
KÄHLER DIFFERENTIALS OF EXTENSIONS OF VALUATION
RINGS AND DEEPLY RAMIFIED FIELDS

STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

Abstract. Assume that (L, v) is a finite Galois extension of a valued field
(K, v). We give an explicit construction of the valuation ring OL of L as an OK-
algebra, and an explicit description of the module of relative Kähler differentials
ΩOL|OK

when L|K is a Kummer extension of prime degree or an Artin-Schreier
extension, in terms of invariants of the valuation and field extension. The case
when this extension has nontrivial defect was solved in a recent paper by the
authors with Anna Rzepka. The present paper deals with the complementary
(defectless) case. The results are known classically for (rank 1) discrete valua-
tions, but our systematic approach to non-discrete valuations (even of rank 1) is
new.

Using our results from the prime degree case, we characterize when ΩOL|OK
=

0 holds for an arbitrary finite Galois extension of valued fields. As an application
of these results, we give a simple proof of a theorem of Gabber and Ramero, which
characterizes when a valued field is deeply ramified. We further give a simple
characterization of deeply ramified fields with residue fields of characteristic p > 0
in terms of the Kähler differentials of Galois extensions of degree p.

1. Introduction

The main goal of this paper is to study for algebraic extensions of valued fields
the relation between their properties and the vanishing of the Kähler differentials
of the extensions of their valuation rings.

All of our results are for arbitrary valuations; in particular, we have no restric-
tions on their rank or value groups. Ranks higher than 1 appear in a natural way
when local uniformization, the local form of resolution of singularities, is studied.
Deeply ramified fields of infinite rank appear in model theoretic investigations of
the tilting construction, as presented by Jahnke and Kartas in [9]. Therefore, we do
not restrict our computations to rank 1, thereby indicating how Kähler differentials
can be computed in higher rank.
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The notation we use is mostly standard in valuation theory or commutative
algebra. We review notation and some main notions in Section 2.1.

Our principal result is the following Theorem 1.1, which deals with extensions
L|K which are Kummer extensions of prime degree or Artin-Schreier extensions.
In this paper we compute the Kähler differentials ΩOL|OK

for such extensions when
they are unibranched and defectless, which means that the extension of v from
K to L is unique and [L : K] = (vL : vK)[Lv : Kv] holds. For the complementary
case of such extensions with nontrivial defect, which in this special case means
that (vL : vK) = 1 = [Lv : Kv], see Theorems 4.5 and 4.6 in the recent paper [2]
by the authors with Anna Rzepka. The description of these Kähler differentials is
known classically for (rank 1) discrete valuations, but our systematic and detailed
description is new, even for arbitrary valuations of rank 1. By ΩB|A we denote the
Kähler differentials, i.e., the module of relative differentials, when A is a ring and
B is an A-algebra.

Theorem 1.1. Let (L|K, v) be a finite Galois extension of valued fields where L|K
is a Kummer extension of prime degree or an Artin-Schreier extension. Then there
is an explicit description of ΩOL|OK

in terms of invariants of the valuation v and
field extension L|K. This gives a characterization of when ΩOL|OK

= 0.

The proof of Theorem 1.1 is given in Section 5, after Proposition 5.7. The analysis
of the cases in Theorem 1.1 begins with explicit constructions of the extensions
OL|OK of valuation rings, as a chain of simple ring extensions. This construction
depends strongly on the type of extension. For the case of defectless extensions it
is given in Section 3.1; to the best of our knowledge, it is new and of independent
interest. A result from [2], stated in Proposition 4.2 of the present paper, is then
used to give the explicit description of ΩOL|OK

in Sections 4.3 to 4.7.

Annihilators of ΩOL|OK
, differents DOL|OK

and traces of the maximal ideal ML

of OL for the extensions appearing in Theorem 1.1 have been determined in [2] in
the case of nontrivial defect. (Note that before [2, Theorem 1.6] we meant to write
“We denote the annihilator of an OE -module M by annM”.) The case of defectless
extensions will be addressed in [12].

As an application of Theorem 1.1, we prove in Section 5 a criterion for the
vanishing of the Kähler differentials for arbitrary finite Galois extensions; see part
2) of Theorem 5.3. Finally, in Section 6 all of these results are combined into the
proof of the next theorem.

Take a valued field (K, v) with valuation ring OK . Choose any extension of v
to the separable-algebraic closure Ksep of K and denote the valuation ring of Ksep

with respect to this extension by OKsep . Note that ΩOKsep |OK
does not depend on

the choice of the extension of v since all of the possible extensions are conjugate.
Gabber and Ramero prove the following result (see [7, Theorem 6.6.12 (vi)]):

Theorem 1.2. For a valued field (K, v),

(1) ΩOKsep |OK
= 0

holds if and only if it satisfies the following:

(DRvg) whenever Γ1 ⊊ Γ2 are convex subgroups of the value group vK, then Γ2/Γ1

is not isomorphic to Z (that is, no archimedean component of vK is discrete);
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(DRvr) if charKv = p > 0, then the homomorphism

(2) OK̂/pOK̂ ∋ x 7→ xp ∈ OK̂/pOK̂

is surjective, where (K̂, v̂) is the completion of (K, v) for the valuation topology and
OK̂ denotes its valuation ring.

Theorem 1.2 and the papers [29, 30] of Thatte were the motivation for our work
in the present paper and in [2].

For the purpose of the proof of Theorem 1.2, we define (as we have done in [13])
a nontrivially valued field (K, v) to be a deeply ramified field if the conditions
(DRvg) and (DRvr) hold. In [13], related classes of valued fields are introduced by
weakening or strengthening condition (DRvg).

Note that by [26, Definition 3.1] a perfectoid field is a complete nondiscrete rank
1 valued field of positive residue characteristic such that the Frobenius is surjective
on OK/pOK . In rank 1, condition (DRvg) just says that the value group is not
discrete. Consequently, when using (DRvg) and (DRvr) for the definition of deeply
ramified fields, it is immediately seen that every perfectoid field is a deeply ramified
field.

The proof of Theorem 1.2 in [7] is a demonstration of the power of the techniques
of almost ring theory, and uses a large part of the theory developed in [7]. The
proof is by reduction to the rank 1 case, where the techniques of almost ring theory
are most applicable.

Our alternative proof of Theorem 1.2 in the present paper uses only methods
from valuation theory and commutative algebra, and does not rely on techniques
or results from almost ring theory. We hope that our proof makes this beautiful
theorem accessible to a wider audience. Further, our proof yields the following
additional new result. A criterion for a valued field (K, v) to be deeply ramified
that only works with extensions of prime degree p = charKv appears to be more
easily accessible than the criterion ΩOKsep |OK

= 0, in particular from the model
theoretic point of view.

Theorem 1.3. Let (K, v) be a valued field of residue characteristic p > 0. If K
has characteristic 0, then assume in addition that it contains all p-th roots of unity.
Then (K, v) is a deeply ramified field if and only if ΩOL|OK

= 0 for all unibranched
Galois extensions (L|K, v) of prime degree p.

Let us mention two main ingredients of the proof. Theorem 1.10 (1) of [13]
implies that if (K, v) is a deeply ramified field with charKv = p > 0, then each of
its Galois defect extensions of degree p has independent defect. Hence we can infer
the following result from [2, Theorem 1.4]:

Theorem 1.4. Take a deeply ramified field (K, v) with charKv = p > 0; if
charK = 0, then assume that K contains all p-th roots of unity. Then every
Galois extension (L|K, v) of degree p with nontrivial defect satisfies ΩOL|OK

= 0.

This result will be complemented in the present paper by showing that for a
deeply ramified field (K, v), every unibranched defectless Galois extension (L|K, v)
of prime degree p satisfies ΩOL|OK

= 0. Then Section 5 connects our results for
Galois extensions of prime degree with ΩOKsep |OK

. There, the main approach is the
study of Kähler differentials of towers of Galois extensions. In order to go upward
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through such towers, we make use of the following fact, which Gabber and Ramero
deduce from Theorem 1.2 (see [7, Corollary 6.6.16 (i)]). However, as we want to
prove Theorem 1.2, we refer the reader to Theorem 1.5 of [13] whose proof is done
by a direct valuation theoretical computation not involving any Kähler differentials.

Theorem 1.5. Every algebraic extension of a deeply ramified field is again a deeply
ramified field.

It should be noted that Theorem 1.5 also holds for the roughly deeply ramified
and the semitame fields that are introduced in [13].

In [22], Novacoski and Spivakovsky use the theory of key polynomials to derive
a presentation of ΩOL|OK

for finite pure extensions (L|K, v) under the condition
vL = vK. Applying this presentation to Artin-Schreier and Kummer extensions,
they derive results similar to our results presented in [2] and in this paper. Recently
they also dealt with the case of vL ̸= vK by a different approach, not based on the
use of key polynomials. See also [18, 19, 21].

To conclude this introduction, let us give some interesting examples. Let ζp
denote a primitive p-th root of unity.

Example 1.6. Choose a prime p > 2. The field K = Qp(ζp, p
1/pn | n ∈ N),

equipped with the unique extension of the p-adic valuation of Qp, is known to be a
deeply ramified field. The Kummer extension (K(

√
p)|K, vp) is tamely ramified, as

(vpK(
√
p) : vpK) = 2 ̸= p. By an application of Theorem 4.8 below, ΩOK(

√
p)|OK

=
0. The fact that this holds in spite of the ramification is due to the value group
vpK being dense, as it is p-divisible.

Analoguously, we can consider the field K = Fp((t))(t
1/pn | n ∈ N), equipped

with the unique extension of the t-adic valuation of Fp((t)). This field is a deeply
ramified field since it is perfect of positive characteristic. Again, the extension
(K(

√
t)|K, vt) is tamely ramified as (vtK(

√
t) : vtK) = 2 ̸= p, and vtK is dense.

By Theorem 4.8 below, ΩOK(
√

t)|OK
= 0.

Finally, here is an example of a Kummer extension (L|K, v) with wild ramifica-
tion and ΩOL|OK

= 0.

Example 1.7. Take a prime p > 2 and set K = Q(ζp)(t
1/2n | n ∈ N). Let

vp denote the p-adic valuation on Q(ζp) and vt the t-adic valuation on K. Now
consider the valuation v := vt ◦ vp on K, where “vt ◦ vp” denotes the valuation
associated with the composition of the t-adic place on K and the p-adic place on
Q(ζp). Set L = K(t1/p) and extend v to L. Then (L|K, v) is a Kummer extension
of degree p with ramification index p = charKv. Nevertheless, Theorem 4.8 shows
that ΩOL|OK

= 0.

2. Preliminaries

2.1. Notation.

By (L|K, v) we denote a field extension L|K where v is a valuation on L and K is
endowed with the restriction of v. The valuation ring of v on L will be denoted by
OL , and that on K by OK . Similarly, ML and MK denote the unique maximal
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ideals of OL and OK . The value group of the valued field (L, v) will be denoted by
vL, and its residue field by Lv. The value of an element a will be denoted by va,
and its residue by av. In order to simplify notation by reducing the use of brackets,
our convention will be that v . . . denotes the value of the term following “v”, and
. . . v denotes the residue of the term preceding “v”; for example, vxy = v(xy) and
xyv = (xy)v. A final segment of vL is a subset S ⊆ vL such that γ ≤ δ with
γ, δ ∈ vL and γ ∈ S implies that δ ∈ S.

The rank of a valued field (K, v) is the order type of the chain of proper convex
subgroups of its value group vK. We say that (L|K, v) is unibranched if the
extension of v from K to L is unique.

2.2. Convex subgroups and archimedean components.

Take an ordered abelian group Γ. Two elements α, β ∈ Γ are archimedean
equivalent if there is some n ∈ N such that n|α| ≥ |β| and n|β| ≥ |α|, where
|α| := max{α,−α}. Note that if 0 < α < β < nα for some n ∈ N, then α, β
and nα are (mutually) archimedean equivalent. If every two nonzero elements of Γ
are archimedean equivalent, then we say that Γ is archimedean ordered. This
holds if and only if Γ admits an order preserving embedding in the ordered additive
group of the real numbers.

We call Γ discretely ordered if every element in Γ has an immediate successor;
this holds if and only if Γ contains a smallest positive element. In contrast, Γ is
called dense if Γ ̸= {0} and for every two elements α < γ in Γ there is β ∈ Γ
such that α < β < γ. If Γ is archimedean ordered and dense, then for every i ∈ N
there is even some βi ∈ Γ such that α < iβi < γ; this can be easily proven via an
embedding of Γ in the real numbers. Every ordered abelian group is discrete if and
only if it is not dense.

For γ ∈ Γ, we define CΓ(γ) to be the smallest convex subgroup of Γ containing γ,
and for γ ̸= 0, C+

Γ (γ) to be the largest convex subgroup of Γ not containing γ. Note
that CΓ(0) = {0}. The convex subgroups of Γ form a chain under inclusion, and
the union and intersection of any collection of convex subgroups are again convex
subgroups; this guarantees the existence of CΓ(γ) and C+

Γ (γ).
We have that C+

Γ (γ) ⊊ CΓ(γ) and that C+
Γ (γ) and CΓ(γ) are consecutive, that is,

there is no convex subgroup of Γ lying properly between them. As a consequence,

AΓ(γ) := CΓ(γ)/C+
Γ (γ)

for γ ̸= 0 is an archimedean ordered group; we call it the archimedean compo-
nent of Γ associated with γ. Two elements α, β ∈ Γ are archimedean equivalent
if and only if

CΓ(α) = CΓ(β) ,

and then it follows that AΓ(α) = AΓ(β). In particular, CΓ(α) = CΓ(nα) and
AΓ(α) = AΓ(nα) for all α ∈ Γ and all n ∈ Z \ {0}.

Assume now that Γ is an ordered abelian group containing a subgroup ∆ ̸= {0}.
We say that ∆ is dense in Γ if for every two elements α < γ in Γ there is β ∈ ∆
such that α < β < γ; this implies that Γ and ∆ are dense. If Γ is archimedean
ordered, then so is ∆, and ∆ is dense in Γ if and only if it is dense.



6 STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

For every γ ∈ Γ, CΓ(γ) ∩ ∆ and C+
Γ (γ) ∩ ∆ are convex subgroups of ∆; the

quotient CΓ(γ) ∩ ∆ / C+
Γ (γ) ∩ ∆ is either trivial or archimedean ordered. If γ is

archimedean equivalent to δ ∈ ∆, then this quotient is equal to A∆(δ).
For each δ ∈ ∆ the function given by

A∆(δ) ∋ α + C+
∆(δ) 7→ α + C+

Γ (δ) ∈ AΓ(δ)

is an injective order preserving homomorphism. This follows from the fact that
the kernel of the homomorphism C∆(δ) ∋ α 7→ α + C+

Γ (δ) ∈ AΓ(δ) is the convex
subgroup C+

∆(δ) = C+
Γ (δ)∩∆. In abuse of notation, we write A∆(δ) = AΓ(δ) if this

homomorphism is surjective.

2.3. Artin-Schreier and Kummer extensions.

We say that a valued field (K, v) has equal characteristic if charK = charKv,
and mixed characteristic if charK = 0 and charKv > 0. Every Galois extension
of degree p of a field K of characteristic p > 0 is an Artin-Schreier extension,
that is, generated by an Artin-Schreier generator ϑ which is the root of an
Artin-Schreier polynomial Xp−X − b with b ∈ K. For every c ∈ K, also ϑ− c
is an Artin-Schreier generator as its minimal polynomial is Xp − X − b + cp − c.
Every Galois extension of prime degree q of a field K of characteristic different
from q which contains all q-th roots of unity is a Kummer extension, that is,
generated by a Kummer generator η which satisfies ηq ∈ K. For these facts, see
[15, Chapter VI, §6].

