and L|K is a finite Galois subextension of K. If
Qo0 # 0, then there exists 0 # x € Qp, |0, and a finite Galois extension N of
K such that N contains L and the image of x ® 1 by the natural homomorphism

<Q0L‘0K) ®OL OKSep — (QON‘OK> ®ON OKsep

is zero. Since Ofser is a faithfully flat Oy-module (by Lemma 5.4) we have that
the image of z ® 1 by the natural homomorphism

Qo, 10k @0, On = Qoy ok

is zero, so that x ® 1 = 0 by Theorem 5.2. Thus x = 0 since Oy is a faithfully flat
Or-module, giving a contradiction, and showing that Qo, 0, = 0.

We now prove Statement 2). We have that Qo, 0, = Qo,0,., by Proposi-
tion 5.7. For 0 <i < (-1, Qo, |0, = 01if and only if Qo 10, ®ok, Ok, =0
since Ok, , is a faithfully flat Og,-module by Lemma 5.4. Statement 2) now follows
from Lemma 5.5 by induction on i in equation (55). O

6. PROOF OF THEOREMS 1.2 AND 1.3

Take a valued field (K, v) and extend v to the separable closure K*% of K. Recall
that we call (K,v) a deeply ramified field if it satisfies (DRvg) and (DRvr).

Throughout we assume that char Kv = p > 0. If char K = 0, then we set K’ :=
K (¢,) with ¢, a primitive p-th root of unity and extend v to K'. If char K = p, then
we set K’ := K. The next proposition will show that in our proof of Theorem 1.2
we can assume that K = K.

Proposition 6.1. 1) If Qo,.,j0, = 0, then Qo,j0,, = 0 holds for every finite
Galois extension (L|K',v).

2) If (K',v) is a deeply ramified field, then so is (K,v).

Proof. 1): Assume that Qo,,.,|0, = 0. By part 1) of Theorem 5.3 this implies that
Q0,10 = 0 for every finite Galois extension (L|K,v). In all cases, (K'|K,v) is a
finite Galois extension, possibly trivial. Take any finite Galois extension (L| K’ v),
let N be the normal hull of L|K, and take any extension of v to N. Then (N|K,v)
is a finite Galois extension, so we have Qo 0, = 0. Since also (V|K’,v) and
(K'|K,v) are finite Galois extensions, Theorem 5.2 shows that Qo j0,, = 0. Fi-
nally, since (N|L,v) and (L|K’,v) are finite Galois extensions, Theorem 5.2 shows
that Q@L‘@K, = 0.

2): This follows from [13, Theorem 1.8]. O
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We split Theorem 1.2 into the following two propositions, which we will prove
separately. In view of Proposition 6.1 it suffices to prove them under the assumption
that K contains a primitive p-th root of unity if char K = p > 0, i.e., K = K.

Proposition 6.2. If Qo,..,j0, =0, then (K,v) is a deeply ramified field.
Proposition 6.3. If (K,v) is a deeply ramified field, then Qo .pj0, = 0.

One of the implications of Theorem 1.3 will be proved in Proposition 6.5, and
the other in Proposition 6.6.

6.1. Proof of Proposition 6.2.

We will need some preparations. If the valued field (K,v) is of characteristic 0
with residue characteristic p > 0, then we decompose v = vy o v, o U, where vy is
the finest coarsening of v that has residue characteristic 0, v, is a rank 1 valuation
on Kwvy, and 7 is the valuation induced by v on the residue field of v, (which
is of characteristic p > 0). The valuations vy and ¥ may be trivial. Note that
while it makes no sense to compose the valuations as functions, in this notation
the valuations are interpreted as their associated places (as we have done before by
writing “Kv”): in this way, Kv = K(vg o v, 0 0) = ((Kvg)v,)v. For simplicity, we
will write vgv, for vy o v, and v,v for v, ov. In our decomposition, the valuation v,
is at the center, so we define crf (K, v) := (Kuvp)v, as one may call it the “central
residue field”. In the equal characteristic case, we set crf (K, v) := Kwv.

Now take any valued field (K, v) of residue characteristic p > 0. We will use the
following observation; we note that C,x(vp) was denoted by (vK),, in [13].

Proposition 6.4. If K = K’ and Cy,x(vp) is p-divisible, Kv is perfect and all
Galois extensions (L| K, v) of prime degree p with nontrivial defect satisfy Qo, 0, =
0, then (K,v) satisfies (DRur).

