KAHLER DIFFERENTIALS OF EXTENSIONS OF VALUATION
RINGS AND DEEPLY RAMIFIED FIELDS

STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

ABSTRACT. Assume that (L,v) is a finite Galois extension of a valued field
(K, v). We give an explicit construction of the valuation ring Of, of L as an O-
algebra, and an explicit description of the module of relative Kahler differentials
Qo,|0x When L|K is a Kummer extension of prime degree or an Artin-Schreier
extension. The case when this extension has nontrivial defect was solved in
a recent paper by the authors with Anna Rzepka. Using this description, we
characterize when Qo |0, = 0 holds for an arbitrary finite Galois extension
of valued fields. As an application of these results, we give a simple proof of a
theorem of Gabber and Ramero, which characterizes when a valued field is deeply
ramified. We further give a simple characterization of deeply ramified fields with
residue fields of characteristic p > 0 in terms of the Kéahler differentials of Galois
extensions of degree p.

1. INTRODUCTION

The main goal of this paper is to study for algebraic extensions of valued fields
the relation between their properties and the vanishing of the Kéhler differentials
of the extensions of their valuation rings.

By (L|K,v) we denote a field extension L|K where v is a valuation on L and K
is endowed with the restriction of v. The valuation ring of v on L will be denoted
by O, and that on K by Ok . Similarly, M and Mg denote the unique maximal
ideals of Op, and Og. The value group of the valued field (L, v) will be denoted by
vL, and its residue field by Lv. The value of an element a will be denoted by va, and
its residue by av. The rank of a valued field (K, v) is the order type of the chain of
proper convex subgroups of its value group vK. All of our results are for arbitrary
valuations; in particular, we have no restrictions on their rank or value groups.
Ranks higher than 1 appear in a natural way when local uniformization, the local
form of resolution of singularities, is studied. Deeply ramified fields of infinite rank
appear in model theoretic investigations of the tilting construction, as presented
by Jahnke and Kartas in [10]. Therefore, we do not restrict our computations to
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rank 1, thereby indicating how Kahler differentials and their annihilators can be
computed in higher rank.

By Qg4 we denote the Kahler differentials, i.e., the module of relative differen-
tials, when A is a ring and B is an A-algebra. In [5], we prove:

Theorem 1.1. Take an algebraic field extension LI K of degree n, a normal domain
A with quotient field K and a domain B with quotient field L such that B|A is an
integral extension. Assume that there exist generators b, € B of L|K, which are
indezed by a totally ordered set S, such that A[b,] C Albg| if a < B and

(1) U A = B

Further assume that there exist an,a3 € A such that ag | a, if « < [ and for
a < B, there exist co 3 € A and expressions

Qo
(2) ba = —bﬁ + Ca,B -
ag

Let h, be the minimal polynomial of b, over K. Take U and V to be the B-ideals
U= (ag|a€el) and V = (h(by)]a€Ss).
Then we have a B-module isomorphism
(3) Qpa =2 U/UV.

For the case where A = Ok and B = Oy, for arbitrary v € S the isomorphism
(3) yields a B-module isomorphism

w,0,)

n—1
a’Y

(4) Qo0 = UMU™  with b =

The annihilator of U/UV and thus of Qo, |0, is determined in [5, Proposi-
tion 4.2]. If b € L and h is its minimal polynomial over K, then h'(b) is called
the different of b. Hence V is the Op-ideal generated by the differents of all b, .
It is shown in [5, Proposition 4.4] that it is in fact the Op-ideal generated by the
differents of all elements in Oy, .

Take a Galois extension (L|K,v) of prime degree p. If char K = p, then L|K is
an Artin-Schreier extension, otherwise it is a Kummer extension if K contains all
p-th roots of unity. In [5] and the present paper, for all Artin-Schreier extensions
and Kummer extensions of prime degree, we give explicit computations of Oy, as
an Og-algebra in the form of (1) and use Theorem 1.1 to determine the Kéhler
differentials Qo, |0, as well as their corresponding annihilators. For these types of
extensions the computation of Qo, |0, is achieved in [5, Theorems 4.5 and 4.6] under
the assumption that they have nontrivial defect, which in this special case means
that (vL : vK) =1 = [Lv : Kv]. In Sections 4.3 to 4.7 of the present paper, the
Kahler differentials and their annihilators are computed under the assumption that
the extensions are unibranched and defectless, which means that the extension
of v from K to L is unique and [L : K] = (vL : vK)[Lv : Kv] holds. Traces and
Dedekind differents for the extensions have been determined in [5] in the case of
nontrivial defect, and will be determined in a subsequent paper [16] for the case of
defectless extensions. In order to obtain equation (1) of Theorem 1.1, the results
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of Section 3.1 are used, in which we determine how in the cases considered in the
present paper the valuation ring O can be generated as an Og-module. For the
computation of the ideals V' in Sections 4.3 to 4.7, the differents of the generators
b, we will use there are computed in Section 3.2.

If the extension (L|K,v) is not unibranched, then it is an inertial extension since
it is Galois of prime degree. Proposition 5.6 of this paper (which relies on [25,
Chapter X, Theorem 1]) then shows that Op|Ok is locally étale. Hence, as ex-
plained in the paragraph before Proposition 5.6, it follows that Oy, is a localization
of a finitely presented étale Og-algebra and that Qo, 0, = 0.

After these preparations, we prove in Section 5 a criterion for the vanishing of the
Kahler differentials for arbitrary finite Galois extensions; see part 2) of Theorem 5.2.
Finally, in Section 6 all of these results are combined into the proof of Theorem 1.2
that we will present now.

Take a valued field (K, v) with valuation ring O . Choose any extension of v
to the separable-algebraic closure K*® of K and denote the valuation ring of K*?
with respect to this extension by Ogser . Note that Qo,.., 0, does not depend on

the choice of the extension. Gabber and Ramero prove the following result (see [8,
Theorem 6.6.12 (vi)]):

Theorem 1.2. For a valued field (K,v),

(5) Qoo = 0
holds if and only if it satisfies the following:

(DRvg) whenever 'y C T'y are convex: subgroups of the value group vK, then T'y /T
is mot isomorphic to Z (that is, no archimedean component of vK 1is discrete);

(DRuwvr) if char Kv = p > 0, then the homomorphism
(6) O /pOk 3 — 2P € Ok [pOy
is surjective, where O denotes the valuation ring of the completion K of (K,v).

We define a nontrivially valued field (K, v) to be a deeply ramified field if the
equivalent conditions of the theorem hold. In [15], related classes of valued fields
are introduced by weakening or strengthening condition (DRvg).

Theorem 1.2 and the papers [31, 32] of Thatte were the motivation for our work
in the present paper and in [5].

Note that by definition, perfectoid fields have rank 1, meaning that their value
groups admit an order preserving embedding in the ordered additive group of the
reals. In this case, condition (DRvg) just says that the value group has no smallest
element. Consequently, when using (DRvg) and (DRvr) for the definition of deeply
ramified fields, it is immediately seen that every perfectoid field is a deeply ramified
field.

The proof of Theorem 1.2 in [8] is a demonstration of the power of the techniques
of “almost mathematics”, and uses most of the theory developed in [8]. Their proof
is by reduction to the rank 1 case, where the techniques of “almost mathematics”
are most applicable.

Our alternative proof of Theorem 1.2 in the present paper uses only methods
from valuation theory and commutative algebra, and does not rely on techniques
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or results from “almost mathematics”. We make no assumptions on rank in our
proof. We hope that our proof makes this beautiful theorem accessible to a wider
audience. Further, our proof yields the following additional result:

Theorem 1.3. Let (K,v) be a valued field of residue characteristic p > 0. If K
has characteristic 0, then assume in addition that it contains all p-th roots of unity.
Then (K,v) is a deeply ramified field if and only if Qo, 0, = 0 for all unibranched

Galois extensions (L|K,v) of prime degree p.

For the purpose of the proof of Theorem 1.2, by “deeply ramified field” we will
mean valued fields that satisfy the conditions (DRvg) and (DRvr). From [15, part
(1) of Theorem 1.10] together with [5, Theorem 1.4] we obtain:

Theorem 1.4. Take a deeply ramified field (K,v) with char Kv = p > 0; if
char K = 0, then assume that K contains all p-th roots of unity. Then every
Galois extension (L|K,v) of degree p with nontrivial defect satisfies Qo, 0, = 0.

This result will be complemented in the present paper by showing that for a
deeply ramified field (K, v), every unibranched defectless Galois extension (L|K, v)
of prime degree p satisfies (2o, |0, = 0. Then Section 5 connects our results for
Galois extensions of prime degree with Qo ..,j0,. There, the main approach is the
study of Kahler differentials of towers of Galois extensions. In order to go upward
through such towers, we make use of [15, Theorem 1.5]:

Theorem 1.5. Every algebraic extension of a deeply ramified field is again a deeply
ramified field.

It should be noted that while in [8], Theorem 1.5 is derived from Theorem 1.2,
the proof presented in [15] is different and purely valuation theoretical. Further,
Theorem 1.5 also holds for the roughly deeply ramified and the semitame fields
that are introduced in [15].

In [24], Novacoski and Spivakovsky use the theory of key polynomials to derive
a presentation of Qo, |0, for finite pure extensions (L|K,v) under the condition
vL = vK. Applying this presentation to Artin-Schreier and Kummer extensions,
they derive results similar to ours in [5] and in this paper. Recently they also dealt
with the case of vL # vK by a different approach, not based on the use of key
polynomials. See also [21, 22].

To conclude this introduction, let us give some interesting examples.

Example 1.6. Choose a prime p > 2. The field K = Q,(p'/?" | n € N), equipped
with the unique extension of the p-adic valuation of Q,, is known to be a deeply
ramified field. The extension (K(/p)|K,v,) is tamely ramified, as (v,K(y/p) :
v,K) = 2. This construction is mentioned in [28, §4] as an example for an almost
étale extension.

By an application of Theorem 4.6 below, Qo, mlox = 0. The fact that this
holds in spite of the ramification is due to the value group v, K being dense, as it
is p-divisible.

Analoguously, we can consider the field K = F,((t))(t"/?" | n € N), equipped
with the unique extension of the t-adic valuation of F,((¢)). This field is a deeply
ramified field since it is perfect of positive characteristic. Again, the extension
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(K (V)| K,v) is tamely ramified as (v,K(v/t) : v,K) = 2, and v, K is dense. By

Theorem 4.6 below, QOK(\H)KOK =0.

Finally, here is an example of a Kummer extension (L|K,v) with wild ramifica-
tion and Q@L|(9K = 0.

Example 1.7. Take a prime p > 2 and set K = Q(¢,)(t"?" | n € N), where
(p is a primitive p-th root of unity. Let v, denote the p-adic valuation on Q((,)
and v; the t-adic valuation on K. Now consider the composition v := v; o v, on
K. Set L = K(t'/?) and extend v to L. Then (L|K,v) is a Kummer extension of
degree p with ramification index p = char Kv. Nevertheless, Theorem 4.6 shows
that Q@L‘@K =0.

2. PRELIMINARIES

2.1. Convex subgroups and archimedean components.

We take an ordered abelian group I'. Two elements a, 3 € I' are archimedean
equivalent if there is some n € N such that n|a| > |5] and n|5| > |af, where
la| := max{«a, —a}. Note that if 0 < a < 8 < na for some n € N, then «, §
and na are (mutually) archimedean equivalent. If any two nonzero elements of '
are archimedean equivalent, then we say that I' is archimedean ordered. This
holds if and only if I' admits an order preserving embedding in the ordered additive
group of the real numbers.

We call I" discretely ordered if every element in I' has an immediate successor;
this holds if and only if I' contains a smallest positive element. In contrast, I' is
called dense if for any two elements o < v in I" there is § € I" such that o < 5 < 7.
If I' is archimedean ordered and dense, then for every ¢ € N there is even some
B; € I" such that a < i8; < ; this can be easily proven via an embedding of I' in
the real numbers. Every ordered abelian group is discrete if and only if it is not
dense.

For v € T', we define Cr(7y) to be the smallest convex subgroup of I' containing
7, and for v # 0, C{f () to be the largest convex subgroup of I’ not containing 7.
Note that Cr(0) = {0}. The convex subgroups of I" form a chain under inclusion,
and that the union and the intersection of any collection of convex subgroups are
again convex subgroups; this guarantees the existence of Cr(v) and C{ (7).

