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Abstract. A henselian valued field K is called a tame field if its algebraic closure
K̃ is a tame extension, that is, the ramification field of the normal extension K̃|K is
algebraically closed. Every algebraically maximal Kaplansky field is a tame field, but not
conversely. We develop the algebraic theory of tame fields and then prove Ax–Kochen–
Ershov Principles for tame fields. This leads to model completeness and completeness
results relative to value group and residue field. As the maximal immediate extensions
of tame fields will in general not be unique, the proofs have to use much deeper valuation
theoretical results than those for other classes of valued fields which have already been
shown to satisfy Ax–Kochen–Ershov Principles. The results of this paper have been
applied to gain insight in the Zariski space of places of an algebraic function field, and
in the model theory of large fields.

1. Introduction

In this paper, we consider valued fields. By (K, v) we mean a field K equipped with a
valuation v. We denote the value group by vK, the residue field by Kv and the valuation
ring by Ov or OK . For elements a ∈ K, the value is denoted by va, and the residue by av.
For a polynomial f ∈ K[X], we denote by fv the polynomial in Kv[X] that is obtained
from f by replacing all its coefficients by their residues.

We write a valuation in the classical additive (Krull) way, that is, the value group is
an additively written ordered abelian group, the homomorphism property of v says that
vab = va+vb, and the ultrametric triangle law says that v(a+b) ≥ min{va, vb}. Further,
we have the rule va = ∞ ⇔ a = 0. We take LVF = {+,−, · , −1, 0, 1,O} to be the
language of valued fields, where O is a binary relation symbol for valuation divisibility.
That is, O(a, b) will be interpreted by va ≥ vb, or equivalently, a/b being an element of
the valuation ring Ov . We will write O(X) in place of O(X, 1) (note that O(a, 1) says
that va ≥ v1 = 0, i.e., a ∈ Ov).

When we talk of a valued field extension (L|K, v) we mean that (L, v) is a valued field,
L|K a field extension, and K is endowed with the restriction of v.

A valued field is henselian if it satisfies Hensel’s Lemma, or equivalently, if it admits a
unique extension of the valuation to every algebraic extension field; see [Ri], [W], [E–P].

For (K, v) and (L, v) to be elementarily equivalent in the language of valued fields, it is
necessary that vK and vL are elementarily equivalent in the language LOG

= {+,−, 0, <} of ordered groups, and that Kv and Lv are elementarily equivalent in
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the language LF = {+,−, · , −1, 0, 1} of fields (or in the language LR = {+,−, · , 0, 1} of
rings). This is because elementary sentences about the value group and about the residue
field can be encoded in the valued field itself.

Our main concern in this paper is to find additional conditions on (K, v) and (L, v)
under which these necessary conditions are also sufficient, i.e., the following Ax–Kochen–
Ershov Principle (in short: AKE≡ Principle) holds:

(1) vK ≡ vL ∧ Kv ≡ Lv =⇒ (K, v) ≡ (L, v) .

An AKE≺ Principle is the following analogue for elementary extensions:

(2) (K, v) ⊆ (L, v) ∧ vK ≺ vL ∧ Kv ≺ Lv =⇒ (K, v) ≺ (L, v) .

IfM is an L-structure andM′ a substructure ofM, then we will say thatM′ is exis-
tentially closed inM and writeM′ ≺∃M if every existential L-sentence with parameters
from M′ which holds in M also holds in M′. For the meaning of “existentially closed
in” in the setting of valued fields and of ordered abelian groups, see [K–P]. Inspired by
Robinson’s Test, our basic approach will be to ask for criteria for a valued field to be exis-
tentially closed in a given extension field. Replacing ≺ by ≺∃, we thus look for conditions
which ensure that the following AKE∃ Principle holds:

(3) (K, v) ⊆ (L, v) ∧ vK ≺∃ vL ∧ Kv ≺∃ Lv =⇒ (K, v) ≺∃ (L, v) .

The conditions

(4) vK ≺∃ vL and Kv ≺∃ Lv

will be called side conditions. It is an easy exercise in model theoretic algebra to show
that these conditions imply that vL/vK is torsion free and that Lv|Kv is regular, i.e.,
the algebraic closure of Kv is linearly disjoint from Lv over Kv, or equivalently, Kv is
relatively algebraically closed in Lv and Lv|Kv is separable; cf. Lemma 5.3.

A valued field for which (3) holds will be called an AKE∃-field. A class C of valued
fields will be called AKE≡-class (or AKE≺-class) if (1) (or (2), respectively) holds for
all (K, v), (L, v) ∈ C, and it will be called AKE∃-class if (3) holds for all (K, v) ∈ C.
We will also say that C is relatively complete if it is an AKE≡-class, and that C is
relatively model complete if it is an AKE≺-class. Here, “relatively” means “relative
to the value groups and residue fields”.

The following elementary classes of valued fields are known to satisfy all or some of the
above AKE Principles:

a) Algebraically closed valued fields satisfy all three AKE Principles. They even admit
quantifier elimination; this has been shown by Abraham Robinson, cf. [Ro].

b) Henselian fields of residue characteristic 0 satisfy all three AKE Principles. These facts
have been (explicitly or implicitly) shown by Ax and Kochen [AK] and independently by
Ershov [Er3]. They admit quantifier elimination relative to their value group and residue
field, cf. [D].

c) p-adically closed fields satisfy all three AKE Principles. Again, these fields were treated
by Ax and Kochen [AK] and independently by Ershov [Er3].
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d) ℘-adically closed fields (i.e., finite extensions of p-adically closed fields): for definitions
and results see the monograph by Prestel and Roquette [P–R].

e) Finitely ramified fields: this case is a generalization of c) and d). These fields were
treated by Ziegler [Zi] and independently by Ershov [Er5].

f) Algebraically maximal Kaplansky fields (see below for definitions). Again, these fields
were treated by Ziegler [Zi] and independently by Ershov [Er4].

An extension (L|K, v) of valued fields is called immediate if the canonical embed-
dings vK ↪→ vL and Kv ↪→ Lv are onto. A valued field is called algebraically maxi-
mal if it does not admit proper immediate algebraic extensions; it is called separable-
algebraically maximal if it does not admit proper immediate separable-algebraic ex-
tensions.

The henselization of a valued field (L, v) will be denoted by (L, v)h or simply Lh.
It is “the minimal” extension of (L, v) which is henselian; for details, see Section 2.
The henselization is an immediate separable-algebraic extension. Hence every separable-
algebraically maximal valued field is henselian.

Every valued field admits a maximal immediate algebraic extension and a maximal
immediate extension. All of the above mentioned valued fields have the common property
that these extensions are unique up to valuation preserving isomorphism. This has always
been a nice tool in the proofs of the model theoretic results. However, as we will show in
this paper, this uniqueness is not indispensible. In its absence, one just has to work much
harder.

We will show that tame valued fields (in short, “tame fields”) form an AKE∃-class, and
we will prove further model theoretic results for tame fields and separably tame fields.
Take a henselian field (K, v), and let p denote the characteristic exponent of its residue
field Kv, i.e., p = charKv if this is positive, and p = 1 otherwise. An algebraic extension
(L|K, v) of a henselian field (K, v) is called tame if every finite subextension E|K of L|K
satisfies the following conditions:

(TE1) The ramification index (vE : vK) is prime to p,
(TE2) The residue field extension Ev|Kv is separable,
(TE3) The extension (E|K, v) is defectless, i.e., [E : K] = (vE : vK)[Ev : Kv].

Remark 1.1. This notion of “tame extension” does not coincide with the notion of
“tamely ramified extension” as defined on page 180 of O. Endler’s book [En]. The lat-
ter definition requires (TE1) and (TE2), but not (TE3). Our tame extensions are the
defectless tamely ramified extensions in the sense of Endler’s book. In particular, in our
terminology, proper immediate algebraic extensions of henselian fields are not called tame
(in fact, they cause a lot of problems in the model theory of valued fields).

A tame field is a henselian field for which all algebraic extensions are tame. Likewise,
a separably tame field is a henselian field for which all separable-algebraic extensions
are tame. The algebraic properties of tame fields will be studied in Section 3.1, and those
of separably tame fields in Section 3.2.

If charKv = 0, then conditions (TE1) and (TE2) are void, and moreover, every finite
extension of (K, v) is defectless (cf. Corollary 2.5 below). Hence every henselian valued
field of residue characteristic 0 is tame.
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Take a valued field (K, v) and denote the characteristic exponent of Kv by p. Then
(K, v) is a Kaplansky field if vK is p-divisible andKv does not admit any finite extension
whose degree is divisible by p. All algebraically maximal Kaplansky fields are tame fields
(cf. Corollary 3.11 below). But the converse does not hold since for a tame field it is
admissible that its residue field has finite separable extensions with degree divisible by
p. It is because of this fact that the uniqueness of maximal immediate extensions will in
general fail (cf. [K–P–R]). This is what makes the proof of AKE Principles for tame fields
so much harder than that for algebraically maximal Kaplansky fields.

In many applications (such as the proof of a Nullstellensatz), only existential sentences
play a role. In these cases, it suffices to have an AKE∃ Principle at hand. There are
situations where we cannot even expect more than this principle. In order to present one,
we will need some definitions that will be fundamental for this paper.

Every finite extension (L|K, v) of valued fields satisfies the fundamental inequality
(cf. [En], [Ri], or [Z–S]):

(5) n ≥
g∑
i=1

eifi

where n = [L : K] is the degree of the extension, v1, . . . , vg are the distinct extensions of
v from K to L, ei = (viL : vK) are the respective ramification indices and fi = [Lvi : Kv]
are the respective inertia degrees. The extension is called defectless if equality holds in
(5). Note that g = 1 if (K, v) is henselian, so the definition given in axiom (TE3) is a
special case of this definition.

A valued field (K, v) is called defectless (or stable) if each of its finite extensions is
defectless, and separably defectless if each of its finite separable extensions is defect-
less. If charKv = 0, then (K, v) is defectless (this is a consequence of the “Lemma of
Ostrowski”, cf. (10) below.

Now let (L|K, v) be any extension of valued fields. Assume that L|K has finite trans-
cendence degree. Then (by Corollary 2.3 below):

(6) trdegL|K ≥ trdegLv|Kv + dimQQ⊗ vL/vK .

We will say that (L|K, v) is without transcendence defect if equality holds in (6). If
L|K does not have finite transcendence degree, then we will say that (L|K, v) is without
transcendence defect if every subextension of finite transcendence degree is. In Section 5.2
we will prove:

Theorem 1.2. Every extension without transcendence defect of a henselian defectless
field satisfies the AKE∃ Principle.

Note that it is not in general true that an extension of henselian defectless fields will satisfy
the AKE≺ Principle. There are extensions without transcendence defect that satisfy the
side conditions, for which the lower field is algebraically closed (or just henselian) while
the upper field is not. A different and particularly interesting example is given in Theorem
3 of [K5].

A valued field (K, v) has equal characteristic if charK = charKv. The following is
the main theorem of this paper:
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Theorem 1.3. The class of all tame fields is an AKE∃-class and an AKE≺-class. The
class of all tame fields of equal characteristic is an AKE≡-class.

This theorem, originally proved in [K1], has been applied in [K6] to study the structure
of the Zariski space of all places of an algebraic function field in positive characteristic.

As an immediate consequence of the foregoing theorem, we get the following criterion
for decidability:

Theorem 1.4. Let (K, v) be a tame field of equal characteristic. Assume that the theories
Th(vK) of its value group (as an ordered group) and Th(Kv) of its residue field (as a
field) both admit recursive elementary axiomatizations. Then also the theory of (K, v) as
a valued field admits a recursive elementary axiomatization and is decidable.

Indeed, the axiomatization of Th(K, v) can be taken to consist of the axioms of tame
fields of equal characteristic charK, together with the translations of the axioms of
Th(vK) and Th(Kv) to the language of valued fields (cf. Lemma 4.1).

As an application, we will prove Theorem 7.7 in Section 7.1 which includes the following
decidability result:

Theorem 1.5. Take q = pn for some prime p and some n ∈ N, and an ordered abelian
group Γ. Assume that Γ is divisible or elementarily equivalent to the p-divisible hull of Z.
Then the elementary theory of the power series field Fq((tΓ)) with coefficients in Fq and
exponents in Γ, endowed with its canonical valuation vt , is decidable.

Here are our results for separably defectless and separably tame fields, which we will
prove in Section 7.2:

Theorem 1.6. a) Take an extension (L|K, v) without transcendence defect of a henselian
separably defectless field such that vK is cofinal in vL. Then the extension satisfies the
AKE∃ Principle.
b) Every separable extension (L|K, v) of a separably tame field satisfies the AKE∃ Prin-
ciple.

In a subsequent paper, we will discuss quantifier elimination for tame fields in a natural
extension of the language of valued fields. The amc-structures described in [K3] alone are
not strong enough as they do not contain sufficient information about algebraic extensions
that are not tame. Predicates have to be added to the language in order to complement
the amc-structures.

We will deduce our model theoretic results from two main theorems which we originally
proved in [K1]. The first theorem is a generalization of the “Grauert–Remmert Stability
Theorem”. It deals with function fields F |K, i.e., F is a finitely generated field extension
of K (for our purposes it is not necessary to ask that the transcendence degree is ≥ 1).
For the following theorem, see [K10]:

Theorem 1.7. Let (F |K, v) be a valued function field without transcendence defect. If
(K, v) is a defectless field, then also (F, v) is a defectless field.

In [K-K1] we use Theorem 1.7 to prove:
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Theorem 1.8. Take a defectless field (K, v) and a valued function field (F |K, v) without
transcendence defect. Assume that Fv|Kv is a separable extension and vF/vK is torsion
free. Then (F |K, v) admits elimination of ramification in the following sense: there is a
transcendence basis T = {x1, . . . , xr, y1, . . . , ys} of (F |K, v) such that

a) vF = vK(T ) = vK ⊕ Zvx1 ⊕ . . .⊕ Zvxr,
b) y1v, . . . , ysv form a separating transcendence basis of Fv|Kv.

For each such transcendence basis T and every extension of v to the algebraic closure of
F , (F h|K(T )h, v) is defectless and satisfies:

1) vF h = vK(T )h,
2) F hv|K(T )hv is a finite separable extension and

[F h : K(T )h] = [F hv : K(T )hv] .

The second fundamental theorem, originally proved in [K1], is a structure theorem for
immediate function fields over tame or separably tame fields (cf. [K2], [K11]).

Theorem 1.9. Take an immediate function field (F |K, v) of transcendence degree 1.
Assume that (K, v) is a tame field, or that (K, v) is a separably tame field and F |K is
separable. Then

(7) there is x ∈ F such that (F h, v) = (K(x)h, v) .