A 1-unit in a valued field (K, v) is an element of the form u = 1 + b with
b ∈ MK ; in other words, u is a unit in OK with residue 1. We note that if u is a
1-unit, then also u−1 is a 1-unit, and if v(u − c) > vu = 0 for some c ∈ K, then
also c is a 1-unit. Conversely, if u and c are 1-units, then v(u− c) > 0.

Remark 2.1. Take a Kummer extension (L|K, v) of degree p with any Kummer
generator η. Assume that vη ∈ vK, so that there is c1 ∈ K such that vc1 = −vη,
whence vc1η = 0. Assume further that c1ηv ∈ Kv, so that there is c2 ∈ K such that
c2v = (c1ηv)

−1. Then vc2c1η = 0 and c2c1ηv = 1. Furthermore, K(c2c1η) = K(η)
and (c2c1η)

p = cp2c
p
1η

p ∈ K. Hence c2c1η is a Kummer generator of (L|K, v) and
a 1-unit. Therefore v(c2c1η − 1) > 0, whence v(η − (c2c1)

−1) > v(c2c1)
−1 = vη.

Consequently, for c := (c2c1)
−1 ∈ K we have v(η − c) > vη.

We will need the following facts. If (L|K, v) is a unibranched defectless extension
of prime degree p, then either e (L|K, v) = 1 and f (L|K, v) = p, or f (L|K, v) = 1
and e (L|K, v) = p. For q ∈ N let ζq denote a primitive q-th root of unity. We note
that if L|K is a Kummer extension of degree q, then K contains all q-th roots of
unity. For a proof of the next well known results, see [2, Lemma 2.5].

Lemma 2.2. Take q ∈ N and a valued field (K, v) containing ζq . Then

(3)

q−1∏
i=1

(1− ζ iq) = q .

If in addition q is prime, then

(4) v(ζq − 1) =
vq

q − 1
.
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Lemma 2.3. Take a unibranched Kummer extension (L|K, v) of prime degree q
with Kummer generator η. Then for all c ∈ K,

(5) v(η − c) ≤ vη(ζq − 1) = vη +
vq

q − 1
.

Assume in addition that f (L|K, v) = q = charKv and c, c̃ ∈ K are such that
vc̃(η − c) = 0 and c̃(η − c)v generates the residue field extension Lv|Kv. Then
Lv|Kv is inseparable if and only if v(η− c) < vη(ζq − 1), and it is separable if and
only if v(η − c) = vη(ζq − 1).

Proof. Take c ∈ K and σ ∈ GalL|K such that ση = ζqη. Then

(6) η − c− σ(η − c) = η − ση = η(1− ζq) .

Hence if v(η − c) > vη(1− ζq), then

vσ(η−c) = v(η−c−η(1−ζq)) = min{v(η−c), vη(1−ζq)} = vη(1−ζq) < v(η−c) ,

which shows that vσ ̸= v, i.e., the extension is not unibranched. This contradiction
proves the first assertion.

Now assume the situation as in the second part of the lemma. Since L|K is a
Galois extension, Lv|Kv is a normal extension, with its automorphisms induced
by those of L|K. Take σ to be a generator of GalL|K. Via the residue map, its
action on O×L induces a generator σ̄ of the automorphism group of Lv|Kv. From
(6) we infer that

c̃(η − c)− σc̃(η − c) = c̃η(1− ζq) .

It follows that σ̄ is the identity, i.e, Lv|Kv is inseparable, if and only if vc̃η(1−ζq) >
0. This is equivalent to v(η − c) = −vc̃ < vη(1− ζq). Since v(η − c) > vη(1− ζq)
is impossible according to (5), we can conclude that the residue field extension is
separable if and only if v(η − c) = vη(1− ζq). □

Proposition 2.4. Take a Kummer extension (L|K, v) of prime degree q ̸= charKv.

1) If f (L|K, v) = q, then there is a Kummer generator η ∈ O×L such that ηv is a
Kummer generator of Lv|Kv.

2) If e (L|K, v) = q, then there is a Kummer generator η ∈ L such that vη generates
the value group extension, that is, vL = vK + Zvη.

Proof. Since q ̸= charKv, we have vq = 0 and thus v(1− ζq) = 0.
1): Take a Kummer generator η. Since f (L|K, v) = q, we have that vL = vK.
Therefore, as shown in Remark 2.1, we can assume that vη = 0. The reduction of
the minimal polynomial of η over K to the residue field is Xq − ηqv with ηqv ̸=
0. Suppose that this polynomial has a root in Kv. Since GalLv|Kv is cyclic
(generated by the reduction of a generator of GalL|K), it follows that Xq − ηqv
splits. Hence its root ηv lies in Kv and there is c ∈ K such that cv = ηv. It follows
that v(η − c) > 0 = vη(1− ζq), so by Lemma 2.3, (L|K, v) is not unibranched. As
this contradicts our assumption,Xq−ηqv must be irreducible (cf. [27]), which means
that ηv generates the extension Lv|Kv. Since ηq ∈ K, we have that (ηv)q ∈ Kv,
i.e., ηv is a Kummer generator of Lv|Kv.

2) Take a Kummer generator η. We will show that vη /∈ vK; as q is prime, it then
follows that vL = vK + Zvη. Suppose that vη ∈ vK. Since e (L|K, v) = q = [L :
K], we have that Lv = Kv. Thus as shown in Remark 2.1, there is some c ∈ K
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such that v(η − c) > vη = vη(1 − ζq). As in the proof of part 1), this leads to a
contradiction. Hence vη /∈ vK, as asserted. □

For the next lemma, see [14, Lemma 2.1] and the proof of [10, Theorem 2.19].

Lemma 2.5. If (L|K, v) is a finite unibranched defectless extension, then for every
element x ∈ L the set

v(x−K) := {v(x− c) | c ∈ K}
admits a maximal element. If c ∈ K is such that v(x−c) is maximal, then v(x−c) /∈
vK or otherwise, for every c̃ ∈ K such that vc̃(x− c) = 0 we have c̃(x− c)v /∈ Kv.

Using this lemma, we prove:

Proposition 2.6. 1) Take a valued field (K, v) of equal positive characteristic p
and a unibranched defectless Artin-Schreier extension (L|K, v).

If f (L|K, v) = p, then the extension has an Artin-Schreier generator ϑ of value
vϑ ≤ 0 such that Lv = Kv(c̃ϑv) for every c̃ ∈ K with vc̃ϑ = 0; the extension
Lv|Kv is separable if and only if vϑ = 0.

If e (L|K, v) = p, then the extension has an Artin-Schreier generator ϑ such that
vL = vK + Zvϑ. Every such ϑ satisfies vϑ < 0.

2) Take a valued field (K, v) of mixed characteristic and a unibranched defectless
Kummer extension (L|K, v) of degree p = charKv. Then the extension has a
Kummer generator η such that:

a) if f (L|K, v) = p, then either ηv generates the residue field extension, in which
case it is inseparable, or η is a 1-unit and for some c̃ ∈ K, c̃(η− 1)v generates the
residue field extension;

b) if e (L|K, v) = p, then either vη generates the value group extension, or η is a
1-unit and v(η − 1) generates the value group extension.

Proof. 1): Take any Artin-Schreier generator y of (L|K, v). Then by Lemma 2.5
there is c ∈ K such that either v(y − c) /∈ vK, or for every c̃ ∈ K such that
vc̃(x − c) = 0 we have c̃(y − c)v /∈ Kv. Since p is prime, in the first case it
follows that e (L|K, v) = p and that v(y − c) generates the value group extension.
In the second case it follows that f (L|K, v) = p and that c̃(y − c)v generates the
residue field extension. In both cases, ϑ = y− c is an Artin-Schreier generator. Let
ϑp − ϑ = b ∈ K.

Assume that f (L|K, v) = p. If vϑ < 0, then v(ϑp − b) = vϑ > pvϑ = vϑp,
whence v((c̃ϑ)p − c̃pb) = vc̃pϑ > v(c̃ϑ)p for c̃ ∈ K with vc̃ϑ = 0 and therefore,
(c̃ϑ)pv = c̃pbv ∈ Kv. In this case, the residue field extension is inseparable. Now
assume that vϑ ≥ 0 and hence also vb ≥ 0. The reduction of Xp−X − b to Kv[X]
is a separable polynomial, so Lv|Kv is separable. The polynomial Xp − X − bv
cannot have a zero in Kv, since otherwise the p distinct roots of this polynomial
give rise to p distinct extensions of v from K to L, contradicting our assumption
that (L|K, v) is unibranched. Consequently, bv ̸= 0, whence vb = 0 and vϑ = 0.

Assume that e (L|K, v) = p. If vϑ ≥ 0, then vb ≥ 0 and ϑv is a root of
Xp −X − bv. If this polynomial does not have a zero in Kv, then ϑv generates a
nontrivial residue field extension, contradicting our assumption that e (L|K, v) = p.
If the polynomial has a zero in Kv, then similarly as before one deduces that
(L|K, v) is not unibranched, contradiction. Hence vϑ < 0.
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2): Take any Kummer generator y of (L|K, v). If there is a Kummer generator
η such that vη /∈ vK, then it follows as before that e (L|K, v) = p and that vη
generates the value group extension. Now assume that there is no such η.
If there is a Kummer generator y and some c̃ ∈ K such that vc̃y = 0 and

c̃yv /∈ Kv, then it follows as before that f (L|K, v) = p and that c̃yv generates
the residue field extension. We set η = c̃y and observe that also η is a Kummer
generator. Since (ηv)p ∈ Kv, Lv|Kv is purely inseparable in this case.

Now assume that the above cases do not appear, and choose an arbitrary Kum-
mer generator y of (L|K, v). Consequently, we have that vy ∈ vK and c̃yv ∈ Kv
for all c̃ ∈ K with vc̃y = 0. Then as described in Remark 2.1, there are c1, c2 ∈ K
such that c2c1y is a Kummer generator of (L|K, v) which is a 1-unit. We replace y
by c2c1y.
By Lemma 2.5 there is c ∈ K such that v(y−c) is maximal in v(y−K) and either

v(y− c) /∈ vK or there is some c̃ ∈ K such that vc̃(y− c) = 0 and c̃(y− c)v /∈ Kv.
Since y is a 1-unit, we know that v(y−1) > 0, hence also v(y−c) > 0 = vy, showing
that also c is a 1-unit. Then η := c−1y is again a Kummer generator of (L|K, v)
which is a 1-unit. Since vc = 0, we know that v(η − 1) = vc(η − 1) = v(y − c).
Hence if v(y − c) /∈ vK, then v(η − 1) generates the value group extension.
Now assume that there is c̃ ∈ K such that vc̃(y − c) = 0 and c̃(y − c)v /∈ Kv.

Since c is a 1-unit, it follows that vc̃(η − 1) = vc̃c(η − 1) = vc̃(y − c) = 0 and
c̃(η − 1)v = c̃c(η − 1)v = c̃(y − c)v. We find that c̃(η − 1)v generates the residue
field extension. □

2.4. Ramification ideals.

Take a unibranched Galois extension E = (L|K, v) and let G = GalL|K denote its
Galois group. An OL-ideal

(7)

(
σb− b

b

∣∣ σ ∈ H , b ∈ L×
)

,

where H is a nontrivial subgroup of G, is called a ramification ideal of E . Hence
if E is of prime degree, then it has a unique ramification ideal, which we denote
by IE . For further background on ramification ideals, see [2, 13, 11]. In [11], the
following is shown:

Proposition 2.7. Take a unibranched defectless Galois extension E = (L|K, v) of
prime degree q.

1) Let (L|K, v) be an Artin-Schreier extension and ϑ an Artin-Schreier generator
as in part 1) of Proposition 2.6. Then

(8) IE =

(
1

ϑ

)
.

We have IE = OL if and only if vϑ = 0, and this holds if and only if Lv|Kv is
separable of degree q.

2) Let (L|K, v) be a Kummer extension. Then there are two cases:

a) Let η be a Kummer generator as in part 2)a) of Proposition 2.6. Then

(9) IE = (ζq − 1) .
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b) Let η be a Kummer generator as in part 2) b) of Proposition 2.6. Then

(10) IE =

(
ζq − 1

η − 1

)
.

We have IE = OL if and only if v(η − 1) = v(ζq − 1), and this holds if and only if
Lv|Kv is separable of degree q.

Also the ramification ideals of Artin-Schreier defect extensions and Kummer
defect extensions of prime degree are computed in [11].

3. Generation of extensions of valuation rings

In this section we will assume that E = (L|K, v) is a finite unibranched defectless
extension and develop the groundwork needed for the computation of the Kähler
differential of E in Sections 4.4 to 4.7.

3.1. Generating the OK-algebra OL.

In order to use Proposition 4.2 below to compute ΩOL|OK
, we need to present OL as

a union over a chain of simple ring extensions of OK . We consider finite extensions
E = (L|K, v) of degree q that satisfy

[L : K] = [Lv : Kv] or [L : K] = (vL : vK) .

Such extensions are unibranched and defectless. We distinguish the following two
cases:

Case (DL1): [L : K] = [Lv : Kv]. In this case, we can choose elements
a1, . . . , aq ∈ O×L such that a1v, . . . , aqv form a basis of Lv|Kv. Then a1, . . . , aq
form a valuation basis of (L|K, v), which by definition means that every element
of z ∈ L can be written as

(11) z = c1a1 + . . .+ cqaq with vz = min
i

vciai ,

and we have that vciai = vci . Consequently, z ∈ OL if and only if c1, . . . , cq ∈ OK .
This shows that OL is a free OK-module with basis a1, . . . , aq .
In the case where Lv|Kv is simple, that is, there is ξ ∈ Lv such that Lv = Kv(ξ),

we can choose x ∈ L such that xv = ξ; then 1, x, . . . , xq−1 form a valuation basis
of (L|K, v). In this special case (which by the Primitive Element Theorem always
appears when Lv|Kv is separable), we have

(12) OL = OK [x] .

Case (DL2): [L : K] = (vL : vK). We assume in addition that q is a prime.
In this case we define HE to be the largest convex subgroup of vL which is also a
convex subgroup of vK; it exists since unions over arbitrary collections of convex
subgroups are again convex subgroups. The subgroup HE defined here has impor-
tant similarities with the convex subgroup HE defined in the defect case in [2]. We
will discuss them in detail in [12]. In case (DL1) we set HE := {0}.
Now we diivide (DL2) into three mutually exclusive cases:

(DL2a): there is no smallest convex subgroup of vL that properly contains HE ;

(DL2b): there is a smallest convex subgroup H̃E of vL that properly contains HE ,
and the archimedean quotient H̃E/HE is dense;
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(DL2c): there is a smallest convex subgroup H̃E of vL that properly contains HE ,
and the archimedean quotient H̃E/HE is discrete.

We will freely use the facts outlined in Section 2.2.

Pick any x ∈ L such that vx /∈ vK. Then vL = vK + Zvx with qvx ∈ vK, and
we have that 1, x, . . . , xq−1 form a valuation basis of (L|K, v). This means that
every element of L can be written as a K-linear combination of these elements and
for every choice of c0, . . . , cq−1 ∈ K,

v

q−1∑
i=0

cix
i = min

i
vcix

i .