We have that C{f (v) € Cr(v), and that C () and Cr(y) are consecutive, that is,
there is no convex subgroup of I' lying properly between them. As a consequence,

Ar(7) = Cr(7)/CE(7)

for v # 0 is an archimedean ordered group; we call it the archimedean compo-
nent of I' associated with v. Two elements o, 5 € I' are archimedean equivalent
if and only if
Cr(a) = Cr(P),

and then it follows that Ar(a) = Ap(f). In particular, Cr(a) = Cr(na) and
Ar(a) = Ar(na) for all « € T and all n € Z.

Assume now that I' is an ordered abelian group containing a subgroup A. We
say that A is dense in I if for any two elements a < v in I' there is § € A such
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that a < § < . If " is archimedean ordered, then so is A, and if in addition A is
dense, then it is dense in I', provided that A # {0}.

For every v € T, Cr(y) N A and C{(y) N A are convex subgroups of A; the
quotient Cr(y) N A/Cf(y) N A is either trivial or archimedean ordered. If « is
archimedean equivalent to § € A, then this quotient is equal to Aa(9).

For each § € A the function given by

Aa(8) 3 a +CL(6) = a+Ct(d) € Ar(d)

is an injective order preserving homomorphism. This follows from the fact that
the kernel of the homomorphism Ca () > a — a + C{(§) € Ap(d) is the convex
subgroup C4(8) = Cf(6) N A. In abuse of notation, we write Aa(6) = Ar(9) if this
homomorphism is surjective.

We show that the two properties mentioned in condition (DRvg) are equivalent:

Lemma 2.1. The following statements are equivalent:
a) no archimedean component of the ordered abelian group T is discrete,

b) whenever I'y C T'y are convex subgroups of I', then I's /T’y is not isomorphic to Z.

Proof. a)=b): Assume that I'y C I'y are convex subgroups of I' such that 'y /"] =
Z. Let v+ I'y be the smallest positive element of I'y/T'y, where v € I'y. Then
[y = Cf () and Cr(v)/Cft () has smallest positive element v+T'y , hence is discrete.
So assertion a) does not hold.

b)=-a): Suppose that there is an archimedean component Cr(v)/C; (7) of T’ which
is discrete. Take I'y = Cr(7y) and I'y = C{'(7) to find that assertion b) does not
hold. 0

2.2. Artin-Schreier and Kummer extensions.

We say that a valued field (K, v) has equal characteristic if char K = char Kv,
and mixed characteristic if char K’ = 0 and char Kv > 0. Every Galois extension
of degree p of a field K of characteristic p > 0 is an Artin-Schreier extension,
that is, generated by an Artin-Schreier generator v which is the root of an
Artin-Schreier polynomial X? — X —b with b € K. For every c € K, also ¥ — ¢
is an Artin-Schreier generator as its minimal polynomial is X? — X — b+ ¢? — c.
Every Galois extension of prime degree n of a field K of characteristic different
from n which contains all n-th roots of unity is a Kummer extension, that is,
generated by a Kummer generator 7 which satisfies n” € K. For these facts, see
[18, Chapter VI, §6].

A 1-unit in a valued field (K,v) is an element of the form v = 1 + b with
b € Mg ; in other words, u is a unit in Ok with residue 1. We note that if u is a
l-unit and if v(u — ¢) > vu = 0 for some ¢ € K, then also ¢ and ¢! are 1-units.
Conversely, if ¢ is a 1-unit, then v(u —¢) > 0.

Remark 2.2. Take a Kummer extension (L|K,v) of degree p of fields of charac-
teristic 0 with any Kummer generator n. Assume that vn € vK, so that there is
c¢; € K such that ve; = —vn, whence veyn = 0. Assume further that ¢inv € Ko,
so that there is c; € K such that cov = (cynpv) ™!, Then veaeyn = 0 and cocynv = 1.
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Furthermore, K(coc1n) = K(n) and (cocin)? = chdin? € K. Hence cocin is a
Kummer generator of (L|K,v) and a 1-unit.

Further, it follows that v(cec;n—1) > 0, whence v(n—(cac1)™1) = v(cacy) ™t = on.
Consequently, for ¢ := (cyc;)™' € K we have v(n —¢) > vn.

We will need the following facts. If (L|K,v) is a unibranched defectless extension
of prime degree p, then either e (L|K,v) = 1 and f(L|K,v) = p, or f(L|K,v) =1
and e (L|K,v) = p. For the next lemma, see e.g. [17, Lemma 2.1] and the proof of
[13, Theorem 2.19].

Lemma 2.3. If (L|K,v) is a finite unibranched defectless extension, then for every
element x € L the set

vix—K) = {v(xr—c)|ce K}

admits a mazimal element. If ¢ € K is such that v(z—c) is mazimal, then v(z—c) ¢
vK or there is some ¢ € K such that vé(x —¢) =0 and é(x — c)v ¢ Kv.

For the proof of the next lemma, see [5].

Lemma 2.4. Take a valued field (K,v), n € N, and a primitive n-th root of unity
(n € K. Then

(7) [Ta-¢) =n.

=1

If in addition n is prime, then
(8) (1 —G) =

Take a unibranched Kummer extension (L| K, v) of prime degree ¢ with Kummer
generator 7. Further, take ¢ € K and o # id in the Galois group Gal L| K. Then

wn

n—1"

(9) n—c—omn—c) =n—on =mnl-¢),
where (, is a primitive g-th root of unity. Hence if v(n —¢) > vn(1l — (,), then

vo(n—c) = v(n—c=n(l1=()) = minfv(n—c),vn(l=()} = vn(1=¢,) < v(n—c),

which shows that the extension is not unibranched. We have proved:

Lemma 2.5. Take a Kummer extension (L|K,v) of prime degree q with Kummer
generator 1. If the extension is unibranched, then for all c € K,

(10) v(n—c) < on(l—¢).

Lemma 2.6. Take a unibranched Kummer extension (L|K,v) of degree p = char Kv
with Kummer generator n. Then for all c € K,

vp
11 —c) < —.
(1) vin—c) < vn+ -
Assume in addition that £ (L|K,v) = p and ¢,¢ € K are such that vé(n —c) =0
and ¢(n — ¢)v generates the residue field extension Lv|Kv. Then Lv|Kwv is insepa-

rable if v(n —¢) < vn+ p”Tpl, and it is separable if and only if v(n —c) = vy + %.
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Proof. The first assertion follows from Lemma 2.5 together with equation (8).

Now assume the situation as in the second part of the lemma. Since L|K is a
Galois extension, Lv|Kwv is a normal extension, with its automorphisms induced
by those of L|K. Take o to be a generator of Gal L|K. Via the residue map, its
action on O induces a generator ¢ of the automorphism group of Lv|Kv. From
(9) we infer that

cn—c)—ocn—c) = nl-q).
It follows that & is the identity and hence Lv|Kwv is inseparable if and only if
ven(1 — ¢) > 0. This is equivalent to

. v
vin—c) = —vé < vn(l—-¢) = m]+prl.
Since v(n —¢) > v+ % is impossible according to (11), we can conclude that the
residue field extension is separable if and only if v(n — ¢) = vy + p’”_”l. OJ

Proposition 2.7. Take a Kummer extension (L|K,v) of prime degree ¢ # char Kv.

1) If {(L|K,v) = q, then there is a Kummer generator n € Of such that nv is a
Kummer generator of Lv|Kwv.

2) If e (L|K,v) = q, then there is a Kummer generatorn € L such that vy generates
the value group extension, that is, vL = vK + Zvn.

Proof. 1): Take a Kummer generator 7. Since f(L|K,v) = g, we have that vL =
vK. Therefore, as shown in Remark 2.2, we can assume that v = 0. The reduction
of the minimal polynomial of n over K to the residue field is X?—n%v with n%v # 0.
Suppose that this polynomial has a root in Kv. Since Gal Lv|Kwv is cyclic of prime
degree (generated by the reduction of a generator of Gal L|K), it follows that
X7 —n% splits. Hence its root nv lies in Kv and there is ¢ € K such that cv = nv.
It follows that v(n —c¢) > 0 = vn(1l — (), so by Lemma 2.5, (L|K,v) is not
unibranched. As this contradicts our assumption, X? — n? must be irreducible,
which means that nv generates the extension Lv|Kwv. Since n? € K, we have that
(nv)? € Ko, i.e., nu is a Kummer generator of Lv|Kuv.

2) Take a Kummer generator n. We will show that vn ¢ vK; as ¢ is prime, it then
follows that vL = vK + Zvn. Suppose that vn € vK. Since e (L|K,v) =q = [L:
K], we have that Lv = Kv. Thus as shown in Remark 2.2, there is some ¢ € K
such that v(n —¢) > vnp = vn(l — (,). As in the proof of part 1), this leads to a
contradiction. Hence vn ¢ vK, as asserted. U

Using Lemma 2.3, we prove:

Proposition 2.8. 1) Take a valued field (K,v) of equal positive characteristic p
and a unibranched defectless Artin-Schreier extension (LK, v).

If {(L|K,v) = p, then the extension has an Artin-Schreier generator ¥ of value
v < 0 such that for some ¢ € K, véd = 0 and Lv = Kuv(¢v); the extension
Lv|Kv is separable if and only if vd = 0 (in which case we can take ¢ = 1).

If e (L|K,v) = p, then the extension has an Artin-Schreier generator ¥ such that
v generates the value group extension, that is, v = vK + ZvvY. FEvery such v
satisfies v < 0.
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2) Take a valued field (K,v) of mized characteristic and a unibranched defectless
Kummer extension (L|K,v) of degree p = char Kv. Then the extension has a
Kummer generator n such that:

a) if £(L|K,v) = p, then either nu generates the residue field extension, in which
case it is inseparable, or n is a 1-unit and for some ¢ € K, ¢(n — 1)v generates the
residue field extension;

b) if e(L|K,v) = p, then either vn generates the value group extension, or n is a
1-unit and v(n — 1) generates the value group extension.

Proof. 1): Take any Artin-Schreier generator y of (L|K,v). Then by Lemma 2.3
there is ¢ € K such that v(y — ¢) ¢ vK or for some ¢ € K, vé(y —¢) = 0 and
¢(y —c)v ¢ Kv. Since p is prime, in the first case it follows that e (L|K,v) = p and
that v(y — ¢) generates the value group extension. In the second case, it follows
that f (L|K,v) = p and that ¢(y — ¢)v generates the residue field extension. In both
cases, ¥ = y — c is an Artin-Schreier generator.

Assume that f(L|K,v) = p and let ¥ — 9 =b € K. If v < 0, then v(d” —
b) = v > pvd = vIP, whence v((¢¥)? — éPb) = véP¥ > v(é¥)P and therefore,
(¢¥)Pv = bv € Kwv. In this case, the residue field extension is inseparable. Now
assume that v > 0 and hence also vb > 0. The reduction of X? — X —b to Kv[X]
is a separable polynomial, so Lv|Kv is separable. The polynomial X? — X — bv
cannot have a zero in Kwv, since otherwise the p distinct roots of this polynomial
give rise to p distinct extensions of v from K to L, contradicting our assumption
that (L|K,v) is unibranched. Consequently, bv # 0, whence vb = 0 and vd = 0.

Assume that e (L|K,v) =p and let 9? —9 =b € K. If v > 0, then vb > 0, and
Yv is a root of XP — X — bu. If this polynomial is irreducible, then Jv generates a
residue field extension of degree p, contradicting our assumption that e (L|K,v) =
p. If the polynomial is not irreducible, then it has a zero in Kv and similarly as
before, one deduces a contradiction. Hence we must have v < 0.

2): Take any Kummer generator y of (L|K,v). If there is a Kummer generator
n such that vn ¢ vK, then it follows as before that e (L|K,v) = p and that vn
generates the value group extension. Now assume that there is no such 7.

If there is a Kummer generator y and some ¢ € K such that vécy = 0 and
cyv ¢ Kuv, then it follows as before that f(L|K,v) = p and that éyv generates
the residue field extension. We set n = ¢y and observe that also 7 is a Kummer
generator. Since (nv)P € Kv, Lv|Kwv is purely inseparable in this case.

Now assume that the above cases do not appear, and choose an arbitrary Kum-
mer generator y of (L|K,v). Consequently, we have that vy € vK and cyv € Kv
for all ¢ € K with vecy = 0. Then as described in Remark 2.2, there are ¢q,c, € K
such that cyciy is a Kummer generator of (L| K, v) which is a 1-unit. We replace y
by cocqy.