For valued fields of residue characteristic 0, the assertion is a direct consequence of the
fact that every such field is defectless (in fact, every x ∈ F \K will then do the job). In
contrast to this, the case of positive residue characteristic requires a much deeper structure
theory of immediate extensions of valued fields, in order to find suitable elements x.

Theorem ?? is also used in [K-K2]. For a survey on a valuation theoretical approach
to local uniformization and its relation to the model theory of valued fields, see [K4].

2. Valuation theoretical preliminaries

2.1. Some general facts. For basic facts from valuation theory, see [En], [Ri], [W],
[E–P], [Z–S], [K2].

We will denote the algebraic closure of a field K by K̃. Whenever we have a valuation v
on K, we will automatically fix an extension of v to the algebraic closure K̃ of K. It does
not play a role which extension we choose, except if v is also given on an extension field
L of K; in this case, we choose the extension to K̃ to be the restriction of the extension
to L̃. We say that v is trivial on K if vK = {0}. If the valuation v of L is trivial on
the subfield K, then we may assume that K is a subfield of Lv and the residue map
K 3 a 7→ av is the identity.

We will denote by Ksep the separable-algebraic closure of K, and by K1/p∞ its perfect
hull. If Γ is an ordered abelian group and p a prime, then we write 1

p∞
Γ for the p-divisible

hull of Γ,endowed with the unique extension of the ordering from Γ. We leave the easy
proof of the following lemma to the reader.

Lemma 2.1. If K is an arbitrary field and v is a valuation on Ksep, then vKsep is the
divisible hull of vK, and (Kv)sep ⊆ Ksepv. If in addition v is nontrivial on K, then Ksepv
is the algebraic closure of Kv.
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Every valuation v on K has a unique extension to K1/p∞, and it satisfies vK1/p∞ =
1
p∞
vK and K1/p∞v = (Kv)1/p∞.

For the easy proof of the following lemma, see [B], chapter VI, §10.3, Theorem 1.

Lemma 2.2. Let (L|K, v) be an extension of valued fields. Take elements xi, yj ∈ L,
i ∈ I, j ∈ J , such that the values vxi , i ∈ I, are rationally independent over vK, and
the residues yjv, j ∈ J , are algebraically independent over Kv. Then the elements xi, yj,
i ∈ I, j ∈ J , are algebraically independent over K.

Moreover, write

(8) f =
∑
k

ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j ∈ K[xi, yj | i ∈ I, j ∈ J ]

in such a way that whenever k 6= `, then there is some i s.t. µk,i 6= µ`,i or some j s.t.
νk,j 6= ν`,j . Then

(9) vf = min
k

v ck
∏
i∈I

x
µk,i
i

∏
j∈J

y
νk,j
j = min

k
vck +

∑
i∈I

µk,ivxi .

That is, the value of the polynomial f is equal to the least of the values of its monomials.
In particular, this implies:

vK(xi, yj | i ∈ I, j ∈ J) = vK ⊕
⊕
i∈I

Zvxi

K(xi, yj | i ∈ I, j ∈ J)v = Kv (yjv | j ∈ J) .

The valuation v on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined by its restriction to K,
the values vxi and the fact that the residues yjv, j ∈ J , are algebraically independent over
Kv.

The residue map on K(xi, yj | i ∈ I, j ∈ J) is uniquely determined by its restriction to
K, the residues yjv, and the fact that values vxi , i ∈ I, are rationally independent over
vK.

We give two applications of this lemma.

Corollary 2.3. Take a valued function field (F |K, v) without transcendence defect and set
r = dimQQ ⊗ vF/vK and s = trdegFv|Kv. Choose elements x1, . . . , xr, y1, . . . , ys ∈ F
such that the values vx1, . . . , vxr are rationally independent over vK and the residues
y1v, . . . , ysv are algebraically independent over Kv. Then T = {x1, . . . , xr, y1, . . . , ys} is
a transcendence basis of F |K. Moreover, vF/vK and the extension Fv|Kv are finitely
generated.

Proof. By the foregoing theorem, the elements x1, . . . , xr, y1, . . . , ys are algebraically in-
dependent over K. Since trdegF |K = r + s by assumption, these elements form a
transcendence basis of F |K.

It follows that the extension F |K(T ) is finite. By the fundamental inequality (5), this
yields that vF/vK(T ) and Fv|K(T )v are finite. Since already vK(T )/vK and K(T )v|Kv
are finitely generated by the foregoing lemma, it follows that also vF/vK and Fv|Kv are
finitely generated. �
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Corollary 2.4. If a valued field extension admits a standard valuation transcendence
basis, then it is an extension without transcendence defect.

Proof. Let (L|K, v) be an extension with standard valuation transcendence basis T , and
F |K a subextension of L|K of finite transcendence degree. We have to show that equality
holds in (6) for F in place of L. Since F |K is finitely generated, there is a finite subset
T0 ⊆ T such that all generators of F are algebraic over K(T0). Then T0 is a standard
valuation transcendence basis of (F (T0)|K, v), and it follows from Lemma 2.2 that equality
holds in (6) for F ′ := F (T0) in place of L. But as trdegF ′|K = trdegF ′|F + trdegF |K,
trdegF ′v|Kv = trdegF ′v|Fv+trdegFv|Kv and dimQQ⊗vF ′/vK = dimQQ⊗vF ′/vF +
dimQQ⊗ vF/vK, it follows that

trdegF ′|K = trdegF ′|F + trdegF |K
≥ trdegF ′v|Fv + dimQQ⊗ vF ′/vF + trdegFv|Kv + dimQQ⊗ vF/vK
= trdegF ′v|Kv + dimQQ⊗ vF ′/vK
= trdegF ′|K ,

hence equality must hold. Since the inequality (6) holds for the two extensions (F ′|F, v)
and (F |K, v), we find that trdegF |K = trdegFv|Kv + dimQQ⊗ vF/vK must hold. �

Every valued field (L, v) admits a henselization, that is, a minimal algebraic exten-
sion which is henselian. All henselizations are isomorphic over L, so we will frequently
talk of the henselization of (L, v), denoted by (L, v)h, or simply Lh. The henselization
becomes unique in absolute terms once we fix an extension of the valuation v from L to its
algebraic closure. All henselizations are immediate separable-algebraic extensions. They
are minimal henselian extensions of (L, v) in the following sense: if (F, v′) is a henselian
extension field of (L, v), then there is a unique embedding of (Lh, v) in (F, v′). This is the
universal property of the henselization. We note that every algebraic extension of
a henselian field is again henselian.

2.2. The defect. Assume that (L|K, v) is a finite extension and the extension of v from
K to L is unique (which is always the case when (K, v) is henselian). Then the Lemma
of Ostrowski (cf. [En], [Ri], [K2]) says that

(10) [L : K] = (vL : vK) · [Lv : Kv] · pν with ν ≥ 0

where p is the characteristic exponent of Kv. The factor

d(L|K, v) := pν =
[L : K]

(vL : vK)[Lv : Kv]

is called the defect of the extension (L|K, v). If ν > 0, then we speak of a nontrivial
defect. If [L : K] = p then (L|K, v) has nontrivial defect if and only if it is immediate.
If d(L|K, v) = 1, then we call (L|K, v) a defectless extension. Note that (L|K, v) is
always defectless if charKv = 0. Therefore,

Corollary 2.5. Every valued field (K, v) with charKv = 0 is a defectless field.

The following lemma shows that the defect is multiplicative. This is a consequence of
the multiplicativity of the degree of field extensions and of ramification index and inertia
degree. We leave the straightforward proof to the reader.
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Lemma 2.6. Fix an extension of a valuation v from K to its algebraic closure. If L|K
and M |L finite extensions and the extension of v from K to M is unique, then

(11) d(M |K, v) = d(M |L, v) · d(L|K, v)

In particular, (M |K, v) is defectless if and only if (M |L, v) and (L|K, v) are defectless.

The next lemma follows from Lemma 2.5 of [K8]:

Lemma 2.7. Take an arbitrary immediate extension (F |K, v) and an algebraic extension
(L|K, v) of which every finite subextension admits a unique extension of the valuation and
is defectless. Then F |K and L|K are linearly disjoint.

A valued field (K, v) is called separably defectless if equality holds in (5) for every
finite separable extension, and it is called inseparably defectless if equality holds in (5)
for every finite purely in separable extension L|K. From the previous lemma, we obtain:

Corollary 2.8. Every immediate extension of a defectless field is regular. Every imme-
diate extension of an inseparably defectless field is separable.

The following is an important theorem, as passing to henselizations will frequently
facilitate our work.

Theorem 2.9. Take a valued field (K, v) and fix an extension of v to K̃. Then (K, v) is
defectless if and only if its henselization (K, v)h in (K̃, v) is defectless. The same holds
for “separably defectless” and “inseparably defectless” in place of “defectless”.

Proof. For “separably defectless”, our assertion follows directly from [En], Theorem (18.2).
The proof of that theorem can easily be adapted to prove the assertion for “inseparably
defectless” and “defectless”. See [K2] for more details. �

Since a henselian field has a unique extension of the valuation to every algebraic exten-
sion field, we obtain:

Corollary 2.10. A valued field (K, v) is defectless if and only if d(L|Kh, v) = 1 for every
finite extension L|Kh.

Using this corollary together with Lemma 2.6, one easily shows:

Corollary 2.11. Every finite extension of a defectless field is again a defectless field.

We will denote by Kr the ramification field of the normal extension (Ksep|K, v), and by
Ki its inertia field. As both fields contain the decomposition field of (Ksep|K, v), which
is the henselization of K inside of (Ksep, v), they are henselian.

The following is Proposition 2.8 of [K8]:

Proposition 2.12. Let (K, v) be a henselian field and N an arbitrary algebraic extension
of K within Kr. If L|K is a finite extension, then

d(L|K, v) = d(L.N |N, v) .

Hence, (K, v) is a defectless field if and only if (N, v) is a defectless field. The same holds
for “separably defectless” and “inseparably defectless” in place of “defectless”.
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Lemma 2.13. Take a valued field (F, v) and suppose that E is a subfield of F on which
v is trivial. Then Esep ⊂ F i. Further, if Fv|Ev is algebraic, then (F.Esep)v = (Fv)sep.

Proof. Our assumption implies that the residue map induces an embedding of E in Fv.
By ramification theory ([En], [K2]), F iv = (Fv)sep. Thus, (Ev)sep ⊆ F iv. Using Hensel’s
Lemma, one shows that the inverse of the isomorphism E 3 a 7→ av ∈ Ev can be extended
from Ev to an embedding of (Ev)sep in F i. Its image is separable-algebraically closed and
contains E. Hence, Esep ⊂ F i. Further, (F.Esep)v contains Esepv, which by Lemma 2.1
contains (Ev)sep. As F.Esep|F is algebraic, so is (F.Esep)v|Fv. Therefore, if Fv|Ev
is algebraic, then (F.Esep)v is algebraic over (Ev)sep and hence separable-algebraically
closed. Since (F.Esep)v ⊆ F iv = (Fv)sep, it follows that (F.Esep)v = (Fv)sep. �

2.3. Algebraically maximal and separable-algebraically maximal fields. All al-
gebraically maximal and all separable-algebraically maximal fields are henselian because
the henselization is an immediate separable-algebraic extension and therefore these fields
must coincide with their henselization. Every henselian defectless field is algebraically
maximal. However, the converse is not true in general: algebraically maximal fields need
not be defectless (see Example 3.25 in [K9]). But we will see in Corollary 3.12 below
that it holds for perfect fields of positive characteristic. More generally, in [K8] it is
shown that a valued field of positive characteristic is henselian and defectless if and only
if it is algebraically maximal and inseparably defectless. Note that for a valued field of
residue characteristic 0, “henselian”, “algebraically maximal” and “henselian defectless”
are equivalent.

We will assume the reader to be familiar with the theory of pseudo Cauchy sequences
as developed in [Ka]. Recall that a pseudo Cauchy sequence (aν)ν<λ in (K, v) is of
transcendental type if it fixes the value of every polynomial f ∈ K[X], that is, vf(aν)
is constant for all large enough ν < λ. See [Ka] for the proof of the following theorem.

Theorem 2.14. A valued field (K, v) is algebraically maximal if and only if every pseudo
Cauchy sequence in (K, v) without a limit in K is of transcendental type.

We also obtain the following result from Kaplansky’s main theorems:

Theorem 2.15. Take an algebraically maximal field (K, v) and two nontrivial immediate
extensions (K(x)|K, v) and (K(y)|K, v). If x and y are limits of the same pseudo Cauchy
sequence in (K, v) without a limit in K, then x 7→ y induces a valuation preserving
isomorphism from K(x) to K(y).

Proof. If x and y are limits of the same pseudo Cauchy sequence in (K, v) without a limit
in K, then by the foregoing theorem, this pseudo Cauchy sequence is of transcendental
type. Our assertion then follows from Theorem 2 of [Ka]. �

We will need the following characterizations of algebraically maximal and separable-
algebraically maximal fields; cf. Theorems 1.4, 1.6 and 1.8 of [K8].

Theorem 2.16. The valued field (K, v) is algebraically maximal if and only if it is
henselian and for every polynomial f ∈ K[X],

(12) ∃x ∈ K ∀y ∈ K : vf(x) ≥ vf(y) .
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Similarly, (K, v) is separable-algebraically maximal if and only if (12) holds for every
separable polynomial f ∈ K[X].

3. The algebra of tame and separably tame fields

3.1. Tame fields. An algebraic extension of a henselian field is called purely wild if it
is linearly disjoint from every tame extension. It follows that if (L|K, v) and (L′|L, v) are
purely wild extensions, then so is (L′|K, v). We will call (K, v) a purely wild field if
(K̃|K, v) is a purely wild extension. For example, for every henselian field (K, v), Kr is a
purely wild field (as follows from part b) of Lemma 3.2 or part a) of Lemma 3.4 below).
Lemma 2.7 yields important examples of purely wild extensions:

Corollary 3.1. Every immediate algebraic extension of a henselian field is purely wild.

The next lemma follows from general ramification theory; see [En], [K2].

Lemma 3.2. Take a henselian field (K, v).

a) If (K1|K, v) and (K2|K1, v) are algebraic, then (K2|K, v) is tame if and only if
(K1|K, v) and (K2|K1, v) are.

b) The field Kr is the unique maximal tame extension of (K, v).

Since Kr|K is by definition a separable extension, this lemma yields:

Corollary 3.3. Every tame extension of a henselian field is separable. Every purely
inseparable algebraic extension of a henselian field is purely wild.

From Lemma 3.2, one easily deduces part a) of the next lemma. Part b) follows from
the fact that Lr = L.Kr for every algebraic extension L|K.