Proof. We will show that the assumptions imply that crf (K, v) is perfect. Then the
assertion follows from [13, Proposition 4.13] since by [2, Theorem 1.4], all Galois
extensions (L|K,v) of prime degree p with nontrivial defect that satisfy Qo, 0, = 0
have independent defect in the sense of [13, 2.

In the equal characteristic case, crf (K,v) = Kv and there is nothing to show.
So we assume that (K, v) has mixed characteristic. Take any nonzero element of
crf (K, v); it can be written as buyv, with b € K. Consider the extension K (n)|K
with 7? = b. We have that nugv, is a p-th root of bvgv, in crf (K (n),v).

Suppose that bvyv, does not have a p-th root in crf (K, v), so K(n)|K is a Kum-
mer extension of degree p. Then (K (n)vov,|Kvgv, is purely inseparable of degree p.
It follows that vov, K (1) = vov, K and that (K (n)|K, vov,) and (K (n)vev,| Kvovy, )
are unibranched. Consequently, (K (n)|K,v) is unibranched. Further, as C,x(vp)
and thus also 7(Kwvgv,) is p-divisible, we have U(K (n)vov,) = v(Kvov,) and there-
fore, vK(n) = vK. Moreover, K(n)v = K(n)vou,0 is a purely inseparable exten-
sion of Kv = Kwyv,v and since Kv is perfect, we find that K(n)v = Kv. Thus
(K(n)|K,v) is an extension with nontrivial defect. Since (K, v) is an indepen-
dent defect field, the defect must be independent. Hence by [2, condition b) of
Theorem 1.8,

v(b— K?) = plvp—{OzEva]a>H}

p_
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for some convex subgroup H of vK that does not contain vp, so also does not
contain ~Ervp. It follows that there is some a € K such that v(b — a”) > vp,
whence (b — a?)vyv, = 0. This shows that (avgv,)? = bvgv,, so that bvyv, has a
p-th root in crf (K, v), which contradicts our assumption.

We have now proved that crf (K, v) is perfect, as desired. O

Now we are ready to prove one part of Theorem 1.3:

Proposition 6.5. If K = K’ and if Qp, |0, = 0 for all unibranched Galois exten-
sions (L|K,v) of prime degree p, then (K,v) is a deeply ramified field.

Proof. We first deal with the equal characteristic case. In this case, C,x(vp) = vK.
Suppose that vK is not p-divisible and take some a € K such that va ¢ pvK. We
may assume that va < 0. Take ¥ € K*" such that ¥? — 9 = a. Then pvid = va
and (K (9)|K,v) is an Artin-Schreier extension with e (K (¢)|K,v) = p. Hence by
Theorem 4.6, Qo, |0, # 0, contradiction. Thus C,x(vp) = vK is p-divisible, and
in particular, (DRvg) holds.

Suppose that Kv is not perfect, and take b € Oy such that bv does not have a
p-th root in Kv. Take ¢ € K such that ve < 0 and ¥ € K*% such that 97 — v = ¢Pb.
Then (K (9)|K,v) is an Artin-Schreier extension with K (9)v = Kv(bv'/P). Hence
by Theorem 4.5, Qo , |0k # 0, which again is a contradiction. Hence K is perfect.
Now Proposition 6.4 shows that also (DRvr) holds and consequently, (K, v) is a
deeply ramified field.

Now we deal with the mixed characteristic case. If we are able to show that
(K,v) satisfies (DRvg), C,x(vp) is p-divisible and Kv is perfect, then we can as
before apply Proposition 6.4 to obtain again that (K, v) is a deeply ramified field.

Suppose that there is an archimedean component of v K which is discrete. Pick
a € K such that va < 0 and va + Ci-(va) is the largest negative element in
Ay (va). Take n € K such that n? € K with vn? = va. Then vn+C; (vn) is the
largest negative element in 4,7 (vn), not contained in A,k (pvn), and (K (n)|K,v)
is a Kummer extension with e (K(n)|K,v) = p. It follows that (vK(n)/C.; (vn) :
vK/Cl(pvn)) = p, hence we must have C, (vn) = Cl(pvn). Therefore, & is of
type (DL2c) with He = C/, (vn), so Mg is a principal Og-ideal. From case i) of
Theorem 4.8 we now infer that Qo 10, # 0, contradiction.