Again, the sum is an element of OL if and only if all summands cix
i are, but the

latter does not necessarily imply that ci ∈ OK . We set

Ax := {cixi | ci ∈ K× and 1 ≤ i < q such that vcix
i > 0}

and
vAx := {va | a ∈ Ax} .

(Note that vcix
i = 0 is impossible for 1 ≤ i < q.) We obtain that

(13) OL = OK [Ax] .

However, we wish to derive a much more useful representation of OL . Our goal is
to find an element x as above such that

(14) OL =
⋃

c∈K with vcx>0

OK [cx] .

If c, c′ ∈ K with vc ≥ vc′ , then cx = c
c′
c′x ∈ OK [c

′x], hence OK [cx] ⊆ OK [c
′x]. So

the right hand side is an increasing union of rings and thus is itself a ring. For (14)
to hold, it suffices that

(15) Ax ⊆
⋃

c∈K with vcx>0

OK [cx] .

This in turn will hold if

(16)

{
for every element cix

i ∈ Ax there is c ∈ K with cx ∈ Ax

such that cix
i ∈ (cx)iOK .

Lemma 3.1. The convex subgroup HE of vL is the largest that has empty inter-
section with vAx .

Proof. From (13) it follows that the positve values in vL\vK all lie in the smallest
final segment of vL generated by vAx . On the other hand, from the definition of
HE it follows that it is the largest convex subgroup of vL that does not contain
elements of vL \ vK. This proves our assertion. □

As a preparation for what follows, let us prove two useful facts.

(F1) For each cmx
m ∈ Ax , there is c ∈ K such that cx ∈ Ax and CvL(vcmxm) =

CvL(vcx).
Proof. As q is prime, there is k ∈ N such that mk = 1+ rq for some r ∈ Z. Taking
c := ckmb

r ∈ K where b ∈ K with vb = qvx , we obtain vcx = v(cmx
m)k > 0 and

CvL(vcx) = CvL(kv(cmxm)) = CvL(vcmxm). □
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(F2) If cix
i , c̃x ∈ A and vcix

i /∈ CvL(vc̃x), then cix
i ∈ (c̃x)iOK ⊆ OK [c̃x].

Proof. Since vc̃ixi = ivc̃x ∈ CvL(vc̃x) and vcix
i /∈ CvL(vc̃x), we have vc̃ixi < vcix

i
0 .

Thus vc̃i < vci and therefore, cix
i ∈ (c̃x)iOK . □

Inspired by case (DL1) we ask whether (15) will hold with x = x0 for any x0 ∈ L
such that vx0 /∈ vK. We choose such an x0 and set A0 := Ax0 . It can be shown
that the element x we are looking for cannot always be chosen to be equal to x0 .
However, we will show that in cases (DL2a) and (DL2b) it can.

(DL2a): Take any cix
i
0 ∈ A0 . By assumption, C+

vL(vcix
i
0) properly contains HE .

By Lemma 3.1, this means that C+
vL(vcix

i
0) ∩ vA0 ̸= ∅, so take some cmx

m
0 ∈ A0

such that vcmx
m
0 ∈ C+

vL(vcix
i
0) ∩ vA0 . By (F1), there is c̃ ∈ K such that c̃x0 ∈ A0

and CvL(vc̃x0) = CvL(vcmxm
0 ) ⊆ C+

vL(vcix
i
0). Hence vcix

i
0 /∈ CvL(vc̃x0) and by (F2),

cix
i
0 ∈ (c̃x0)

iOK ⊆ OK [c̃x0]. Hence in this case, (16) and thus also (15) and (14)
hold for x = x0 .

(DL2b): By Lemma 3.1, H̃E is the smallest convex subgroup of vL that contains
some element of vA0 , say vcmx

m
0 . The archimedean component AvL(vcmx

m
0 ) is

equal to H̃E/HE , which is dense. The archimedean component AvK(vqcmx
m
0 ) is

equal to (H̃E ∩ vK)/HE . Since (vL : vK) is finite, so is this quotient. This
shows that also AvK(vqcmx

m
0 ) is dense, so it is dense in AvL(vcmx

m
0 ). We have

C+
vL(cmx

m
0 ) ∩ vA0 = HE ∩ vA0 = ∅. From (F1) we know that there is c̃ ∈ K such

that c̃x0 ∈ A and CvL(vc̃x0) = CvL(vcmxm
0 ).

Take any element cix
i
0 ∈ A0 . If vcix

i
0 /∈ CvL(vc̃x0), then cix

i
0 ∈ OK [c̃x0] by (F2).

So let us assume that vcix
i
0 ∈ CvL(vc̃x0). Denote by α the image of vc̃x0 and by β

the image of vcix
i
0 in AvL(vc̃x0). Note that both of them are positive, so

−iα < β − iα .

By the density of AvK(qvc̃x0) = AvK(qvcmx
m
0 ) in AvL(vcmx

m
0 ) = AvL(vc̃x0) there

is c0 ∈ K such that the image γ of vc0 in AvL(vc̃x0) satisfies

−iα < iγ < β − iα ,

whence 0 < iγ + iα < β. This leads to 0 < vci0c̃
ixi

0 < vcix
i
0. Setting c = c0c̃, we

obtain that 0 < vcixi
0 < vcix

i
0, whence cix

i
0 ∈ (cx0)

iOK ⊆ OK [cx0] with vcx0 > 0.
We have proved that also in this case, (16), (15) and (14) hold for x = x0 .

In case (DL2a), fact (F2) shows that (14) holds for x = x0 because for every
cix

i
0 ∈ A0 there is some c̃x0 ∈ A0 with CvL(vc̃x0) ⊆ C+

vL(vcix
i
0). In case (DL2b) the

latter is not true, but using density we were able to show cix
i
0 ∈ OK [cx0] for some

c ∈ K with vcx0 > 0 even when vcix
i
0 ∈ CvL(vc̃x0). In cases (DL2a) and (DL2b)

we set x := x0 . The next case treats the instance where we do not have density at
hand.

(DL2c): In this case, H̃E/HE is discrete. Choose the element cmx
m
0 as in case

(DL2b). Now we have that AvL(vcmx
m
0 ) and AvK(qvcmx

m
0 ) are discrete. From

(F1) we know that there is c̃ ∈ K such that c̃x0 ∈ A0 and CvL(vc̃x0) = CvL(vcmxm
0 ).

The image α of vc̃x0 in AvL(vc̃x0) may not be its smallest positive element, which
creates the problem that not all elements cix

i
0 ∈ A0 with vcix

i
0 ∈ CvL(vc̃x0) may lie

in OL[c̃x0]. So take any cjx
j
0 ∈ A0 (j ∈ {1, . . . , q−1}) with vcjx

j
0 ∈ CvL(vc̃x0) whose

image γ in AvL(vc̃x0) is its smallest positive element. Since j ∈ {1, . . . , q− 1}, also
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1, x, . . . , xq−1 form a valuation basis of (L|K, v). Hence we may set x := xj
0 and

from now on work with Ax in place of A0 .
Now we have that vcjx is the smallest positive element in AvL(vcjx) = AvL(vc̃x0)

and qvcjx is the smallest positive element in AvK(qvcjx). Further, the only ele-
ments strictly between 0 and qγ are γ, 2γ, . . . , (q − 1)γ.

Take any element cix
i ∈ A. If vcix

i /∈ CvL(vcjx), then cix
i ∈ (cjx)

iOK ⊆ OK [cjx]
by (F2). So let us assume that vcix

i ∈ CvL(vcjx), and denote the image of vcix
i in

AvL(vcjx) by β. Write cix
i = dcijx

i with d = cic
−i
j , and denote by δ the image of

d in AvL(vcjx), so that 0 ≤ β = δ + iγ. Suppose that δ < 0; then δ + iγ = kγ for
some k ∈ {0, . . . , i− 1}, but as δ ∈ AvK(qvcjx), this is impossible. Hence δ ≥ 0. If
δ > 0, then vd > 0, whence cix

i ∈ (cjx)
iOK ⊆ OK [cjx].

Now assume that δ = 0. Then vd ∈ C+
vL(vcjx). If d ∈ OK , then we are

done again. So assume that vd < 0 and write cix
i = dcijx

i = d1−i(dcjx)
i. Then

d1−i ∈ OK , hence for c := dcj , cix
i ∈ (cx)iOK ⊆ OK [cx]. As vd ∈ C+

vL(vcjx) and
vcjx > 0, we have vcx = vd+ vcjx > 0.

We have proved that in this case, (16), (15) and (14) hold for x = xj
0 .

Remark 3.2. Assume that vK is i-divisible for all i ∈ {2, . . . , q − 1}, with q not
necessarily prime. Take cix

i
0 ∈ A0 . Then there is c ∈ K such that vci = ivc.

We obtain that vcixi
0 = vcix

i
0 > 0, hence also vcx0 > 0. Consequently, cix

i
0 ∈

(cx0)
iO×K ⊆ OK [cx0]. It follows that (16), (14) and (16) hold for x = x0 .

This case appears when q = charKv > 0 and (K, v) is equal to its own absolute
ramification field, since then vK is divisible by all primes other than q.

Assume that E is of type (DL2c) and, using the notation of that case, that
C+
vL(vc̃x0) = {0} or equivalently, HE = {0}. Then in the case of δ = 0 we have

vd = 0, whence vcix
i = vcijx

i and cix
i ∈ (cjx)

iO×K ⊆ OK [cjx]. This shows that
OL = OK [cjx]. The assumption HE = {0} holds in case (DL2c) if and only if
[L : K] = (vL : vK) equals the initial index of the extension (L|K, v), which is
the number of nonnegative values of vL that are smaller than any positive element
in vK. Therefore, our result is a proof of Knaf’s conjecture about essentially
finite generation of OL over OK for the case of extensions of prime degree. The
formulation and the (considerably more involved) full proof of Knaf’s conjecture is
given in [4]. See also [3, 21] for proofs of important special cases.

We summarize what we have shown in case (DL2):

Theorem 3.3. Take an extension E = (L|K, v) of prime degree q = e (L|K, v),
with x0 ∈ L such that vx0 /∈ vK.

1) If E is of type (DL2a) or (DL2b), then (14) - (16) hold for x = x0 .

2) If E is of type (DL2c), then (14) - (16) hold for x = xj
0 with suitable j ∈

{1, . . . , q − 1}. If in addition HE = {0}, then OL = OK [cx] for suitable c ∈ K.

The assumption of part 1) holds in particular when every archimedean component
of vK is dense, and this in turn holds for every deeply ramified field (K, v).

In all cases, 1, x, . . . , xq−1 form a valuation basis of (L|K, v), and for all c, c′ ∈ K,

OK [cx] ⊆ OK [c
′x] ⇔ vc ≤ vc′ .
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Proof. Only the implication “⇒” of the last assertion needs a proof. Take c, c′ ∈ K.
If OK [cx] ⊆ OK [c

′x], then cx ∈ OK [c
′x]. Since the elements 1, c′x, . . . , (c′x)n−1

form a valuation basis of (L|K, v), it follows that cx = c
c′
c′x with c

c′
∈ OK , whence

vc ≤ vc′ . □

3.2. Valuation rings and ideals associated with the generation of OL|OK.

The convex subgroup HE of vL and the associated valuation ring and maximal
ideal turn out to be important invariants of the extension E . We take a closer look
at them in this section.

The convex subgroups H of vL are in one-to-one correspondence with the coars-
enings vH of v on L in such a way that vHL = vL/H. The valuation ring of
vH on L is OvH = {a ∈ L | ∃γ ∈ H : va ≥ γ}, and its maximal ideal is
MvH = {a ∈ L | va > H}. We write OE for OvHE

, ME for MvHE
, and vE

for vHE .
We note that ME is a nonprincipal OE -ideal if E is of type (DL2a) or (DL2b),

and a principal OE -ideal if E is of type (DL2c). Indeed, the value group vEL is
(up to equivalence) the quotient vL/HE . In case (DL2a), this does not have a
smallest convex subgroup and thus no smallest positive element. In case (DL2b)
the quotient has a smallest convex subgroup. As it is dense, it does not have
a smallest positive element, and therefore the same holds for vEL. Also in case
(DL2c) the quotient has a smallest convex subgroup. As now it is discrete, it has
a smallest positive element, and the same holds for vEL.

Proposition 3.4. Take an extension E = (L|K, v) of prime degree q = e (L|K, v),
with x determined by Theorem 3.3. Then for every a ∈ L such that va > HE there
is c ∈ K with 0 < vcx ≤ va. Further, ME is equal to the OL-ideal

(17) Ix := (cx | c ∈ K with vcx > 0) .

Proof. Take a ∈ L such that va > HE and write a =
∑q−1

i=0 cix
i with ci ∈ K. Since

1, x, . . . , xq−1 form a valuation basis, we have vcix
i ≥ va > 0 for 0 ≤ i ≤ q − 1

with va = mini vcix
i . In particular, cix

i ∈ Ax for 1 ≤ i ≤ q − 1. Hence it follows
from (16) that for each such i there is di ∈ K with 0 < vdix ≤ v(dix)

i ≤ vcix
i. It

remains to consider the case of i = 0. We have vc0 ≥ va > HE .
If HE ⊊ C+

vL(vc0), then there is some cℓx
ℓ ∈ Ax with vcℓx

ℓ ∈ C+
vL(vc0). By (16)

there is d0 ∈ K with 0 < vd0x ≤ v(d0x)
ℓ ≤ vcℓx

ℓ < vc0.
Now assume that HE = C+

vL(vc0), so E is of type (DL2b) or (DL2c). We will
use the notation as in the computations for these two cases in Section 3.1. With
the element cmx

m
0 appearing in these cases, we have CvL(vc0) = CvL(vcmxm

0 ) and
AvL(vc0) = AvL(vcmx

m
0 ).

In case (DL2b), AvK(qvcmx
m
0 ) is dense in AvL(vcmx

m
0 ) = AvL(vc0). Denote by

α the image of vcmx
m
0 and by γ the image of vc0 in AvL(vc0). By density, there is

b ∈ K such that α − γ < β < α with β the image of vb in AvL(vc0). This leads
to vcmx

m
0 c
−1
0 < vb < vcmx

m
0 , that is, vc0 > vcmx

m
0 − vb > 0. Since x = x0 in the

present case, we obtain that b−1cmx
m
0 = b−1cmx

m ∈ Ax . Hence by (16) there is
d0 ∈ K with 0 < vd0x ≤ v(d0x)

m ≤ vb−1cmx
m < vc0.
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In case (DL2c), AvK(qvcmx
m
0 ) is not dense in AvL(vcmx

m
0 ) = AvL(vc0). With

cjx
j
0 ∈ A0 chosen as in case (DL2c), the image γ of vcjx

j
0 in AvL(vcmx

m
0 ) is its

smallest positive element. Then the image qγ of qvcjx
j
0 is the smallest positive

element of AvK(qvcmx
m
0 ) = AvK(vc0). Since x = xj

0 in the present case, we obtain
that vc0 ≥ qvcjx

j
0 > vcjx

j
0 = vcjx, and we set d0 = cj .

We have now proved that in all cases there is d0 ∈ K such that 0 < vd0x < vc0 .
We choose some i0 ∈ {0, . . . , q − 1} such that vdi0 = min{vdi | 0 ≤ i ≤ q − 1} and
set c := di0 . Then

(18) vcx ≤ vdix ≤ vcix
i for 0 ≤ i ≤ q − 1 .