Lemma 3.4. a) Let (K, v) be a henselian field. Then (K, v) is a tame field if and only
if Kr = K̃. Similarly, (K, v) is a separably tame field if and only if Kr = Ksep. Further,
(K, v) is a purely wild field if and only if Kr = K.

b) Every algebraic extension of a tame (or separably tame, or purely wild, respectively)
field is again a tame (or separably tame, or purely wild, respectively) field.

If (K, v) is a henselian field of residue characteristic 0, then every algebraic extension
(L|K, v) is tame, as we have seen in the last section. So we note:

Lemma 3.5. Every algebraic extension of a henselian field of residue characteristic 0 is
a tame extension. Every henselian field of residue characteristic 0 is a tame field.

From the definition and the fact that every tame extension is separable, we obtain:

Lemma 3.6. Every tame field is henselian, defectless and perfect.

In general, infinite algebraic extensions of defectless fields need not again be defectless
fields. For example, Fp(t)h is a defectless field by Theorem 1.7 and Theorem 2.9, but the
perfect hull of Fp(t)h is a henselian field admitting an immediate extension generated by
a root of the polynomial Xp −X − 1

t
(cf. Example 3.12 of [K9]). But from Lemmas 3.4

and 3.6 we can deduce that every algebraic extension of a tame field is a defectless field.
The following theorem was proved by M. Pank; cf. [K–P–R].
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Theorem 3.7. Let (K, v) be a henselian field with residue characteristic p > 0. There
exist field complements Ws of Kr in Ksep over K, i.e., Kr.Ws = Ksep and Ws is linearly

disjoint from Kr over K. The perfect hull W = W
1/p∞
s is a field complement of Kr over

K, i.e., Kr.W = K̃ and W is linearly disjoint from Kr over K. The valued fields (Ws, v)
can be characterized as the maximal separable purely wild extensions of (K, v), and the
valued fields (W, v) are the maximal purely wild extensions of (K, v).

Moreover, vW = vWs is the p-divisible hull of vK, and Wv is the perfect hull of Kv;
if v is nontrivial, then Wv = Wsv.

In [K–P–R], a condition for the uniqueness of these complements is given and its relation
to Kaplansky’s hypothesis A and the uniqueness of maximal immediate extensions is
explained.

We will need the following characterization of purely wild extensions:

Lemma 3.8. An algebraic extension (L|K, v) of henselian fields of residue characteristic
p > 0 is purely wild if and only if vL/vK is a p-group and Lv|Kv is purely inseparable.

Proof. By Zorn’s Lemma, every purely wild extension is contained in a maximal one.
So our assertions on vL/vK and Lv|Kv follows from the corresponding assertions of
Theorem 3.7 for vW and Wv.

For the converse, assume that (L|K, v) is an extension of henselian fields of residue
characteristic p > 0 such that vL/vK is a p-group and Lv|Kv is purely inseparable. We
have to show that L|K is linearly disjoint from every tame extension (F |K, v). Since
every tame extension is a union of finite tame extensions, it suffices to show this under
the assumption that F |K is finite. Then [F : K] = (vF : vK)[Fv : Kv]. Since p
does not divide (vF : vK) and vL/vK is a p-group, it follows that vF ∩ vL = vK. As
vF + vL ⊆ v(F.L), we have that

(v(F.L) : vL) ≥ ((vF + vL) : vL) = (vF : (vF ∩ vL)) = (vF : vK) .

Since Fv|Kv is separable and Lv|Kv is purely inseparable, these extensions are linearly
disjoint. As (Fv).(Lv) ⊆ (F.L)v, we have that

[(F.L)v : Lv] ≥ [(Fv).(Lv) : Lv] = [Fv : Kv] .

Now we compute:

[F.L : L] ≥ (v(F.L) : vL)[(F.L)v : Lv] ≥ (vF : vK)[Fv : Kv] = [F : K] ≥ [F.L : L] ,

hence equality holds everywhere. This shows that L|K is linearly disjoint from F |K. �

In conjunction with equation (10), this lemma shows:

Corollary 3.9. The degree of a finite purely wild extension (L|K, v) of henselian fields
of residue characteristic p > 0 is a power of p.

Using Theorem 3.7, we give some characterizations for tame fields.

Lemma 3.10. Take a henselian field (K, v) and denote by p the characteristic exponent
of Kv. The following assertions are equivalent:
1) (K, v) is tame,
2) Every purely wild extension (L|K, v) is trivial,
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3) (K, v) is algebraically maximal and closed under purely wild extensions by p-th roots,
4) (K, v) is algebraically maximal, vK is p-divisible and Kv is perfect.

Proof. Let (K, v) be a tame field, hence Kr = K̃ by part a) of Lemma 3.4. Then by
definition, every purely wild extension of (K, v) must be trivial. This proves 1)⇒2).

Suppose that (K, v) has no purely wild extension. Then in particular, it has no purely
wild extension by p-th roots. From Corollary 3.1 we infer that (K, v) admits no proper
immediate algebraic extensions, i.e., (K, v) is algebraically maximal. This proves 2)⇒3).

Assume now that (K, v) is an algebraically maximal field closed under purely wild
extensions by p-th roots. Take a ∈ K. First, suppose that va is not divisible by p in vK;
then the extension K(b)|K generated by an element b ∈ K̃ with bp = a, together with
any extension of the valuation, satisfies (vK(b) : vK) ≥ p = [K(b) : K] ≥ (vK(b) : vK).
Hence, equality holds everywhere, and (5) shows that (vK(b) : vK) = p and K(b)v = Kv.
Hence by Lemma 3.8, K(b)|K, v) is purely wild, contrary to our assumption on (K, v).
This shows that vK is p-divisible.

Second, suppose that va = 0 and that av has no p-th root in Kv. Then [K(b)v : Kv] ≥
p = [K(b) : K] ≥ [K(b)v : Kv]. Hence, equality holds everywhere, and (5) shows that
vK(b) = vK and [K(b)v : Kv] = p. It follows that K(b)v|Kv is purely inseparable. Again
by Lemma 3.8, the extension (K(b)|K, v) is purely wild, contrary to our assumption. This
shows that Kv is perfect. Altogether, we have now proved 3)⇒4).

Suppose that (K, v) is an algebraically maximal (and thus henselian) field such that
vK is p-divisible and Kv is perfect. Choose a maximal purely wild extension (W, v) in
accordance to Theorem 3.7. Together with the last part of Theorem 3.7, our condition on
the value group and the residue field yields that (W |K, v) is immediate. But since (K, v)
is assumed to be algebraically maximal, this extension must be trivial. This shows that
K̃ = Kr, i.e., (K, v) is a tame field by part a) of Lemma 3.4. This proves 4)⇒1). �

If the residue field Kv does not admit any finite extension whose degree is divisible by
p, then in particular it must be perfect. Hence we can deduce from the previous lemma:

Corollary 3.11. Every algebraically maximal Kaplansky field is a tame field.

If K has characteristic p > 0, then every extension by p-th roots is purely inseparable
and thus purely wild. So the previous lemma together with Lemma 3.6 yields:

Corollary 3.12. a) A valued field (K, v) of characteristic p > 0 is tame if and only if it
is algebraically maximal and perfect.

b) If (K, v) is an arbitrary valued field of characteristic p > 0, then every maximal
immediate algebraic extension of its perfect hull is a tame field.

c) For perfect valued fields of positive characteristic, the properties “algebraically maxi-
mal” and “henselian and defectless” are equivalent.

The implication 2)⇒1) of Lemma 3.10 shows:

Corollary 3.13. Every complement (W, v) from Theorem 3.7 is a tame field.

The next corollary shows how to construct tame fields with suitable prescribed value
group and residue field. If (L|K, v) is an extension of valued fields, then a transcendence



14 FRANZ–VIKTOR KUHLMANN

basis T of L|K will be called a standard valuation transcendence basis of (L, v)
over (K, v) if T = {xi, yj | i ∈ I, j ∈ J} where the values vxi, i ∈ I, form a maximal
set of values in vL rationally independent over vK, and the residues yjv, j ∈ J , form
a transcendence basis of Lv|Kv. Note that if (L|K, v) is of finite transcendence degree
and admits a standard valuation transcendence basis, then it is an extension without
transcendence defect. Note also that the transcendence basis T given in Theorem 1.8 is
a standard valuation transcendence basis.

Corollary 3.14. Let p be a prime number, Γ a p-divisible ordered abelian group and k a
perfect field of characteristic p. Then there exists a tame field K of characteristic p having
Γ as its value group and k as its residue field such that K|Fp admits a standard valuation
transcendence basis and the cardinality of K is equal to the maximum of the cardinalities
of Γ and k.

Proof. According to Theorem 2.14. of [K7], there is a valued field (K0, v) of characteristic p
with value group Γ and residue field k, and admitting a standard valuation transcendence
basis over its prime field Fp . Now take (K, v) to be a maximal immediate algebraic
extension of (K0, v). Then (K, v) is algebraically maximal, and Lemma 3.10 shows that
it is a tame field. Since it is an algebraic extension of (K0, v), it still admits the same
transcendence basis over its prime field. If v is trivial, then Γ = {0} and K = k,
whence |K| = max{|Γ|, |k|}. If v is nontrivial, then K and Γ are infinite and therefore,
|K| = min{ℵ0, |T |} ≤ max{|Γ|, |k|} ≤ |K|, whence again |K| = max{|Γ|, |k|}. �

Now we will prove an important lemma on tame fields that we will need in several
instances.

Lemma 3.15. Take a tame field (L, v) and a relatively algebraically closed subfield K ⊂ L.
If in addition Lv|Kv is an algebraic extension, then K is also a tame field and moreover,
vL/vK is torsion free and Kv = Lv.

Proof. The following short and elegant version of the proof was given by Florian Pop.
Since (L, v) is tame, it is henselian and perfect. Since K is relatively algebraically closed
in L, it is henselian and perfect too. Assume that (K1|K, v) is a finite purely wild
extension; in view of Lemma 3.10, we have to show that it is trivial. By Corollary 3.9, the
degree [K1 : K] is a power of p, say pm. Since K is perfect, L|K and K1|K are separable
extensions. Since K is relatively algebraically closed in L, we know that L and K1 are
linearly disjoint over K. Thus, K1 is relatively algebraically closed in K1.L, and

[K1.L : L] = [K1 : K] = pm .

Since L is assumed to be a tame field, the extension (K1.L|L, v) must be tame. This
implies that

(K1.L)v |Lv
is a separable extension of degree pm. By hypothesis, Lv |Kv is an algebraic extension,
hence also (K1.L)v |Kv and (K1.L)v |K1v are algebraic. Furthermore, (K1.L, v) being
a henselian field and K1 being relatively algebraically closed in K1.L, Hensel’s Lemma
shows that

(K1.L)v |K1v
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must be purely inseparable. This yields that

pm = [(K1.L)v : Lv]sep ≤ [(K1.L)v : Kv]sep = [(K1.L)v : K1v]sep · [K1v : Kv]sep

= [K1v : Kv]sep ≤ [K1v : Kv] ≤ [K1 : K] = pm ,

showing that equality holds everywhere, which implies that

K1v |Kv

is separable of degree pm. Since K1|K was assumed to be purely wild, we have pm = 1
and the extension K1|K is trivial.

We have now shown that K is a tame field; hence by Lemma 3.10, vK is p-divisible
and Kv is perfect. Since Lv|Kv is assumed to be algebraic, one can use Hensel’s Lemma
to show that Lv = Kv and that the torsion subgroup of vL/vK is a p-group. But as vK
is p-divisible, vL/vK has no p-torsion, showing that vL/vK has no torsion at all. �

A similar fact holds for separably tame fields, as stated in Lemma 3.23 below. Note
that the conditions on the residue fields is necessary, even if they are of characteristic 0
(cf. Example 3.9 in [K7]).

The following corollaries will show some nice properties of the class of tame fields. They
also admit generalizations to separably tame fields, see Corollary 3.24 below. First we
show that a function field over a tame field admits a so-called field of definition which is
tame and of finite rank, that is, its value group has only finitely many convex subgroups.
This is an important tool in the study of the structure of such function fields.

Corollary 3.16. For every valued function field F with given transcendence basis T over
a tame field K, there exists a tame subfield K0 of K of finite rank with K0v = Kv and
vK/vK0 torsion free, and a function field F0 with transcendence basis T over K0 such
that

(13) F = K.F0

and

(14) [F0 : K0(T )] = [F : K(T )] .

Proof. Let F = K(T )(a1, . . . , an). There exists a finitely generated subfield K1 of K such
that a1, . . . , an are algebraic over K1(T ) and [F : K(T )] = [K1(T )(a1, . . . , an) : K1(T )].
This will still hold if we replace K1 by any extension field of K1 within K. As a finitely
generated field, (K1, v) has finite rank. Now let yj, j ∈ J , be a system of elements in K
such that the residues yjv, j ∈ J , form a transcendence basis of Kv over K1v. According
to Lemma 2.2, the field K1(yj|j ∈ J) has residue field K1v(yjv|j ∈ J) and the same value
group as K1, hence it is again a field of finite rank. Let K0 be the relative algebraic
closure of this field within K. Since by construction, Kv|K1v(yjv|j ∈ J) and thus also
Kv|K0v are algebraic, we can infer from the preceding lemma that K0 is a tame field
with K0v = Kv and vK/vK0 torsion free. As an algebraic extension of a field of finite
rank, it is itself of finite rank. Finally, the function field F0 = K0(T )(a1, . . . , an) has
transcendence basis T over K0 and satisfies equations (13) and (14). �
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Corollary 3.17. For every extension (L|K, v) with (L, v) a tame field, there exists a
tame intermediate field L0 such that the extension (L0|K, v) admits a standard valuation
transcendence basis and the extension (L|L0, v) is immediate.

Proof. Take T = {xi, yj | i ∈ I, j ∈ J} where the values vxi, i ∈ I, form a maximal
set of values in vL rationally independent over vK, and the residues yjv, j ∈ J , form
a transcendence basis of Lv|Kv. With this choice, vL/vK(T ) is a torsion group and
Lv|K(T )v is algebraic. Let L0 be the relative algebraic closure of K(T ) within L. Then
by Lemma 3.15, we have that (L0, v) is a tame field, that Lv = L0v and that vL/vL0 is
torsion free and thus, vL0 = vL. This shows that the extension (L|L0, v) is immediate. On
the other hand, T is a standard valuation transcendence basis of (L0|K, v) by construction.

�

3.2. Separably tame fields. Note that “henselian and separably defectless” implies
“separable-algebraically maximal”.

Since every finite separable-algebraic extension of a separably tame field is tame and
thus defectless, a separably tame field is always henselian and separably defectless. The
converse is not true; it needs additional assumptions on the value group and the residue
field. Under the assumptions that we are going to use frequently, the converse will even
hold for “separable-algebraically maximal” in place of “henselian and separably defect-
less”. Before proving this, we need a lemma which makes essential use of Theorem 3.7.