By Lemma 2.3 there is ¢ € K such that v(y—c) is maximal in v(y— K) and either
v(y — ¢) ¢ vK or there is some ¢ € K such that vé(y —¢) = 0 and é(y — ¢)v ¢ Kwv.
Since y is a 1-unit, we know that v(y—1) > 0, hence also v(y—c¢) > 0 = vy, showing
that also ¢ is a 1-unit. Then n = ¢!y is again a Kummer generator of (L|K,v)
which is a 1-unit. Since ve = 0, we know that v(n — 1) = ve(n — 1) = v(y — ¢).
Hence if v(y — ¢) ¢ vK, then v(n — 1) generates the value group extension and we
are done.
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Now assume that there is some ¢ € K such that vé(y—c) = 0 and é(y—c)v ¢ K.
Since ¢ is a l-unit, it follows that vé(n — 1) = vée(n — 1) = vé(y — ¢) = 0 and
é¢(n—1)v = éc(n — 1)v = é(y — c)v. We find that é(n — 1)v generates the residue
field extension. O

3. GENERATION OF EXTENSIONS OF VALUATION RINGS

In this section we will assume that (L|K,v) is a finite unibranched defectless
extension and in various cases determine generators for the valuation ring Oy, as
an Og-algebra, and their properties.

3.1. Generating the Og-algebra O;.
We will consider finite extensions (L|K,v) of degree n that satisfy

[L:K] = [Lv:Kv] or |[L:K|= (vL:vK).

Such extensions are unibranched and defectless.
We consider the following two cases:

Case (DL1): [L : K] = [Lv : Kv|. In this case, we can choose elements
ai,...,a, € OF such that ajv,...,a,v form a basis of Lv|Kv. Then ay,...,a,
form a valuation basis of (L|K,v), that is, every element of z € L can be written
as

(12) z =ca+...+cpa, with vz = minvga;,
(]

and we have that vc;a; = ve; . Consequently, z € O if and only if ¢1,...,¢, € Ok .
This shows that
OL = OK[CL1, ce ,an] .

In the case where Lv|Kwv is simple, that is, there is £ € Lv such that Lv = Kv(§),
we can choose x € L such that zv = §; then 1,z,...,2" ! form a valuation basis
of (L|K,v). In this special case (which by the Primitive Element Theorem always
appears when Lv|Kwv is separable),

Case (DL2): [L : K] = (vL : vK). In this case, we can choose elements
ai,...,a, € L such that vay,...,va, form a system of representatives for the
distinct cosets of vL modulo vK. Then again, every z € L can be written in the
form (12). Consequently, z € Oy, if and only if ¢ja4,...,c,a, € Op. However, in
this case, c;a; € O does not imply that ¢; € O .

In what follows, we will analyze the special case where vL/vK is cyclic (which
always appears when n is a prime). This means that there is some 2y € L such
that nvxy € vK and vL = vK + Zvzg. In this special case, as in case (DL1),
1,70,..., 2y " form a valuation basis of (L|K,v), hence every element of L can
be written as a K-linear combination of these elements, and for every choice of
Cos---,Cn—1 € K>

v g ciTy = minve .
7
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Again, the sum is an element of Oy, if and only if all summands ¢;x{, are, but the
latter does not necessarily imply that ¢; € Op . We set

Ag = {ex) | c€ K* and 1 <i < n such that vez) > 0} .
(Note that ve = —vxf is impossible for 1 < i < n.) We obtain that
OL — OK [Ao] .
However, we wish to derive a much more useful representation of Oy, .

We consider vAg := {va | a € Ag} € vL>%\ vK. Since the set {1,...,n —1} is
finite, it contains at least one j such that {vcz} | ¢ € K* such that vez > 0} is
coinitial in vAy. We do not know whether j can always be chosen to be equal to
1; we will now present two cases where it can.

(DL2a): vK is i-divisible for all i € {2,...,n —1}. Take vz € Ay. Since vK is
i-divisible, there is ¢ € K such that ve; = tve. We obtain that ve'zy = veag > 0,
hence also vexg > 0. Consequently, ¢;zf, € Oklczo]. It follows that for x = x,

(14) O, = U Ok|cx] .

ceK with vcx>0

For all remaining cases, we assume that n is prime.

(DL2b): The convex subgroups of vK are well-ordered under inclusion and all
archimedean components of vK are dense; since L|K is finite, the same is true
for vL. From the former assumption it follows that there is a smallest convex
subgroup of vL that contains some element of Ay. Let c;,zf® be such an element.
Then C; (c;;x) N Ag = 0. As n is prime, there is k& € N such that igh = 1+ rn
for some r € Z, whence vexg = v(ciyzf)F > 0 for ¢ = £ b" where b € K with
vb = nvxy. Since 0 < c;y1l < v(ciprd)k
Cor(kv(ciyxy’)) = Cor(vexo). ' ‘ 4

Take any element ¢;zf, € Ag. If vzl & Cyr(vexy), then v(cxy)' = ivery < vexy,
whence ¢}y € Oglczo]. Hence assume that ve;zl € Cyr(very). By assumption,
A,k (nvexg) is dense, so it is dense in A, (vcxg). Denote by a the image of vezy,
and by [ the image of vciazé in A, (vexg). Note that both of them are positive,
and 0 <  implies that

i
= wcxg, we have that C,p(ve,xf) =

—ia < B —ix.
By the density of A,k (nvcxy) in A,r(vexg) there is ¢g € K such that the image
of vey in A, (vexy) satisfies

—a < 1y < [ —ia.
This leads to 0 < vcic'zl < vexh. Setting ¢ = coe, we obtain that 0 < vélx) <

vegrh, whence ¢zl € O [cxg] with véxry > 0 as desired. We have proved that also
in this case, (14) holds for z = .

Now assume that the above two cases do not apply; so we do not know whether
j can be chosen to be equal to 1. As n is prime, we know that L = K(z() = K(xg)
forall j € {1,...,n—1}. By assumption, vzy > 0, hence we also have that UQZ% > 0.
Thus we may replace zy by 7 = xé. (We set z7 = xg if j can be chosen to be
equal to 1.) We note that if zj € K, then replacing xo by ) in the definition of
Ag does not change Ag because if 1 < i < n, then ij = k+rn with 1 <k <n and



12 STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

r € 7, so that (z)) = (z2)"zk with (2})” € K. (A similar argument shows that
in this case, A is also closed under multiplication.) Even if zf ¢ K, we still have
that vz € vK, and our argument can be adapted to show that replacing zy by
.7:6 in the definition of Ay does not change the value set vAy. We just choose some
b € K such that vb = vz and replace (z2)"zk by b"zf.

Since n is assumed prime and (j,n) = 1, also vz; = v is a generator of the
value group extension and therefore, 1,2, ..., 27! form again a valuation basis of
(L|K,v). Thus we can replace Ay by

Ay == {ext | c€ K™ and 1 < i < n such that vez!, > 0},

and we again have that

OL - OK[Al] .
Claim: {vcx; | ¢ € K* such that vex; > 0} is coinitial in vA; . Indeed, take any
cxi € A;. Then by our above computation,

vert = we(z)) = veb"zk
with 0" € K and 1 < k < n. Since cb"zf € Ay, by our choice of j, there is ¢ € K

such that 0 < vd'z; = vz < veb"xk = vexd. This proves our claim.

Let us first assume the following case.

(DL2c): For all ¢ € K~ if A, (nvcxy) is discrete, then A, (vex;) = A,k (nvexy).
Then there is b € K such that the image of vb in A, (vczy) is the same as that of
vexy. Consequently, vex; —vb € Cf, (very). If very —vb < 0, we choose Y € K> with
vt € Cli(nv(vexy — vb)) large enough such that veb'b™'xy = vewy — vb + v > 0.
Setting ¢ = ¢b'b!, we can then assume that 0 < véz; € CJf} (vexy).

Assume as before that ve;a] > 0. By our claim, we know that there exists ¢ € K
such that 0 < very < vezal. If v(ex ) < vejr], then ¢jx] € Okleay] and we are
done. Otherwise, we proceed as follows.

Assume first that A, g (nvex;) is discrete. Then we can apply our above proce-
dure to replace ¢ by ¢ € K* such that 0 < véz; € C; (vexp). On the other hand,
ve;x] ¢ Cf) (vex). Tt follows that véa)] = juér, < ve;al, whence ¢;x] € Og[éx].

It remains to consider the case where the archimedean component of vcx is dense.
Then we can apply the same argument as in case (DL2b) to find ¢ € K such that
;) € Og[éx,]). We have proved that in this case, (14) holds for z = ; .

Now we consider the case where the assumption of (DL2c) does not hold, i.e.,
there is ¢ € K* such that A,k (nvcry) is discrete and A, (vexy) # Ayk(nvcxy).
Since n is assumed to be prime, we must have that (A, (vezy) @ Ay (nvezy)) = n.
Denote by a the smallest positive element of A,x(nvcr;); then € is the smallest
positive element of A, (very).

We will show that for some ¢ € K, the image of vézy in A,r(vexp) is equal to
% Since vr; generates the value group extension, there must be some ¢’ € K and
i € N with 1 < ¢ < n such that 2 is the image of véxr! in A,p(vexy). From our
claim we know that 0 < véz; < véx} for some ¢ € K. If equality holds, then we
are done. Suppose not; then it follows that vcz; € C, (vexy) = CJ; (véxl), so that
also ,

51

S osii +
v +wvéx] = vé'x] = wéxy € C)(vexy) .
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However, this implies that the image ¢ of véx} in A,z (vcx) is the same as that of
—v% and thus lies in A,k (nvczy), contradiction. Consequently, the image of vér
in A,z (very) is equal to 2.
Remark: Since the image of véry in A, (vexy) is o, for 1 <4 <n—1 the image
of v(¢zy)" in A,r(very) is less than «. As a consequence, every 3 € vK with
0 < B <wv(ézy)" must lie in C} (vexy) = Cfy (vexy).

Now we distinguish two further subcases of (DL2).
(DL2d): Cf,(vcxy) = 0. Take ¢;(¢zy)® € A;. By our above remark and our
assumption C:)FL(vcxl) = 0, there are no positive elements in vK smaller than
v(cwy)’; therefore, c;(Czy)" lies in Op if and only if ¢; € Ok . It follows that (13)
holds for x = ¢x;. This case appears when vK has a smallest element v and =z
can be chosen such that nvz = v. In particular, it always appears when (K, v) is
discretely valued.

(DL2e): Cf;(vexy) # 0, hence also C} (vex1) NwK # 0. For simplicity, we may
from now on write x; for ¢x; since also the powers of the latter generate a valuation
basis and it also satisfies our above claim.

Take ¢;z} € A;. If ve; > 0, then ¢zt € O[], and we are done. Thus we
assume that ve; < 0. Since ve;zt > 0, it follows that 0 < —wve; < twwy. By our
above remark, +vc; € Cf, (very). Choose ¢y € K such that vey € Cfj (vry) and
ey < ve;. Then vy al < wverd, showing that ¢z € Oglepxi]. On the other
hand, as ve, € C, (vry), we have that —vc, < vz and therefore, veyz; > 0. This
proves that (14) holds for x = z .

We summarize what we have shown in case (DL2):

Theorem 3.1. Take a unibranched defectless extension (L|K,v) of degree n =
e (L|K,v), with xy € L a generator of L|K such that vL = vK + Zvxy .

1) Assume that vK is i-divisible for all i € {2,...,n — 1}. Then (14) holds for
T =xg.

From now on, assume that n is prime.
2) Assume that the convex subgroups of v are well-ordered under inclusion and
that all archimedean components of vK are dense. Then (14) holds for x = x .
3) Assume that if « € vL \ vK such that A,x(na) is discrete, then A,p(a) =
Awe(na). Then (14) holds for x = x) with suitable j € {1,...,n —1}.
4) Assume that there is « € vL \ vK such that A,k (na) is discrete and A, (o) #
Auic(na). If CH (o) =0, then Op = Oklz] holds for x = éxl) with suitable ¢ € K*
and j € {1,...,n —1}. IfCl(a) # 0, then (14) holds with x = z, for some
jed{l,...,n—1}.

Summarizing, in all cases there is some j € {1,...,n — 1} such that

(15) O, = U Oxlexl] .
ceK with vcx6>0
Remark 3.2. If (K, v) is the absolute ramification field of some valued field (K, v)

of residue characteristic p > 0 and if n = p, then the divisibility condition of the
lemma is satisfied because vK is divisible by all primes other than p.
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Let us give an example which shows what may happen in case 4) of the theorem
when C; (a) = 0.

