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1 Introduction

Let (K, v) be a complete rank-1 valued field with valuation ringRv, maximal ideal

Mv and residue field K = Rv/Mv. For a polynomial f(x) belonging to Rv[x], f̄(x)

will denote its image under the canonical homomorphism from Rv[x] onto K[x].

The well-known Hensel’s Lemma which is the foundation stone of the theory of

p-adic numbers has several equivalent statements (cf. [5, Theorem 4.1.3], [14]).

In all versions of Hensel’s Lemma, there appears although not explicitly the

Gaussian valuation vx defined on a simple transcendental extension K(x) of K

given by

vx
(∑

i

aix
i
)

= min
i

{
v(ai)

}
, ai ∈ K. (1)

The classical Hensel’s Lemma, after bringing in vx can be stated as follows.

Let F (x), G0(x), H0(x) in Rv[x] be such that (i) vx(F (x) − G0(x)H0(x)) > 0,

(ii) the leading coefficient of G0(x) is a unit in Rv, (iii) G0(x), H0(x) are co-

prime polynomials in K[x]. Then there exist polynomials G(x), H(x) belong-

ing to Rv[x] satisfying (a) F (x) = G(x)H(x), (b) degG(x) = degG0(x), (c)

vx(G(x)−G0(x)) > 0, vx(H(x)−H0(x)) > 0.

A major characteristic of vx is that its residue field is a transcendental ex-

tension of the residue field of v. In general, a prolongation of v to K(x) whose

residue field is a transcendental extension of that of v is referred to as a residually

transcendental prolongation of v. It is known that if w is a residually transcen-

dental extension of v to K(x), then the residue field of w is L(Y ), where L is the

residue field of a finite extension L of (K, v) and Y is transcendental over L (cf.

[1]).

In this paper, we give an extension of Hensel’s Lemma to residually transcen-

dental prolongations of v to K(x). It may be remarked that Khanduja, Saha [11]

and Perdry [13] have already formulated and proved a different generalization of

Hensel’s Lemma to residually transcendental extensions using a slightly stronger

hypothesis and arriving at a different conclusion. The present extended version

yields some interesting applications which donot follow from the already known

generalizations.

We introduce some notations and definitions before stating the results pre-

cisely. Let v be a henselian Krull valuation of arbitrary rank of a field K and ṽ
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be the unique prolongation of v to a fixed algebraic closure K̃ of K with value

group Gṽ. For an element α in K̃, degα will stand for the degree of the exten-

sion K(α)/K. When α belongs to the valuation ring of ṽ, then α will denote

its ṽ-residue, i.e., the image of α under the canonical homomorphism from the

valuation ring of ṽ onto its residue field. As in [6, §2], a pair (α, δ) belonging to

K̃ × Gṽ will be called a minimal pair (more precisely a (K, v)-minimal pair) if

whenever β belongs to K̃ with deg β < degα, then ṽ(α − β) < δ. For example,

if f(x) belonging to Rv[x] is a monic polynomial with f̄(x) irreducible over the

residue field of v and α is a root of f(x), then as in [6, §2], it can be easily verified

that (α, δ) is a (K, v)-minimal pair for each positive δ in Gṽ.

Let (α, δ) be a (K, v)-minimal pair. The valuation w̃α,δ of K̃(x) defined on

K̃[x] by

w̃α,δ
(∑

i

ci(x− α)i
)

= min
i
{ṽ(ci) + iδ}, ci ∈ K̃ (2)

will be referred to as the valuation with respect to the minimal pair (α, δ). The

valuation obtained by restricting w̃α,δ to K(x) will be denoted by wα,δ. It is

known that a prolongation w of v to K(x) is residually transcendental if and

only if w = wα,δ for some (K, v)-minimal pair (α, δ) (cf. [2]). The description

of wα,δ and its residue field is given by the theorem stated below, the proof of

which is omitted (see [1, Theorem 2.1]).

Theorem 1.A. Let (K, v), (K̃, ṽ) be as above and (α, δ) be a (K, v)-minimal pair.

Let f(x) be the minimal polynomial of α over K of degree m with wα,δ(f(x)) = λ.