Lemma 3.18. A henselian field (K, v) is defectless if and only if every finite purely wild
extension of (K, v) is defectless. Similarly, (K, v) is separably defectless if and only if
every finite separable purely wild extension of (K, v) is defectless.

Proof. By Theorem 3.7, there exists a field complement W of Kr over K in Ksep, and
W 1/p∞ is a field complement of Kr over K in K̃. Consequently, given any finite extension
(or finite separable extension, respectively) (L|K, v), there is a finite subextension N |K
of Kr|K and a finite subextension (or finite separable subextension, respectively) W0|K
of W 1/p∞|K (or of W |K, respectively) such that L ⊆ N.W0. If (N.W0|K, v) is defectless,
then so is (L|K, v) by Lemma 2.6. Hence (K, v) is defectless (or separably defectless,
respectivel) if and only if every such extension (N.W0|K, v) is defectless. Since (N |K, v)
is a tame extension, Lemma 2.12 shows that

d(N.W0|N, v) = d(W0|K, v) .

Hence, (L|K, v) is defectless if (W0|K, v) is defectless. This yields our assertion. �

An Artin-Schreier extension of a field K of characteristic p > 0 is an extension
generated by a root of a polynomial of the form Xp −X − a with a ∈ K.

Lemma 3.19. Take a valued field (K, v) of characteristic p > 0. The following assertions
are equivalent:
1) (K, v) is separably tame,
2) Every separable purely wild extension (L|K, v) is trivial,
3) (K, v) is separable-algebraically maximal and closed under purely wild Artin-Schreier
extensions,
4) (K, v) is separable-algebraically maximal, vK is p-divisible and Kv is perfect.
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Proof. Let (K, v) be a separably tame field. Then by definition, every separable purely
wild extension of (K, v) must also be tame, hence trivial. This proves 1)⇒2).

Now suppose that 2) holds. Then in particular, (K, v) admits no purely wild Artin-
Schreier extensions. Furthermore, (K, v) admits no proper separable-algebraic immediate
extensions, as they would be purely wild. Consequently, (K, v) is separable-algebraically
maximal. This proves 2)⇒3).

If (K, v) is closed under purely wild Artin-Schreier extensions, then vK is p-divisible
and Kv is perfect (cf. Corollary 2.17 of [K7]). This proves 3)⇒4).

Suppose that (K, v) is a separable-algebraically maximal field such that vK is p-divisible
and Kv is perfect. Then (K, v) is henselian. Choose a maximal separable purely wild
extension (Ws, v) in accordance to Theorem 3.7. Our condition on the value group and
the residue field yields that (Ws|K, v) is immediate. But since (K, v) is assumed to be
separable-algebraically maximal, this extension must be trivial. This shows that Ksep =
Kr, i.e., (K, v) is a separably tame field by part a) of Lemma 3.4. This proves 4)⇒1). �

Suppose that (K, v) separably tame. Choose (Ws, v) according to Theorem 3.7. Then
by condition 2) of the lemma above, the extension (Ws|K, v) must be trivial. This yields
that (K1/p∞ , v) is the unique maximal purely wild extension of (K, v). Further, (K, v)
also satisfies condition 3) of the lemma. From Corollary 4.6 of [K8] it follows that (K, v)
is dense in (K1/p∞ , v), i.e., K1/p∞ lies in the completion of (K, v). This proves:

Corollary 3.20. If (K, v) is separably tame, then the perfect hull K1/p∞ of K is the
unique maximal purely wild extension of (K, v) and lies in the completion of (K, v). In
particular, every immediate algebraic extension of a separably tame field (K, v) is purely
inseparable and included in the completion of (K, v).

Lemma 3.21. (K, v) is a separably tame field if and only if (K1/p∞ , v) is a tame field.
Consequently, if (K1/p∞ , v) is a tame field, then (K, v) is dense in (K1/p∞ , v).

Proof. Suppose that (K, v) is a separably tame field. Then by the maximality stated
in the previous corollary, (K1/p∞ , v) admits no proper purely wild algebraic extensions.
Hence by Lemma 3.10, (K1/p∞ , v) is a tame field.

For the converse, suppose that (K1/p∞ , v) is a tame field. Observe that the extension
(K1/p∞|K, v) is purely wild and contained in every maximal purely wild extension of
(K, v). Consequently, if (K1/p∞ , v) admits no purely wild extension at all, then (K1/p∞ , v)
is the unique maximal purely wild extension of (K, v). Then in view of Theorem 3.7, K1/p∞

must be a field complement for Kr over K in K̃. This yields that Kr = Ksep, hence by
part b) of Lemma 3.2, (Ksep|K, v) is a tame extension, showing that (K, v) is a separably
tame field. By Corollary 3.20, it follows that (K, v) is dense in (K1/p∞ , v). �

The following lemma describes the interesting behaviour of separably tame fields under
composition of places.

Lemma 3.22. Take a separably tame field (K, v) of characteristic p > 0 and let P be the
place associated with v. Assume that P = P1P2P3 where P1 is a coarsening of P , P2 is a
place on KP1 and P3 is a place on KP1P2 . Assume further that P2 is nontrivial (but P1

and P3 may be trivial). Then (KP1, P2) is a separably tame field. If also P1 is nontrivial,
then (KP1, P2) is a tame field.
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Proof. By Lemma 3.10, vK is p-divisible. The same is then true for vP2(KP1). We wish
to show that the residue field KP1P2 is perfect. Indeed, assume that this were not the
case. Then there is an Artin-Schreier extension of (K,P1P2) which adjoins a p-th root
to the residue field KP1P2 (cf. Lemma 2.13 of [K7]). Since this residue field extension is
purely inseparable, the induced extension of the residue field Kv = KP1P2P3 can not be
separable of degree p. This shows that the Artin-Schreier extension is a separable purely
wild extension of (K, v), contrary to our assumption on (K, v).

By Lemma 3.19, (K,P ) is separable-algebraically maximal. This yields that the same
is true for (K,P1P2); indeed, if (L|K,P1P2) is an immediate extension, then LP1P2 =
KP1P2, whence LP1P2P3 = KP1P2P3, showing that also (L|K,P ) is immediate. If P1 is
trivial (hence w.l.o.g. equal to the identity map), then (KP1, P2) = (K,P1P2) is separable-
algebraically maximal, and it follows from Lemma 3.19 that (KP1, P2) is a separably tame
field.

Now assume that P1 is nontrivial. Suppose that there is a nontrivial immediate algebraic
extension of (KP1, P2). Choose an element b /∈ KP1 in this extension, and let g be its
minimal polynomial. Choose a monic polynomial f ∈ K[X] such that fP1 = g, and a
root a of f . Then there is an extension of P1 to K(a) such that aP1 = b. It follows from
the fundamental inequality that K(a)P1 = KP1(b) and that (K(a), P1) and (K,P1) have
the same value group. But as (KP1(b)|KP1, P2) is immediate, it now follows that also
(K(a)|K,P1P2P3) is immediate. Note that we can always choose f to be separable as we
may add a summand cX with vP1c > 0, which does not change the image of f under P1.
In this way, we obtain a contradiction to the fact that (K,P ) is separable-algebraically
maximal. We have thus shown that (KP1, P2) is an algebraically maximal field, and it
follows from Lemma 3.10 that (KP1, P2) is a tame field. �

The following is an analogue of Lemma 3.15.

Lemma 3.23. Let (K, v) be a separably tame field and k ⊂ K a relatively algebraically
closed subfield of K. If the residue field extension Kv|kv is algebraic, then (k, v) is also
a separably tame field.

Proof. Since k is relatively algebraically closed in K, it follows that also k1/p∞ is relatively
algebraically closed in K1/p∞ . Since (K, v) is a separably tame field, (K1/p∞ , v) is a
tame field by Lemma 3.21. From this lemma we also know that Kv = K1/p∞v and
vK = vK1/p∞ . Our assumption on Kv | kv yields that the extension K1/p∞v | k1/p∞v is
algebraic. From Lemma 3.15 we can now infer that (k1/p∞ , v) is a tame field with k1/p∞v =
K1/p∞v = Kv and vK1/p∞/vk1/p∞ = vK/vk1/p∞ torsion free. Again by Lemma 3.21, (k, v)
is thus a separably tame field with kv = k1/p∞v = Kv and vK/vk = vK/vk1/p∞ torsion
free. �

Corollary 3.24. Corollary 3.16 also holds for separably tame fields in place of tame
fields. More precisely, if F |K is a separable extension, then F0 and K0 can be chosen
such that F0|K0 is a separable extension. Moreover, if vK is cofinal in vF then it can
also be assumed that vK0 is cofinal in vF0.

Proof. Since the proof of Corollary 3.16 only involves Lemma 3.15, it can be adapted by
use of Lemma 3.23. The first additional assertion can be shown using the fact that the
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finitely generated separable extension F |K is separably generated. The second additional
assertion is seen as follows. If vF admits a biggest proper convex subgroup, then let K0

contain a nonzero element whose value does not lie in this subgroup. If vF and thus also
vK does not admit a biggest proper convex subgroup, then first choose F0 and K0 as in
the (generalized) proof of Lemma 3.16; since F0 has finite rank, there exists some element
in K whose value does not lie in the convex hull of vF0 in vF , and adding this element
to K0 and F0 will make vK0 cofinal in vF0. �

With the same proof as for Corollary 3.17, but using Lemma 3.23 in place of Lemma 3.15,
one shows:

Corollary 3.25. Corollary 3.17 also holds for separably tame fields in place of tame fields.

4. Model theoretic preliminaries

We will now discuss the axiomatization of valued fields and some of their important
properties. A valuation v on a field K can be given in several ways. We can take the
valuation divisibility relation and formalize it as a binary predicate Rv which in every
valued field is to be interpreted as

Rv(x, y) ⇐⇒ vx ≥ vy .

But we can also take the valuation ring and formalize it as a predicate O which in every
valued field (K, v) is to be interpreted as

O(x) ⇐⇒ x ∈ O .

This predicate can be defined from the valuation divisibility relation by

O(x) ↔ Rv(x, 1) .

If we are working in the language of fields (what we usually do), then the valuation
divisibility relation can be defined from the predicate O by

Rv(x, y) ↔ (y 6= 0 ∧ O(xy−1)) ∨ x = 0 ,

whereas in general, it can not be defined using O and the language of rings without the
use of quantifiers, as in

Rv(x, y) ↔ (∃z yz = 1 ∧ O(xz)) ∨ x = 0 .

This fact is only of importance for questions of quantifier elimination, and only if one
has decided to work in the language of rings. Note that two fields are equivalent in the
language of rings if and only if they are equivalent in the language of fields. A similar
assertion holds for valued fields in the respective languages, and it also holds for the
notions “elementary extension” and “existentially closed in” in place of “equivalent”.

We prefer to write “vx ≥ vy” in place of “Rv(x, y)”. For convenience, we define the
following relations:

vx > vy ↔ vx ≥ vy ∧ ¬(vy ≥ vx)

vx = vy ↔ vx ≥ vy ∧ vy ≥ vx .

The definitions for the reversed relations vx ≤ vy and vx < vy are obvious.
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We will work in the language LVF of valued fields as introduced in the introduction.
The theory of valued fields is the theory of fields (in the language LF) together with
the axioms

(V0) (∀y vx ≥ vy) ⇔ x = 0
(VT) v(x− y) ≥ vx ∨ v(x− y) ≥ vy

and the axioms which state that the value group is an ordered abelian group:

(VV 6R) ¬(vx < vx)
(VVT) vx < vy ∧ vy < vz ⇒ vx < vz
(VVC) vx < vy ∨ vx = vy ∨ vx > vy
(VVG) vx < vy ⇒ vxz < vyz

(the group axioms for the value group follow from the group axioms for the multiplicative
group of the field).

The following facts are well-known; the easy proofs are left to the reader.

Lemma 4.1. Take a valued field (K, v).

a) For every sentence ϕ in the language of ordered groups there is a sentence ϕ′ in the
language of valued fields such that for every valued field (K, v), ϕ holds in vK if and only
if ϕ′ holds in (K, v).

b) For every sentence ϕ in the language of rings there is a sentence ϕ′ in the language of
valued fields such that for every valued field (K, v), ϕ holds in Kv if and only if ϕ′ holds
in (K, v).

As immediate consequences of this lemma, we obtain:

Corollary 4.2. If (K, v) and (L, v) are valued fields such that (K, v) ≡ (L, v) in the
language of valued fields, then vK ≡ vL in the language of ordered groups, and Kv ≡ Lv
in the language of rings (and thus also in the language of fields). The same holds with ≺
or ≺∃ in place of ≡ .

Corollary 4.3. If (K, v) is κ-saturated, then so are vK (in the language of ordered
groups) and Kv (in the language of fields).

The property of being henselian is axiomatized by the following axiom scheme:

(HENS) vy ≥ 0 ∧
∧

1≤i≤n vxi ≥ 0 ∧ v(yn + x1y
n−1 + . . .+ xn−1y + xn) > 0

∧ v(nyn−1 + (n− 1)x1y
n−2 + . . .+ xn−1) = 0

⇒ ∃z v(y − z) > 0 ∧ zn + x1z
n−1 + . . .+ xn−1z + xn = 0 (n ∈ N) .

Here we use one of the forms of Hensel’s Lemma to characterize henselian fields (see
[K2] for an extensive collection). In view of Theorem 2.16, also the property of being
algebraically maximal is easily axiomatized by axiom scheme (HENS) together with the
following axiom scheme:

(MAXP) ∃y∀z : v(yn+x1y
n−1 + . . .+xn−1y+xn) ≥ v(zn+x1z

n−1 + . . .+xn−1z+xn)
(n ∈ N) .

By the same theorem, the property of being separable-algebraically maximal is axiom-
atized by axiom scheme (HENS) together with a version of axiom scheme (MAXP) re-
stricted to separable polynomials. This is obtained by adding sentences that state that
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the coefficient of at least one power yi for i > 0 not divisible by the characteristic of the
field is nonzero.

The following was proved by Delon [D] and Ershov [Er]. For the case of valued fields
of positive characteristic, we give an alternative proof in [K8].

Lemma 4.4. The property of being henselian and defectless is elementary.

5. The AKE∃ Principle

5.1. Necessary conditions for the AKE∃ Principle. In this section we discuss tools
for the proof of AKE∃ Principles and ask for those properties that a valued field must
have if it is an AKE∃-field.

We will need a model theoretic tool which we will apply to valued fields as well as value
groups and residue fields. We consider a countable language L and L-structures B and
A∗ with a common substructure A. We will say that σ is an embedding of B in A∗

over A if it is an embedding of B in A∗ that leaves the universe A of A elementwise fixed.