Example 3.3. Take a valued field (K, v) of characteristic p > 0 and assume that
7 € K has smallest positive value in vK. For 1 < m < p, take 9,, to be a root of
1
XP—X - —.
ﬂ-m
Then vd,, = —%vr and (K (J;,)|K,v) is unibranched with (vK(d;,) : vK) = p
and vK (V,,) = vK + Zv9,, . We have that —pvd,,, = mum. Since (m,p) = 1, there
are k, ¢ € 7 such that —¢m = 1 — kp. Here we can choose ¢ to be the least positive
inverse of —m modulo p. We obtain:

kpvr + {pvd,, = kpvm — fmom = vm,

whence
v

ot = kom 4+ i, = — .
p
This shows that the set A contains 7%9¢ as the element with smallest value, and

J must be equal to £. We see that ¢ = 1 occurs only for m =p — 1.

The rings Ok|cz] form a chain under inclusion with the following property.
Proposition 3.4. For any x € L and all ¢1,¢c5 € K,
Oklaiz] € Okleax] < vey < wvey .

Proof. Take ¢1,c3 € K. If veg < wey, then ¢z = Legw € Ofk|cax], hence Ok [cix] C
Ogk|[cax]. Conversely, if the latter holds, then ¢;z € Og[cax]. Since the elements
1,com,. .., (cox)" ! form a valuation basis of (L|K,v), it follows that c;z = deow
with i—; € Ok , whence vey < wvey .

From our results in this section we also obtain:

Corollary 3.5. Take a unibranched defectless extension (L|K,v) of prime degree
n. Then there is x € L such that (14) holds, 1,z, ..., 2" " is a valuation basis, and
for every a € My, there is ¢ € K such that a O, C Og|cx].

Proof. The existence of an element x satisfying the first two assertions follows from
our computations leading up to Theorem 3.1. We prove the last assertion. Write
a =" eat Since 1,z,...,2" " is a valuation basis, ve;zt > va for all i. We
know that there is some c(i) € K with ¢;z' € Oglc(i)x], which is equivalent to
ve(i)'at < vez'. Then every term da’ of value at least va lies in K[c(i)z]. Now
choose ¢ to be the element ¢(iy) for which ve(ig) = min; ve(7).

Take any element b € a Oy, that is, vb > va. Write b = Z;:Ol ciz’. Then
vea® > vb > wa for all i. By our choice of ¢, diz' € Oklcx] for all i. This shows
that a O, C Oklcz]. O
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3.2. Differents of generators for Artin-Schreier and Kummer extensions.

In the case of Artin-Schreier and Kummer extensions (L|K,v) with Galois group
G we have sufficient information about the minimal polynomials f of the various
generators x we have worked with in the previous sections, or equivalently, about
their conjugates, to work out the values v f'(x) of their differents f’(z). In order to
do this, we can either compute f’, or we can use the formula

(16) fa)y = J[ @-oa).
oeG\{id}

We keep the notations from the previous sections.

3.2.1. Artin-Schreier extensions.

Take an Artin-Schreier polynomial f with 9 as its root. Then its minimal polyno-
mial is f(X) = X? — X — 9P + ¢ with f'(X) = —1, whence

(17) () =—-1.
For ¢ € K*, denote by f. the minimal polynomial of ¢tJ. Then
(18) filer)y = ] (@ —ocd) = f(W) = -
oeG\{id}

Lemma 3.6. Tuke a unibranched Artin-Schreier extension (L|K,v) of prime degree
p. Assume that {(L|K,v) = p. The extension Lv|Kwv is purely inseparable if and
only if (L|K,v) admits an Artin-Schreier generator 9 of value v < 0. In this case,
for each element ¢ € K* such that véd = 0, we have that O, = Ok[éd] and

(19) fi@o, = &'toy.
Proof. All assertions follow from part 1) of Proposition 2.8, case (DL1) and (18).
O

Lemma 3.7. Take a unibranched Artin-Schreier extension (L|K,v) of prime degree
p. Assume that e (L|K,v) = p. Then (L|K,v) admits an Artin-Schreier generator
Y of value v < 0 such that vL = vK + Zv?9, and there is j € {1,...,p — 1} such
that

(20) O, = U Ok le?].
c€K X with veti >0
Denote the minimal polynomial of ¢’ by h;.. Then we have the equality
(21) (M () | ¢ € K* with ved? >0) = 1P~
of Or-ideals, where
I = (e’ ! |ce K* withvet’ > 0) .

Proof. The existence of such ¥ and j follows from part 1) of Proposition 2.8 together
with Theorem 3.1. We compute:

]
i=1

W o = et~ (1)) = e~ @+ k) = e3> (1) ok
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for suitable k € F7. The summand of least value in the sum on the right hand side
is the one for ¢ = 1. Using (16), we obtain:

(22) vhj () = (p = D(ve’ ™),

which for j = 1 coincides with (18). This proves (21). O

3.2.2. Kummer extensions.

Take a Kummer polynomial f of degree ¢ with 1 as its root. Then f(X) = X7 —n?
and f'(X) = ¢X77!, whence

(23) fim) = an.

Lemma 3.8. Take a unibranched Kummer extension (L|K,v) of degree p = char Kv.
Assume that f(L|K,v) = p. Then there exists a Kummer generator n € L such

that vn = 0, Lv = Kv(nv) and Or = Ok|[n], orvé(n—1) =0, Lv = Kv(é(n—1)v)

and Or, = Oklé(n — 1)) for suitable ¢ € K*. In the first case, vn = 0, Lv|Kwv is

inseparable, and

(24) f'(mOL = pOy, .

holds for f the minimal polynomaial of n.
In the second case, 0 is a 1-unit, vé(n — 1) =0, and

(25) he(e(n —1)O0, = p&@~'0y,

holds for hz the minimal polynomial of ¢(n—1). If Lv|Kwv is separable, then always
the second case holds.

Proof. The existence of such n and ¢, as well as the last assertion, follow from part
2) b) of Proposition 2.8. The equality (24) follows from (23). For the second case,
we compute, using (16) with o a generator of Gal L| K, together with (7),

hi(éin—1)) = | én—o'n) = p(en* ',

which yields equation (25). O

.
I

Lemma 3.9. Take a unibranched Kummer extension (L|K,v) of prime degree q.
Assume that e (L|K,v) = q. Then there are two possible cases.

a) There is a Kummer generator n € L such that vn < 0, vL = vK + Zvn, and
(26) Op = U Ok|en] .
ce K> with ven>0
Denote the minimal polynomial of cn by f.. Then we have the equality
(27) (f'(cn) | ¢ € K* with ven > 0) = ¢I*
of Or-ideals, where
I = (en|ce K* with ven > 0) .

If q # char Kv, then always this case a) holds, and the factor q can be dropped
in (27) since vg = 0.
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b) We have char K = 0, p = char Kv = q, and there is a Kummer generatorn € L,
which is a 1-unit, and j € {1,...,p — 1} such that for

n—1
28 f = T
2 -3
where (, a primitive p-th oot of unity, we have that v{ < 0, vL = vK + Zv&’, and
(29) OL - U OK[ij] .

cEK X with veti >0
Denote the minimal polynomial of c& by h;.. Then we have the equality
(30) (o (c€) | ¢ € K* with veg? > 0) = 17!
of Or-ideals, where
I = (c¢7 | ce K* with ve&? > 0).

If vK is k-divisible for all k € {2,...,n — 1}, or if the convex subgroups of vK
are well-ordered under inclusion and all archimedean components of vKK are dense,
then j can be taken equal to 1.

Proof. By part 2) of Proposition 2.7 and part 2) b) of Proposition 2.8, the extension
admits a Kummer generator 7 such that either vn < 0 and vn generates the value
group extension, or 1 is a 1-unit and v(n — 1) generates the value group extension;
moreover, the first case always holds if ¢ # char Kv. Let us first consider this case.

Applying Theorem 3.1 with zo = 7, we find that (26) holds with 7’ in place of
n for some j € {1,...,p — 1}. However, since also 7/ is a Kummer generator with
v’ < 0 and also v’ generates the value group extension, as j is prime to ¢, we
may replace n by 7.

As also ¢n is a Kummer generator, we can apply equation (23) to obtain that

(31) vfelen) = vg+(q—1)(ven)
which proves (27).

Now we consider the second case. Since L|K is a Kummer extension, K contains
a primitive p-th root of unity (,. By Lemma 2.6,
vp vp
vin—1) < m7+p_1 < 1 v(l—¢y) € vK.
Since v(n — 1) ¢ vK, inequality must hold. Hence with £ defined by (28), we have
v€ < 0. Further, applying Theorem 3.1 with xy = £, we find that (29) holds for
some j € {1,...,p—1}.

We note that v(1 — (,) = v(1 — ) for every primitive p-th root of unity ¢. We
set a :=n — 1. Then for every o € G, v(a —oa) = v(n —on) = v(l — ) > va. We
compute:

j—1 .
@ —od = a’ —(0ca) = a —(a+oa—a) = — (J>ai(aa —a)’".
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Since va < v(oa — a), the summand of least value in the sum on the right hand
side is the one for + = j — 1. Consequently,

W€ — o) = (e —ow) — ju(l = G) = (= Dva+v(a—oa) — ju(l = )

= (—Dva+v(l=¢)—jo(l=¢) = (G —D(va—v(l—-¢))
= p&t,

Hence, equation (16) shows that

(32) vhj(c€’) = (p—1)veg’™".

This proves equation (30). We note that I is an Op-ideal because v/~ > ved? as

v€ < 0.

The last assertion follows from Theorem 3.1. U

4. KAHLER DIFFERENTIALS FOR GALOIS EXTENSIONS OF PRIME DEGREE

4.1. Motivation.

We prove a proposition that will be a main tool for our handling of Kahler differ-
entials in the subsequent sections. It will provide a motivation for the calculation
of the Kahler differentials for Artin-Schreier extensions and Kummer extensions of
prime degree which will be dealt with in this section.

Given a Galois extension (L|K,v), we denote by (L|K,v)™ its inertia field (cf.
[7, Section 19]).

Proposition 4.1. Let (L|K,v) be a finite Galois extension. Then the following
assertions hold.

1) There ezists a tower of field extensions
(33) KcK"=K,CcK c---C K, =1L

where K™ = (L|K,v)™ and each extension K;y1|K; is a Galois extension of prime
degree. Note that if K is henselian then the extension K™v|Kwv is separable of
degree equal to [K™ : K].
2) Further, (L|K,v) can be embedded in a finite Galois extension (M|K,v) having
the following properties:

there exists a tower of field extensions
KcMycM,C---CM, =M,
(34) { where My = (M|K,v)™
and each extension M;,1|M; is a Kummer extension of prime degree,
or an Artin-Schreier extension if the extension is of degree p = char K.

Proof. 1): Set Ky := K™ := (L|K,v)™. Since the extension L|K™ is solvable
(cf. Theorems 24 and 25 on pages 77 and 78 of [34]), there exists a tower (33) of
Galois extensions such that each extension K; 1| K; is Galois of prime degree. The

assertions about the extension Kv|Kv are part of the general properties of inertia
fields.

2): If an extension K;;1|K; in the tower (33) is of degree p = char K, then it is
an Artin-Schreier extension. If it is of prime degree ¢ # char K, it is a Kummer
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extension if K; contains a primitive g-th root of unity. We will now explain how
to enlarge the extension (L|K,v) so that this will be the case for each extension of
prime degree ¢ # char K in a resulting new tower.

Assume that (K, v) is of characteristic 0 with char Kv = p > 0 and that some
extension K; |K; is Galois of degree p, but K does not contain a primitive p-th
root of unity. In this case we will have to replace tower (33) by a larger one. Let
(p denote a primitive p-th root of unity. Then K ((,)|K is a Galois extension, and
so is L((,)| K since L|K is assumed to be Galois.

Set K{ = (L(¢,)|K,v)™; then Ky = K™ C K[. As before, K}|K is Galois,
hence so are K{(¢,)|K and K{((,)|K{. By part 1) of our proposition, there exists
a tower of Galois extensions K; C K{ C --- C K], = K{((,) such that each
extension Kj |Kj is Galois of prime degree. Since [K((,) : K] < p, none of the
Galois extensions K, ,|K is of degree p. We observe that K| = (L((,)|K,v)™.

We replace the tower (33) by the tower
(35) Ky C Kl o C Kb = KyG) C KilG) C v C KalG) = L(G).

Now we have that if in mixed characteristic any extension in the tower (33) is
Galois of degree p = char Kv, then it is a Kummer extension.

In order to make sure that also all Galois extensions of prime degree ¢ # p in
the tower are Kummer extensions, we take ) to be the set consisting of all such
primes g. For every ¢ € (), we choose a primitive g-th root of unity ¢, and set
M = L({, | ¢ € Q). Every extension K((,)|K is Galois, so M|K is also a Galois
extension.