Let v1 denote the valuation obtained by restricting ṽ to K(α) with value group

Gv1 and residue field K(α). Then the following hold:

(a) For any polynomial g(x) belonging to K[x] with f(x)-expansion
∑
i

gi(x)f(x)i,

deg gi(x) < deg f(x), one has wα,δ(g(x)) = min
i
{ṽ(gi(α)) + iλ}.

(b) If h(x) belonging to K[x] is a polynomial of degree less than m, then the

w̃α,δ-residue of h(x)/h(α) equals 1.

(c) Let e be the smallest positive integer such that eλ ∈ Gv1 . If h(x) belonging

to K[x] is any polynomial of degree less than m with wα,δ(h(x)) = eλ, then the

wα,δ-residue Y of f(x)e

h(x)
is transcendental over K(α) and the residue field of wα,δ

is canonically isomorphic to K(α)(Y ).

In this paper, we prove
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Theorem 1.1. Let (K, v) be a complete rank-1 valued field with value group Gv

and (K̃, ṽ), (α, δ), wα,δ, f(x), m, λ and e be as in Theorem 1.A. Assume that

eλ belongs to Gv with eλ = v(h) for some h in K. Let Y denote the wα,δ-residue

of f(x)e

h
and F (x) belonging to K[x] be such that wα,δ(F (x)) = 0. If the wα,δ-

residue of F (x) is the product of two coprime polynomials T (Y ), U(Y ) belonging

to K(α)[Y ] with T (Y ) monic of degree t ≥ 1, then there exist G(x), H(x) ∈ K[x]

such that F (x) = G(x)H(x), degG(x) = etm and the wα,δ-residue of G(x), H(x)

are T (Y ), U(Y ) respectively. Further if T (Y ) 6= Y is irreducible over K(α), then

G(x) is irreducible over K.

As an application of above theorem2, we shall prove Theorem 1.2 which ex-

tends Generalized Schönemann Irreducibility Criterion [3] and infact Theorem

1.1 of [6] in the rank-1 case; moreover it yields Dedekind’s theorem as well as

a slightly more general result regarding splitting of primes in algebraic number

fields proved in [8, Corollory 1.2]. An extended version of the Generalized Akira

Criterion proved in [6, Corollory 1.4] is also obtained using Theorem 1.2.

Theorem 1.2. Let (K, v) be a complete rank-1 valued field with value group Gv

and (K̃, ṽ) be as in the above theorem. Let f(x) belonging to Rv[x] be a monic

polynomial of degree m having a root α in K̃ such that f̄(x) is irreducible over K.

Let g(x) belonging to Rv[x] be a polynomial with f(x)-expansion An(x)f(x)n +

An−1(x)f(x)n−1 + · · ·+A0(x), degAi(x) < m and vx be the Gaussian valuation

defined by (1). Assume that there exists an index s ≤ n−1 such that the following

properties are satisfied:

(i) vx(As(x)) = 0,
vx(Ai(x))

s− i
≥ λ =

vx(A0(x))

s
> 0 for 0 ≤ i ≤ s− 1.

(ii) Let e be the smallest positive integer for which eλ ∈ Gv with eλ = v(h), h ∈ K
and t denote the number s

e
. The polynomial As(α)xt +Ct−1(α)xt−1 + · · ·+C0(α)

is irreducible over K(α), where Ci(α) =
Aei(α)

ht−i
, 0 ≤ i ≤ t− 1.

Then g(x) has a monic irreducible factor φ(x)of degree sm over Rv and φ(x) =

f(x)s. Further for any root β of φ(x), ṽ(f(β)) = λ. If v2 denotes the valuation

of K(β) obtained by restricting ṽ to K(β), then the index of ramification of v2/v

is divisible by e and its residual degree is divisible by m.