Proposition 5.1. Let A ⊂ B and A ⊂ A∗ be extensions of L-structures. If B embeds
over A in A∗ and if A ≺∃ A∗, then A ≺∃ B. Conversely, if A ≺∃ B holds and if A∗ is
|B|+-saturated, then B embeds over A in A∗.

Proof. Since A is a substructure of B and of A∗, both (B, A) and (A∗, A) are L(A)-
structures.

Suppose that σ is an embedding of B over A in A∗. Then every L(A)-sentence will hold
in (B, A) if and only if it holds in (σB, A) (because isomorphic structures are equivalent).
Every existential L(A)-sentence ϕ which holds in (B, A) will then also hold in (A∗, A)
since A∗ is an extension of σB. If in addition A ≺∃ A∗, then ϕ will also hold in (A, A).
This proves our first assertion.

Now suppose that A ≺∃ B. Then every L(A)-sentence which holds in (B, A) also holds
in (A, A) and, as (A∗, A) is an extension of (A, A), also in (A∗, A). Now assume in addition
that A∗ is |B|+-saturated. Since |A| ≤ |B| < |B|+, also (A∗, A) is |B|+-saturated. Hence
by Lemma 5.2.1. of [C–K], (B, A) embeds in (A∗, A), i.e., B embeds in A∗ over A. �

If we have an extension A ⊆ B of L-structures and want to show that A ≺∃ B, then
by our lemma it suffices to show that B embeds over A in some elementary extension
A∗ of A. This is the motivation for embedding lemmas, which will play an important
role later in our paper. When we look for such embeddings, we can use a very helpful
principle which follows immediately from the previous proposition because A ≺∃ B holds
if and only if A ≺∃ B0 for every substructure B0 of B which is finitely generated over A
(as every existential sentence only talks about finitely many elements).

Lemma 5.2. Let A ⊆ B and A ⊆ A∗ be extensions of L-structures. Assume that A∗ is
|B|+-saturated. If every substructure of B which is finitely generated over A embeds over
A in A∗, then also B embeds over A in A∗.

We will also need the following well known facts (which were proved, e.g., in L. van den
Dries’ thesis).
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Lemma 5.3. a) Take an extension G|H of torsion free abelian groups. consider it as
an extension of LG-structures. If H is existentially closed in G in the language LG =
{+,−, 0} of groups, then G/H is torsion free.

b) Take a field extension L|K. If K is existentially closed in L in the language LF of
fields (or in the language LR of rings), then L|K is regular.

An immediate consequence of the AKE∃ Principle (3) is the following observation:

Lemma 5.4. Every AKE∃-field is algebraically maximal.

Proof. Take a valued field (K, v) which admits an immediate algebraic extension (L, v).
Then by Lemma 5.3 b), K is not existentially closed in L. Hence, (K, v) is not existentially
closed in (L, v). But vK = vL and Kv = Lv, so that the conditions vK ≺∃ vL and
Kv ≺∃ Lv hold. This shows that (K, v) is not an AKE∃-field. �

In particular, this lemma shows that every AKE∃-field must be henselian.

A special case of the AKE∃ Principle is given if an extension (L|K, v) is immediate.
Then, the side conditions are trivially satisfied. We conclude that an AKE∃-field must
in particular be existentially closed in every immediate extension (L, v). (We have used
this idea already in the proof of the foregoing lemma.) We can exploit this fact by taking
(M, v) to be a maximal immediate extension of (K, v), to see which properties of (M, v)
are inherited by (K, v) if (K, v) ≺∃ (M, v). We know that (M, v) has strong structural
properties: every pseudo Cauchy sequence has a limit (cf. [Ka]), and it is spherically
complete (cf. [Ku2]).

Maximal Kaplansky fields are isomorphic to power series fields (possibly with nontrivial
factor sets, cf. [Ka]). Since (M, v) must coincide with its henselization, which is an
immediate extension, it is henselian. By Theorem of [W] (M, v) is also a defectless field.
Nevertheless, if (K, v) is henselian of residue characteristic 0, then (K, v) ≺ (M, v), which
means that the elementary properties of (M, v) are not stronger than those of (K, v). For
other classes of valued fields, the situation can be very different. Let us prove that every
AKE∃-field is henselian and defectless:

Lemma 5.5. Let (K, v) be a valued field and assume that there is some maximal immedi-
ate extension (M, v) of (K, v) which satisfies (K, v) ≺∃ (M, v). Then (K, v) is henselian
and defectless. In particular, every AKE∃-field is henselian and defectless.

Proof. Let (E|K, v) be an arbitrary finite extension. Working in the language of valued
field augmented by an additional predicate for a subfield, we take (E|K, v)∗ to be a
|M |+-saturated elementary extension of (E|K, v). Then (E∗, v∗) and (K∗, v∗) are |M |+-
saturated elementary extensions of (E, v) and (K, v) respectively. Since by assumption
(K, v) is existentially closed in (M, v), Proposition 5.1 shows that we can embed (M, v)
over (K, v) in (K∗, v∗). We identify it with its image in (K∗, v∗). Since (E∗|K∗, v∗) is
an elementary extension of (E|K, v), the extensions E|K and K∗|K are linearly disjoint.
Therefore, n := [E : K] = [E.M : M ].

We will prove that the extension (E.M, v∗)|(E, v) is immediate. Since E.M |M is alge-
braic and vM = vK, we know from the fundamental inequality (5) that v∗(E.M)/vK and
hence also v∗(E.M)/vE is a torsion group. For the same reason, Mv = Kv yields that
(E.M)v∗|Kv and hence also (E.M)v∗|Ev is algebraic. On the other hand, since (E∗, v∗)
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is an elementary extension of (E, v) we know by Lemma 5.3 that v∗E∗/vE is torsion free
and that Ev is relatively algebraically closed in E∗v. Combining these facts, we get that

v∗(E.M) = vE and (E.M)v∗ = Ev ,

showing that (E.M, v∗)|(E, v) is immediate, as contended.
Since (M, v) is maximal, it is a henselian and defectless field, as we have mentioned

above. Consequently,

[E : K] = n = [E.M : M ] = (v∗(E.M) : vM) · [(E.M)v∗ : Mv] = (vE : vK) · [Ev : Kv] ,

which shows that (E|K, v) is defectless and that the extension of the valuation v from K
to E is unique. Since (E, v) was an arbitrary finite extension of (K, v), this shows that
(K, v) is a henselian and defectless field. �

5.2. Extensions without transcendence defect. Our first goal in this section is to
prove Theorem 1.2. Take a henselian and defectless field (K, v) and an extension (L|K, v)
without transcendence defect. We choose (K∗, v∗) to be an |L|+-saturated elementary
extension of (K, v). Since “henselian” is an elementary property, (K∗, v∗) is henselian like
(K, v). Further, it follows from Corollary 4.3 that K∗v∗ is an |Lv|+-saturated elementary
extension of Kv and that v∗K∗ is a |vL|+-saturated elementary extension of vK. Assume
that the side conditions vK ≺∃ vL and Kv ≺∃ Lv hold. Then by Proposition 5.1, there
exist embeddings

ρ : vL −→ v∗K∗

over vK and
σ : Lv −→ K∗v∗

over Kv. Here, the embeddings of value groups and residue fields are understood to be
monomorphisms of groups and fields, respectively.

We wish to prove that (K, v) ≺∃ (L, v). By Proposition 5.1, this can be achieved by
showing the existence of an embedding

ι : (L, v) −→ (K∗, v∗)

over K, i.e., an embedding of L in K∗ over K preserving the valuation, that is,

∀x ∈ L : x ∈ OL ⇐⇒ ιx ∈ OK∗ .
According to Lemma 5.2, such an embedding exists already if it exists for every finitely

generated subextension (F |K, v) of (L|K, v). In this way, we reduce our embedding
problem to an embedding problem for valued algebraic function fields (F |K, v). Since
in the present case, (L|K, v) is assumed to be an extension without transcendence defect,
the same holds for every finitely generated subextension (F |K, v). The case of such valued
function fields is covered by the following embedding lemma.

Lemma 5.6. (Embedding Lemma I)
Let (K, v) be a defectless field (the valuation is allowed to be trivial), (F |K, v) a valued
function field without transcendence defect and (K∗, v∗) a henselian extension of (K, v).
Assume that vF/vK is torsion free and that Fv|Kv is separable. If ρ : vF −→ v∗K∗ is
an embedding over vK and σ : Fv −→ K∗v∗ is an embedding over Kv, then there exists
an embedding ι : (F, v) −→ (K∗, v∗) over (K, v) that respects ρ and σ, i.e., v∗(ιa) = ρ(va)
and (ιa)v∗ = σ(av) for all a ∈ F .
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Proof. We choose a transcendence basis T as in Theorem 1.8. First we will construct the
embedding for K(T ) and then we will show how to extend it to F .

We choose elements x′1, . . . , x
′
r ∈ K∗ such that v∗x′i = ρ(vxi), 1 ≤ i ≤ r. The values

v∗x′1, . . . , v
∗x′r are rationally independent over vK since the same holds for their preim-

ages vx1, . . . , vxr and this property is preserved by every monomorphism over vK. Next,
we choose elements y′1, . . . , y

′
s ∈ O×K∗ such that y′jv

∗ = σ(yjv), 1 ≤ j ≤ s. The residues
y′1v
∗, . . . , y′sv

∗ are algebraically independent over Kv since the same holds for their preim-
ages y1v, . . . , ysv and this property is preserved by every monomorphism over Kv. Con-
sequently, the elements x′1, . . . , x

′
r and y′1, . . . , y

′
s as well as the elements x1, . . . , xr and

y1, . . . , ys satisfy the conditions of Lemma 2.2. Hence, both sets T and T ′ are alge-
braically independent over K, so that the assignment

xi 7→ x′i , yj 7→ y′j 1 ≤ i ≤ r , 1 ≤ j ≤ s

induces an isomorphism ι : K(T ) −→ K(T ′). Furthermore, for every f ∈ K[T ], written
as in (8),

v∗(ιf) = min
k

(
v∗ck +

∑
1≤i≤r

µk,iv
∗x′i

)
= min

k

(
vck +

∑
1≤i≤r

µk,iρvxi

)

= ρ min
k

(
vck +

∑
1≤i≤r

µk,ivxi

)
= ρ(vf) ,

showing that ι respects the restriction of ρ to vK(T ). If vf = 0, then

fv =

(∑
`

c`
∏

1≤j≤s

y
ν`,j
j

)
v =

∑
`

(c`v)
∏

1≤j≤s

(yjv)ν`,j

where the sum runs only over those ` = k for which µk,i = 0 for all i, and a similar formula
holds for (ιf)v with the same indices `. Hence,

(ιf)v∗ =
∑
`

(c`v
∗)
∏

1≤j≤s

(yjv
∗)ν`,j =

∑
`

(c`v)
∏

1≤j≤s

σ(yjv)ν`,j

= σ

(∑
`

(c`v)
∏

1≤j≤s

(yjv)ν`,j

)
= σ(fv) ,

showing that ι respects the restriction of σ to K(T )v.
To simplify notation, we will write F0 = K(T ). We will now construct a valuation

preserving embedding of the henselization F h
0 over K in (K∗, v∗). The restriction of this

embedding is the required embedding of F . Observe that F h
0 contains the henselization

K(T )h. By the universal property of henselizations, ι extends to a valuation preserving
embedding of F h

0 in K∗ since by hypothesis, K∗ is henselian. Since F h
0 |F0 is immediate,

this embedding also respects the above mentioned restrictions of ρ and σ. Through this
embedding, we will from now on identify F h

0 with its image in K∗.

Now we have to extend ι (which by our identification has become the identity) to an
embedding of F h in K∗ (over F h

0 ) which respects ρ and σ. This is done as follows. By
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hypothesis and our choice of T , the extension F h|F h
0 is finite and tame with vF h = vF =

vF0 = vF h
0 . Consequently, F hv|F h

0 v is a finite separable extension, hence generated by
one element, say av with a ∈ F h

0 . Take a monic polynomial f ∈ OFh
0

[X] whose residue

polynomial fv is the minimal polynomial of av over F h
0 v; by hypothesis, fv is separable.

Hensel’s Lemma shows that there exists exactly one root a of f in F h having residue
av, and exactly one root a′ of f in the henselian field K∗ having residue σ(av). The
assignment

a 7→ a′

induces an isomorphism ι : F h
0 (a) −→ F h

0 (a′) which is valuation preserving since F h
0 is

henselian. As vF h = vF h
0 , we also have that vF h

0 (a) = vF h
0 . Thus, ι respects ρ (which

after the above identification is the identity). We have to show that ι also respects σ.
Let n = [F h

0 (a) : F h
0 ]. Since the elements 1, av, . . . , (av)n−1 are linearly independent,

the basis 1, a, . . . , an−1 is a valuation basis of F h
0 (a)|F h

0 , that is,

v

n−1∑
i=0

cia
i = min

i
vci

for any choice of ci ∈ F h
0 . Take g(a) ∈ F h

0 [a] where g ∈ F h
0 [X] is of degree < n; if

vg(a) = 0, then g ∈ OFh
0

[X] and thus, g(a)v = (gv)(av). In this case,

(ιg(a))v∗ = g(a′)v∗ = (gv)(a′v∗) = (gv)(σ(av)) = σ((gv)(av)) = σ(g(a)v) .

This proves that ι respects σ.
We have constructed an embedding of F h

0 (a) in K∗ which respects ρ and σ. But since
F h|F h

0 is a finite tame extension with vF h = vF h
0 , we have:

[F h : F h
0 ] = [F hv : F h

0 v] = [F h
0 (a)v : F h

0 v] = [F h
0 (a) : F h

0 ]

which shows that F h = F h
0 (a). Hence, ι is the required embedding. �

We return to the proof of Theorem 1.2. We take any finitely generated subextension
F |K of L|K. As pointed out above, (F |K, v) is an extension without transcendence
defect. By assumption, vK ≺∃ vL and Kv ≺∃ Lv, which implies that vK ≺∃ vF and
Kv ≺∃ Fv because vF |vK is a subextension of vL|vK, and Fv|Kv is a subextension of
Lv|Kv. So we can infer from Lemma 5.3 that the conditions “vF/vK is torsion free” and
“Fv|Kv is separable” are satisfied. Hence there is an embedding

ι : (F, v) −→ (K∗, v∗)

over K that respects the restriction of ρ to vF and the restriction of σ to Fv. Since
this holds for every finitely generated subextension (F |K, v) of (L|K, v), it follows from
Lemma 5.2 that also (L, v) embeds in (K∗, v∗) over K. By Proposition 5.1, this shows
that (K, v) is existentially closed in (L, v), and we have now proved Theorem 1.2.