Let us show that for every g € @, ¢, lies in the inertia field of (M|K,v). The
reduction of X? — 1 modulo v is X? — 1v with 1v being the 1 in Kv. Since
q # char Kv, the polynomial X?— 1v has ¢ distinct roots. The minimal polynomial
f of {; over K divides X9 —1, so its reduction fv divides X?—1v and has therefore
only simple roots. It follows that if o € Gal M|K with o(, # (,, then (o(,)v #
¢,v, whence v(o(;, — (,) = 0. Hence every automorphism in the inertia group
{o € GalM|K | Vx € Oy : v(ox — ) = 0} must fix (,, which proves our claim.
It follows that My := Ko(¢, | ¢ € @) is the inertia field of (M|K,v). Finally, we
set M; == K;((, | ¢ € Q). By our construction, now also all extensions of prime

degree g # p in the tower are Kummer extensions. So we have obtained a tower as
described in (34). O

4.2. A basic calculation.

Let (L|K,v) be a unibranched algebraic extension. Let A C K be a normal domain
whose quotient field is K. Assume that z € L is integral over A and let f(X) be
the minimal polynomial of z over K. Then f(X) € A[X] (see [33, Theorem 4, page
260]). By the Gauss Lemma (see [30, Theorem A]), A[z] =2 A[X]/(f(X)). Thus,

(36) Qappa = [AX]/(F(X), F(X))]dX = [A[]/(f'(2))dX

by [19, Example 26.J, page 189] and [19, Theorem 58, page 187|. There is a
canonical derivation dapa : A — Qg4 defined by g(z) — ¢'(2)dX for g(X) €
A[X].
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4.3. Finite extensions (L|K,v) of degree [L : K| = {(L|K) with separable
residue field extension.

We denote the annihilator of an Op-ideal I by ann [.

Theorem 4.2. Take a finite extension (L|K,v) with Lv|Kv separable of degree
[Lv : Kv] = [L : K|]. Then Op = Oklz] for some v € L with vx = 0 and
Lv = Kv(zv), and we have

Qo0 =0,
and ann Qo, |0, = Op .
Proof. By (13), Or = Oklz] where x is a lift of a generator £ of Lv over Kv. Let
f(X) € K[X] be the minimal polynomial of 2 over K. As deg f = [L: K] = [Lv :
Kw], the reduction f of f in Kv[X] is the minimal polynomial of { over Kv. We

have that f'(z)v = f'(§) which is nonzero since ¢ is separable over Kv. Thus f’'(x)
is a unit in O, . By (36), Qo, 0, = OL/(f' (o)) = 0. O

We note that this theorem always applies when (L| K, v) is a Kummer extension
of prime degree ¢ = f(L|K') # char Kv since then Lv|Kwv is separable.

4.4. Artin-Schreier extensions (L|K,v) of degree p with f(L|K) = p and
inseparable residue field extension.

By Lemma 3.6, there exists an Artin-Schreier generator ¢ of value v < 0 and an
element ¢ € My such that v(¢d) = 0 and Op = Ogl[c¥]. Let fz be the minimal
polynomial of ¢ over K. By (19), f4(c¥)Or = ¢ 1Or # Oy,

Now we obtain from (36):

Theorem 4.3. Take an Artin-Schreier extension (L|K,v) of degree p = {(L|K) =
char K with Lv|Kv inseparable. Then we have

Qo,j0x = 0L/ (@)

as an Op-module. Consequently, Qo, 0, # 0 and annQe, |0, = (~'). Hence,
ann Qo, |0, = My if and only if p =2 and My = (¢).

4.5. Artin-Schreier extensions (L|K,v) of degree p with e (L|K,v) = p.
By Lemma 3.7, there exists an Artin-Schreier generator ¥ of value v < 0 such
that vL = vK + Zvv, and j € {1,...,p — 1} such that equation (20) holds.

Theorem 4.4. Take an Artin-Schreier extension (L|K,v) of degree p = e (L|K),
and a generator ¥ as described above. Then

(37) Qoyjo = 1/17.
as an Op-module, where I is the Op-ideal
I = (""" |ce K withved’ >0).
In particular,

Qojox # 0
and ann Qo, |0, # My .
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Proof. By Proposition 3.4, the Ox-algebras Ok [ci], for ¢ € K with vet? > 0, form
a chain such that O[c;97] C Oklex’] if and only if ¢1,co € K* with vey; > wve;
we have that c;¥V = z—;cﬂj . Let h;. be the minimal polynomial of ¢,

We will apply Proposition 1.1. Let A= O, B =0 and S = {a € K | va)’ >
0} ordered by a < f if va > vf3. For a € S, set b, = ¥, a, = @, cop5 = 0.
The polynomial h, appearing in Proposition 1.1 is the minimal polynomial h;
of a¥’ over K. With the notation of Proposition 1.1, U = (o | a € S) = 9771,
and V = (1} ,(ba) | @ € S) = I""! by equation (21). Hence by Proposition 1.1,
Qoo 2U/UV = 1/17.

We turn to the proof of Qo, |0, # 0. We set 7 := v < 0 and let A,.(7) be the
archimedean component of 7 in vL. We have a natural order preserving inclusion
A,k (pT) C Ayr(7) (see Section 2.1).

Assume first that A, x (p7) is dense in A,z (7), and write 7 := 74+C, (1) € A,(7).
Since 7 < 0, there exists 7 € A,k (p7) such that

(38) —pT >+ (G-1)T > —7.
Hence for ¢ € K with ve+C/, (1) =,
(39) —pvd > vt >~

We observe that c¢¥’~! € I if and only if ve’ ! > —v. Thus the right hand
inequality in (39) shows that ¢/~! € I, and the left hand inequality in (39) shows
that ¢~ ¢ IP. Hence I # I? in this case.

Now assume that A,x(p7) is not dense in A,L(7), so that A,x(pr) and hence
also A, (7) is discrete. Choose some ¢ € K such that vc = —pvd). Then vl =
(7 —p)vd > 0,580 c¥ ' €I and ve! ™t = (5 —1—p)vd € C,r(7). Thus, the image
of vINCyp(7) in A, (7) is a nonempty set of non-negative elements. Hence there
must exist some ¢y € K such that vco?~! + C; () is its minimal element, with
co’~! € I. Suppose that there is some ¢’ ! € I such that pve’ ! < veg¥’—1. By
what we observed earlier, v’ ! > —v) = —7 > 0; this together with the previous
inequality yields that ve’ ™ € C,1(7) and that ve ' +Cf, (7) is a positive element
in A,.(7). We obtain that

0 < ve? 4+ CH(T) < ploc " +CH(7)) < vee? ™t +Cf (1),

which contradicts our choice of ¢y. This shows that co’~! ¢ IP, hence again,
I+ 1P

Suppose that annQo, 0, = M. Applying [5, part 2) of Proposition 4.2] with
U=1and V = I”"! and observing that I # Oy, since v ¢ vK, we deduce that
I = M . However, we observed already that c’=! € I if and only if ve’ ! >
—v > 0. Thus, —vd ¢ vl, showing that I # M . This contradiction proves that
ann Q@L|@K 7§ ./\/lL . [

In [16], the following is proven. If A,k (p7) is dense in A,.(7), then
ann Qo, |0, = (@€ Op |va > a— (p—1)vd for some a € Cfi (7)),

which properly contains V. Otherwise, ann o, 0, = V.
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4.6. Kummer extensions (L|K,v) of degree p = char Kv with {(L|K) = p.
By Lemma 3.8, we have two cases.

i) There exists a Kummer generator n of L such that vn = 0, Lv = Kv(nv)
and Of, = Ok|nl]. In this case, Lv|Kwv is inseparable. Let f be the minimal
polynomial of n over K. Then f'(n)O, = pOr # Oy .

ii) There exists a Kummer generator n such that 7 is a 1-unit and vé(n—1) = 0,
Lv = Kv(é(n—1)v) and Op = Og[é(n — 1)] for some ¢ € K. Let h; be the
minimal polynomial of é(n — 1) over K. Then h%(¢(n —1))Or = pc?~1 Oy, .

Theorem 4.5. Let (L|K,v) be a Kummer extension of degree p = {(L|K) =
char Kv. Then we have the following description of Qo, |0, -
In case i) above,
Qo,j0x = OL/(p) # 0
as an Or-module, and ann Qo 0, = (p). Hence, annQo, 0, = My, if and only if
My = (p).
In case ii) above,

Q(’)L|0K = OL/(péz)il)

as an Op-module, and
(40) Qo, 10k =0 if and only if Lv|Kwv is separable.

We have annQo, 0, = (p1), which is equal to Op if and only if Lv|Kv is
separable. Further, ann o, 0, = My if and only if My = (pgp—l),

Proof. All assertions except for (40) follow from (36). In case ii), the minimal
polynomial of é(n — 1)v over Kv is the reduction hiv. Hence Kuv(é(n — 1)v)|Kwv
is separable if and only if h%(¢(n — 1))v = (hev)'(¢(n — 1)v) # 0, that is, vpcP~! =
vp(en)P~t = vhi(¢(n—1)) = 0. This is equivalent to (pé’~') = O , and this in turn
is equivalent to Qo, |0, = 0. O

4.7. Kummer extensions (L|K,v) of prime degree ¢ with ¢ (L|K) = q.
Let (L|K,v) be a Kummer extension of prime degree ¢ with e(L|K) = ¢g. By
Lemma 3.9, there is a Kummer generator n € L such that one of the following
cases appears:
i) Equation (26) holds with vn < 0.
ii) We have char K = 0, p = char Kv = ¢, and equation (29) holds with
¢ = %, n a l-unit, ¢, a primitive p-th root of unity, 1 < j <p—1 and
v€ < 0.
Theorem 4.6. Let (L|K,v) be a Kummer extension of prime degree q withe (L|K) =
q. Then we have the following description of Qo, |0 -

In case i) above,
Q(9L|OK = ]/qlq
as Or-modules, where I is the Op-ideal

I=(en|ce K andven > 0).

This case always occurs when q # p.
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We have that Qo, 0, = 0 if and only if vI N Cyr(vq) = O and whenever there is
c € K such that ven > 0 and vI N C, (ven) = 0, then A,k (quen) is not discrete.
The condition vI N C,r(vq) = 0 always holds when q # p.

In this case, ann o, |0, = My holds if and only if I = My is principal and
q = 2 # char Kv.

In case ii) above,
Qoo =1/1°
as Or-modules, where I is the Or-ideal
I=(c¢ | ce K and veg > 0).
In this case we always have that Qo, |0, # 0 and ann Qo |0, 7# My .

Proof. Assume that case i) holds. By Proposition 3.4, the Og-algebras Og[en],
for ¢ € K* with ven > 0, form a chain such that Og[cin] C Oklean] if and only
if ¢1,c0 € K* with ve; > vey; we have that ¢ = g—;ch. Let f. be the minimal
polynomial of ¢ over K.

We will apply Proposition 1.1. Let A= Ok, B = Op and S = {c € K | ven > 0}
ordered by a < 8 if va > vf3. Let b, = an, a, = @, cap = 0 and h, = f,. With
the notation of Proposition 1.1, U = (a | a € S) = n'I, and V = (1, (b,) | @ €
S) = qI%" by equation (27). Hence by Proposition 1.1, Qo, |0, = U/UV = I/qI.

Now we determine when Q¢, |0, = 0 holds in the present case. Assume first that
the condition vI N C,r(vq) = () does not hold. For every ¢ € K with ¢ € I and
ven € Cyr(vq), take ne > 0 such that n.vg < ven < (n.+1)vq (n, exists since ven >
0). Choose con € I with veon € Cyr(vg) and n., minimal. Suppose that con € ¢l9.
Then there exists ¢; € K with ¢;n € I such that vg+v(c1n)? < vegn < (ne, + 1)vg,
whence vern € Cyr(vg) and 0 < veyn < qu(ein) < nevg, which contradicts our
choice of ¢q. Thus, I # qI9 and Qo, |0, # 0 in this case.

Now assume that v/ N C,z(vqg) = 0 and choose any ¢ € K such that ven > 0. If
there is ¢ € K such that vén > 0 and vén € C, (ven), then vg + quén < ven since
also vq € C;l; (ven); this yields that en € ¢I9. Hence if there is no cn € I such that
vI NC,(ven) =0, then I = ¢l and Qo, 0, = 0.