Hence 0 < vcx ≤ va as required.

Now we prove the second assertion. All elements cx as in (17) lie in Ax and
therefore have value > HE . It follows that all elements in Ix have value > HE and
thus lie in ME . This proves the inclusion Ix ⊆ ME .

For the converse, take a ∈ ME , so va > HE . By the first assertion of our
proposition, there is c ∈ K with 0 < vcx ≤ va. This implies a ∈ cxOL ⊆ Ix . □

We give an application of this proposition.

Corollary 3.5. Take an extension E = (L|K, v) of prime degree q = e (L|K, v),
with x ∈ L determined by Theorem 3.3. If E is of type (DL2a) or (DL2b), then for
every a ∈ ME there is c ∈ K such that aOL ⊆ OK [cx].

Proof. Since a ∈ ME , we have va > HE . In case (DL2a), HE ⊊ C+
vL(va). Then

there is an element cℓx
ℓ ∈ Ax ∩ C+

vL(va). By Proposition 3.4, there is c ∈ K such
that 0 < vcx ≤ vcℓx

ℓ < va. It follows that vcx ∈ C+
vL(va), hence qvcx ∈ C+

vL(va)
and therefore, qvcx ≤ va.

In case (DL2b), HE = C+
vL(va) and AvL(va) is dense. Hence there is b ∈ L such

that HE = C+
vL(va) < vb (so b ∈ ME) and qvb ≤ va. By Proposition 3.4 there is

c ∈ K such that 0 < vcx ≤ vb, whence again, qvcx ≤ va.
Take any a′ ∈ aOL, so va′ ≥ va. Write a′ =

∑q−1
i=0 cix

i. Then vcix
i ≥ va′ ≥

va ≥ qvcx ≥ vcixi for 0 < i < q−1, hence cix
i ∈ cixiOK ⊆ OK [cx]. Since also c0 ∈

OK ⊆ OK [cx], we obtain that a′ ∈ OK [cx], which shows that aOL ⊆ OK [cx]. □

Note that the assertions of this corollary are trivially satisfied if q = f (L|K, v).
Moreover, the last assertion also holds if E is of type (DL2c) with HE = {0}.
The ideal ME will be useful in the computation of the Kähler differentials in

Theorems 4.6 and 4.8. In preparation, we need a small technical lemma.

Lemma 3.6. Take a valuation ring O with maximal ideal M. Whenever 2 ≤ n ∈ N
and a ∈ OL, then

1) aM = M if and only if a /∈ M,

2) Mn = M if and only if M is a nonprincipal O-ideal,

3) (aM)n = aM if and only if a /∈ M and M is a nonprincipal O-ideal.

Proof. Denote by w the valuation associated with O.

1): We have a /∈ aM, hence if a ∈ M, then aM ≠ M. If a /∈ M, then a is a unit
in O, so aM = M.
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2): The value group of w is not discrete, and hence dense, if and only if M is a
nonprincipal O-ideal. If it is discrete and γ is its smallest positive element, then
M = {b ∈ K | wb ≥ γ} and Mn = {c ∈ K | wc ≥ nγ} ⊊ M since nγ > γ. If it
is dense, then for every b ∈ M there is c ∈ K such that 0 < nwc < wb, whence
b ∈ Mn; therefore, Mn ⊆ M ⊆ Mn and consequently, Mn = M.

3): If a /∈ M and M is a nonprincipal O-ideal, then by parts 1) and 2), (aM)n =
Mn = M = aM. If a ∈ M, then wa > 0, whence aM = {c ∈ K | wc > wa} and
(aM)n ⊆ anM = {c ∈ K | wc > nwa} ⊊ aM since nwa > wa. If M is a principal
O-ideal, say M = bO with b ∈ M, then aM = abO = {c ∈ K | wc ≥ wab}
and (aM)n = (abO)n = {c ∈ K | wc ≥ nwab} ⊊ aM since nwab > wab and
ab ∈ aM. □

3.3. Differents of generators for Artin-Schreier and Kummer extensions.
The proofs in Sections 4.3 to 4.7 make use of the differents of the chosen generators
for OL as an OK-algebra. In this section we compute those differents.

If b ∈ L and hb is its minimal polynomial over K, then δ(b) := h′b(b) is called the
different of b. The OL-ideal

(19) D0(OL|OK) := (h′b(b) | b ∈ OL \ OK) .

generated by the differents of all elements in OL \ OK will be called the naive
different ideal.

Proposition 3.7. Assume that (L|K, v) is a nontrivial finite unibranched Galois
extension and that

OL =
⋃
α∈S

OK [bα]

for some (possibly finite) index set S and elements bα ∈ OL\OK . Then D0(OL|OK)
is equal to the OL-ideal (δ(bα) | α ∈ S).

Proof. In the proof of [2, Proposition 4.1] it is shown that b ∈ OK [bα] implies
vδ(b) ≥ vδ(bα). Hence,

(δ(b) | b ∈ OL\OK) =
⋃
α∈S

(δ(b) | b ∈ OK [bα]\OK) =
⋃
α∈S

(δ(bα)) = (δ(bα) | α ∈ S) .

□

In the case of Artin-Schreier and Kummer extensions (L|K, v) with Galois group
G we have sufficient information about the minimal polynomials f of the various
generators x we have worked with in the previous sections, and about their conju-
gates, to work out the values vf ′(x) of their differents f ′(x). In order to do this,
we can either compute f ′, or we can use the formula

(20) f ′(x) =
∏

σ∈G\{id}

(x− σx) .

We keep the notations from the previous sections.
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3.3.1. Artin-Schreier extensions.

Take an Artin-Schreier polynomial f with ϑ as its root. Then its minimal polyno-
mial is f(X) = Xp −X − ϑp + ϑ with f ′(X) = −1, whence

(21) f ′(ϑ) = −1 .

For c ∈ K×, denote by fc the minimal polynomial of cϑ. Then

(22) f ′c(cϑ) =
∏

σ∈G\{id}

(cϑ− σcϑ) = cp−1f ′(ϑ) = −cp−1 .

Lemma 3.8. Take an Artin-Schreier extension E = (L|K, v) of prime degree p =
f (L|K, v). If the extension Lv|Kv is purely inseparable, then E admits an Artin-
Schreier generator ϑ of value vϑ < 0 and c̃ ∈ K such that vc̃ϑ = 0, Lv = Kv(c̃ϑv),
OL = OK [c̃ϑ] and

(23) D0(OL|OK) = f ′c̃(c̃ϑ)OL = c̃p−1OL = Ip−1E .

Proof. The first assertions follow from part 1) of Proposition 2.6 and case (DL1).
Applying Proposition 3.7 with S = {1} and b1 = c̃ϑ, we obtain the first equality
of (23). Since vc̃ = −vϑ, we have D0(OL|OK) = f ′c̃(c̃ϑ)OL = c̃p−1OL = (ϑ−1)p−1 =
Ip−1E by (22) and part 1) of Proposition 2.7. This proves (23). □

Lemma 3.9. Take an Artin-Schreier extension E = (L|K, v) of prime degree p =
e (L|K, v). Then E admits an Artin-Schreier generator ϑ of value vϑ < 0 such that
vL = vK + Zvϑ, (14) holds for x = ϑj with suitable j ∈ {1, . . . , p − 1}, and we
have the equality of OL-ideals

(24) D0(OL|OK) = (ϑ−1Iϑj)p−1 = (IEME)
p−1 .

Proof. The existence of such ϑ and j follows from part 1) of Proposition 2.6 together
with Theorem 3.3. Since (14) holds for x = ϑj, we can apply Proposition 3.7 with
S = {c ∈ K× | vcϑj > 0} and bc = cϑj to obtain:

D0(OL|OK) = (h′j,c(cϑ
j) | c ∈ K× with vcϑj > 0) ,

where hj,c denotes the minimal polynomial of cϑj. Now we compute:

cϑj − σcϑj = c(ϑj − (σϑ)j) = c(ϑj − (ϑ+ k)j) = −c

j∑
i=1

(
j

i

)
ϑj−iki

for suitable k ∈ F×p . The summand of least value in the sum on the right hand side
is the one for i = 1. Using (20), we obtain:

(25) vh′j,c(cϑ
j) = (p− 1)(vcϑj−1) .

Hence,

D0(OL|OK) = (cϑj−1 | vcϑj > 0)p−1 = (ϑ−1Iϑj)p−1 = (IEME)
p−1 ,

where the last two equalities follow from part 1) of Proposition 2.7 and Proposi-
tion 3.4. This proves (24). □
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3.3.2. Kummer extensions.

In what follows, ζp will denote a primitive p-th root of unity. If L|K is a Kummer
extension, then ζp ∈ K. Take a Kummer polynomial f of degree q with η as its
root. Then f(X) = Xq − ηq and f ′(X) = qXq−1, whence

(26) f ′(η) = qηq−1 .

Lemma 3.10. Take a Kummer extension E = (L|K, v) of degree p = charKv.
Assume that f (L|K, v) = p. Then there exists a Kummer generator η ∈ L such
that one of the following cases holds:

i) vη = 0, Lv = Kv(ηv) with Lv|Kv inseparable, and OL = OK [η],

ii) η is a 1-unit, vc̃(η − 1) = 0, Lv = Kv(c̃(η − 1)v) and OL = OK [c̃(η − 1)] for
suitable c̃ ∈ K×.

In case i), for f the minimal polynomial of η,

(27) D0(OL|OK) = f ′(η)OL = pOL = Ip−1E .

In case ii), for hc̃ the minimal polynomial of c̃(η − 1),

(28) D0(OL|OK) = h′c̃(c̃(η − 1))OL = pc̃p−1OL = Ip−1E .

Proof. The existence of such η and c̃ follows from part 2)a) of Proposition 2.6.
The presentation of OL follows from case (DL1). Applying Proposition 3.7 with
S = {1} and setting b1 = η and b1 = c̃(η − 1), respectively, we obtain the first
equalities of (27) and (28).

In case i), the second equality of (27) follows from (26) since vη = 0. The third
equality holds since vp = (p− 1)v(ζp − 1) by (4), whence pOL = Ip−1E by part 2)a)
of Proposition 2.7.

For case ii) we compute with σ a generator of GalL|K, using (20):

h′c̃(c̃(η − 1)) =

p−1∏
i=1

c̃(η − σiη) = (c̃η)p−1
p−1∏
i=1

(1− ζ ip) ,

whence by (3),

(29) vh′c̃(c̃(η − 1)) = vp(c̃η)p−1 .

This yields the second equality of (28) since vη = 0. The third holds as vc̃ =
−v(η− 1) yields vpc̃p−1 = (p− 1)(v(ζp − 1)− v(η− 1)), whence pc̃p−1OL = Ip−1E by
part 2)b) of Proposition 2.7. □

Lemma 3.11. Take a Kummer extension E = (L|K, v) of prime degree q =
e (L|K, v). Then there are two possible cases.

i) There is a Kummer generator η ∈ L such that vL = vK + Zvη, (14) holds for
x = η, and we have the equality

(30) D0(OL|OK) = qIq−1η = qMq−1
E

of OL-ideals. If q = charKv, then

(31) D0(OL|OK) = (IEME)
q−1 .

If q ̸= charKv, then always this case i) holds, and the factor q can be dropped
in (30) since vq = 0.
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ii) There is a Kummer generator η ∈ L which is a 1-unit such that for

(32) ξ :=
η − 1

ζq − 1
,

we have that vξ < 0, vL = vK + Zvξ, (14) holds for x = ξj with suitable j ∈
{1, . . . , q − 1}, and we have the equality of OL-ideals

(33) D0(OL|OK) = (ξ−1Iξj)
q−1 = (IEME)

q−1 .

Proof. By part 2) of Proposition 2.4 and part 2)b) of Proposition 2.6, the extension
admits a Kummer generator η such that either vη generates the value group exten-
sion, or η is a 1-unit and v(η − 1) generates the value group extension; moreover,
the first case always holds if q ̸= charKv.

Let us consider the first case. Applying Theorem 3.3 with x0 = η, we find that
(14) holds for x = ηj with suitable j ∈ {1, . . . , q − 1}. Since ηj is again a Kummer
generator and also vηj generates the value group extension as j is prime to q, we
may replace η by ηj. As now (14) holds for x = η, we can apply Proposition 3.7
with S = {c ∈ K× | vcη > 0} and bc = cη to obtain:

D0(OL|OK) = (f ′c(cη) | c ∈ K× with vcη > 0) ,

where fc denotes the minimal polynomial of cη.
As also cη is a Kummer generator, we can apply equation (26) to obtain that

f ′c(cη) = q(cη)q−1. Hence,

D0(OL|OK) = q(cη | c ∈ K with vcη > 0)q−1 = qIq−1η = qMq−1
E

where the last equation follows from Proposition 3.4. This proves (30).
If q = charKv, then qMq−1

E = ((ζq − 1)ME)
q−1 = (IEME)

q−1 since vq = (q −
1)v(ζq − 1) by (4) and the last equality follows from part 2)a) of Proposition 2.7.
This proves (31).

Now we consider the second case. Since L|K is a Kummer extension, K contains
ζq . By Lemma 2.3, v(η−1) ≤ v(ζq−1) ∈ vK because vη = 0. Since v(η−1) /∈ vK,
inequality must hold. Hence with ξ defined by (32), we have vξ < 0. Further,
applying Theorem 3.3 with x0 = ξ, we find that (14) holds for x = ξj with suitable
j ∈ {1, . . . , q − 1}. We apply Proposition 3.7 with S = {c ∈ K× | vcξj > 0} and
bc = cξj to obtain:

D0(OL|OK) = (h′j,c(cξ
j) | c ∈ K× with vcξj > 0) ,

where hj,c denotes the minimal polynomial of cξj.

We note that v(1− ζq) = v(1− ζ) for each primitive q-th root of unity ζ. We set
a := η − 1. Then for every σ ∈ G, v(a− σa) = v(η − ση) = v(1− ζq) > va, hence

aj − σaj = aj − (σa)j = aj − (a+ σa− a)j = −
j−1∑
i=0

(
j

i

)
ai(σa− a)j−i .
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Since va < v(σa − a), the summand of least value in the sum on the right hand
side is the one for i = j − 1. Consequently,

v(ξj − σξj) = v(aj − σaj)− jv(1− ζq) = (j − 1)va+ v(a− σa)− jv(1− ζq)

= (j − 1)va+ v(1− ζq)− jv(1− ζq) = (j − 1)(va− v(1− ζq))

= vξj−1 .

Hence, equation (20) shows that

(34) vh′j,c(cξ
j) = (q − 1)vcξj−1 .

Hence,

D0(OL|OK) = (cξj−1 | vcξj > 0)q−1 = (ξ−1Iξj)
q−1 = (IEME)

q−1

where the last two equalities follow from by part 2)b) of Proposition 2.7 and Propo-
sition 3.4. This proves equation (33). □

4. Kähler differentials for Galois extensions of prime degree

4.1. Motivation.

We prove a proposition that will be a main tool for our handling of Kähler differ-
entials in the subsequent sections. It will provide a motivation for the calculation
of the Kähler differentials for Artin-Schreier extensions and Kummer extensions of
prime degree which will be dealt with in this section.

Given a Galois extension (L|K, v), we denote by (L|K, v)in its inertia field (cf.
[6, Section 19]).