For further use, we have to make our result more precise:

Lemma 5.7. (Embedding Lemma II)
Take a defectless field (K, v) (the valuation is allowed to be trivial), an extension (L|K, v)
without transcendence defect and an |L|+-saturated henselian extension (K∗, v∗) of (K, v).
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Assume that vL/vK is torsion free and that Lv|Kv is separable. If

ρ : vL −→ v∗K∗

is an embedding over vK and
σ : Lv −→ K∗v∗

is an embedding over Kv, then there exists an embedding

ι : (L, v) −→ (K∗, v∗)

over K which respects ρ and σ.

Proof. We have already shown that every finitely generated subextension of (L|K, v) em-
beds over (K, v) in (K∗, v∗) respecting both embeddings ρ and σ. Using the saturation
property of (K∗, v∗) we have to deduce our assertion from this. To do so, we will work
in an extended language L′ consisting of the language LVF of valued fields together with
the predicates

Pα , α ∈ ρ(vL)

Qζ , ζ ∈ σ(Lv)

which are interpreted in (K∗, v∗) such that

Pα(a) ⇐⇒ v∗a = α

Qζ(a) ⇐⇒ av∗ = ζ

for all a ∈ K∗ and in (L, v) such that

Pα(b) ⇐⇒ ρ(vb) = α

Qζ(b) ⇐⇒ σ(bv) = ζ

for all b ∈ L. Note that these interpretations coincide on K.

We show that (K∗, v∗) remains |L|+-saturated in the extended language L′. To this
end, we choose a subset Sv ⊂ K∗ of representatives for all values α in ρ(vL), and a subset
Sr ⊂ K∗ of representatives for all residues ζ in σ(Lv). We compute

|Sv| = |ρvL| = |vL| ≤ |L| < |L|+ ,

|Sr| = |σLv| = |Lv| ≤ |L| < |L|+ ,

hence |Sv ∪ Sr| < |L|+. Consequently, it follows that (K∗, v∗) remains |L|+-saturated
in the extended language LVF(Sv ∪ Sr) (the new constants are interpreted in K∗ by the
corresponding elements from Sv ∪ Sr). Now the predicates Pα and Qζ become definable
in the language LVF(Sv ∪ Sr). Indeed, if α ∈ ρ(vL), then we choose bα ∈ Sv such that
vbα = α and define Pα(x) :⇔ vx = vbα. If ζ ∈ σ(Lv), then we choose bζ ∈ Sr such that
bζv
∗ = ζ and define Qζ(x) :⇔ v∗(x − bζ) > 0. Since (K∗, v∗) is |L|+-saturated in the

language LVF(Sv ∪Sr), it follows that it is also |L|+-saturated in the language L′(Sv ∪Sr)
and thus also in the language L′, as asserted.

An embedding ι of an arbitrary subextension (F, v) of (L|K, v) ) in (K∗, v∗) over K
respects the predicates Pα and Qζ if and only if it satisfies, for all b ∈ L0 ,

ρ(vb) = α⇐⇒ (F, v) |= Pα(b)⇐⇒ (K∗, v∗) |= Pα(ιb)⇐⇒ v∗(ιb) = α ,

σ(bv) = ζ ⇐⇒ (F, v) |= Qζ(b)⇐⇒ (K∗, v∗) |= Qζ(ιb)⇐⇒ (ιb)v∗ = ζ ,
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which expresses the property of ι to respect the embeddings ρ and σ. We know that
for every finitely generated subextension of (L|K, v) there exists such an embedding ι.
The saturation property of (K∗, v∗) now yields an embedding of (L, v) in (K∗, v∗) over
K which respects the predicates and thus the embeddings ρ and σ. This completes the
proof of our lemma. �

5.3. Completions. In this section, we deal with extensions of a valued field within its
completion. This is a preparation for the subsequent section on the model theory of
separably tame fields. But the results are also of independent interest. As a preparation
for the next theorem, we need:

Lemma 5.8. Assume that (K(x)|K, v) is an extension within the completion of (K, v)
such that x is transcendental over K. Then x is the limit of a pseudo Cauchy sequence
in (K, v) of transcendental type.

Proof. Since x ∈ Kc, it is the limit of a Cauchy sequence (aν)ν<λ in (K, v), that is, the
values v(x − aν) are strictly increasing with ν and are cofinal in vK. Suppose that this
sequence would not be of transcendental type. Then there is a polynomial f ∈ K[X] of
least degree for which the values vf(aν) are not ultimately fixed. By Lemma 8 of [Ka],

vf(aν) = βh + hv(x− aν)
holds for all large enough ν, where βh ∈ vK and h is a power of p. By Lemma 9 of [Ka],

vf(x) > βh + hv(x− aν)
for all large enough ν. As these values are cofinal in vK, we conclude that vf(x) =∞, that
is, f(x) = 0. Hence if x is transcendental over K, then (aν)ν<λ must be of transcendental
type. �

Theorem 5.9. Let (K, v) be a henselian field. Assume that (L|K, v) is a separable subex-
tension of (Kc|K, v). Then (K, v) is existentially closed in (L, v). In particular, every
henselian inseparably defectless field is existentially closed in its completion.

Proof. By Lemma 5.2, it suffices to show that (K, v) is existentially closed in every subfield
(F, v) of (L, v) which is finitely generated over K. Equivalently, it suffices to show that
(K, v) is existentially closed in (F, v)h; note that (F, v)h ⊂ (K, v)c since the completion
of a henselian field is again henselian (cf. [W], Theorem 32.19). As a subextension of
the separable extension L|K, also F |K is separable. So we may choose a separating
transcendence basis T = {x1, . . . , xn} of F |K. Then (F, v) lies in the completion of
(K(T ), v) since it lies in the completion of (K, v). The completion of K(T )h is equal to
Kc since K(T ) ⊆ Kc and (Kc, v) is henselian. Consequently, F h lies in the completion of
K(T )h. On the other hand, F h|K(T )h is a finite separable extension; since a henselian
field is separable-algebraically closed in its completion (cf. [W], Theorem 32.19), it must
be trivial. That is,

(F, v)h = (K(x1, . . . , xn), v)h .

Set F0 = K and (Fi, v) = (K(x1, . . . , xi), v)h, 1 ≤ i ≤ n, where the henselization is
taken within F h. Now it suffices to show that (Fi−1, v) ≺∃ (Fi, v) for 1 ≤ i ≤ n. As xi is an
element of the completion Kc of (Fi−1, v), it is the limit of a Cauchy sequence in (Fi−1, v).
Since xi is transcendental over Fi−1 , this Cauchy sequence must be of transcendental type
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by Lemma 5.8. Hence by Corollary 6.3, (Fi−1, v) ≺∃ (Fi−1(xi), v)h for 1 ≤ i ≤ n, which
in view of (Fi−1(xi), v)h = (Fi, v)h proves our assertion.

The second assertion of our theorem follows from the first and the fact that if (K, v)
is inseparably defectless, then the immediate extension Kc|K is separable, according to
Corollary 2.8. �

From this theorem together with part b) of Lemma 5.3, we obtain:

Corollary 5.10. A henselian field (K, v) is existentially closed in its completion Kc if
and only if the extension Kc|K is separable.

This leads to the following question:

Open Problem: Take any field k. Which are the subfields K ⊂ k((t)) with t ∈ K such
that k((t))|K is separable?

Recall that vt denotes the t-adic valuation on k(t) and on k((t)). Since (k((t)), vt) is
henselian, we can choose the henselization (k(t), vt)

h in (k((t)), vt). Then (k((t)), vt) is the
completion of both (k(t), vt) and (k(t), vt)

h. Further, (k, vt) is trivially valued and thus
defectless. By Theorem 1.7, it follows that (k(t), vt)

h is henselian and defectless. Now
Corollary 2.8 shows:

Corollary 5.11. The extension k((t))|k(t)h is regular.

Using Theorem 5.9, we conclude:

Theorem 5.12. Let k be an arbitrary field. Then (k(t), vt)
h ≺∃ (k((t)), vt).

This result also follows from Theorem 2 of [Er6]. It is used in [K6] in connection with
the characterization of large fields.

To give a further application, we need another lemma.

Lemma 5.13. Let t be transcendental over K. Suppose that K admits a nontrivial
henselian valuation v. Then (K, v) ≺∃ (K(t), vt ◦ v)h.

Proof. Let (K∗, v∗) be a |K(t)h|+-saturated elementary extension of (K, v). Then by
Corollary 4.3, v∗K∗ is a |vK|+-saturated elementary extension of vK. Hence, there exists
an element α ∈ v∗K∗ such that α > vK. We also have that (vt ◦ v)t > vK. Now if Γ ⊂ ∆
is an extension of ordered abelian groups and ∆ 3 α > Γ, then the ordering on Zα+ Γ is
uniquely determined. Indeed, Zα+Γ is isomorphic to the product ZαqΓ, lexicographically
ordered. So we see that the assignment (vt◦v)t 7→ α induces an embedding of (vt◦v)K(t) '
Z(vt◦v)t×vK (with the lexicographic ordering) in v∗K∗ over vK as ordered groups. Now
choose t∗ ∈ K∗ such that v∗t∗ = α. As (vt ◦ v)t and α are not torsion elements over vK,
Lemma 2.2 shows that the assignment t 7→ t∗ induces an embedding of (K(t), vt ◦ v) in
(K∗, v∗) over K. Since (K, v) is henselian, so is the elementary extension (K∗, v∗). By
the universal property of the henselization, the embedding can thus be extended to an
embedding of (K(t), vt ◦ v)h in (K∗, v∗). By Proposition 5.1, this gives our assertion. �

Now we are able to prove:

Theorem 5.14. If the field K admits a nontrivial henselian valuation, then K ≺∃ K((t))
(as fields).
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Proof. Let v be the nontrivial valuation onK for which (K, v) is henselian. By Lemma 5.13,
we have that (K, v) ≺∃ (K(t), vt◦v)h. By Corollary 5.11, K((t))|K(t)h is separable. Since
(K((t)), vt) is the completion of (K(t), vt), it follows that (K((t)), vt ◦v) is the completion
of (K(t), vt ◦ v). Hence, Theorem 5.9 shows that (K(t), vt ◦ v)h ≺∃ (K((t)), vt ◦ v). It
follows that (K, v) ≺∃ (K((t)), vt ◦ v). In particular, K ≺∃ K((t)), as asserted. �

6. The Relative Embedding Property

Inspired by the assertion of Lemma 5.7, we define a property that will play a key role
in our approach to the model theory of tame fields. Let C be a class of valued fields. We
will say that C has the Relative Embedding Property, if the following holds:

if (L, v), (K∗, v∗) ∈ C with common subfield (K, v) such that
• (K, v) is defectless,
• (K∗, v∗) is |L|+-saturated,
• vL/vK is torsion free and Lv|Kv is separable,
• there are embeddings ρ : vL −→ v∗K∗ over vK and σ : Lv −→ K∗v∗ over Kv,
then there exists an embedding ι : (L, v) −→ (K∗, v∗) over K which respects ρ and σ.

We will show that the Relative Embedding Property of C implies another property
of C which is very important for our purposes. If C ⊂ A and C ⊂ B are extensions
of L-structures, then we will write A ≡C B if (A,C) ≡ (B,C) in the language L(C)
augmented by constant names for the elements of C. If for every two fields (L, v), (F, v) ∈
C and every common defectless subfield (K, v) of (L, v) and (F, v) such that vL/vK is
torsion free and Lv|Kv is separable, the side conditions vL ≡vK vF and Lv ≡Kv Fv
imply that (L, v) ≡(K,v) (F, v), then we will call C relatively subcomplete. Note
that if C is a relatively subcomplete class of defectless fields, then C is relatively model
complete because by Lemma 5.3, the side conditions vK ≺ vL and Kv ≺ Lv imply that
vK ≡vK vL and Kv ≡Kv Lv. But relative model completeness is weaker than relative
subcompleteness, because vL ≡vK vF does not imply that vK ≺ vL, and Lv ≡Kv Fv
does not imply that Kv ≺ Lv.

The following lemma shows that the Relative Embedding Property is a powerful prop-
erty:

Lemma 6.1. Take an elementary class C of defectless valued fields which has the Relative
Embedding Property. Then C is relatively subcomplete and relatively model complete, and
the AKE∃ Principle is satisfied by all extensions (L|K, v) such that both (K, v), (L, v) ∈ C.
If moreover all fields in C are of fixed equal characteristic, then C is relatively complete.

Proof. Let us first show that (L|K, v) satisfies the AKE∃ Principle whenever (K, v), (L, v) ∈
C. So assume that vK ≺∃ vL and Kv ≺∃ Lv. We take an |L|+-saturated elementary
extension (K∗, v∗) of (K, v). Since C is assumed to be an elementary class, (K, v) ∈ C
implies that (K∗, v∗) ∈ C. Because of vK ≺∃ vL and Kv ≺∃ Lv, there are embeddings
vL → v∗K∗ over vK and Lv → K∗v∗ over Kv by Proposition 5.1. Moreover, vL/vK is
torsion free and Lv|Kv is separable by Lemma 5.3. So by the Relative Embedding Prop-
erty there is an embedding of (L, v) in (K∗, v∗) over K, which shows that (K, v) ≺∃ (L, v).
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Now assume that (L, v), (F, v) ∈ C with common defectless subfield (K, v) such that
vL/vK is torsion free, Lv|Kv is separable, vL ≡vK vF and Lv ≡Kv Fv. We have to show
that (L, v) ≡(K,v) (F, v).

To begin with, we construct an elementary extension (L0, v) of (L, v) and an elementary
extension (F0, v) of (F, v) such that vL0 = vF0 and L0v = F0v. Our condition vL ≡vK vF
means that vL and vF are equivalent in the augmented language LOG(vK) of ordered
groups with constants from vK. Similarly, Lv ≡Kv Fv means that Lv and Fv are
equivalent in the augmented language LR of rings with constants from Kv. It follows from
the proof of Theorem 6.1.15 in [C–K] that we can choose a cardinal λ and an ultrafilter
D on λ such that

∏
λ vL/D '

∏
λ vF/D and

∏
λ Lv/D '

∏
λ Fv/D in the respective

augmented languages. But this means that for (L0, v) :=
∏

λ(L, v)/D and (F0, v) :=∏
λ(F, v)/D, we have that vL0 =

∏
λ vL/D is isomorphic over vK to vF0 =

∏
λ vF/D,

and L0v =
∏

λ Lv/D is isomorphic over Kv to F0v =
∏

λ vF/D. Passing to an equivalent
valuation on L0 which still extends the valuation v of K, we may assume that vL0 = vF0;
similarly, passing to an equivalent residue map we may assume that L0v = F0v. As
vL/vK and vF/vK are torsion free by assumption and vL0/vL and vF0/vF are torsion
free since vL ≺ vL0 and vF ≺ vF0 , we find that vL0/vK and vF0/vK are torsion free.
Similarly, one shows that L0v|Kv and F0v|Kv are separable.