2It will be an interesting problem to investigate the validity of Theorem 1.1 when (K, v) is
a henselian valued field of arbitrary rank.
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Corollary 1.3. Let K = Q(θ) be an algebraic number field with θ in the ring AK

of algebraic integers of K and F (x) be the minimal polynomial of θ over Q. Let

p be a rational prime and F̄ (x) = ḡ1(x)e1 · · · ḡr(x)er , be the factorization of F (x)

modulo p as a product of powers of distinct irreducible polynomials over Z/pZ
with each gi(x) monic. Let F (x) =

∑
j≥0

Fij(x)gi(x)j be the gi(x)-expansion of

F (x) and rij denote the highest power of p dividing the content of the polynomial

Fij(x). Assume* that for 1 ≤ i ≤ r, ei and ri0 are coprime and
rij
ei−j >

ri0
ei

when

1 ≤ j ≤ ei−1. Then pAK = ℘e11 · · ·℘err , where℘1, . . . , ℘r are distinct prime ideals

of AK with residual degree of ℘i/p equal to deg gi(x).

By virtue of Theorem 1.3 of [8] and Dedekind Criterion (cf. [4, Theorem 6.1.4]),

the assumption* of the above corollary is weaker than the condition p - [AK : Z[θ]]

used for proving Dedekind’s Theorem (see [4, Theorem 4.8.13], [7, Theorem 1.1]).

Corollary 1.4 (Extended Akira Criterion). Let R0 be an integrally closed do-

main with quotient field K and v be a discrete valuation of K with valuation ring

Rv containing R0. Let F (x) = xn + an−1x
n−1 + · · · + a0 be a polynomial with

coefficients in R0 satisfying the following conditions for an index s ≤ n− 1.

(i) v(as) = 0,
v(ai)

s− i
≥ v(a0)

s
> 0 for 0 ≤ i ≤ s− 1.

(ii) Let t denote the gcd(v(a0), s), e the number s
t

and h ∈ K be such that

v(h) =
v(a0)

t
. If ci denotes the element of Rv given by ci =

aei
ht−i

, then the poly-

nomial asx
t + ct−1x

t−1 + · · ·+ c0 is irreducible over the residue field K of v.

(iii) The polynomial xn−s + an−1x
n−s−1 + · · ·+ as is irreducible over K.

(iv) d 6= as for any divisor d of a0 in R0.

Then F (x) is irreducible over K.

It may be pointed out that the above corollary is proved in [6, Corollary 1.4]

when v(a0) = 1.

2 Preliminary Results

As in [9, Lemma 2.A], the following lemma can be easily proved. Its proof is

omitted.

Lemma 2.A. Let v be a valuation of a field K and v′ a prolongation of v to a

finite extension K(θ) of K. Let f(x) belonging to Rv[x] be a monic polynomial of
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degree m with f̄(x) irreducible over Rv/Mv having the v′-residue of θ as a root.

Then for any polynomial B(x) =
∑
i>0

bix
i belonging to K[x] of degree less than

m, one has v′(B(θ)) = vx(B(x)) = min
i
{v(bi)}.

With notations as in the preceding section, we prove

Lemma 2.1. Let (K, v) be a henselian valued field of arbitrary rank, (α, δ)

be a (K, v)-minimal pair and f(x), λ, v1, e, Y be as in Theorem 1.A. Let G(x)

belonging to K[x] be a polynomial of degree etm such that wα,δ(G(x)) = 0 and

the wα,δ-residue of G(x) is a polynomial of degree t ≥ 1 in Y over K(α). If

F (x) = G(x)q(x) + r(x) belonging to K[x] is any polynomial with deg r(x) <

degG(x), then wα,δ(r(x)) ≥ wα,δ(F (x)).

Proof. Let
∑
i≥0

qi(x)f(x)i and
∑
j≥0

rj(x)f(x)j be the f(x)-expansions of q(x) and

r(x) respectively. Suppose to the contrary that wα,δ(r(x)) < wα,δ(F (x)). Us-

ing the hypothesis wα,δ(G(x)) = 0 and the strong triangle law, we see that

wα,δ(q(x)) = wα,δ(r(x)). It now follows from Theorem 1.A(a) that

min
i
{ṽ(qi(α)) + iλ} = min

j
{ṽ(rj(α)) + jλ}.