Proposition 4.1. Let (L|K, v) be a finite Galois extension. Then the following
assertions hold.

1) There exists a tower of field extensions

(35) K ⊂ K in = K0 ⊂ K1 ⊂ · · · ⊂ Kℓ = L

where K in = (L|K, v)in and each extension Ki+1|Ki is a Galois extension of prime
degree. Note that if K is henselian, then the extension K inv|Kv is separable of
degree equal to [K in : K].

2) Further, (L|K, v) can be embedded in a finite Galois extension (M |K, v) having
the following properties:

(36)


there exists a tower of field extensions

K ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mm = M,
where M0 = (M |K, v)in

and each extension Mi+1|Mi is a Kummer extension of prime degree,
or an Artin-Schreier extension if the extension is of degree p = charK.

Proof. 1): Set K0 := K in := (L|K, v)in . Since the extension L|K in is solvable
(cf. Theorems 24 and 25 on pages 77 and 78 of [32]), there exists a tower (35) of
Galois extensions such that each extension Ki+1|Ki is Galois of prime degree. The
assertions about the extension K inv|Kv are part of the general properties of inertia
fields.
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2): This proof is essentially the same argument as in the Galois characterization
of sovability by radicals. If an extension Ki+1|Ki in the tower (35) is of degree p =
charK, then it is an Artin-Schreier extension. If it is of prime degree q ̸= charK,
it is a Kummer extension if Ki contains a primitive q-th root of unity. We will now
explain how to enlarge the extension (L|K, v) so that this will be the case for each
extension of prime degree q ̸= charK in a resulting new tower.

Assume that (K, v) is of characteristic 0 with charKv = p > 0 and that some
extension Ki+1|Ki is Galois of degree p, but K does not contain a primitive p-th
root of unity. In this case we will have to replace tower (35) by a larger one. Let
ζp denote a primitive p-th root of unity. Then K(ζp)|K is a Galois extension, and
so is L(ζp)|K since L|K is assumed to be Galois.

Set K ′0 := (L(ζp)|K, v)in ; then K0 = K in ⊂ K ′0 . As before, K ′0|K is Galois,
hence so are K ′0(ζp)|K and K ′0(ζp)|K ′0 . By part 1) of our proposition, there exists
a tower of Galois extensions K ′0 ⊂ K ′1 ⊂ · · · ⊂ K ′r′ = K ′0(ζp) such that each
extension K ′i+1|K ′i is Galois of prime degree. Since [K ′0(ζp) : K

′
0] < p, none of the

Galois extensions K ′i+1|K ′i is of degree p.

We replace the tower (35) by the tower

(37) K ′0 ⊂ K ′1 ⊂ · · · ⊂ K ′r′ = K ′0(ζp) ⊂ K1(ζp) ⊂ · · · ⊂ Kℓ(ζp) = L(ζp) .

Now we have that if in mixed characteristic any extension in the tower (35) is
Galois of degree p = charKv, then it is a Kummer extension.

We now return to the general case, with no restriction on the characteristic of
K, first making the above change if necessary.

In order to also make sure that all Galois extensions of prime degree q ̸= p in
the tower are Kummer extensions, we take Q to be the set consisting of all such
primes q. For every q ∈ Q, we choose a primitive q-th root of unity ζq and set
M := L(ζq | q ∈ Q). Every extension K(ζq)|K is Galois, so M |K is also a Galois
extension.

Let us show that for every q ∈ Q, ζq lies in the inertia field of (M |K, v). This is a
standard fact, but we give a proof for completeness. The reduction ofXq−1 modulo
v is Xq−1v with 1v being the 1 in Kv. Since q ̸= charKv, the polynomial Xq−1v
has q distinct roots. The minimal polynomial f of ζq over K divides Xq − 1, so its
reduction fv divides Xq − 1v and has therefore only simple roots. It follows that
if σ ∈ GalM |K with σζq ̸= ζq , then (σζq)v ̸= ζqv, whence v(σζq − ζq) = 0. Hence
every automorphism in the inertia group {σ ∈ GalM |K | ∀x ∈ OM : v(σx−x) = 0}
must fix ζq , which proves our claim. It follows that M0 := K0(ζq | q ∈ Q) is the
inertia field of (M |K, v). Finally, we setMi := Ki(ζq | q ∈ Q). By our construction,
now also all extensions of prime degree q ̸= p in the tower are Kummer extensions.
So we have obtained a tower as described in (36). □

4.2. Some calculations of Kähler differentials.

Let L|K be an algebraic field extension. Let A ⊆ K be a normal domain whose
quotient field is K. Assume that z ∈ L is integral over A and let f(X) be the min-
imal polynomial of z over K. Then f(X) ∈ A[X] (see [31, Theorem 4, page 260]).
Since f(X) is monic, (f(X)K[X]) ∩ A[X] = f(X)A[X], so A[z] ∼= A[X]/(f(X)).
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Thus,

(38) ΩA[z]|A ∼= [A[X]/(f(X), f ′(X))]dX ∼= [A[z]/(f ′(z))]dX

by [16, Example 26.J, page 189] and [16, Theorem 58, page 187]. There is a
universal derivation dA[z]|A : A[z] → ΩA[z]|A defined by

(39) g(z) 7→ [g′(z)]dX for g(X) ∈ A[X],

where [g′(z)] is the class of g′(z) in A[z]/(f ′(z)).
We will also require the following theorem to calculate Kähler differentials.

Proposition 4.2. ([2, Theorem 1.1]) Take an algebraic field extension L|K of
degree n, a normal domain A with quotient field K and a domain B with quotient
field L such that B|A is an integral extension. Assume that there exist generators
bα ∈ B of L|K, which are indexed by a totally ordered set S, such that A[bα] ⊂ A[bβ]
if α ≤ β and

(40)
⋃
α∈S

A[bα] = B.

Further assume that there exist aα, aβ ∈ A such that aβ | aα if α ≤ β and for
α ≤ β, there exist cα,β ∈ A and expressions

(41) bα =
aα
aβ

bβ + cα,β .

Let hα be the minimal polynomial of bα over K. Take U and V to be the B-ideals

(42) U = (aα | α ∈ S) and V = (h′α(bα) | α ∈ S) .

Then we have a B-module isomorphism

(43) ΩB|A ∼= U/UV .

For the case where (L|K, v) is a valued field extension and A = OK and B = OL ,
for arbitrary γ ∈ S the isomorphism (43) yields an OL-module isomorphism

(44) ΩOL|OK
∼= U/b†γU

n with b†γ :=
h′γ(bγ)

an−1γ

.

Identifying the B-module ΩB/A with U/UV in the above theorem, the universal
derivation dB|A : B → ΩB|A is defined by

(45) dB|A(z) = [aαg
′
α(bα)] ∈ U/UV for z = gα(bα) ∈ A[bα]

where [aαg
′
α(bα)] is the class of aαg

′
α(bα) in U/UV .

By definition, V is the B-ideal generated by the differents of all bα . For the case
where (L|K, v) is a valued field extension, we obtain from Proposition 3.7:

Lemma 4.3. Under the assumptions of Proposition 4.2, the OL-ideal V defined in
(42) is equal to the OL-ideal D0(OL|OK).

This will be applied in the proofs of Theorems 4.6 and 4.8.
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4.3. Finite extensions (L|K, v) of degree [L : K] = f (L|K) with separable
residue field extension.

Theorem 4.4. Take a finite extension (L|K, v) with Lv|Kv separable of degree
[Lv : Kv] = [L : K]. Then OL = OK [x] for some x ∈ L with vx = 0 and
Lv = Kv(xv), and we have

ΩOL|OK
= 0 .

Proof. By (12), OL = OK [x] where x is a lift of a generator χ of Lv over Kv.
Let f(X) ∈ K[X] be the minimal polynomial of x over K. Since vx = 0 and
the extension is unibranched, also the conjugates of x have value 0 and thus, f
has coefficients in OK . As deg f = [L : K] = [Lv : Kv], the reduction f̄ of f
in Kv[X] is the minimal polynomial of χ over Kv. We have that f ′(x)v = f̄ ′(χ)
which is nonzero since χ is separable over Kv. Thus f ′(x) is a unit in OL . By
(38), ΩOL|OK

∼= OL/(f
′(x)) = 0. □

We note that this theorem always applies when (L|K, v) is a Kummer extension
of prime degree q = f (L|K) ̸= charKv since then Lv|Kv is separable.

4.4. Artin-Schreier extensions (L|K, v) of degree p with f (L|K) = p and
inseparable residue field extension.

Theorem 4.5. Take an Artin-Schreier extension E = (L|K, v) of degree p =
f (L|K) = charK with Lv|Kv inseparable. Then there exists an Artin-Schreier
generator ϑ as in Lemma 3.8, and we have

(46) ΩOL|OK
∼= OL/(c̃

p−1) ∼= IE/I
p
E

as OL-modules. Consequently, ΩOL|OK
̸= 0.

Proof. The first isomorphism in (46) follows from (38) together with Lemma 3.8.
Since vc̃ = −vϑ, we have vc̃ ̸= 0, whence (c̃p−1) ̸= OL , as well as OL/(c̃

p−1) ∼=
(c̃)/(c̃)p = IE/I

p
E by part 1) of Proposition 2.7. This proves the second isomorphism

in (46). □

With the notation of the statement and proof of Theorem 4.5, we have that for
z ∈ OL, z = g(c̃ϑ) for some g(X) ∈ OK [X], and the universal derivation dOL|OK

is
defined by

dOL|OK
(z) = [g′(c̃ϑ)] ∈ OL/(c̃

p−1)

by equation (39).

4.5. Artin-Schreier extensions (L|K, v) of degree p with e (L|K, v) = p.

Theorem 4.6. Take an Artin-Schreier extension E = (L|K, v) of degree p =
e (L|K). Then there exists an Artin-Schreier generator ϑ as in Lemma 3.9, and
we have

(47) ΩOL|OK
∼= ϑ−1ME/(ϑ

−1ME)
p = IEME/(IEME)

p

as OL-modules; in particular, ΩOL|OK
̸= 0.
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Proof. We will apply Proposition 4.2 with A = OK and B = OL . We set S = {α ∈
vK | α + vϑj > 0}, endowed with the reverse ordering of vK. For each α ∈ S we
choose cα ∈ K such that vcα = α. We set bα = cαϑ

j, aα = cα, and cα,β = 0. Then
aβ|aα and A[bα] ⊆ A[bβ] if α ≤ β, and we have that c1ϑ

j = c1
c2
c2ϑ

j. We denote by hα

the minimal polynomial of bα = cαϑ
j over K. Thus in the notation of Lemma 3.9,

hα = hj,α so that h′α(bα) = h′j,α(cαϑ
j) and V = D0(OL|OK) = (ϑ−1Iϑj)p−1 by

equation (24) of Lemma 3.9. Further, U = (aα | α ∈ S) = (cα | α ∈ S) = ϑ−jIϑj .
Hence by Proposition 4.2,

ΩOL|OK
∼= U/UV ∼= ϑ−jIϑj/ϑ−jIϑj (ϑ−1Iϑj)p−1 ∼= ϑ−1Iϑj/(ϑ−1Iϑj)p .

Together with part 1) of Proposition 2.7 and Proposition 3.4, this proves (47).
Since 0 < vϑ−1 /∈ vK, we have vϑ−1 > HE and therefore, ϑ−1 ∈ ME . By

part 3) of Lemma 3.6 it follows that (ϑ−1ME)
p ⊊ ϑ−1ME , which shows that

ΩOL|OK
̸= 0. □

With the notation of the statement and proof of Theorem 4.6, we have that for
z ∈ OL, z = g(cαϑ

j) for some g(X) ∈ OK [X], where cα ∈ K is such that vcαϑ
j > 0

and the universal derivation dOL|OK
is defined by

dOL|OK
(z) = [cαg

′(c̃αϑ
j)] ∈ IEME/(IEME)

p

by equation (45).

4.6. Kummer extensions (L|K, v) of degree p = charKv with f (L|K) = p.

Theorem 4.7. Let (L|K, v) be a Kummer extension of degree p = f (L|K) =
charKv.

In case i) of Lemma 3.10,

(48) ΩOL|OK
∼= OL/(p) ∼= IE/I

p
E

as OL-modules. Consequently, ΩOL|OK
̸= 0.

In case ii) of Lemma 3.10,

(49) ΩOL|OK
∼= OL/(pc̃

p−1) ∼= IE/I
p
E

as OL-modules, and

(50) ΩOL|OK
= 0 if and only if Lv|Kv is separable.

Proof. The first isomorphisms in (48) and (49) follow from Lemma 3.10 and (38).
In case i),

OL/(p) = OL/((ζp − 1)p−1) ∼= (ζp − 1)/(ζp − 1)p = IE/I
p
E

by part 2)a) of Proposition 2.7.

In case ii), where vc̃ = −v(η − 1),

OL/(pc̃
p−1) = OL/(c̃(ζp − 1))p−1 ∼= (c̃(ζp − 1))/(c̃(ζp − 1))p = IE/I

p
E

by part 2)b) of Proposition 2.7.
By Lemma 2.3, Lv|Kv is separable if and only if −vc̃ = v(η − 1) = vp

p−1 , i.e.,

vpc̃p−1 = 0. This is equivalent to (pc̃p−1) = OL , and thus to ΩOL|OK
= 0. □
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Let the notation be as in the statement and proof of Theorem 4.7. In case i),
we have that for z ∈ OL, z = g(η) for some g(X) ∈ OK [X] and the universal
derivation dOL|OK

is defined by

dOL|OK
(z) = [g′(η)] ∈ OL/(p)

by equation (39).
In case ii), we have that for z ∈ OL, z = g(c̃(η − 1)) for some g(X) ∈ OK [X]

and the universal derivation dOL|OK
is defined by

dOL|OK
(z) = [g′(c̃(η − 1))] ∈ OL/(pc̃)

p−1

by equation (39).

4.7. Kummer extensions (L|K, v) of prime degree q with e (L|K) = q.

Theorem 4.8. Let E = (L|K, v) be a Kummer extension of prime degree q with
e (L|K) = q.

In case i) of Lemma 3.11,

(51) ΩOL|OK
∼= ME/qMq

E

as OL-modules. If q ̸= charKv, then

(52) ME/qMq
E = ME/Mq

E .

If q = charKv, then

(53) ME/qMq
E
∼= (ζq − 1)ME/((ζq − 1)ME)

q = IEME/(IEME)
q .

We have that ΩOL|OK
= 0 if and only if q /∈ ME and ME is a nonprincipal

OE-ideal. The condition q /∈ ME always holds when q ̸= charKv.

In case ii) of Lemma 3.11,

(54) ΩOL|OK
∼= ξ−1ME/(ξ

−1ME)
q = IEME/(IEME)

q

as OL-modules; in particular, ΩOL|OK
̸= 0.

Proof. Assume that case i) holds. We will apply Proposition 4.2 with A = OK

and B = OL . We set S = {α ∈ vK | α + vη > 0}, endowed with the reverse
ordering of vK. For each α ∈ S we choose cα ∈ K such that vcα = α. We set
bα = cαη, aα = cα, and cα,β = 0. Then aβ|aα and A[bα] ⊆ A[bβ] if α ≤ β, and we
have that c1η = c1

c2
c2η. We denote by hα the minimal polynomial of bα = cαη over

K. Thus in the notation of Lemma 3.11, hα = fcα so that h′α(bα) = f ′cα(cαη) and
V = D0(OL|OK) = qIq−1η by equation (30) of Lemma 3.11. Further, U = (aα | α ∈
S) = (cα | α ∈ S) = η−1Iη . Hence by Proposition 4.2,

ΩOL|OK
∼= U/UV ∼= η−1Iη/η

−1Iη qI
q−1
η

∼= Iη/qI
q
η .