Now we construct two elementary chains ((Li, v))i<ω and ((Fi, v))i<ω as follows. We
choose a cardinal κ0 = max{|L0|, |F0|}. By induction, for every i < ω we take (Li+1, v)
to be a κ+

i -saturated elementary extension of (Li, v), where κi = max{|Li|, |Fi|}, and
(Fi+1, v) to be a κ+

i -saturated elementary extension of (Fi, v). We can take (Li+1, v) =∏
λi

(Li, v)/Di and (Fi+1, v) =
∏

λi
(Fi, v)/Di for suitable cardinals λi and ultrafilters Di;

this yields that vLi = vFi and Liv = Fiv for all i.
All (Li, v) and (Fi, v) are elementary extensions of (L, v) and (F, v) respectively, so it

follows that they lie in C and in particular, are defectless fields. We take (L∗, v) to be
the union over the elementary chain (Li, v), i < ω; so (L, v) ≺ (L∗, v). Similarly, we take
(F ∗, v) to be the union over the elementary chain (Fi, v), i < ω; so (F, v) ≺ (F ∗, v). Now
we carry out a back and forth construction that will show that (L∗, v) and (F ∗, v) are
isomorphic over K.

We start by embedding (L0, v) in (F1, v). The identity mappings are embeddings of
vL0 in vF1 over vK and of L0v in F1v over Kv, and we know that vL0/vK is torsion free
and L0v|Kv is separable. Since (F1, v) is κ+

0 -saturated with κ0 ≥ |L0|, and since (K, v)
is defectless, we can apply the Relative Embedding Property to find an embedding ι0 of
(L0, v) in (F1, v) over K which respects the embeddings of the value group and the residue
field. That is, we have that vι0L0 = vF0 and (ι0L0)v = F0v .

The isomorphism ι−1
0 : ι0L0 → L0 can be extended to an isomorphism ι−1

0 from
F1 onto an extension field of L0 which we will simply denote by ι−1

0 F1 . We take the
valuation on this field to be the one induced via ι−1

0 by the valuation on F1. Hence, ι−1
0

induces an isomorphism on the value groups and the residue fields, so that we obtain that
vι−1

0 F1 = vF1 = vL1 and (ι−1
0 F1)v = F1v = L1v. The identity mappings are embeddings of

vι−1
0 F1 in vL2 over vL0 and of (ι−1

0 F1)v in L2v over L0v. Since vL0 ≺ vL1 and L0v ≺ L1v,
we know that vι−1

0 F1/vL0 is torsion free and (ι−1
0 F1)v|L0v is separable. Since (L2, v)

is κ+
1 -saturated with κ1 ≥ |F1| = |ι−1

0 F1|, and since (L0, v) is defectless, we can apply
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the Relative Embedding Property to find an embedding ι̃1 of (ι−1
0 F1, v) in (L2, v) over

L0 which respects the embeddings of the value group and the residue field. That is, we
obtain an embedding ι′1 := ι̃1ι

−1 of F1 in L2 over K. We note that L0 ⊂ ι′1F1 and that
ι′1
−1 : ι′1F1 → F1 extends ι0 .

Suppose that we have constructed, for an even i, the embeddings

ιi : (Li, v) −→ (Fi+1, v)

ι′i+1 : (Fi+1, v) −→ (Li+2, v)

as embeddings over K, such that Li ⊂ ι′i+1Fi+1 and that ι′i+1
−1 : ι′1Fi+1 → Fi+1 extends

ιi . We wish to construct similar embeddings for i+ 2 in place of i.
The isomorphism ι′i+1

−1 : ι′1Fi+1 → Fi+1 can be extended to an isomorphism ι′i+1
−1 from

Li+2 onto an extension field of Fi+1 which we will denote by ι′i+1
−1Li+2 ; this isomorphism

extends ιi . We take the valuation on this field to be the one induced via ι′i+1
−1 by the

valuation on Li+2. We obtain that vι′i+1
−1Li+2 = vLi+2 = vFi+2 and (ι′i+1

−1Li+2)v =

Li+2v = Fi+2v. The identity mappings are embeddings of vι′i+1
−1Li+2 in vFi+3 over vFi+1

and of (ι′i+1
−1Li+2)v in Fi+3v over Fi+1v. Since vFi+1 ≺ vFi+3 and Fi+1v ≺ Fi+3v, we know

that vι′i+1
−1Li+2/vFi+1 is torsion free and (ι′i+1

−1Li+2)v|Fi+1v is separable. Since (Fi+3, v)

is κ+
i+2-saturated with κi+2 ≥ |Li+2| = |ι′i+1

−1Li+2|, and since (Fi+1, v) is defectless, we

can apply the Relative Embedding Property to find an embedding ι̃′i+2 of (ι′i+1
−1Li+2, v)

in (Fi+3, v) over Fi+1 which respects the embeddings of the value group and the residue
field. We obtain an embedding ιi+2 := ι̃′i+2ι

′
i+1
−1 of Li+2 in Fi+3; since ι̃′i+2 is the identity

on ιiLi ⊂ Fi+1, this embedding extends ιi. We note that Fi+1 ⊂ ιi+2Li+2 and that
ι−1
i+2 : ιi+2Li+2 → Li+2 extends ι′i+1 .

From now on, the construction of ι′i+2 is similar to that of ι′i for every odd i ≥ 1, and
the construction of ιi+2 is similar to that of ι′i for every even i ≥ 2.

Now we take ι to be the set theoretical union over the embeddings ιi , i < ω even. Then
ι is an embedding of (L∗, v) in (F ∗, v). It is onto since Fi lies in the image of ιi+1, for
every odd i. So we have obtained an isomorphism from (L∗, v) onto (F ∗, v) over K, which
shows that (L∗, v) ≡(K,v) (F ∗, v). Since (L, v) ≺ (L∗, v) and (F, v) ≺ (F ∗, v), this implies
that (L, v) ≡(K,v) (F, v), as required. We have proved that C is relatively subcomplete,
and we know already that this implies that C is relatively model complete.

Finally, assume in addition that all fields in C are of fixed equal characteristic. We
wish to show that C is relatively complete. So take (L, v), (F, v) ∈ C such that vL ≡ vF
and Lv ≡ Fv. Fixed characteristic means that L and F have a common prime field K.
The assumption that both (L, v) and (F, v) are of equal characteristic means that the
restrictions of their valuations to K is trivial. Hence, vK = 0 and consequently, vL/vK
is torsion free and vL ≡ vF implies that vL ≡vK vF . Further, K = Kv is also the
prime field of Lv and Fv, so Lv ≡ Fv implies that Lv ≡Kv Fv. Since a prime field is
always perfect, we also have that Lv|Kv is separable. As a trivially valued field, (K, v) is
defectless. From what we have already proved, we obtain that (L, v) ≡(K,v) (F, v), which
implies that (L, v) ≡ (F, v). �
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Now we look for a criterion for an elementary class of valued fields to have the Relative
Embedding Property. Somehow, we have to improve Embedding Lemma II (Lemma 5.7)
to cover the case of extensions (L|K, v) with transcendence defect. Loosely speaking,
these contain an immediate part. The idea is to require that this part can be treated
separately, that is, that we find an intermediate field (L′, v) ∈ C such that (L|L′, v) is
immediate and (L′|K, v) has no transcendence defect. The immediate part has then to
be handled by a new approach which we will describe in the following embedding lemma.
Note that by Theorem 1 of [Ka] together with Theorem 2.14, the hypothesis on x does
automatically hold if (K, v) is algebraically maximal.

Lemma 6.2. (Embedding Lemma III)
Let (K(x)|K, v) be a nontrivial immediate extension of valued fields. If x is the limit of a
pseudo Cauchy sequence of transcendental type in (K, v), then (K(x), v)h embeds over K
in every |K|+-saturated henselian extension (K, v)∗ of (K, v).

Proof. Take a pseudo Cauchy sequence (aν)ν<λ of transcendental type in (K, v) with limit
x. Then the collection of elementary formulas “v(x − aν) = v(aν+1 − aν)”, ν < λ, is a
(partial) type over (K, v). Since (K, v)∗ is |K|+-saturated, there is an element x∗ ∈ K∗
such that v∗(x∗ − aν) = v∗(aν+1 − aν) holds for all ν < λ. That is, x∗ is also a limit of
(aν)ν<λ. By Theorem 2.15, the homomorphism induced by x 7→ x∗ is an embedding of
(K(x), v) overK in (K, v)∗. By the universal property of the henselization, this embedding
can be extended to an embedding of (K(x), v)h over K in (K, v)∗, since the latter is
henselian by hypothesis. �

Note that the lemma fails if the condition on the pseudo Cauchy sequence to be transcen-
dental is omitted, even if we require in addition that (K, v) is henselian. There may exist
nontrivial finite immediate extensions (K(x)|K, v) of henselian fields; for a comprehensive
collection of examples, see [K9]. On the other hand, K∗ may be a regular extension of
K (e.g., this is always the case if (K, v)∗ is an elementary extension of (K, v) ), and then,
K(x) does certainly not admit an embedding over K in K∗.

The model theoretic application of Embedding Lemma III is:

Corollary 6.3. Let (K, v) be a henselian field and (K(x)|K, v) an immediate extension
such that x is the limit of a pseudo Cauchy sequence of transcendental type in (K, v). Then
(K, v) ≺∃ (K(x), v)h. In particular, an algebraically maximal field is existentially closed
in every henselization of an immediate rational function field of transcendence degree 1.

Proof. Choose (K, v)∗ to be a |K|+-saturated elementary extension of (K, v). Since
“henselian” is an elementary property, (K, v)∗ will also be henselian. Apply Embedding
Lemma III and Proposition 5.1. �

Now we are able to give the announced criterion:

Lemma 6.4. Let C be an elementary class of valued fields which satisfies

(CALM) every field in C is algebraically maximal,
(CRAC) if (L, v) ∈ C and K is relatively algebraically closed in L such that Lv|Kv

is algebraic and vL/vK is a torsion group, then (K, v) ∈ C with Lv = Kv
and vL = vK,
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(CIMM) if (K, v) ∈ C, then every henselization of an immediate function field of
transcendence degree 1 over (K, v) is already the henselization of a rational
function field.

Then C has the Relative Embedding Property.

Proof. Assume that the elementary class C satisfies (CALM), (CRAC) and (CIMM). Take
(L, v), (K∗, v∗) ∈ C with (K∗, v∗) being |L|+-saturated, a valued subfield (K, v) of (L, v)
and (K∗, v∗) such that vL/vK is torsion free and Lv|Kv is separable, and embeddings
ρ : vL→ v∗K∗ over vK and σ : Lv → K∗v∗ over Kv. We have to show that there exists
an embedding ι : (L, v)→ (K∗, v∗) over K which respects ρ and σ.

Take the set T = {xi , yj | i ∈ I , j ∈ J} as in the proof of Corollary 3.17. Then
vL/vK(T ) is a torsion group and Lv|K(T )v is algebraic. Let K ′ be the relative algebraic
closure of K(T ) within L. It follows that also vL/vK ′ is a torsion group and Lv|K ′v is
algebraic. Hence by condition (CRAC), we have that (K ′, v) ∈ C with Lv = K ′v and
vL = vK ′, which shows that the extension L|K ′ is immediate. On the other hand, T is
a standard valuation transcendence basis of (K ′|K, v) by construction, hence according
to Corollary 2.4, this extension has no transcendence defect. Since (K, v) is defectless by
assumption and (K∗, v∗) is henselian by condition (CALM), Lemma 5.7 gives an embed-
ding of (K ′, v) in (K∗, v∗) over K which respects ρ and σ. Now we have to look for an
extension of this embedding to (L, v). Since (L|K ′, v) is immediate, such an extension
will automatically respect ρ and σ.

We identify K ′ with its image in K∗. In view of Lemma 5.2, it remains to show
that every finitely generated subextension (F, v) of (L|K ′, v) embeds over K ′ in (K∗, v∗).
We apply our slicing approach. Since F is finitely generated over K ′, it has a finite
transcendence basis {t1, . . . , tn} over K ′. Let us put K0 = K ′ and Ki to be the relative
algebraic closure of K(t1, . . . , ti) in L for 1 ≤ i ≤ n. Then Kn contains F , and by condition
(CRAC), every (Ki, v) is a member of C. Moreover, trdeg(Ki+1|Ki) = 1 for 0 ≤ i < n.
We proceed by induction on i. If we have shown that (Ki, v) embeds in (K∗, v∗) over K ′,
then we identify it with its image. Hence it now remains to show that the immediate
extension (Ki+1, v) of transcendence degree 1 embeds in (K∗, v∗) over Ki . Since (K∗, v∗)
is |L|+-saturated, it is also |Ki+1|+-saturated. Hence again, Lemma 5.2 shows that it
suffices to prove the existence of an embedding for every finitely generated subextension
(Fi+1, v) of (Ki+1|Ki, v). The henselization of (Fi+1|Ki, v) is an immediate function field
of transcendence degree 1, so by condition (CIMM), its henselization is the henselization
of a rational function field. Since (Ki, v) is algebraically maximal by condition (CALM),
Embedding Lemma III (Lemma 6.2) now yields that there is an embedding of (Fi+1, v)
in (K∗, v∗) over Ki . This completes our proof by induction. �

7. The model theory of tame and separably tame fields

7.1. Tame fields. We have already shown in Lemma 3.10 that in positive characteristic,
the class of tame fields coincides with the class of algebraically maximal perfect fields.
Let us show that the property of being a tame field of fixed residue characteristic is
elementary. If the residue characteristic is fixed to be 0 then by Lemma 3.5, “tame” is
equivalent to “henselian” which is axiomatized by the axiom scheme (HENS). Now assume
that the residue characteristic is fixed to be a positive prime p. By Lemma 3.10, a valued
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field of positive residue characteristic is tame if and only if it is an algebraically maximal
field having p-divisible value group and perfect residue field. A valued field (K, v) has
p-divisible value group if and only if it satisfies the following elementary axiom:

(VGDp) ∀x∃y : vxyp = 0 .

Furthermore, (K, v) has perfect residue field if and only if it satisfies:

(RFDp) ∀x∃y : vx = 0 → v(xyp − 1) > 0 .

Finally, the property of being algebraically maximal is axiomatized by the axiom schemes
(HENS) and (MAXP). We summarize: The theory of tame fields of residue charac-
teristic 0 is just the theory of henselian fields of residue characteristic 0. If p is a prime,
then the theory of tame fields of residue characteristic p is the theory of valued
fields together with axioms (VGDp), (RFDp), (HENS) and (MAXP). Now we also see how
to axiomatize the theory of all tame fields. Indeed, for residue characteristic 0 there are
no conditions on the value group and the residue field. For residue characteristic p > 0,
we have to require (VGDp) and (RFDp). We can do this by the axiom scheme

(TAD) v(1 + . . .+ 1︸ ︷︷ ︸
p times

) > 0 → (VGDp) ∧ (RFDp) (p prime) .