In the remaining case, there exists ¢ € K such that ven > 0 and vINC;; (ven) = 0.
Set 7 :=wen > 0 and @ := a + C,;(ven) € A,(7) for a € Cyr(ven). The image
of vINC,p(7) in A,r(7) is a nonempty set of positive elements. If A,x(¢7) and
hence also A, (7) is discrete, then there is ¢y € K such that v¢y7 is the minimal
element of A, (7). Suppose that con € ¢I?. Then there is ¢;n € I such that

0 < vem < querm = vq + quern < V6N

since vq = 0, which contradicts our choice of ¢q. Hence I # ¢l and Qo, |0, # 0
in this case.

If on the other hand, A,x(q7) is not discrete, then there exists v € A,k (q7)
such that —¢7 < ¢y < (1 — ¢)7, so that 0 < ¢(y 4+ 7) < 7. Choose ¢; € K such
that ©¢; = v. Then 0 < qu(cien) < 7, whence cien € I and vg + v(cien)? < ven.
This shows that cn € ¢qI?. Hence if A,k (quen) is not discrete whenever ven > 0
and vI N C;; (ven) = 0, then I = ¢I9 and Qo, |0, = 0 in this case.
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If ¢ # p, then vg = 0 and C,(vq) = {0}. Tt follows that vI N C,z(vq) = O since
otherwise there is ¢ € K such that ven = 0, whence vn € vK, contradiction.

Assume that case ii) holds. By Proposition 3.4, the Og-algebras Og[c¢’], for
c € K* with veg¢? > 0, form a chain such that Ox[c1&7] C Ok[ceé?] if and only if
c1,co € KX with ve; > wvey; we have that ¢,&7 = 2—;02§j. Let hj. be the minimal
polynomial of c& over K.

We will apply Proposition 1.1. Let A = Ok, B = 0Opand S = {c € K | vc&’ > 0}
ordered by o < 8 if va > vf. Let b, = aé’, a, = a, cap = 0 and hy = hj,o. With
the notation of Proposition 1.1, U = (| a € S) = &"/I, and V = (h); ,(ba) | @ €
S) = IP~! by equation (30). Hence by Proposition 1.1, Qo, 0, = U/UV = I/IP.

The fact that Qp, |0, # 0 in case ii) is shown as in the proof of Theorem 4.4.

Suppose that annQe, 0, = My ; in particular, Qo, 0, # 0. In case ii), we see
as in the proof of Theorem 4.4 that I # O and deduce that I = M. However,
c€I71 € I'if and only if ve€?~1 > —v€ > 0. Thus, —vé ¢ v, showing that I # M,
contradiction.

In case i), we apply [5, part 2) of Proposition 4.2] with U = I and V = qI7 .
Since also in this case I # Op, we obtain that M is principal with I = g% ! =
M . Hence O

The annihilator of Qp, |0, Will be determined in detail in [16].

5. KAHLER DIFFERENTIALS OF TOWERS OF (GALOIS EXTENSIONS

In this section, our goal is the proof of the following two theorems, which will be
given in Subsection 5.2. We begin by preparing the ingredients for the proofs.

Theorem 5.1. Assume that L|K and M|L are towers of finite Galois extensions
of valued fields. Then there is a natural short exact sequence

0— QOL\OK RKo, Ou — QOM|0K — QOM\OL — 0.
In particular, Qo,,j0, = 0 if and only if Qo,, 10, = 0 and Qp, |0, = 0.

Theorem 5.2. Let (K,v) be a valued field. Then
1) Qoyspiox = 0 if and only if Qo, 0, = 0 for all finite Galois subextensions
L|K of K*.
2) Let L|K be a finite Galois subextension of K*? and assume that
KCK"=KyCK C--CK,=L
is a tower of field extensions factoring LIK such that K™ is the inertia

field of (LIK,v) and K;1|K; is Galois of prime degree for all i. Then
Qo,j0x =0 if and only if QOKZ.H\OKZ. =0for0<:</¢—1.

Lemma 5.3. Assume that (L|K,v) is a valued field extension. Then Op is a
faithfully flat Og-module.

Proof. We have that O is a flat Ox-module by [26, Theorem 4.33] (see also [27,
Theorem 4.35]), since Ok is a valuation ring and Oy, is a torsion free Og-module.
Further, Oy is a faithfully flat Ox-module by Theorem 7.2 [19], since MgQO; #
Or. O
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Theorem 5.4. Let (L|K,v) be a finite valued field extension which is unibranched
and such that there is a tower of field extensions K = Ko C Ky C --- C K, =L
such that for 1 < i < { one of the following holds:

1) K;|K;_1 is Galois of prime degree or

2) [K; : K;1] = [Kv: K;_1v] and K;v is separable over K;_jv.
Then for 2 < i < {, we have natural short exact sequences
(41) 0— (QOKZ-,JOK) ®OK1’—1 OKi — Q@Ki|@K — QOKi|OKi—1 — 0.

Proof. By Theorem 4.2, Theorem 3.1 for unibranched defectless extensions of prime
degree and [5, Lemma 2.3, Lemma 3.1, Lemma 3.2 and Proposition 3.3] for exten-
sions of prime degree with nontrivial defect for 1 < ¢ < £ there exist directed sets
S; with associated «(i); € K; for j € S; such that Ok, ,[a(i);] C Ok, ,[a(i)g] if
j <k and Ok, = Ujes, Ok, _, [a(i);]. Further, Ok, [a(i);] = Ok,[X]/(# (X)) where
f/(X) is the minimal polynomial a(i); over K; ;.

Let T; be the set of (ki,ka, ..., ki_1,k;) € S1 x Sy x --+ x S; such that f*(z) €
Oxla(1)k, a(2)ky, ..., a(n — 1)k, ,][z] for 2 < n < i. We define a partial order
on T; by the rule (kyi,..., k) < (Iy,...,0;) if ky, <1, for 1 < m <. The T; are
directed sets since the S; are, and setting

,,,,, ke = Oxla(D)k, a(2)ky, -y ali — g, a(i)g,]
for (ki,...,k;) € T;, we have inclusions
, for (ky, ..o k) < (L, loy ..., 1) in T;.
By our construction, for 2 < m < i, there exist

G (X1, X1, X)) € Ox[ X1, Xoy oo, X1, X

such that g" (a(1)g,, - ,a(m — Vg, Xm) = fFm(X,,).
By [30, Theorem 1], we have that

Ay = Ok[X, ... 7Xi]/<gf1<X1)ag§2(Xl>X2)a e ,gfi(Xl, L XG)).
kdX1 @ - @ A,

1111

.........

where Uy, 1, is the Ay,  p,-submodule of Ay, 1, dX1®---® Ay, ,dX, generated
by
off
(12 T (atin)| ax
and

(43) {%@g (@D, .. ,a(m)km)] Xy + -+ [8)& (@D ..., a(m)y,) | dXom

for 2 < m <. We further have that

(1) A (a)] = (Y el
and
() (@D alm)| = (Y ()

for 2 <m < 1.



26 STEVEN DALE CUTKOSKY AND FRANZ-VIKTOR KUHLMANN

By [19, Theorem 25.1], we have a natural exact sequence of Ay, . x.-modules

(46) QAkl ,,,,, ki1 10K ®Ak1 ,,,,, ki1 Akl; ki 7 QAk ,,,,, k| Ok QAkl ,,,,, T T 0
For (kyi,...,k;) € T}, let
L.k QAkl ,,,,, ki1 10K ®Ak1 ,,,,, ki OKi’
Mk?17---7ki = QA ..... k; 10K ®Ak1 ,,,,, k; OKi’
Niyoy = QAkl ..... kil Aky kg ®Ak1 ,,,,, k; OKi'

Applying the right exact functor ®4,,
of Ok,-modules

(47) Liy ..k

Now QAkl ,,,,, b |0k ®a, . Ok, Is the quotlent of Ox,dX, @ - @ Ok, dX;_,
w10k ®ay, . Ok, s the

..........

quotient of Ok, dX; & --- & OKZdX by the relations (42) and (43) for 2 < m <.
Since (f7)(a(i)g,) # 0 (as K; is separable over K;_;) we have by (45) with m =i
that u is injective, so that (47) is actually short exact.

Let (ki,...,k;) and (I1,...,l;) in T; be such that (ki,..., k) < (l1,...,{;). Then

we have a natural commutative diagram of Og,-modules with short exact rows

,,,,,,

0 — Lkh---,kz‘ - Mklv---vki — Nkh---Jﬂ — 0

(48) I i i

0 — Llhm,li - Mll:in - Nlhu-,li — 0

where the vertical arrows are the natural maps determined by the differentials
of the inclusions of Ay, x, , into A; 4, and of Ay, into A;, ;. By [26,
Theorem 2.18] (see also [27, Proposition 5.33]), we have a short exact sequence of
Ox-modules

(49) 0— hm Lkl,...,ki — hm Mkh...,ki — hm Nkl,..‘,ki — 0.

By our construction of T;, we have that UAy, . = Ok,, where the union is over
all (ki,...,k;) € T;. Thus lim My, 5 = QOK.\OK by [6, Theorem 16.8]. We also
_) 1

have that UAy, ., = Ok, ,, where the union is over all (ki,...,k;_1) such that
(]{1, Cey kl) € T; Thus

again by [6, Theorem 16.8]. Now

hm—>Lk1,~~,ki = lim, QAkl ,,,,, k110K ®Ak1 ,,,,, ki OKz)

1%

..... ki

7

<hm—>(QAk AAAAA k110K ®Ak1 ,,,,, ki OKi—l)) Rok, OK@

QOK 110K ®0K1 1 OKz

lim_, (QAkl

1%

I

where the equality of the third row is by [26, Corollary 2.20].
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We have that

SO
..... ki1 = (Akl,,kz/(fzkl)/(a(l)k)) dXz

by equation (36). Since fFi is the minimal polynomial of (i), over K;_;, we have
that

ES
3
I

..... k;

Qor, ,a)10m,_, = O[] /() (a@)r,))d X
also by (36). Thus

®ay,.1, Ok, = (Ox, /(f7) (ai)y,)) dX;
= (QoKH[a(i)kinoKH) ®0Ki71[a(i)ki] Ok, .

Nigyyoohs = QAkl ,,,,, ki Ak, k;

—1

rem 16.8].
In conclusion, for 1 < i < r, the sequence (41) is isomorphic to the short exact
sequence (49). O

Proposition 5.5. Let (L|K,v) be a finite Galois extension of valued fields. Let G
be the Galois group of L|K and let H be a subgroup of G which contains the inertia
group of L|K. Denote the fized field of H in L by Ly. Then Qo, 10k =0.

Proof. By [25, Theorem 1 of Chapter X, page 103], O, = B,, where B is an étale
Ok-algebra and n is a maximal ideal of B. Now B is an étale Og-algebra if and
only if it is unramified and flat ([9, Corollary 1V.17.6.2]). Since B is unramified
over Og we have that Qpo, = 0 ([9, Theorem IV.17.4.2]) and so Qo, 0, =
(pjox) ®p By, = 0 by [6, Proposition 16.9]. O

To put Proposition 5.5 into context, we give in Proposition 5.6 a simple conse-
quence of [25, Theorem 1 of Chapter X, page 103]. The definitions of unramified (it
is also called net there) and étale morphisms are given in [9, Definition IV.17.31].
The definition of locally étale is given in Definition VIII.2 on page 80 of [25] and
using more geometric language, “étale at a point”, in Definition IV.17.3.7 [9]. Let
(A,m4) be alocal ring. An A-algebra C is called locally étale if C' = B,, where B is
étale over A and n is a prime ideal of B which contracts to m4. We may similarly
define locally unramified, replacing étale with unramified in the above definition.

It follows from [9, Theorem IV.17.4.1] that a homomorphism A — B of local rings
(with respective maximal ideal m 4 and mp) is locally unramified if and only if B is
a localization of a finitely presented A-algebra and {2p)4 = 0 and this is equivalent
to B being a localization of a finitely presented A-algebra, msB = mp and B/mp
being a finite separable extension of A/m,4. Further, the condition of being locally
unramified localizes (as follows from this characterization or as commented before
[9, Proposition 1V.17.3.8]). The homomorphism A — B is locally étale if and only
if A — B is locally flat and locally nonramified, by Theorem 17.6.1 [9] (or [25,
Theorem 2, page 55]).

Proposition 5.6. Assume that (L|K,v) is an extension of valued fields. Then the
following are equivalent:
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1) Or|Ok is locally unramified.
2) Or|Ok is locally étale.
3) L|K is a finite inertial extension.