From Proposition 3.4 we know that Iη = ME . This proves (51).

Assume that q ̸= charKv. Then vq = 0, hence q /∈ ME and by part 1) of
Lemma 3.6, qMq

E = (qME)Mq−1
E = MEMq−1

E = Mq
E . This proves (52).

Assume that q = charKv. Then

ME/qMq
E
∼= (ζq−1)ME/(ζq−1)qMq

E = (ζq−1)ME/(ζq−1)qMq
E = IEME/I

q
EM

q
E ,
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where we have used that vq = (q − 1)v(ζq − 1) and that IE = (ζq − 1) by part 2)a)
of Proposition 2.7. This proves (53).

Now we determine when ΩOL|OK
= 0 holds in the present case. If q ∈ ME , then

qMq
E ⊆ qME ⊊ ME by part 1) of Lemma 3.6, and if ME is a principal OE -ideal,

then qMq
E ⊆ Mq

E ⊊ ME by part 2) of Lemma 3.6; hence in both cases, ΩOL|OK
̸= 0.

On the other hand, if q /∈ ME and ME is a nonprincipal OE -ideal, then by parts 1)
and 2) of Lemma 3.6, qMq

E = qME = ME , whence ΩOL|OK
= 0. If q ̸= charKv,

then vq = 0, hence q /∈ ME .

Assume that case ii) holds. Again we will apply Proposition 4.2 with A = OK

and B = OL . We set S = {α ∈ vK | α + vξj > 0}, endowed with the reverse
ordering of vK. For each α ∈ S we choose cα ∈ K such that vcα = α. We set
bα = cαξ

j, aα = cα, and cα,β = 0. Then aβ|aα and A[bα] ⊆ A[bβ] if α ≤ β; we have
that c1ξ

j = c1
c2
c2ξ

j. We denote by hα the minimal polynomial of bα = cαξ
j over

K. Thus in the notation of Lemma 3.11, hα = hj,α so that h′α(bα) = h′j,α(cαξ
j)

and V = D0(OL|OK) = (ξ−1Iξj)
q−1 by equation (33) of Lemma 3.11. Further,

U = (aα | α ∈ S) = (cα | α ∈ S) = ξ−jIξj . Hence by Proposition 4.2, ΩOL|OK
∼=

U/UV ∼= ξ−jIξj/ξ
−jIξj (ξ

−1Iξj)
q−1 ∼= ξ−1Iξj/ξ

−1Iξj (ξ
−1Iξj)

q−1 = ξ−1Iξj/(ξ
−1Iξj)

q.
Again from Proposition 3.4 we know that Iξj = ME . Further, (ξ

−1) = IE by part
2)b) of Proposition 2.7. This proves (54).

Since 0 < vξ−1 /∈ vK, we have vξ−1 > HE and therefore, ξ−1 ∈ ME . By part
3) of Lemma 3.6 it follows that (ξ−1ME)

q ⊊ ξ−1ME , which shows that ΩOL|OK
̸=

0. □

Let the notation be as in the statement and proof of Theorem 4.8. In case i),
we have that for z ∈ OL, z = g(cαη) for some cα ∈ K such that vcαϑ > 0 and
g(X) ∈ OK [X] and the universal derivation dOL|OK

is defined by

dOL|OK
(z) = [cαg

′(cαη)] ∈ ME/qMq
E

by equation (45).
In case ii), we have that for z ∈ OL, z = g(cαξ

j) for some cα ∈ K such that
vcαξ

j > 0 and g(X) ∈ OK [X] and the universal derivation dOL|OK
is defined by

dOL|OK
(z) = [cαg

′(cαξ
j)] ∈ IEME/(IEME)

p

by equation (45).

5. Kähler differentials of towers of Galois extensions

In this section, our goal is the proof of the following two theorems, which will be
given in Subsection 5.2. We begin by preparing the ingredients for the proofs.

We first state the “first fundamental exact sequence” of Kähler differentials.

Theorem 5.1. ([16, Theorem 25.1]) A composite k → A → B of ring homomor-
phisms leads to a natural exact sequence of B-modules

ΩA|k ⊗A B → ΩB|k → ΩB|A → 0.

We will verify that in relevant situations, the left most homomorphism is injec-
tive, giving a short exact sequence. The following theorem is a consequence of the
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more general Theorem 6.3.32 of [7]. However, we will give an alternate proof in
Section 5.2.

Theorem 5.2. Assume that L|K and M |L are towers of finite Galois extensions
of valued fields. Then there is a natural short exact sequence

0 → ΩOL|OK
⊗OL

OM → ΩOM |OK
→ ΩOM |OL

→ 0.

In particular, ΩOM |OK
= 0 if and only if ΩOM |OL

= 0 and ΩOL|OK
= 0.

Theorem 5.3. Let (K, v) be a valued field. Then

1) ΩOKsep |OK
= 0 if and only if ΩOL|OK

= 0 for all finite Galois subextensions
L|K of Ksep.

2) Let L|K be a finite Galois subextension of Ksep and assume that

K ⊂ K in = K0 ⊂ K1 ⊂ · · · ⊂ Kℓ = L

is a tower of field extensions factoring L|K such that K in is the inertia
field of (L|K, v) and Ki+1|Ki is Galois of prime degree for all i. Then
ΩOL|OK

= 0 if and only if ΩOKi+1
|OKi

= 0 for 0 ≤ i ≤ ℓ− 1.

Lemma 5.4. Assume that (L|K, v) is a valued field extension. Then OL is a
faithfully flat OK-module.

Proof. We have that OL is a flat OK-module by [24, Theorem 4.33] (see also [25,
Theorem 4.35]), since OK is a valuation ring and OL is a torsion free OK-module.
Further, OL is a faithfully flat OK-module by Theorem 7.2 [16], since MKOL ̸=
OL. □

Lemma 5.5. Let (L|K, v) be a finite valued field extension which is unibranched
and such that there is a tower of field extensions K = K0 ⊂ K1 ⊂ · · · ⊂ Kℓ = L
such that for 1 ≤ i ≤ ℓ one of the following holds:

1) Ki|Ki−1 is Galois of prime degree or
2) [Ki : Ki−1] = [Kiv : Ki−1v] and Kiv is separable over Ki−1v.

Then for 2 ≤ i ≤ ℓ, we have natural short exact sequences

(55) 0 → (ΩOKi−1
|OK

)⊗OKi−1
OKi

→ ΩOKi
|OK

→ ΩOKi
|OKi−1

→ 0.

Proof. By Theorem 4.4, Theorem 3.3 for unibranched defectless extensions of prime
degree and [2, Lemma 2.3, Lemma 3.1, Lemma 3.2 and Proposition 3.3] for exten-
sions of prime degree with nontrivial defect for 1 ≤ i ≤ ℓ there exist directed sets
Si with associated α(i)j ∈ Ki for j ∈ Si such that OKi−1

[α(i)j] ⊂ OKi−1
[α(i)k] if

j ≤ k and OKi
= ∪j∈Si

OKi−1
[α(i)j]. Further, OKi

[α(i)j] ∼= OKi
[X]/(f j

i (X)) where

f j
i (X) is the minimal polynomial α(i)j over Ki−1.
Let Ti be the set of (k1, k2, . . . , ki−1, ki) ∈ S1 × S2 × · · · × Si such that fkn

n (x) ∈
OK [α(1)k1 , α(2)k2 , . . . , α(n − 1)kn−1 ][x] for 2 ≤ n ≤ i. We define a partial order
on Ti by the rule (k1, . . . , ki) ≤ (l1, . . . , li) if km ≤ lm for 1 ≤ m ≤ i. The Ti are
directed sets since the Si are, and setting

Ak1,...,ki = OK [α(1)k1 , α(2)k2 , . . . , α(i− 1)ki−1
, α(i)ki ]

for (k1, . . . , ki) ∈ Ti, we have inclusions

Ak1,...,ki ⊂ Al1,...,li for (k1, . . . , ki) ≤ (l1, l2, . . . , li) in Ti.
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By our construction, for 2 ≤ m ≤ i, there exist

gkmm (X1, . . . , Xm−1, Xm) ∈ OK [X1, X2, . . . , Xm−1, Xm]

such that gkmm (α(1)k1 , · · · , α(m− 1)km−1 , Xm) = fkm
m (Xm).

By [28, Theorem 1], we have that

Ak1,...,ki
∼= OK [X1, . . . , Xi]/(g

k1
1 (X1), g

k2
2 (X1, X2), . . . , g

ki
i (X1, . . . , Xi)).

By [16, Theorem 25.2], ΩAk1,...,ki
|OK

∼= (Ak1,...,kidX1 ⊕ · · · ⊕ Ak1,...,kidXi)/Uk1,...,ki ,
where Uk1,...,ki is the Ak1,...,ki-submodule of Ak1,...,kidX1⊕· · ·⊕Ak1,...,kidXi generated
by

(56)

[
∂fk1

1

∂X1

(α(1)k1)

]
dX1

and

(57)

[
∂gkmm
∂X1

(α(1)k1 , . . . , α(m)km)

]
dX1 + · · ·+

[
∂gkmm
∂Xm

(α(1)k1 , . . . , α(m)km)

]
dXm

for 2 ≤ m ≤ i. We further have that

(58)

[
∂fk1

1

∂X1

(α(1)k1)

]
= (fk1

1 )′(α(1)k1)

and

(59)

[
∂gkmm
∂Xm

(α(1)k1 , . . . , α(m)km)

]
= (fkm

m )′(α(m)km)

for 2 ≤ m ≤ i.
By Theorem 5.1, we have a natural exact sequence of Ak1,...,ki-modules

(60) ΩAk1,...,ki−1
|OK

⊗Ak1,...,ki−1
Ak1,...,ki → ΩAk1,...,ki

|OK
→ ΩAk1,...,ki

|Ak1,...,ki−1
→ 0.

For (k1, . . . , ki) ∈ Ti, let

Lk1,...,ki = ΩAk1,...,ki−1
|OK

⊗Ak1,...,ki−1
OKi

,

Mk1,...,ki = ΩAk1,...,ki
|OK

⊗Ak1,...,ki
OKi

,

Nk1,...,ki = ΩAk1,...,ki
|Ak1,...,ki−1

⊗Ak1,...,ki
OKi

.

Applying the right exact functor ⊗Ak1,...,ki
OKi

to (60), we have an exact sequence
of OKi

-modules

(61) Lk1,...,ki
u→ Mk1,...,ki → Nk1,...,ki → 0.

Now ΩAk1,...,ki−1
|OK

⊗Ak1,...,ki−1
OKi

is the quotient of OKi
dX1 ⊕ · · · ⊕ OKi

dXi−1

by the relations (56) and (57) for 2 ≤ m ≤ i−1 and ΩAk1,...,ki
|OK

⊗Ak1,...,ki
OKi

is the

quotient of OKi
dX1 ⊕ · · · ⊕ OKi

dXi by the relations (56) and (57) for 2 ≤ m ≤ i.
Since (fki

i )′(α(i)ki) ̸= 0 (as Ki is separable over Ki−1) we have by (59) with m = i
that u is injective, so that (61) is actually short exact.

Let (k1, . . . , ki) and (l1, . . . , li) in Ti be such that (k1, . . . , ki) ≤ (l1, . . . , li). Then
we have a natural commutative diagram of OKi

-modules with short exact rows

(62)
0 → Lk1,...,ki → Mk1,...,ki → Nk1,...,ki → 0

↓ ↓ ↓
0 → Ll1,...,li → Ml1,...,li → Nl1,...,li → 0
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where the vertical arrows are the natural maps determined by the differentials
of the inclusions of Ak1,...,ki−1

into Al1,...,li−1
and of Ak1,...,ki into Al1,...,li . By [24,

Theorem 2.18] (see also [25, Proposition 5.33]), we have a short exact sequence of
OK-modules

(63) 0 → lim
→

Lk1,...,ki → lim
→

Mk1,...,ki → lim
→

Nk1,...,ki → 0.

By our construction of Ti, we have that ∪Ak1,...,ki = OKi
, where the union is over

all (k1, . . . , ki) ∈ Ti. Thus lim
→

Mk1,...,ki
∼= ΩOKi

|OK
by [5, Theorem 16.8]. We also

have that ∪Ak1,...,ki−1
= OKi−1

, where the union is over all (k1, . . . , ki−1) such that
(k1, . . . , ki) ∈ Ti. Thus

lim
→

(
ΩAk1,...,ki−1

|OK
⊗Ak1,...,ki−1

OKi−1

)
∼= ΩOKi−1

|OK

again by [5, Theorem 16.8]. Now

lim→ Lk1,...,ki = lim→

(
ΩAk1,...,ki−1

|OK
⊗Ak1,...,ki−1

OKi

)
∼= lim→

(
(ΩAk1,...,ki−1

|OK
⊗Ak1,...,ki−1

OKi−1
)⊗OKi−1

OKi

)
∼=

(
lim→(ΩAk1,...,ki−1

|OK
⊗Ak1,...,ki−1

OKi−1
)
)
⊗OKi−1

OKi

∼= ΩOKi−1
|OK

⊗OKi−1
OKi

where the equality of the third row is by [24, Corollary 2.20].
We have that

Ak1,...,ki = Ak1,...,ki−1
[α(i)ki ]

∼= Ak1,...,ki−1
[Xi]/(f

ki
i ),

so
ΩAk1,...,ki

|Ak1,...,ki−1

∼=
(
Ak1,...,ki/(f

ki
i )′(α(i)ki)

)
dXi

by equation (38). Since fki
i is the minimal polynomial of α(i)ki over Ki−1, we have

that
ΩOKi−1

[α(i)ki ]|OKi−1

∼= OKi−1
[α(i)ki ]/((f

ki
i )′(α(i)ki))dXi

also by (38). Thus

Nk1,...,ki = ΩAk1,...,ki
|Ak1,...,ki−1

⊗Ak1,...,ki
OKi

∼=
(
OKi

/(fki
i )′(α(i)ki)

)
dXi

∼=
(
ΩOKi−1

[α(i)ki ]|OKi−1

)
⊗OKi−1[α(i)ki

]
OKi

.

Since ∪OKi−1
[α(i)ki ] = OKi

, we have that lim
→

Nk1,...,ki
∼= ΩOKi

|OKi−1
by [5, Theo-

rem 16.8].
In conclusion, for 1 ≤ i ≤ r, the sequence (55) is isomorphic to the short exact

sequence (63). □

In Definition 2 of Chapter I, page 11 [23], an étale algebra is defined. Let A be
a ring and B be an A-algebra. B is étale over A if

1) B is an A-algebra of finite presentation and
2) For all A-algebra D and ideals J of D such that J2 = 0, the natural map

Hom
A-alg(B,D) → Hom

A-alg(B,D/J) is a bijection.

In Definition IV.17.3.1 [8], an étale morphism of schemes is defined. After the
definition, it is shown that a morphism of affine schemes Spec(B) → Spec(A) is
étale if and only if B is étale over A.
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Proposition 5.6. Let (L|K, v) be a finite Galois extension of valued fields. Let G
be the Galois group of L|K and let H be a subgroup of G which contains the inertia
group of L|K. Denote the fixed field of H in L by L0 . Then ΩOL0

|OK
= 0.