Let k be the smallest index such that wα,δ(q(x)) = wα,δ(r(x)) = ṽ(sk(α)) + kλ,

where sk(α) = rk(α) or qk(α). Keeping in mind that e is the smallest positive

integer such that eλ ∈ Gv1 and using Theorem 1.A, it can be easily seen that the

wα,δ-residue of q(x)
sk(x)f(x)k

, r(x)
sk(x)f(x)k

are non-zero polynomials in Y over K(α), say

d1(Y ), d2(Y ). Now on dividing F (x) = G(x)q(x)+r(x) by sk(x)f(x)k and taking

the wα,δ-residues, we see that 0 = ψ(Y )d1(Y ) + d2(Y ), where the polynomial

ψ(Y ) is the wα,δ-residue of G(x) having degree t by hypothesis. This leads to a

contradiction as deg d2(Y ) < t in view of the fact that deg r(x) < degG(x) =

etm. Hence the lemma.

Lemma 2.2. Let wα,δ, f(x), e, λ and Y be as in Theorem 1.A. Assume that eλ =

v(h) belongs to Gv for some h in K. If d(Y ) belonging to K(α)[Y ] is a polynomial

of degree t ≥ 0 in Y, then there exists a polynomial g(x) with coefficients in K

belonging to the valuation ring of wα,δ having degree ≤ etm+m− 1 whose wα,δ-

residue is d(Y ). Further if d(Y ) is monic, then such a polynomial g(x) of degree

etm can be chosen.
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Proof. Write d(Y ) = d0(α)+d1(α)Y + · · ·+dt(α)Y t, di(x) ∈ K[x], deg di(x) < m.

On taking g(x) = d0(x) + d1(x)f(x)
e

h
+ · · ·+ dt(x)

(f(x)e
h

)t
, the lemma follows.

The following already known results will be used in the sequel (see [11, Lemma

2.3] for Lemma 2.B and [12, Proposition 6.1] for Theorem 2.C).

Lemma 2.B. Let (K, v) be a complete rank-1 valued field and w̃α,δ be a valuation

of K̃(x) defined by a minimal pair (α, δ). Let {Gn(x)} ⊆ K[x] be a sequence of

polynomials with bounded degrees. Suppose that w̃α,δ(Gn(x) − Gm(x)) → ∞ as

n,m → ∞. Then there exists G(x) ∈ K[x] such that w̃α,δ(G(x) − Gn(x)) → ∞
as n→∞. Moreover, if each Gn(x) has the same degree d and leading coefficient

l, then G(x) also has degree d and leading coefficient l.

Theorem 2.C. Let K = Q(θ) be an algebraic number field with θ in the ring

of algebraic integers AK of K. Let F (x) be the minimal polynomial of θ over Q.
For a rational prime p, let F (x) = φ1(x) · · ·φr(x) be the factorization of F (x)

into distinct, monic irreducible polynomials over the field Qp of p-adic numbers.

Then pAK = ℘e11 · · ·℘err , where ℘i are distinct prime ideals of AK . If fi is the

residual degree of ℘i/p, then for each i, the product eifi equals the degree of φi(x).

Moreover for 1 ≤ i ≤ r, the completion K℘i
= Qp(βi) with φi(βi) = 0.

3 Proof of Theorem 1.1

Since T (Y ) and U(Y ) are given to be coprime, there exist a(Y ) and b(Y ) in

K(α)[Y ] such that a(Y )T (Y )+b(Y )U(Y ) = 1. In view of Lemma 2.2 and the fact

that T (Y ) is monic, one can choose A(x), B(x), G1(x), H1(x) belonging to K[x]

having wα,δ-residues a(Y ), b(Y ), T (Y ), U(Y ) respectively and degG1(x) = etm.

Define polynomials C0(x), P0(x) by C0(x) = A(x)G1(x)+B(x)H1(x)−1, P0(x) =

F (x)−G1(x)H1(x) and set

µ = min{wα,δ(C0(x)), wα,δ(P0(x))}
which is positive because the wα,δ-residue of F (x) is T (Y )U(Y ). Let N denote

the maximum of the degrees of F (x), P0(x). Observe that degH1(x) ≤ N − etm.
The proof is split into two steps.