Proof. 1t is proven in

Assume that Op|Ok is locally étale. Then O |Of is locally unramified by The-
orem IV.17.6.1 [9] . Thus 2) implies 1).

Assume that Op|Of is unramified. Since the property of being unramified local-
izes, (L|K,v) is unramified, so that L|K is a finite separable field extension. Let M
be a finite Galois extension of K which contains L. Identify v with an extensions
to L. Let B be the integral closure of A = Ok in L and C be the integral closure
of Ain M. Then there exist maximal ideals b in B and ¢ in C' such that cN B = b,
By = Op and C. = Oy;. Since By|A is locally unramified, L is contained in the
inertia field of M|K by 2) of [25, Chapter X, Theorem 1, page 103]. Thus 1) implies
3).

Now assume that 3) holds. Then L is contained in the inertia field of a finite
Galois extension M of K which contains L. Let (4,a) C (B,b) C (C,¢) be as in
the proof of 1)=-3) (where a = My). By assumption, we have that L is the fixed
field L = M* where H is a subgroup of the inertia group of ¢ over a. We then have
that B = C* so that Op|Ok is locally étale by 1) of [25, Chapter X, Theorem 1,
page 103]. Thus 3) implies 2) O

Proposition 5.7. Assume that (L|K,v) is a finite Galois extension. Then

Qopjox = Qo0
where K™ is the inertia field of (L|K,v).

Kin

Proof. This follows from Proposition 5.5 and the exact sequence of [19, Theorem
25.1]. O

5.1. Henselization.

We now recall some facts about henselization of fields and rings. A valued field
(K,v) is henselian if it satisfies Hensel’s Lemma, or equivalently, all of its algebraic
extensions are unibranched (cf. [7, Section 16]).

An extension (K", v") of a valued field (K, v) is called a henselization of (K, v)
if (K", v") is henselian and for all henselian valued fields (L,w) and all embeddings
A (K,v) = (L,w), there exists a unique embedding X : (K", v") — (L,w) which
extends .

A henselization (K" v") of (K,v) can be constructed by choosing an extension
v® of v to a separable closure K*® of K and letting K" be the fixed field of the
decomposition group

GUEK*?|K) = {0 € G(K*?|K) | v* 0o 0 = v*}
of v*, and defining v" to be the restriction of v* to K" ([7, Theorem 17.11]).
Assume that A is a local ring and ¢(X) € A[X] is a polynomial. Let g(X) €
A/m4[X] be the polynomial obtained by reducing the coefficients of g(X) modulo
ma.
A local ring A is a henselian local ring if it has the following property: Let
f(X) € A[X] be a monic polynomial of degree n. If o(X) and o/(X) are relatively
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prime monic polynomials in A/m4[X] of degrees r and n — r respectively such that
f(X) = a(X)d/(X), then there exist monic polynomials g(X) and ¢/(X) in A[X]
of degrees r and n — r respectively such that g(X) = a(X), ¢(X) = o/(X) and
f(X) = g(X)g'(X).

If A is a local ring, a local ring A" which dominates A is called a henselization
of A if any local homomorphism from A to a henselian local ring can be uniquely
extended to A". A henselization always exists ([20, Theorem 43.5]). The construc-
tion is particularly nice when A is a normal local ring. Let K be the quotient field
of A and Let K* be a separable closure of A. Let A be the integral closure of A
in K*%® and let m be a maximal ideal of A.

Let H be the decomposition group

H=GYAn|A) = {0 € GIK*?|K) | 0(An) = An}.
Then A" is the fixed ring of the action of H on A;. We have
A = (AN Kh)mm(AmKH) = A, NK"= (A)mm[l
where A is the integral closure of A in K"

Lemma 5.8. Assume that (K,v) is a valued field and (K",v") is a henselization
of K. Then there is a natural isomorphism

Opn =2 O
Proof. Let v® be an extension of v to K*® and
H = {0 € Gal(K*?|K) | v’ o0 = 0"},

so that K" is the fixed field of H in K*P. Let V be the integral closure of O in
K*_ and let m = V N Mgse», a maximal ideal in V. Since K** is algebraic over
K, we have that Os = V,, by [34, Theorem 12, page 27]. Now, as is shown on
the bottom of page 68 of [34], H is the decomposition group

H = GOk |Ox) = {0 € G(K*?|K) | 0(Ofser) = Ogeoen },

so that
O =V N K" = Ogoer N K" = O,

establishing the lemma.

O

Lemma 5.9. Let K be a valued field and L be a field such that K C L C K".
Then QOL|OK =0.

Proof. The field K5 is the directed union K = U;M; of the finite Galois exten-
sions M; of K in K*°P. If M is a finite Galois extension of K in K*°°, then restriction
induces a surjection of Galois groups G(K*?|K) — G(M|K), and an isomorphism
G(M|K) =2 G(K*P|K)/G(K*P|M). We have an isomorphism of profinite groups
([23, Example 1, page 271] or [18, Theorem VI.14.1, page 313])

G(K*?|K) 2 lim G(M;|K).
(—
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Let GY(M|K) be the decomposition group of the valued field extension M|K, for
M a Galois extension of K which is contained in K®P. For M a finite Galois
extension of K, restriction induces a homomorphism

(50) GYKP|K) — GYM|K).

Let 0 € GY(M|K). If N is a finite Galois extension of M contained in K, then
there exists ¢ € G(N|K) such that |y = 0. Let A be the integral closure of Oy,
in N. There exists a maximal ideal p of A such that A, = Oy. Let ¢ = &(p), a
maximal ideal of A. The group G(N|M) acts transitively on the maximal ideals
of A ([4, Lemma 21.8]) so there exists 7 € G(N|M) such that 7(¢) = p. Thus
76(On) = Oy and 76|y = o and so the homomorphism (50) is surjective with
Kernel G4(K*?|K) N G(K*®|M). We have that

KM — (KSEP)Gd(Ksele) — uMEI MR

)

Thus .,
L=Ln UMMy =y,

where L; = LN MiGd(MilK). We have that Qo, |0, = 0 for all i by Proposition 5.5.
Thus
Q(9L|0K = h_rfl QOLi\OK =0

by [6, Theorem 6.8]. O

Let K be a valued field. Fix an extension v® of v to the separable closure K*
of K. The field K*? is henselian (for instance by the construction before Lemma
5.8); that is, the henselization (K*%)" = K*%? and O gsayn = Ogsen.

Proposition 5.10. Let (K,v) be a valued field. Then Qo .0k = Q00,1 -

Proof. We may embed K" into K*% (by the construction before Lemma 5.8) giving
a tower of valued field extensions K C K" C K*%*. By [19, Theorem 25.1], we have
an exact sequence QOKhIOK R0, Orsr = Q0ysen|Ox — Q@Ksep‘@m — 0. The
proposition now follows from Lemma 5.9. U

Lemma 5.11. Assume that (L|K,v) is a finite separable extension of valued fields.
Then

(51) Qonjon. = (Qo,jox) ®o, Opn -

In particular, by Lemma 5.5, we have that Qo 0, = 0 if and only if Qo ,j0,.,, = 0.
Proof. We have that

(’52) QOthoKh = QOLh\OK

by Lemma 5.9 and the exact sequence of [19, Theorem 25.1]. By [25, Theorem 1,
page 87], there exist étale extensions A;|Or, and maximal ideals m; of A; such that
Opn = lim(A;)m,. We have the exact sequences

_>

o
QOL\OK Koy, Az — QAiloK — QAi|OL — 0

of Theorem 25.1 [19]. Since A;|Oy, is étale, we have that this map is formally étale
(19, Definition IV.17.3.1]) and is thus formally unramified and formally smooth
([9, Definition IV.17.1.1]). Thus Q4,0, = 0 by [9, Proposition IV.17.2.1] and « is
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injective by [9, Proposition IV.17.2.3]. Thus by this calculation and [6, Proposition
16.9],

(53) QOL|OK ®o, (Al)mz = (QAi|OK) @4, (Ai)mz = Q(Ai)miKQK'
By Theorem 16.8 [6] and equations (52) and (53),

(54) QO%‘O?( = QOthoK = 1IE>I1[(Q(AZ)WZ‘OK> ®(Ai)mi OLh]
= h_{n[(QOLK)K) ®o, OL}L] = <QOL\0K) Koy, Opn.

5.2. Proofs of Theorems 5.1 and 5.2.
We first prove Theorem 5.1.
The natural sequence of Oy;-modules

(55) 0— QOL|OK Koy, Om — QOM|OK — QOM\OL —0

computed from the extensions of rings Ox C Op C O,y is right exact (but the first
map might not be injective) by [19, Theorem 25.1]. Tensor this sequence with O%,
over Oy to get a right exact sequence of O%,-modules

(’56) 0— (QOL\OK(X)OLOM)@OM Oﬁ/[ - QOM\OK®0A40]I7\L/[ - QOI\HOL@OMO?W — 0.
By (51), we have isomorphisms

Qou10;, R0y Ot = Qon o1 Qowlox @oy O = Qon jon
and

(QoLj0x R0, On) ®oy O = Qo 10k ®o, Ol
= (Qo,j0x ®o, OF) ®or O = Qo 410, @on Ol

Thus (56) is the right exact sequence

(57) 0— QoLhIOKh ®@Lh Oyn — Qth|oKh — Qo —0

N[h|OLh

of [19, Theorem 25.1]. Since O}, is a faithfully flat Oy-module, we have that (55)
is exact if and only if (57) is exact.
By assumption, L|K and M|L are towers of Galois extensions

K=KyCK,C---CK,=LandL=LyCL,C---CL,=M
SO
K'=KlcK'c...cK'=L'andL"=L}cLlc...cLl=M"

are towers of Galois extensions. Since each K ,|K is unibranched, there exist
factorizations

K!'cU!cU}cC---CcU™ =K,
where U} is the inertia field of K7, ,|K! and U/*'|U/ is Galois of prime degree.
These extensions are all necessarily unibranched, so U}!| K[ satisfies 2) of Theo-

rem 5.4 and U/ |U7 satisfies 1) of Theorem 5.4 for 1 < j. Similarly, we have
factorizations

L?C‘/?C‘/z‘gc'”c‘/inizl/?ﬂ
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where V;'|L} satisfies 2) of Theorem 5.4 and V/™'|V7 satisfies 1) of Theorem 5.4
for 1 < 7. By Theorem 5.4, we have exact sequences

0— QOU(%K’)Kh ®OU§ OUg — QOU%‘OK’E — QOUgKQU(% —0
0— QOUngh ®OU§ OU(? — Qoug‘oxh — QOU8|@U§ —0

0— QOK{JOKh ®0K{L OUll — Q@Ulleh — QOU%‘OK? —0

®(9U11 OUf — QOU%‘OKh — QOU12|OU11 —0

0— QOU%WKh

0— QOLh‘OKh ®(9Lh Ovol — QOVO”OK*L — QOVO”OLh —0
0— Qovoleh ®Ov01 OVOZ — QOVOQ‘OK’I — QOVOQ‘OVOl —0

0— QOL?‘OK’I ®@L? Ovll — QOV11|OKh — QOV11|OL’11 —0

0— QOV11|OKh ®OV11 OVE — QOVIQ‘OKh — Qovf‘ovll — 0

0— QOVS”_SI—I‘OK*L Ko Ouyn — Q@Mh‘oKh — Qo — 0.

Vns—l

s—1

O s
Mhl Vsn_él 1
In particular, differentiation defines an injection of (’)Vol—modules

QOLh |Ogch ®0Lh Ovol - QOvol |oh*

Since Oyz is a flat Oyi-module, we have injections

)
QOL’L|O ®0Lh OV02 - (QOLhIO ®0Lh OV01)®OV01 OV02 - QOV&‘OK*L ®OV01 OV02 — QOVOQ‘O?(

Kh Kh

and continuing, we obtain that differentiation gives an injection of O,;r-modules
QOLh\OKh ®0Lh OMh — QOMh|OKh

so that (57) is short exact and thus (55) is short exact.
Since Oy is a faithfully flat Oy, module, we have that Qp, |0, ®0, Oy = 0 if and
only if Qp, |0, = 0, and so Qo,,j0, = 0 if and only if Qp,,j0, = 0 and Qp, |0, = 0.

We now prove Theorem 5.2. We first prove Statement 1). By [6, Theorem 16.8],
we have an isomorphism of Ogse-modules

QOKé'eP'OK = 11_131[(9(91:\@1() ®oy, OK“"]'

where the limit is over finite Galois subextensions L|K of K*.

If Qo, 10, = 0 for all finite Galois subextensions of K*P, then it follows immedi-
ately from the above formula that Qo ., 0, = 0.