Proof. Let A = OK , C be the integral closure of A in OL and B = CH be the
integral closure of A in L0 = LH . There exists a maximal ideal r of C such that
Cr = OL. Let n = r ∩B, the maximal ideal of B, so that OL0 = Bn. By Theorem
1 of Chapter X, page 103 [23], there exists f ∈ B \ n such that B′ = Bf is an étale
A-algebra. We have that (B′)nf

= OL0 . Spec(B
′) → Spec(A) is an étale morphism,

so the map is formally unramified (Definition IV.17.1.1 [8]). Thus ΩB′|A = 0 by
Proposition IV.17.2.1 [8]. Thus 0 = (ΩB′|A)⊗B′ (B′)nf

= ΩOL0
|OK

by [5, Proposition
16.9]. □

Proposition 5.7. Assume that (L|K, v) is a finite Galois extension. Then

ΩOL|OK
∼= ΩOL|OKin

where K in is the inertia field of (L|K, v).

Proof. This follows from Proposition 5.6 and the exact sequence of Theorem 5.1.
□

We now give the proof of Theorem 1.1. Let p be the characteristic of the residue
field Kv and q = [L : K] a prime number. The description of ΩOL|OK

and the
characterization of vanishing of this module depend, among other information, on
the invariants of the valued field extension that appear in the following product:

q = [L : K] = d (L|K) e (L|K) f (L|K) g (L|K)

where e (L|K) = (vL : vK), f (L|K) = [Lv : Kv], g (L|K) is the number of distinct
extensions of v|K to L and d (L|K) is the defect of the extension, which is a power
of p. Since q is a prime, exactly one of the factors will be equal to q, and the others
equal to 1. The description of ΩOL|OK

also depends on the rank and the structure
of the value group of (K, v) if d (L|K) ̸= 1 or e (L|K) ̸= 1, and on whether Lv|Kv
is separable or inseparable if f (L|K) ̸= 1.
In the case of d (L|K) = p, our results are proven in [2, Theorem 1.2]. In the

case of e (L|K) = q, they are obtained in Theorem 4.6 for Artin-Schreier extensions
and Theorem 4.8 for Kummer extensions. If f (L|K) = q, then they are obtained
in Theorems 4.4 and 4.5 for Artin-Schreier extensions and Theorems 4.4 and 4.7
for Kummer extensions.

In the remaining case when g (L|K) = q, the extension (L|K, v) is an inertial
extension. Thus ΩOL|OK

= 0 by Proposition 5.6.

5.1. Henselization.

We now recall some facts about henselization of fields and rings. A valued field
(K, v) is henselian if it satisfies Hensel’s Lemma, or equivalently, all of its algebraic
extensions are unibranched (cf. [6, Section 16]).

An extension (Kh, vh) of a valued field (K, v) is called a henselization of (K, v)
if (Kh, vh) is henselian and for all henselian valued fields (L, ω) and all embeddings

λ : (K, v) → (L, ω), there exists a unique embedding λ̃ : (Kh, vh) → (L, ω) which
extends λ.
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A henselization (Kh, vh) of (K, v) can be constructed by choosing an extension
vs of v to a separable closure Ksep of K and letting Kh be the fixed field of the
decomposition group

Gd(Ksep|K) = {σ ∈ G(Ksep|K) | vs ◦ σ = vs}

of vs, and defining vh to be the restriction of vs to Kh ([6, Theorem 17.11]). The
valuation ring OKh of vH is then

(64) OKh = Ovs ∩Kh = Ãm̃

where Ã is the integral closure of Ov in Kh and m̃ = MKsep ∩Kh.
The definition of a henselian local ring is given in Definition 1, Chapter I, page 1

of [23]. A local ring A is henselian if all finite A-algebras B are a product of local
rings.

Assume that A is a local ring and g(X) ∈ A[X] is a polynomial. Let ḡ(X) ∈
A/mA[X] be the polynomial obtained by reducing the coefficients of g(X) modulo
mA.

By Proposition 5, Chapter I, page 2 [23], a local ring A is a henselian local ring if
and only if it has the following property: Let f(X) ∈ A[X] be a monic polynomial
of degree n. If α(X) and β(X) are relatively prime monic polynomials in A/mA[X]
of degrees r and n− r respectively such that f̄(X) = α(X)β(X), then there exist
monic polynomials g(X) and h(X) in A[X] of degrees r and n−r respectively such
that ḡ(X) = α(X), h̄(X) = β(X) and f(X) = g(X)h(X).

Henselization of a local ring is defined in Definition 1, Chapter VIII, page 80
[23]. If A is a local ring, a local ring Ah which dominates A is called a henselization
of A if any local homomorphism from A to a henselian local ring can be uniquely
extended to Ah. A henselization always exists, as is shown in [23, Theorem 1,
Chapter VIII, page 87]. The construction is particularly nice when A is a normal
local ring, as shown in [23, Theorem 2, Chapter X, page 110] (cf. [17, Theorem
43.5]). We now explain this construction. Let K be the quotient field of A and Let
Ksep be a separable closure of K. Let Ā be the integral closure of A in Ksep and
let m̄ be a maximal ideal of Ā.

Let H be the decomposition group

H = Gd(Ām̄|A) = {σ ∈ G(Ksep|K) | σ(Ām̄) = Ām̄}.

Then

(65) Ah = (Ã)m̄∩Ã

where Ã is the integral closure of A in (Ksep)H .

Lemma 5.8. Assume that (K, v) is a valued field and (Kh, vh) is a henselization
of K. Then there is a natural isomorphism

OKh
∼= Oh

K .

Proof. Let vs be an extension of v to Ksep and

H = {σ ∈ Gal(Ksep|K) | vs ◦ σ = vs},

so that Kh is the fixed field of H in Ksep. Let V̄ be the integral closure of OK in
Ksep , and let m = V̄ ∩MKsep , a maximal ideal in V̄ . Since Ksep is algebraic over
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K, we have that OKsep = V̄m by [32, Theorem 12, page 27]. Now, as is shown on
the bottom of page 68 of [32], H is the decomposition group

H = Gd(OKsep |OK) = {σ ∈ G(Ksep|K) | σ(OKsep) = OKsep},

so that

Oh
K = OKh

by (64) and (65), establishing the lemma. □

Lemma 5.9. Let K be a valued field and L be a field such that K ⊂ L ⊂ Kh.
Then ΩOL|OK

= 0.

Proof. Let vs be an extension of v to Ksep. The field Ksep is the directed union
Ksep = ∪iMi of the finite Galois extensions Mi of K in Ksep. If M is a finite
Galois extension of K in Ksep, then restriction induces a surjection of Galois groups
G(Ksep|K) → G(M |K), and an isomorphism G(M |K) ∼= G(Ksep|K)/G(Ksep|M).
We have an isomorphism of profinite groups ([20, Example 1, page 271] or [15,
Theorem VI.14.1, page 313])

G(Ksep|K) ∼= lim
←

G(Mi|K).

Let Gd(M |K) be the decomposition group of the valued field extension M |K, for
M a Galois extension of K which is contained in Ksep (where the valuation of M is
vs|M). For M a finite Galois extension of K, restriction induces a homomorphism

(66) Gd(Ksep|K) → Gd(M |K).

Let σ ∈ Gd(M |K). If N is a finite Galois extension of M contained in Ksep, then
there exists σ̄ ∈ G(N |K) such that σ̄|M = σ. Let A be the integral closure of OM

in N . There exists a maximal ideal p of A such that Ap
∼= ON . Let q = σ̄(p), a

maximal ideal of A. The group G(N |M) acts transitively on the maximal ideals
of A ([1, Lemma 21.8]) so there exists τ ∈ G(N |M) such that τ(q) = p. Thus
τ σ̄(ON) = ON and τ σ̄|M = σ and so the homomorphism (66) is surjective with
Kernel Gd(Ksep|K) ∩G(Ksep|M). We have that

Kh = (Ksep)G
d(Ksep|K) = ∪MGd(Mi|K)

i .

Thus

L = L ∩ (∪iM
Gd(Mi|K)
i ) = ∪Li

where Li = L ∩M
Gd(Mi|K)
i . We have that ΩOLi

|OK
= 0 for all i by Proposition 5.6.

Thus

ΩOL|OK
= lim
→

(ΩOLi
|OK

⊗OLi
OL) = 0

by [5, Theorem 16.8]. □

Let K be a valued field. Fix an extension vs of v to the separable closure Ksep

of K. The field Ksep is henselian (for instance by the construction before Lemma
5.8); that is, the henselization (Ksep)h = Ksep and O(Ksep)h = OKsep .

Proposition 5.10. Let (K, v) be a valued field. Then ΩOKsep |OK
∼= ΩOKsep |O

Kh
.
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Proof. We may embed Kh into Ksep (by the construction before Lemma 5.8) giving
a tower of valued field extensions K ⊂ Kh ⊂ Ksep . By Theorem 5.1, we have
an exact sequence ΩO

Kh |OK
⊗O

Kh
OKsep → ΩOKsep |OK

→ ΩOKsep |O
Kh

→ 0. The
proposition now follows from Lemma 5.9. □

Lemma 5.11. Assume that (L|K, v) is a finite separable extension of valued fields.
Then

(67) ΩOh
L|O

h
K

∼= (ΩOL|OK
)⊗OL

OLh .

In particular, by Lemma 5.4, we have that ΩOL|OK
= 0 if and only if ΩO

Lh |OKh
= 0.

Proof. We have that

(68) ΩO
Lh |OKh

∼= ΩO
Lh |OK

by Lemma 5.9 and the exact sequence of Theorem 5.1. By [23, Theorem 1, page
87], there exist étale extensions Ai|OL and maximal ideals mi of Ai such that
OLh = lim

→
(Ai)mi

. We have the exact sequences

ΩOL|OK
⊗OL

Ai
α→ ΩAi|OK

→ ΩAi|OL
→ 0

of Theorem 5.1. Since Ai|OL is étale, we have that this map is formally étale
([8, Definition IV.17.3.1]) and is thus formally unramified and formally smooth
([8, Definition IV.17.1.1]). Thus ΩAi|OL

= 0 by [8, Proposition IV.17.2.1] and α is
injective by [8, Proposition IV.17.2.3]. By this calculation and [5, Proposition 16.9],

(69) ΩOL|OK
⊗OL

(Ai)mi
∼= (ΩAi|OK

)⊗Ai
(Ai)mi

∼= Ω(Ai)mi |OK
.

By Theorem 16.8 [5] and equations (68) and (69),

(70)
ΩOh

L|O
h
K

∼= ΩO
Lh |OK

∼= lim
→

[(Ω(Ai)mi |OK
)⊗(Ai)mi

OLh ]
∼= lim

→
[(ΩOL|OK

)⊗OL
OLh ] ∼= (ΩOL|OK

)⊗OL
OLh .

□

5.2. Proofs of Theorems 5.2 and 5.3.

We first prove Theorem 5.2.
The natural sequence of OM -modules

(71) 0 → ΩOL|OK
⊗OL

OM → ΩOM |OK
→ ΩOM |OL

→ 0

computed from the extensions of rings OK ⊂ OL ⊂ OM is right exact (but the first
map might not be injective) by Theorem 5.1. Tensor this sequence with Oh

M over
OM to get a right exact sequence of Oh

M -modules

(72) 0 → (ΩOL|OK
⊗OL

OM)⊗OM
Oh

M → ΩOM |OK
⊗OM

Oh
M → ΩOM |OL

⊗OM
Oh

M → 0.

By (67), we have isomorphisms

ΩOM |OL
⊗OM

Oh
M

∼= ΩOh
M |O

h
L
, ΩOM |OK

⊗OM
Oh

M
∼= ΩOh

M |O
h
K

and
(ΩOL|OK

⊗OL
OM)⊗OM

Oh
M

∼= ΩOL|OK
⊗OL

Oh
M∼= (ΩOL|OK

⊗OL
Oh

L)⊗Oh
L
Oh

M
∼= ΩO

Lh |OKh
⊗Oh

L
Oh

M .

Thus (72) is the right exact sequence

(73) 0 → ΩO
Lh |OKh

⊗O
Lh

OMh → ΩO
Mh |OKh

→ ΩO
Mh |OLh

→ 0
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of Theorem 5.1. Since Oh
M is a faithfully flat OM -module, we have that (71) is

exact if and only if (73) is exact.
By assumption, L|K and M |L are towers of Galois extensions

K = K0 ⊂ K1 ⊂ · · · ⊂ Kr = L and L = L0 ⊂ L1 ⊂ · · · ⊂ Ls = M

so

Kh = Kh
0 ⊂ Kh

1 ⊂ · · · ⊂ Kh
r = Lh and Lh = Lh

0 ⊂ Lh
1 ⊂ · · · ⊂ Lh

s = Mh

are towers of Galois extensions. Since each Kh
i+1|Kh

i is unibranched, there exist
factorizations

Kh
i ⊂ U1

i ⊂ U2
i ⊂ · · · ⊂ Umi

i = Kh
i+1

where U1
i is the inertia field of Kh

i+1|Kh
i and U j+1

i |U j
i is Galois of prime degree.

These extensions are all necessarily unibranched, so U1
i |Kh

i satisfies 2) of Lemma 5.5
and U j+1

i |U j
i satisfies 1) of Lemma 5.5 for 1 ≤ j. Similarly, we have factorizations

Lh
i ⊂ V 1

i ⊂ V 2
i ⊂ · · · ⊂ V ni

i = Lh
i+1

where V 1
i |Lh

i satisfies 2) of Lemma 5.5 and V j+1
i |V j

i satisfies 1) of Lemma 5.5 for
1 ≤ j. By Lemma 5.5, we have exact sequences

0 → ΩO
U1
0
|O

Kh
⊗O

U1
0

OU2
0
→ ΩO

U2
0
|O

Kh
→ ΩO

U2
0
|O

U1
0

→ 0

0 → ΩO
U2
0
|O

Kh
⊗O

U2
0

OU3
0
→ ΩO

U3
0
|O

Kh
→ ΩO

U3
0
|O

U2
0

→ 0

...
0 → ΩO

Kh
1
|O

Kh
⊗O

Kh
1

OU1
1
→ ΩO

U1
1
|O

Kh
→ ΩO

U1
1
|O

Kh
1

→ 0

0 → ΩO
U1
1
|O

Kh
⊗O

U1
1

OU2
1
→ ΩO

U2
1
|O

Kh
→ ΩO

U2
1
|O

U1
1

→ 0

...
0 → ΩO

Lh |OKh
⊗O

Lh
OV 1

0
→ ΩO

V 1
0
|O

Kh
→ ΩO

V 1
0
|O

Lh
→ 0

0 → ΩO
V 1
0
|O

Kh
⊗O

V 1
0

OV 2
0
→ ΩO

V 2
0
|O

Kh
→ ΩO

V 2
0
|O

V 1
0

→ 0

...
0 → ΩO

Lh
1
|O

Kh
⊗O

Lh
1

OV 1
1
→ ΩO

V 1
1
|O

Kh
→ ΩO

V 1
1
|O

Lh
1

→ 0

0 → ΩO
V 1
1
|O

Kh
⊗O

V 1
1

OV 2
1
→ ΩO

V 2
1
|O

Kh
→ ΩO

V 2
1
|O

V 1
1

→ 0

...
0 → ΩO

V
ns−1
s−1

|O
Kh

⊗O
V
ns−1
s−1

OMh → ΩO
Mh |OKh

→ ΩO
Mh |OV

ns−1
s−1

→ 0.