Suppose that C,x(vp) is not p-divisible and take some a € K such that va €
Cor (vp) \pCyi (vp) . We may assume that va < 0. Take n € K* such that n* = a.
Then pvn = va and (K (n)|K,v) is a Kummer extension with e (K(n)|K,v) = p.
We have that vl, N C,r(vp) # 0. This implies that vp ¢ Hg, whence p € Mg
Again from case i) of Theorem 4.8 we conclude that Qo (ylox 7 0, contradiction.

Suppose that Kv is not perfect, and take b € Oy such that bv does not have a
p-th root in Kv. Take n € K* such that n? = b. Then (K (n)|K,v) is a Kummer
extension with K (n)v = Kv(bv'/?). Hence by Theorem 4.7, Qo 0k # 0, which

is again a contradiction. This finishes the proof that (K, v) is deeply ramified. O

Now Proposition 6.2 follows from Proposition 6.5 in conjunction with part 1) of
Proposition 6.1.
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6.2. Proof of Proposition 6.3.
We first observe:

Proposition 6.6. Take a deeply ramified field (K,v) such that K = K', and a
unibranched Galois extension (L|K,v) of prime degree. Then Qo 0, = 0.

Proof. In view of Theorem 1.4, we only have to deal with the case of defectless
extensions.

Assume that char K = p and (L| K, v) is an Artin-Schreier extension of degree p.
We have that vK is p-divisible and Kwv is perfect by [13, Lemma 4.2]. Thus, the
case of e (L|K) = p cannot appear and we must have that f(L|K) = p with the
extension Lv|Kwv separable. Hence Qo, |0, = 0 by Theorem 4.4.

Assume that (L| K, v) is a Kummer extension of prime degree ¢ = f(L|K'). Again,
Lv|Kwv is separable, so Qo, |0, = 0 by Theorem 4.4.

Finally, assume that & = (L|K,v) is a Kummer extension of prime degree ¢ =
e(L|K). Since each archimedean component of the deeply ramified field (K, v) is
dense, the same holds for all archimedean components of vL. This shows that £ is
not of type (DL2c), so Mg is a nonprincipal Og-ideal.

If ¢ # char Kv, then vqg = 0 implies that ¢ ¢ M and hence ¢ ¢ Mg . From case
i) of Theorem 4.8 we now obtain that Qo, |0, = 0.

If ¢ = char Kv, then necessarily char K = 0. By [13, part (1) of Lemma 4.3],
Cux (vq) is g-divisible. If case ii) of Theorem 4.8 would apply, then by (4), 0 <
v(n—1) <v((—1) = 2 with v(n — 1) ¢ vK, whence v(n — 1) € Cyr(vg) and
(Cor(vq) : Cyx(vq)) = q. As this contradicts the fact that C,x (vq) is ¢g-divisible, case
ii) cannot appear and moreover, vq € Hg and thus ¢ ¢ Mg since C,1(vq) = Cyx (vq).
By case i) of Theorem 4.8 we conclude that Qo, 0, = 0. O

Take any deeply ramified field (K,v). By [13, Corollary 1.7 (2)], also the
henselization (K,v)" of (K,v) inside of (K*® v), for any of the conjugate ex-
tensions from v from K to K* is a deeply ramified field. By Proposition 5.10
it suffices to prove that Q@KwM@Kh = 0. We may therefore assume from the start
that (K, v) is henselian.

Part 1) of Theorem 5.3 shows that in order to prove that Qo,..,j0, = 0 it
suffices to prove that Qo, 0, = 0 for all finite Galois subextensions (L|K,v) of
(K*?|K,v). Proposition 4.1 shows that after enlarging (L|K,v) to a finite Galois
extension (M|K,v) if necessary, there is a tower of field extensions

KCMyCMGC--CM,=M

where M is the inertia field of (M| K, v) and each extension M; 1|M; is a Kummer
extension of prime degree, or an Artin-Schreier extension if the extension is of
degree p = char K. By part 2) of Theorem 5.3, to prove that Qo 0, = 0 it
suffices to prove that Qo,,  |0,, = 0for 0 <i <m —1. By Theorem 1.5, (M;,v)
is a deeply ramified field for each 7, hence QOMi+1|O]Wi = 0 by Proposition 6.6. We
have shown that Qo,, 0, = 0.

Since M|K is a Galois extension, so is M|L. Hence we can apply Theorem 5.2
to conclude that Qo |0, = 0. This completes our proof of Theorem 1.2.
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