Assume that Qo,.pjo, = 0 and L|K is a finite Galois subextension of K.
If Qo0 # 0, then there exists a finite Galois extension N of K such that N
contains L and the image of (Qo,j0x) ®o, Orser in (Qoyj0x) ®oy Okser is zero.
Since Opser is a faithfully flat On-module (by Lemma 5.3) we have that the image
of QOL|OK ®0L ON in QON\OK is 7Zero, so that QOL|OK ®OL ON =0 by Theorem 5.1.
Thus Qo, |0, = 0 since Oy is a faithfully flat Or-module.
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We now prove Statement 2). We have that Qo 0, = Qo,0,.,, by Proposi-
tion 5.7. For 0 < </ —1, QOK,L-loKO = 0 if and only if QOKz‘loKO R0k, Ok,,, =0
since Ok, , is a faithfully flat Og,-module by Lemma 5.3. Statement 2) now follows
from Theorem 5.4 by induction on 7 in equation (41). O

6. PROOF OF THEOREMS 1.2 AND 1.3

Take a valued field (K, v) and extend v to the separable closure K*% of K. Recall
that we call (K,v) a deeply ramified field if it satisfies (DRvg) and (DRvr).

Throughout we assume that char Kv = p > 0. If char K = 0, then we set K’ :=
K () with ¢, a primitive p-th root of unity and extend v to K’. If char K’ = p, then
we set K’ := K. The next proposition will show that in our proof of Theorems 1.2
we can assume that K = K’.

Proposition 6.1. 1) If Qo .10, = 0, then Qo,j0,, = 0 holds for every Galois
extension (L|K',v) of degree p.
2) If (K',v) is a deeply ramified field, then so is (K, v).

Proof. 1): Assume that Qo,..,j0, = 0. By part 1) of Theorem 5.2 this implies
that Qo, |0, = 0 for every finite Galois extension (L|K,v). If K = K’, then there
is nothing more to show; so we assume that char K = p > 0 and K # K'. We
note that (K'|K,v) is a Galois extension. Every Galois extension L|K’ of degree p
is a Kummer extension, and moreover, L|K is also a Galois extension, so we have
Qo, 10, = 0. We infer from Theorem 5.1 that o, 0,., = 0. Therefore, every Galois
extension (L|K’,v) of degree p satisfies Qp, |0, = 0.

2): This follows from [15, Theorem 1.8]. O

We split Theorem 1.2 into the following two theorems, which we will prove
separately. In view of Proposition 6.1 it suffices to prove them under the assumption
that K contains a primitive p-th root of unity if char K > 0.

Theorem 6.2. If Qo,...,jox =0, then (K, v) is deeply ramified.
Theorem 6.3. If (K, v) is deeply ramified, then Qo,.,j0, = 0.

One of the implications of Theorem 1.3 will be proved in Proposition 6.5, and
the other in Proposition 6.6.

6.1. Proof of Theorem 6.2.

We will need some preparations. If the valued field (K, v) is of characteristic 0
with residue characteristic p > 0, then we decompose v = vy o v, o U, where vy is
the finest coarsening of v that has residue characteristic 0, v, is a rank 1 valuation
on Kvg, and ¥ is the valuation induced by v on the residue field of v, (which is of
characteristic p > 0). The valuations vy and ¥ may be trivial. For simplicity, we
will write vgv, for vy o v, and v,v for v, o T.

In this decomposition, the valuation v, is at the center, so we define crf (K, v) :=
(Kwp)v, as one may call it the “central residue field”. Further, we denote by (vK),,
the smallest convex subgroup of vK that contains vp, that is, (vK),, = Cyx(vp).
We note that (vK),, is equal to the value group v,v (Kwp).

Now take any valued field (K, v) of residue characteristic p > 0.

We will use the following observation:
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Proposition 6.4. If (vK),, is p-divisible, Kv is perfect and all Galois extensions
(L|K,v) of prime degree p with nontrivial defect satisfy Qo, 0, = 0, then (K, v)
satisfies (DRvr).

Proof. We will show that the assumptions imply that crf (K, v) is perfect. Then the
assertion follows from [15, Proposition 4.13] since by [5, Theorem 1.4], all Galois
extensions (L|K,v) of prime degree p with nontrivial defect that satisfy Qo, 0, = 0
have independent defect in the sense of [15, 5].

In the equal characteristic case, crf (K,v) = Kv and there is nothing to show.
So we assume that (K, v) has mixed characteristic. Take any nonzero element of
crf (K, v); it can be written as bvgv, with b € K. Consider the extension K (n)|K
with n? = b. We have that nugv, is a p-th root of bugv, in crf (K (n),v).

Suppose that buyv, does not have a p-th root in crf (K, v), so K(n)|K is a Kum-
mer extension of degree p. Then (K (n)vov,| Kvgv, is purely inseparable of degree p.
It follows that vov, K (1) = vov, K and that (K (n)| K, vov,) and (K (n)vev,| Kvev,, V)
are unibranched. Consequently, (K (n)|K,v) is unibranched. Further, as (vK),,
and thus also 7(Kwvyv,) is p-divisible, we have U(K (n)vov,) = U(Kvov,) and there-
fore, vK(n) = vK. Moreover, K(n)v = K(n)vov,0 is a purely inseparable exten-
sion of Kv = Kwyv,v and since Kv is perfect, we find that K(n)v = Kv. Thus
(K (n)|K,v) is an extension with nontrivial defect. Since (K, v) is an independent
defect field, the defect must be independent. Hence by [5, part 2) of Theorem 1.4],

v(b— KP) = pflvp—{QEva]oz>H}

for some convex subgroup H of vK that does not contain vp, so also does not
contain %vp. It follows that there is some a € K such that v(b — a?) > wvp,
whence (b — a?)vov, = 0. This shows that (avov,)? = bvgu,, so that bugv, has a
p-th root in crf (K, v), which contradicts our assumption.

We have now proved that crf (K, v) is perfect, as desired. O

Now we are ready to prove one part of Theorem 1.3:

Proposition 6.5. If K = K' and if Qo, 0, = 0 for all unibranched Galois exten-
sions (L|K,v) of prime degree p, then (K, v) is a deeply ramified field.

Proof. By Proposition 6.4 it suffices to show that (vK),, is p-divisible, and Kv is
perfect.

We first deal with the equal characteristic case. In this case, (vK),, = vK.
Suppose that vK is not p-divisible and take some a € K such that va ¢ pvK. We
may assume that va < 0. Take ¥ € K*® such that ¥? — 9 = a. Then pvid = va
and (K (9)|K,v) is an Artin-Schreier extension with e (K (9)|K,v) = p. Hence by
Theorem 4.4, QOK@;)IOK # 0, contradiction.

Suppose that Kv is not perfect, and take b € Oj; such that bv does not have a p-th
root in Kv. Take ¢ € K such that 0 > vc € vK and ¥ € K*® such that 9”7 -9 = cPb.
Then (K (9)|K,v) is an Artin-Schreier extension with K (9)v = Kv(bv'/P). Hence
by Theorem 4.3, Qo,. 0, 7 0, which again is a contradiction. We have shown
that in the equal characteristic case, (K, v) is deeply ramified.

Now we deal with the mixed characteristic case. If we are able to show that
(K, v) satisfies (DRvg), (vK),, is p-divisible and Kv is perfect, then we can apply
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Proposition 6.4 to conclude that (K, v) also satisfies (DRvr), showing that (K, v)
is deeply ramified.

Suppose that there is an archimedean component of v K which is discrete. Pick
a € vK such that a < 0 and a+C;-(«) is the largest negative element in A, x ().
Take n € K* such that n? € K with vn? = a. Then vn + C/, (vn) is the largest
negative element in A, (vn), not contained in C,x (vn?), and (K (n)|K,v) is a Kum-
mer extension with e (K (n)|K,v) = p. There is no ¢ € K such that ven € CJf; (vn)
since otherwise, vn + CJl; (vn) = —ve + Cf; (vn) so that vy € Cyx(vnP). Case (i) of
Theorem 4.6 applies, and we obtain from it that Qo 10, 7 0, contradiction.

Suppose that (vK),, is not p-divisible and take some a € K such that va €
(VK )yp \ p(vK ),y . We may assume that va < 0. Take n € K*% such that n? = a.
Then pvn = va and (K (n)|K,v) is a Kummer extension with e (K(n)|K,v) = p.
Case (i) of Theorem 4.6 applies, and we have that vl N C,.(vp) # (. Hence
QOK@)IOK # 0, contradiction.

Suppose that Kv is not perfect, and take b € Oy such that bv does not have a
p-th root in Kv. Take n € K*% such that n? = b. Then (K (n)|K,v) is a Kummer
extension with K (n)v = Kv(bv'/?). Hence by Theorem 4.5, Qoyy0x # 0, which
is again a contradiction. This finishes the proof that (K, v) is deeply ramified. O

Now Theorem 6.2 follows from Proposition 6.5 in conjunction with part 1) of
Proposition 6.1.

6.2. Proof of Theorem 6.3.
We first observe:

Proposition 6.6. Take a deeply ramified field (K,v). Then every unibranched
extension (L|K,v) which is an Artin-Schreier extension or a Kummer extension of
prime degree satisfies Qo, |0, = 0. In particular, if K = K', then every unibranched
Galois extension (L|K,v) of prime degree satisfies Qo, |0, = 0.

Proof. Take a deeply ramified field (K,v) with char Kv = p and an extension
(L|K,v) as in the assumption of the proposition. In view of Theorem 1.4, we only
have to deal with the case of defectless extensions.

Assume that char K = p and (L| K, v) is an Artin-Schreier extension of degree p.
We have that vK is p-divisible and Kwv is perfect by [15, Lemma 4.2]. Thus, the
case of e (L|K) = p cannot appear and we must have that f(L|K) = p with the
extension Lv|Kwv separable. Hence, Qo, 0, = 0 by Theorem 4.2.

Assume that (L|K,v) is a Kummer extension of degree ¢ with f(L|K) = g.
Again, Lv|Kwv is separable, so Qo, 0, = 0 by Theorem 4.2.

Finally, assume that (L|K,v) is a Kummer extension of degree g with e (L|K) =
q. We apply Theorem 4.6. If ¢ # p, then vg = 0 and case i) holds with vl N
Cor(vq) = 0. If ¢ = p, then necessarily char K = 0. By [15, part (1) of Lemma 4.3],
(vK)yp is p-divisible. If case ii) of Theorem 4.6 would hold, then using (8), 0 <
v(n—1) <v(l—=¢) = % with v(n — 1) ¢ vK, whence v(n — 1) € (vL),, and
((vL)yp : (VK)yp) = p. As this contradicts the fact that (vK),, is p-divisible, case
ii) cannot appear and moreover, vI NC,r(vp) = 0 since C,1(vp) = (VL)yp = (VEK)yp.

As (K, v) satisfies (DRvg), no archimedean component of vK is discrete, hence
we obtain from case i) of Theorem 4.6 that Qo, |0, = 0.
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This proves the first assertion of our proposition. The second follows from the
first because if K = K’ then every Galois extension of prime degree is an Artin-
Schreier or a Kummer extension. OJ

Take any deeply ramified field (K,v). By [15, Corollary 1.7 (2)], also the
henselization (K,v)" of (K,v) inside of (K*?,v) is a deeply ramified field. By
Proposition 5.10 it suffices to prove that Qo .,|0,, = 0. We may therefore assume
from the start that (K, v) is henselian.

Part 1) of Theorem 5.2 shows that in order to prove that Qo,..,j0, = 0 it
suffices to prove that Qo, 0, = 0 for all finite Galois subextensions (L|K,v) of
(K*?|K,v). Proposition 4.1 shows that after enlarging (L|K,v) to a finite Galois
extension (M|K,v) if necessary, there is a tower of field extensions

KcMycM c---Cc M, =M

where M is the inertia field of (M| K, v) and each extension M; 1|M; is a Kummer
extension of prime degree, or an Artin-Schreier extension if the extension is of
degree p = char K. By part 2) of Theorem 5.2, to prove that Qo 0, = 0 it
suffices to prove that Qo,, |0, =0for 0 <i <m —1. By Theorem 1.5, (M;,v)
is a deeply ramified field for each ¢, hence {2o,, |0, = 0 by Proposition 6.6. We
have shown that Qo,, 0, = 0.

Since M|K is a Galois extension, so is M|L. Hence we can apply Theorem 5.1
to conclude that Qp, 0, = 0. This completes our proof of Theorem 1.2.
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