In particular, differentiation defines an injection of OV 1
0
-modules

ΩO
Lh |OKh

⊗O
LhOV 1

0

→ ΩO
V 1
0 |Oh

K

.

Since OV 2
0
is a flat OV 1

0
-module, we have injections

ΩO
Lh |OKh

⊗O
Lh
OV 2

0

∼= (ΩO
Lh |OKh

⊗O
Lh
OV 1

0
)⊗O

V 1
0

OV 2
0
→ ΩO

V 1
0
|O

Kh
⊗O

V 1
0

OV 2
0
→ ΩO

V 2
0
|Oh

K

and continuing, we obtain that differentiation gives an injection of OMh-modules

ΩO
Lh |OKh

⊗O
Lh

OMh → ΩO
Mh |OKh

so that (73) is short exact and thus (71) is short exact.
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Since OM is a faithfully flat OL, module, we have that ΩOL|OK
⊗OL

OM = 0
if and only if ΩOL|OK

= 0, and so ΩOM |OK
= 0 if and only if ΩOM |OL

= 0 and
ΩOL|OK

= 0. □

We now prove Theorem 5.3. We first prove Statement 1). By [5, Theorem 16.8],
we have an isomorphism of OKsep -modules

ΩOKsep |OK
∼= lim
→

[(ΩOL|OK
)⊗OL

OKsep ].

where the limit is over finite Galois subextensions L|K of Ksep .
If ΩOL|OK

= 0 for all finite Galois subextensions of Ksep, then it follows immedi-
ately from the above formula that ΩOKsep |OK

= 0.
Assume that ΩOKsep |OK

= 0 and L|K is a finite Galois subextension of Ksep. If
ΩOL|OK

̸= 0, then there exists 0 ̸= x ∈ ΩOL|OK
and a finite Galois extension N of

K such that N contains L and the image of x⊗ 1 by the natural homomorphism

(ΩOL|OK
)⊗OL

OKsep → (ΩON |OK
)⊗ON

OKsep

is zero. Since OKsep is a faithfully flat ON -module (by Lemma 5.4) we have that
the image of x⊗ 1 by the natural homomorphism

ΩOL|OK
⊗OL

ON → ΩON |OK

is zero, so that x⊗ 1 = 0 by Theorem 5.2. Thus x = 0 since ON is a faithfully flat
OL-module, giving a contradiction, and showing that ΩOL|OK

= 0.
We now prove Statement 2). We have that ΩOL|OK

∼= ΩOL|OKin
by Proposi-

tion 5.7. For 0 ≤ i ≤ ℓ − 1, ΩOKi
|OK0

= 0 if and only if ΩOKi
|OK0

⊗OKi
OKi+1

= 0

since OKi+1
is a faithfully flat OKi

-module by Lemma 5.4. Statement 2) now follows
from Lemma 5.5 by induction on i in equation (55). □

6. Proof of Theorems 1.2 and 1.3

Take a valued field (K, v) and extend v to the separable closureKsep ofK. Recall
that we call (K, v) a deeply ramified field if it satisfies (DRvg) and (DRvr).

Throughout we assume that charKv = p > 0. If charK = 0, then we set K ′ :=
K(ζp) with ζp a primitive p-th root of unity and extend v to K ′. If charK = p, then
we set K ′ := K. The next proposition will show that in our proof of Theorem 1.2
we can assume that K = K ′.

Proposition 6.1. 1) If ΩOKsep |OK
= 0, then ΩOL|OK′ = 0 holds for every finite

Galois extension (L|K ′, v).
2) If (K ′, v) is a deeply ramified field, then so is (K, v).

Proof. 1): Assume that ΩOKsep |OK
= 0. By part 1) of Theorem 5.3 this implies that

ΩOL|OK
= 0 for every finite Galois extension (L|K, v). In all cases, (K ′|K, v) is a

finite Galois extension, possibly trivial. Take any finite Galois extension (L|K ′, v),
let N be the normal hull of L|K, and take any extension of v to N . Then (N |K, v)
is a finite Galois extension, so we have ΩON |OK

= 0. Since also (N |K ′, v) and
(K ′|K, v) are finite Galois extensions, Theorem 5.2 shows that ΩON |OK′ = 0. Fi-
nally, since (N |L, v) and (L|K ′, v) are finite Galois extensions, Theorem 5.2 shows
that ΩOL|OK′ = 0.

2): This follows from [13, Theorem 1.8]. □
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We split Theorem 1.2 into the following two propositions, which we will prove
separately. In view of Proposition 6.1 it suffices to prove them under the assumption
that K contains a primitive p-th root of unity if charK = p > 0, i.e., K = K ′.

Proposition 6.2. If ΩOKsep |OK
= 0, then (K, v) is a deeply ramified field.

Proposition 6.3. If (K, v) is a deeply ramified field, then ΩOKsep |OK
= 0.

One of the implications of Theorem 1.3 will be proved in Proposition 6.5, and
the other in Proposition 6.6.

6.1. Proof of Proposition 6.2.

We will need some preparations. If the valued field (K, v) is of characteristic 0
with residue characteristic p > 0, then we decompose v = v0 ◦ vp ◦ v, where v0 is
the finest coarsening of v that has residue characteristic 0, vp is a rank 1 valuation
on Kv0 , and v is the valuation induced by v on the residue field of vp (which
is of characteristic p > 0). The valuations v0 and v may be trivial. Note that
while it makes no sense to compose the valuations as functions, in this notation
the valuations are interpreted as their associated places (as we have done before by
writing “Kv”): in this way, Kv = K(v0 ◦ vp ◦ v) = ((Kv0)vp)v. For simplicity, we
will write v0vp for v0 ◦ vp and vpv for vp ◦ v. In our decomposition, the valuation vp
is at the center, so we define crf (K, v) := (Kv0)vp as one may call it the “central
residue field”. In the equal characteristic case, we set crf (K, v) := Kv.

Now take any valued field (K, v) of residue characteristic p > 0. We will use the
following observation; we note that CvK(vp) was denoted by (vK)vp in [13].

Proposition 6.4. If K = K ′ and CvK(vp) is p-divisible, Kv is perfect and all
Galois extensions (L|K, v) of prime degree p with nontrivial defect satisfy ΩOL|OK

=
0, then (K, v) satisfies (DRvr).

Proof. We will show that the assumptions imply that crf (K, v) is perfect. Then the
assertion follows from [13, Proposition 4.13] since by [2, Theorem 1.4], all Galois
extensions (L|K, v) of prime degree p with nontrivial defect that satisfy ΩOL|OK

= 0
have independent defect in the sense of [13, 2].

In the equal characteristic case, crf (K, v) = Kv and there is nothing to show.
So we assume that (K, v) has mixed characteristic. Take any nonzero element of
crf (K, v); it can be written as bv0vp with b ∈ K. Consider the extension K(η)|K
with ηp = b. We have that ηv0vp is a p-th root of bv0vp in crf (K(η), v).
Suppose that bv0vp does not have a p-th root in crf (K, v), so K(η)|K is a Kum-

mer extension of degree p. Then (K(η)v0vp|Kv0vp is purely inseparable of degree p.
It follows that v0vpK(η) = v0vpK and that (K(η)|K, v0vp) and (K(η)v0vp|Kv0vp, v̄)
are unibranched. Consequently, (K(η)|K, v) is unibranched. Further, as CvK(vp)
and thus also v(Kv0vp) is p-divisible, we have v(K(η)v0vp) = v(Kv0vp) and there-
fore, vK(η) = vK. Moreover, K(η)v = K(η)v0vpv̄ is a purely inseparable exten-
sion of Kv = Kv0vpv̄ and since Kv is perfect, we find that K(η)v = Kv. Thus
(K(η)|K, v) is an extension with nontrivial defect. Since (K, v) is an indepen-
dent defect field, the defect must be independent. Hence by [2, condition b) of
Theorem 1.8],

v(b−Kp) =
p

p− 1
vp− {α ∈ pvK | α > H}
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for some convex subgroup H of vK that does not contain vp, so also does not
contain p

p−1vp. It follows that there is some a ∈ K such that v(b − ap) > vp,

whence (b − ap)v0vp = 0. This shows that (av0vp)
p = bv0vp, so that bv0vp has a

p-th root in crf (K, v), which contradicts our assumption.
We have now proved that crf (K, v) is perfect, as desired. □

Now we are ready to prove one part of Theorem 1.3:

Proposition 6.5. If K = K ′ and if ΩOL|OK
= 0 for all unibranched Galois exten-

sions (L|K, v) of prime degree p, then (K, v) is a deeply ramified field.

Proof. We first deal with the equal characteristic case. In this case, CvK(vp) = vK.
Suppose that vK is not p-divisible and take some a ∈ K such that va /∈ pvK. We
may assume that va < 0. Take ϑ ∈ Ksep such that ϑp − ϑ = a. Then pvϑ = va
and (K(ϑ)|K, v) is an Artin-Schreier extension with e (K(ϑ)|K, v) = p. Hence by
Theorem 4.6, ΩOK(ϑ)|OK

̸= 0, contradiction. Thus CvK(vp) = vK is p-divisible, and

in particular, (DRvg) holds.
Suppose that Kv is not perfect, and take b ∈ O×K such that bv does not have a

p-th root in Kv. Take c ∈ K such that vc < 0 and ϑ ∈ Ksep such that ϑp−ϑ = cpb.
Then (K(ϑ)|K, v) is an Artin-Schreier extension with K(ϑ)v = Kv(bv1/p). Hence
by Theorem 4.5, ΩOK(ϑ)|OK

̸= 0, which again is a contradiction. HenceKv is perfect.

Now Proposition 6.4 shows that also (DRvr) holds and consequently, (K, v) is a
deeply ramified field.

Now we deal with the mixed characteristic case. If we are able to show that
(K, v) satisfies (DRvg), CvK(vp) is p-divisible and Kv is perfect, then we can as
before apply Proposition 6.4 to obtain again that (K, v) is a deeply ramified field.
Suppose that there is an archimedean component of vK which is discrete. Pick

a ∈ K such that va < 0 and va + C+
vK(va) is the largest negative element in

AvK(va). Take η ∈ Ksep such that ηp ∈ K with vηp = va. Then vη+C+
vL(vη) is the

largest negative element in AvL(vη), not contained in AvK(pvη), and (K(η)|K, v)
is a Kummer extension with e (K(η)|K, v) = p. It follows that (vK(η)/C+

vL(vη) :
vK/C+

vK(pvη)) = p, hence we must have C+
vL(vη) = C+

vK(pvη). Therefore, E is of
type (DL2c) with HE = C+

vL(vη), so ME is a principal OE -ideal. From case i) of
Theorem 4.8 we now infer that ΩOK(η)|OK

̸= 0, contradiction.

Suppose that CvK(vp) is not p-divisible and take some a ∈ K such that va ∈
CvK(vp)\p CvK(vp) . We may assume that va < 0. Take η ∈ Ksep such that ηp = a.
Then pvη = va and (K(η)|K, v) is a Kummer extension with e (K(η)|K, v) = p.
We have that vIη ∩ CvL(vp) ̸= ∅. This implies that vp /∈ HE , whence p ∈ ME .
Again from case i) of Theorem 4.8 we conclude that ΩOK(η)|OK

̸= 0, contradiction.

Suppose that Kv is not perfect, and take b ∈ O×K such that bv does not have a
p-th root in Kv. Take η ∈ Ksep such that ηp = b. Then (K(η)|K, v) is a Kummer
extension with K(η)v = Kv(bv1/p). Hence by Theorem 4.7, ΩOK(η)|OK

̸= 0, which

is again a contradiction. This finishes the proof that (K, v) is deeply ramified. □

Now Proposition 6.2 follows from Proposition 6.5 in conjunction with part 1) of
Proposition 6.1.
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6.2. Proof of Proposition 6.3.

We first observe:

Proposition 6.6. Take a deeply ramified field (K, v) such that K = K ′, and a
unibranched Galois extension (L|K, v) of prime degree. Then ΩOL|OK

= 0.

Proof. In view of Theorem 1.4, we only have to deal with the case of defectless
extensions.

Assume that charK = p and (L|K, v) is an Artin-Schreier extension of degree p.
We have that vK is p-divisible and Kv is perfect by [13, Lemma 4.2]. Thus, the
case of e (L|K) = p cannot appear and we must have that f (L|K) = p with the
extension Lv|Kv separable. Hence ΩOL|OK

= 0 by Theorem 4.4.

Assume that (L|K, v) is a Kummer extension of prime degree q = f (L|K). Again,
Lv|Kv is separable, so ΩOL|OK

= 0 by Theorem 4.4.

Finally, assume that E = (L|K, v) is a Kummer extension of prime degree q =
e (L|K). Since each archimedean component of the deeply ramified field (K, v) is
dense, the same holds for all archimedean components of vL. This shows that E is
not of type (DL2c), so ME is a nonprincipal OE -ideal.

If q ̸= charKv, then vq = 0 implies that q /∈ ML and hence q /∈ ME . From case
i) of Theorem 4.8 we now obtain that ΩOL|OK

= 0.
If q = charKv, then necessarily charK = 0. By [13, part (1) of Lemma 4.3],

CvK(vq) is q-divisible. If case ii) of Theorem 4.8 would apply, then by (4), 0 <
v(η − 1) < v(ζq − 1) = vq

q−1 with v(η − 1) /∈ vK, whence v(η − 1) ∈ CvL(vq) and

(CvL(vq) : CvK(vq)) = q. As this contradicts the fact that CvK(vq) is q-divisible, case
ii) cannot appear and moreover, vq ∈ HE and thus q /∈ ME since CvL(vq) = CvK(vq).
By case i) of Theorem 4.8 we conclude that ΩOL|OK

= 0. □

Take any deeply ramified field (K, v). By [13, Corollary 1.7 (2)], also the
henselization (K, v)h of (K, v) inside of (Ksep , v), for any of the conjugate ex-
tensions from v from K to Ksep , is a deeply ramified field. By Proposition 5.10
it suffices to prove that ΩOKsep |O

Kh
= 0. We may therefore assume from the start

that (K, v) is henselian.
Part 1) of Theorem 5.3 shows that in order to prove that ΩOKsep |OK

= 0 it
suffices to prove that ΩOL|OK

= 0 for all finite Galois subextensions (L|K, v) of
(Ksep|K, v). Proposition 4.1 shows that after enlarging (L|K, v) to a finite Galois
extension (M |K, v) if necessary, there is a tower of field extensions

K ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mm = M

where M0 is the inertia field of (M |K, v) and each extension Mi+1|Mi is a Kummer
extension of prime degree, or an Artin-Schreier extension if the extension is of
degree p = charK. By part 2) of Theorem 5.3, to prove that ΩOM |OK

= 0 it
suffices to prove that ΩOMi+1

|OMi
= 0 for 0 ≤ i ≤ m− 1. By Theorem 1.5, (Mi, v)

is a deeply ramified field for each i, hence ΩOMi+1
|OMi

= 0 by Proposition 6.6. We

have shown that ΩOM |OK
= 0.

Since M |K is a Galois extension, so is M |L. Hence we can apply Theorem 5.2
to conclude that ΩOL|OK

= 0. This completes our proof of Theorem 1.2.
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