Step I. We construct polynomials Gi(x), Hi(x) in K[x], i = 1, 2, 3, . . . such that

the following conditions are satisfied:
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(i) degGi(x) = degG1(x), degHi(x) ≤ N − etm and the leading coefficient of

Gi(x) is same as that of G1(x).

(ii) wα,δ(Gi(x)−Gi−1(x)) ≥ (i− 1)µ, wα,δ(Hi(x)−Hi−1(x)) ≥ (i− 1)µ.

(iii) wα,δ(F (x)−Gi(x)Hi(x)) ≥ iµ.

(iv) wα,δ(A(x)Gi(x) +B(x)Hi(x)− 1) ≥ µ.

Clearly G1(x), H1(x) satisfy conditions (i) - (iv) with condition (ii) being void.

As induction hypothesis, assume that there are polynomials Gi(x), Hi(x) for

1 ≤ i ≤ n satisfying the above properties. To construct Gn+1(x), Hn+1(x), define

Cn−1(x) = A(x)Gn(x) +B(x)Hn(x)− 1, (3)

Pn−1(x) = F (x)−Gn(x)Hn(x).

By division algorithm, write

B(x)Pn−1(x) = Gn(x)qn+1(x) + rn+1(x), deg rn+1(x) < degGn(x), (4)

Cn−1(x)Pn−1(x) = Gn(x)Q(x) +R(x), degR(x) < degGn(x). (5)

Multiply both sides of (3) by Pn−1(x); on substituting for B(x)Pn−1(x) from

(4) and using (5), we obtain

sn+1(x)Gn(x) + rn+1(x)Hn(x) = Pn−1(x) +R(x), (6)

where sn+1(x) = A(x)Pn−1(x) + qn+1(x)Hn(x)−Q(x). Set

Gn+1(x) = Gn(x) + rn+1(x), (7)

Hn+1(x) = Hn(x) + sn+1(x). (8)

Then degGn+1(x) = degGn(x) = etm. Using the fact that degR(x), deg rn+1(x)

are less than etm and that degrees of Pn−1(x), Gn(x)Hn(x) do not exceed N in

view of induction hypothesis, it follows immediately from (6) that

deg(sn+1(x)Gn(x)) ≤ max{degPn−1(x), degR(x), deg(rn+1(x)Hn(x))} ≤ N

and hence deg sn+1(x) ≤ N−etm which in view of (8) proves that degHn+1(x) ≤
N − etm. Thus property (i) of the sequence is proved for i = n+ 1.
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Keeping in mind (7), applying Lemma 2.1 to (4) and using condition (iii) of

the induction hypothesis, we see that

wα,δ(Gn+1(x)−Gn(x)) = wα,δ(rn+1(x)) ≥ wα,δ(B(x)Pn−1(x)) ≥ nµ. (9)

Since wα,δ(Gn(x)) = wα,δ(G1(x)) = 0, it follows from (8) and (6) that

wα,δ(Hn+1(x)−Hn(x)) = wα,δ(sn+1(x)) = wα,δ(sn+1(x)Gn(x))

≥ min{wα,δ(Pn−1(x)), wα,δ(R(x)), wα,δ(rn+1(x)Hn(x))}. (10)

Applying Lemma 2.1 to (5) and using conditions (iii) and (iv) of the induction

hypothesis, we have

wα,δ(R(x)) ≥ wα,δ(Cn−1(x)Pn−1(x)) ≥ (n+ 1)µ; (11)

consequently (10), by virtue of (9) and (11), shows that wα,δ(Hn+1(x)−Hn(x)) ≥
nµ. So condition (ii) of the sequence is satisfied for i = n+ 1.

For verifying condition (iii), set Pn(x) = F (x)−Gn+1(x)Hn+1(x). Substituting

for Gn+1(x), Hn+1(x) from (7),(8) and using (6), a simple calculation shows that

Pn(x) = −R(x)− rn+1(x)sn+1(x). Hence

wα,δ(Pn(x)) ≥ min{wα,δ(R(x)), wα,δ(rn+1(x)) + wα,δ(sn+1(x))}.