So the theory of tame fields is the theory of valued fields together with axioms (TAD),
(HENS) and (MAXP).

Recall that by part a) of Corollary 3.12, a valued field of positive characteristic is tame
if and only if it is algebraically maximal and perfect. We have already seen that every
AKE∃-field must be henselian and defectless and in particular, algebraically maximal.
Therefore, the model theory of tame fields that we will develop now is representative of
the model theory of perfect valued fields in positive characteristic.

Let C be the elementary class of all tame fields. By Lemma 3.6, all tame fields are
henselian defectless, so C satisfies condition (CALM) of Lemma 6.4. By Lemma 3.15, it
also satisfies condition (CRAC). Finally, it satisfies (CIMM) by virtue of Theorem 1.9.
Hence, we can infer from Lemma 6.4 and Lemma 6.1:

Theorem 7.1. The elementary class of tame fields has the Relative Embedding Property
and is relatively subcomplete and relatively model complete. Every elementary class of
tame fields of fixed equal characteristic is relatively complete.

Lemma 6.4 does not give the full information about the AKE∃ Principle because it
requires that not only (K, v), but also (L, v) is a member of the class C. If the latter is
not the case, then it just suffices if one can show that it is contained in a member of C.
To this end, we need the following lemma:

Lemma 7.2. If Γ is a p-divisible ordered abelian group and Γ ≺∃ ∆, then Γ is also
existentially closed in the p-divisible hull of ∆. If k is a perfect field and k ≺∃ `, then k
is also existentially closed in the perfect hull of `.

If (K, v) is a tame field and (L|K, v) an extension with vK ≺∃ vL and Kv ≺∃ Lv, then
every maximal purely wild extension (W, v) of (L, v) is a tame field satisfying vK ≺∃ vW
and Kv ≺∃ Wv.

Proof. By Proposition 5.1, Γ ≺∃ ∆ implies that ∆ embeds over Γ in every |∆|+-saturated
elementary extension of Γ. Such an elementary extension is p-divisible like Γ. Hence, the
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embedding can be extended to an embedding of 1
p∞

∆, which by Proposition 5.1 shows

that Γ ≺∃ 1
p∞

∆.

Again by the same lemma, k ≺∃ ` implies that ` embeds over k in every |`|+-saturated
elementary extension of k. Such an elementary extension is perfect like k. Hence, the
embedding can be extended to an embedding of `1/p∞ , which by Proposition 5.1 shows
that k ≺∃ `1/p∞ .

Now suppose that the assumptions of the final assertion of our lemma hold. By Corol-
lary 3.13, (W, v) is a tame field. By Theorem 3.7, vW is the p-divisible hull 1

p∞
vL of

vL, and Wv is the perfect hull Lv1/p∞ of Lv. So our assertion follows since we have just
proved that vK (which is p-divisible by Lemma 3.10) is existentially closed in 1

p∞
vL and

that Kv (which is perfect by Lemma 3.10) is existentially closed in the perfect hull Lv1/p∞

of Lv. �

Assume that (K, v) is a tame field and (L|K, v) an extension such that vK ≺∃ vL and
Kv ≺∃ Lv. We choose some maximal purely wild extension (W, v) of (L, v). According
to the foregoing lemma, (W, v) is a tame field with vK ≺∃ vW and Kv ≺∃ Wv. Hence by
Theorem 7.1 together with Lemma 6.1, (K, v) ≺∃ (W, v). It follows that (K, v) ≺∃ (L, v).
This proves the first assertion of Theorem 1.3.

Now let C be an elementary class of valued fields. We define

vC := {vK | (K, v) ∈ C} and Cv := {Kv | (K, v) ∈ C} .
If both vC and Cv are model complete elementary classes, then the side conditions
vK ≺ vL and Kv ≺ Lv will hold for every two members (K, v) ⊂ (L, v) of C. Similarly,
if vC and Cv are complete elementary classes, then the side conditions vK ≡ vL and
Kv ≡ Lv will hold for all (K, v), (L, v) ∈ C. So we obtain from the foregoing theorems:

Theorem 7.3. If C is an elementary class consisting of tame fields and if vC and Cv are
elementary model complete classes, then C is model complete. If C is an elementary class
consisting of tame fields of fixed equal characteristic, and if vC and Cv are elementary
complete classes, then C is complete.

Note that the converses are true by virtue of Corollary 4.2, provided that vC and Cv
are elementary classes.

Corollary 7.4. Let T be an elementary theory consisting of all perfect valued fields of
equal characteristic whose value groups satisfy a given model complete elementary theory
Tvg of ordered abelian groups and whose residue fields satisfy a given model complete
elementary theory Trf of fields. Then the theory T∗ of algebraically maximal valued fields
satisfying T is the model companion of T.

Proof. It follows from Theorem 7.3 that T∗ is model complete. For every model K of T,
any maximal immediate algebraic extension is a model of T∗ (by Lemma 3.10); note that
it is an extension of K having the same value group and residue field. �

In the case of positive characteristic, T∗ is in general not a model completion since there
exist perfect valued fields of positive characteristic which admit two nonisomorphic max-
imal immediate algebraic extensions, both being models of the model companion. In the
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case of equal characteristic 0, the algebraically maximal fields are just the henselian fields,
and we find that T∗ is a model completion of T, because henselizations are unique up to
isomorphism.

A weak prime model in an elementary class C is a model in C that can be embedded
in every other highly enough saturated member of C. Elementary classes of tame fields
of equal characteristic admit weak prime models if the elementary classes of their value
groups and their residue fields do:

Theorem 7.5. Let C be an elementary class consisting of tame fields of equal character-
istic. Suppose that there exists an infinite cardinal κ, an ordered group Γ and a field k,
both of cardinality ≤ κ, such that Γ admits an elementary embedding in every κ+-saturated
member of vC and k admits an elementary embedding in every κ+-saturated member of
Cv. Then there exists (K0, v) ∈ C of cardinality ≤ κ, having value group Γ and residue
field k, such that (K0, v) admits an elementary embedding in every κ+-saturated member
of C. Moreover, we can assume that (K0, v) admits a standard valuation transcendence
basis over its prime field.

Proof. Take any (E, v) ∈ C and let (E, v)∗ be a κ+-saturated elementary extension of
(E, v). Then also v∗E∗ and E∗v∗ are κ+-saturated. Since C is an elementary class, we
find that (E, v)∗ ∈ C. Consequently, (E, v)∗ is a tame field. By Lemma 3.10, its value
group is p-divisible and its residue field is perfect. By assumption, Γ admits an elementary
embedding in v∗E∗, and k admits an elementary embedding in E∗v∗. Hence, also Γ is
p-divisible and k is perfect.

Now by Lemma 3.14, there exists a tame field (K0, v) of cardinality at most κ having
value group Γ and residue field k and admitting a standard valuation transcendence basis
over its prime field. If (K∗, v∗) is a κ+-saturated model of C, then v∗K∗ and K∗v∗ are
κ+-saturated models of vC and Cv respectively. Hence by hypothesis, there exists an
elementary embedding of Γ in v∗K∗ over the trivial group {0}, and an elementary embed-
ding of k in K∗v∗ over the prime field k0 of k. Now k0 is at the same time the prime field
of K0v and of K∗v∗. As we are dealing with valued fields of equal characteristic, k0 is also
the prime field of K0 and K∗, and the valuation v is trivial on k0 . We have that vK0/vk0

is torsion free and K0v|k0v is separable. Now Embedding Lemma II (Lemma 5.7) shows
the existence of an embedding of (K0, v) in (K∗, v∗) over k0 . By virtue of Theorem 7.1,
this embedding is elementary (because the embeddings of value group and residue field
are). This shows that (K0, v) is elementarily embeddable in every κ+-saturated model
of C. This in turn shows that (K0, v) is a model of C and thus a weak prime model of
C. �

The weak prime models that we have constructed in the foregoing proof have the special
property that they admit a standard valuation transcendence basis over their prime field.
The following corollary confirms the representative role of models with this property.

Corollary 7.6. For every tame field (L, v) of arbitrary characteristic, there exists a sub-
field (K, v) ≺ (L, v) such that (K, v) admits a standard valuation transcendence basis over
its prime field and (L|K, v) is immediate.
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Proof. According to Lemma 3.17, for every tame field (L, v) there exists a subfield (K, v)
of (L, v) admitting a standard valuation transcendence basis over its prime field, such
that (L|K, v) is immediate. In view of Theorem 7.1, the latter fact shows that (K, v) ≺
(L, v). �

As a final example, we consider the theory of tame fields of fixed positive characteristic
with divisible or p-divisible value groups and fixed finite residue field.

Theorem 7.7. a) Every elementary class C of tame fields of fixed positive characteristic
with divisible value group and fixed residue field Fq (where q = pn for some prime p and
some n ∈ N) is model complete, complete and decidable. Moreover, it possesses a model of
transcendence degree 1 over Fq that admits an elementary embedding in every ℵ1-saturated
member of C.

b) If “divisible value group” is replaced by “value group elementarily equivalent to 1
p∞

Z”,

then C remains elementary, complete and decidable.

Proof. a): The theory of divisible ordered abelian groups is model complete, complete
and decidable, cf. [Ro–Zk] (note that model completeness and decidability are not explic-
itly stated in the theorems, but follow from their proofs). The same holds trivially for the
theory of the finite field Fq which has only Fq as a model. Hence, model completeness,
completeness and decidability follow readily from Theorem 7.1 and Theorem 1.4. The
prime model is constructed as follows: The valued field (Fq(t), vt) has value group Z and
residue field Fq . By adjoining suitable roots of t we can build an algebraic extension
(F ′, vt) with value group Q and residue field Fq. Now we let (F, vt) be a maximal im-
mediate algebraic extension of (F ′, vt). By Lemma 3.10, it is a tame field. Moreover, it
admits {t} as a standard valuation transcendence basis over its prime field. Note that
|F | = ℵ0. Since Q is a prime model of the theory of nontrivial divisible ordered abelian
groups, Embedding Lemma II (Lemma 5.7) shows that (F, vt) admits an embedding in
every ℵ1-saturated member of C. By the model completeness that we have already proved,
this embedding is elementary.

b): The theory of 1
p∞

Z is clearly complete, and it is decidable (and C is still elementary)

because it can be axiomatized by a recursive set of elementary axioms. Now the proof
proceeds as in part a), except that we replace Q by 1

p∞
Z and note that the latter admits

an elementary embedding in every elementarily equivalent ordered abelian group (again,
cf. [Ro–Zk]). �

Note that in the case of b), model completeness can be reinstated by adjoining a
constant symbol to the language and adding axioms that state that the value of the
element named by this symbol is divisible by no prime but p.

7.2. Separably defectless and separably tame fields. We prove part a) of Theo-
rem 1.6:

Assume that vK ≺∃ vL and Kv ≺∃ Lv. Since vK is cofinal in vL, we know that
(K, v)c is contained in (L, v)c. The compositum (L.Kc, v), taken in the completion
(L, v)c, is an immediate extension of (L, v). Thus, vKc = vK ≺∃ vL = vL.Kc and
Kcv = Kv ≺∃ Lv = (L.Kc)v. Since (K, v) is a henselian separably defectless field, (K, v)c
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is henselian by Theorem 32.19 of [W] and defectless by Theorem 5.2 of [K8]. As (L|K, v)
is an extension without transcendence defect, the same holds for (L.Kc|Kc, v); indeed,
every subextension of L.Kc|Kc of finite transcendence degree is contained in L′.Kc|Kc

for some subextension L′|K of finite transcendence degree, and since (Kc|K, v) is imme-
diate, a standard valuation transcendence basis of (L′|K, v) is also a standard valuation
transcendence basis of (L′.Kc|Kc, v). By Theorem 1.2, it now follows that

(Kc, v) ≺∃ (L.Kc, v) .

Let us now take an |L.Kc|+-saturated elementary extension (Kc|K, v)∗ of the valued field
extension (Kc|K, v). We note that (Kc, v)∗ is a subfield of the completion K∗c of (K, v)∗

since the property of K to be dense in Kc is elementary in the language of valued fields
with the predicate P for the subfield; indeed,

∀x∀y∃z : P(z) ∧ ( y 6= 0 → v(x− z) > vy )

expresses this property.
Since (Kc, v) ≺∃ (L.Kc, v), Proposition 5.1 shows that (L.Kc, v) embeds over Kc in

(Kc, v)∗. Thus L.Kc can be considered as a subfield of K∗c, and so the same holds for the
fields L and L.K∗. Since L|K is assumed to be separable, it follows that also L.K∗|K∗ is
separable. Now Theorem 5.9 shows that

(K, v)∗ ≺∃ (L.K∗, v) .

Since (K, v) ≺ (K, v)∗, we obtain that (K, v) ≺∃ (L.K∗, v), which yields that (K, v) ≺∃
(L, v), as asserted. �
We do not know whether the cofinality condition can be dropped.

We can now prove part b) of Theorem 1.6:

Assume that (K, v) is separably tame and that (L|K, v) is a separable extension with
vK ≺∃ vL and Kv ≺∃ Lv. If charK = 0, then (K, v) is tame and we have already
proved that (L|K, v) satisfies the AKE∃ Principle. So we assume that charK = p > 0.
The perfect hull K1/p∞ of K admits a unique extension v of the valuation of K, and
with this valuation it is a subextension of the completion of K, according to Lemma 3.20.
In particular, (K1/p∞|K, v) is immediate. By Lemma 3.21, (K1/p∞ , v) is a tame field.
Both K1/p∞ and L.K1/p∞ are subfields of the perfect hull (L1/p∞ , v) of (L, v), whose value
group is the p-divisible hull of vL and whose residue field is the perfect hull of Lv. As
vK = vK1/p∞ is p-divisible and Kv = Kv1/p∞ is perfect, Lemma 7.2 shows that our side
conditions yield that vK1/p∞ ≺∃ v(L.K1/p∞) and Kv1/p∞ ≺∃ (L.K1/p∞)v. According to
the AKE∃ Principle for tame fields (Theorem 1.3), this yields that

(K1/p∞ , v) ≺∃ (L.K1/p∞ , v) .

Now take a |L.K1/p∞|+-saturated elementary extension (K1/p∞ |K, v)∗ of (K1/p∞|K, v).
From this point on, the proof is just an analogue of the proof of the foregoing theorem. �

Related to these results are results of F. Delon [D]. She showed that the elementary
class of algebraically maximal Kaplansky fields of fixed p-degree is relatively
complete. Adding predicates to the language of valued fields which guarantee that every
extension is separable, she also obtained relative model completeness. We will discuss the
case of separably tame fields of fixed p-degree in a subsequent paper.
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