It now follows from (11) and property (ii) of the sequence proved above for i =

n+1, that wα,δ(Pn(x)) ≥ min{(n+1)µ, 2nµ} ≥ (n+1)µ and hence condition (iii)

holds for i = n+1. Using property (ii) of the sequence for i = n+1 and property

(iv) for i = n, it can be easily seen that wα,δ(A(x)Gn+1(x)+B(x)Hn+1(x)−1) ≥ µ

as desired. This completes the proof of Step I.

Step II. We show that there exist polynomials G(x) and H(x) in K[x] with the

desired properties. In view of property (ii), the sequences {Gn(x)}, {Hn(x)} are

Cauchy with respect to the wα,δ-valuation. By Lemma 2.B, there exist polyno-

mials G(x) and H(x) belonging to K[x] with degG(x) = etm such that both

wα,δ(Gn(x)−G(x)) and wα,δ(Hn(x)−H(x)) tend to∞ as n→∞. Property (iii)

of the induction hypothesis implies that the sequence {Gn(x)Hn(x)} converges to

F (x) with respect to the wα,δ-valuation, thereby proving that F (x) = G(x)H(x).

Further wα,δ(G(x)−G1(x)) ≥ µ > 0 and wα,δ(H(x)−H1(x)) ≥ µ > 0 as desired.

If the wα,δ-residue T (Y ) 6= Y of G(x) is irreducible over K(α), then it quickly

follows from [10, Theorem 2.2] that G(x) is irreducible over K.
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4 Proof of Theorem 1.2, Corollaries 1.3, 1.4

Proof of Theorem 1.2. Denote vx(A0(x))
s

by λ. Write f(x) =
m∑
i=1

ai(x − α)i, ai ∈

K(α). Determine δ in Gṽ so that

λ = min
16i6m

{ṽ(ai) + iδ}, i.e., δ = max
16i6m

{(λ− ṽ(ai))/i}.

Note that δ > 0, in view of the fact that am = 1 and λ > 0 by hypothesis. As

remarked in §1, (α, δ) is a (K, v)-minimal pair. In view of (2) and the choice of

δ, it is clear that w̃α,δ(f(x)) = min
1≤i≤m

{ṽ(ai) + iδ} = λ. Therefore by Theorem 1.A

and Lemma 2.A, we have

wα,δ(F (x)) = min
i
{ṽ(Ai(α)) + iλ} = min

i
{vx(Ai(x)) + iλ}.

By virtue of assumption (i) of the theorem wα,δ(F (x)) = sλ = vx(A0(x)) =

v(ht), where t is as in assumption (ii). Let Y denote the wα,δ-residue of f(x)e

h
.

Using Theorem 1.A(b), it follows that the wα,δ-residue of F (x)
ht

is As(α)Y t +

Ct−1(α)Y t−1+· · ·+C0(α) = As(α)T (Y ) (say). Note that ṽ(C0(α)) = vx(C0(x)) =

vx(A0(x)
ht

) = 0. So T (Y ) 6= Y. By assumption (ii), T (Y ) is irreducible over K(α).

Therefore by Theorem 1.1, F (x) has an irreducible factor G(x) of degree etm =

sm with T (Y ) as its wα,δ-residue. Let c denote the leading coefficient of G(x)

and set φ(x) = c−1G(x). We first prove that φ(x) ∈ Rv[x] and φ(x) = f(x)s.

Let G(x) =
s∑
i=0

Gi(x)f(x)i be the f(x)-expansion of G(x). Note that Gs(x) =

c as degG(x) = sm. Keeping in mind that the wα,δ-residue of G(x) is a polyno-

mial of degree t in Y with non-zero constant term, it follows from Theorem 1.A

and Lemma 2.A that

0 = wα,δ(G(x)) = min
i
{vx(Gi(x)) + iλ} = v(c) + sλ = vx(G0(x)); (12)

consequently

vx(c−1Gi(x)) ≥ −v(c)− iλ = (s− i)λ > 0 for 0 ≤ i ≤ s− 1. (13)

Therefore

φ(x) = c−1G(x) ∈ Rv[x] and vx(φ(x)− f(x)s) ≥ min
0≤i≤s−1

{vx(c−1Gi(x))} > 0

which proves that φ(x) = f(x)s. Let β be a root of φ(x). Clearly the assertions
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regarding the index of ramification and the residual degree of v2/v are proved as

soon as we show that

ṽ(f(β)) = λ > 0. (14)

Since β is a root of f(x), it follows from Lemma 2.A and (13) that

ṽ(c−1Gi(β)) = vx(c−1Gi(x)) ≥ (s− i)λ, 0 ≤ i ≤ s− 1. (15)

If ṽ(f(β)) > λ, then (15) would imply that

ṽ
(
c−1Gi(β)f(β)i) ≥ (s− i)λ+ iṽ(f(β)) > sλ, 1 ≤ i ≤ s;

consequently by the strong triangle law and the fact that vx(G0(x)) = 0, as

pointed out in (12) we shall have,

ṽ(φ(β)) = ṽ(c−1G0(β)) = vx(c−1G0(x)) = sλ,

which is impossible as φ(β) = 0. On the other hand if ṽ(f(β)) < λ, then arguing

as above, we shall have ṽ(c−1Gi(β)f(β)i) ≥ (s − i)λ + iṽ(f(β)) > sṽ(f(β)) for

0 ≤ i ≤ s− 1, which in turn leads to ṽ(φ(β)) = sṽ(f(β)), another contradiction.

This proves (14) and hence the theorem.

Proof of Corollary 1.3. Fix any gi(x) and apply Theorem 1.2 with f(x) replaced

by gi(x). It can be easily seen that assumption (i) of Theorem 1.2 is satisfied with

s = ei in view of the hypothesis
rij
ei−j > ri0

ei
when 1 ≤ j ≤ ei − 1. Since ri0 and

ei are coprime, it follows with notations as in Theorem 1.2 that in this situation

e = s = ei and t = 1. Therefore assumption (ii) is trivially satisfied. So by

Theorem 1.2, F (x) has an irreducible factor φi(x) with coefficients in the ring of

p-adic integers having degree ei deg gi(x) and φi(x) ≡ gi(x)ei mod p. Further if

βi is a root of φi(x) and vi denotes the unique prolongation of the p-adic valuation

vp of the field Qp of p-adic numbers to Qp(βi), then the index of ramification of

vi/vp ≥ ei and the residual degree of vi/vp ≥ deg gi(x) with equality at both

the places in view of the fundamental inequality [5, Theorem 3.3.4]. Keeping in

mind the degrees of F (x) and φi(x), it is clear that F (x) = φ1(x) · · ·φr(x). The

corollary now follows immediately from Theorem 2.C.

Proof of Corollary 1.4. Let K̂ denote the completion of (K, v). We first show

that F (x) has an irreducible factor belonging to K̂[x] of degree s. Consider the

(K̂, v̂)-minimal pair (0, δ) with δ = v(a0)
s

. Using condition (i) of the hypothesis,

it can be easily seen that w0,δ(F (x)) = min
0≤i≤n

{v(ai) + iλ} = sδ = v(ht). In the
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notations of Theorem 1.2, here e = s
t
. We denote the w0,δ-residue of xe

h
by Y.

Then the w0,δ-residue of F (x)
ht

is the polynomial asY
t + ct−1Y

t−1 + · · ·+ c0 which

is irreducible over K by condition (ii) of the hypothesis. Therefore by Theorem

1.2, F (x) has an irreducible monic factor φ(x) of degree s over Rv̂ and φ(x) = xs.

Now write F (x) = φ(x)H(x), where H(x) ∈ Rv̂[x]. Then F (x) = φ(x)H(x) =

xs(xn−s + an−1x
n−s−1 + · · · + as). Keeping in mind that φ(x) = xs and hence

H(x) = xn−s + an−1x
n−s−1 + · · · + as, which is given to be irreducible over K,

it follows that H(x) is irreducible over K̂. If F (x) were reducible over K, then

φ(x) and H(x) would belong to K[x] and consequently would belong to R0[x] as

R0 is integrally closed. On multiplying the constant terms of φ(x) and H(x), we

see that condition (iv) of the corollary is violated and hence F (x) is irreducible

over K.
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