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Abstract

The frame of this survey is a formally real field K, which means that −1
is not a finite sum of squares of elements of K. It is well known from Artin-
Schreier theory that such a field admits at least one total order compatible with
the field structure.

After some background in Real Algebra, we introduce and study the space of
R−places. Thereafter, we present other mathematical notions, such as valuation
fans, orderings of higher level and the real holomorphy ring. By use of these
tools we obtain an outstanding result in Real Algebraic Geometry. Finally we
provide some steps towards an abstract theory of R− places.

1 Background in Real Algebra.

1.1 Preorderings, orderings.

In their Crelle paper (1927) Artin and Schreier introduced the notions of real
fields and real-closed fields. These notions have since remained essentially un-
changed. See for instance Moderne Algebra by Van der Waerden (1930), Lec-
tures in Abstract Algebra by N. Jacobson (1964) and Algebra by S. Lang (1965).
The notion of the positive cone associated to an order is due to J.P. Serre [S].
Basic references for classical theory of real fields are for instance [AS], [BCR],
[R].

Definition 1 A preordering T of K is a subset T ⊆ K, satisfying:

T + T ⊆ T, T · T ⊆ T, 0, 1 ∈ T, − 1 /∈ T
and T ∗ = T\{0} is a subgroup of K∗ = K\{0}.
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Definition 2 A preordering T is called a quadratic preordering if K2 ⊆ T. If
K2n ⊆ T , T is said to be of level n. Preorderings with no level do exist.

Zorn’s lemma shows the existence of maximal quadratic preorderings; these
are just the usual orderings, and are characterized by:

Definition 3 A subset P of K is an ordering if:

P + P ⊆ P, P · P ⊆ P, P ∪ −P = K, − 1 /∈ P.

From these properties one can deduce that 0, 1 ∈ P, P ∩ −P = {0} and∑
K2 ⊆ P. Here, and throughout the paper,

∑
K2n denotes the set of all finite

sums of 2n-th powers.
Note also that a real field must have characteristic zero.
We can also call P a positive cone: to any such ordering P one can associate

a binary relation ≤P . This is a total order relation compatible with the field
structure, defined as follows:

b− a ∈ P ⇔ a ≤P b.

And P is the set of elements positive for the order relation ≤P .
The set of orderings of a field K will be denoted by χ(K); it might also have

been denoted by SperK to meet the usual notation in rings.
A very nice theorem from Artin-Schreier [AS] is:

Theorem 4 Let K be a real field,
∑
K2 = ∩

Pi∈χ(K)
Pi.

Example 5 The field R admits only one ordering, and its set of positive ele-
ments is R2.

Example 6 The field Q( 2
√

2) :=
{
a+ b 2

√
2 | a, b ∈ Q

}
admits two orderings,

one making 2
√

2 positive and the other making 2
√

2 negative.

Example 7 R((X)), the power series field, admits also two orderings making
X infinitesimal positive or negative.

Example 8 R(X) admits infinitely many orderings. For any a ∈ R one can
define orderings Pa,+ and Pa,− making X − a infinitesimal positive or negative
respectively.

1.2 Real Valuations.

The main classic references on valuations are [K], [E], [R2]; see [EP] for a more
modern treatment.

Definition 9 A Krull valuation v on a field K is a surjective map

v : K∗ � Γ

where Γ is a totally ordered abelian group (called the value group), such that
(1) v(xy) = v(x) + v(y) for any x, y in K∗;
(2) v(x+ y) ≥ min {v(x), v(y)} , for any x, y in K∗, with x+ y in K∗.
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The valuation ring of v is

Av := {x ∈ K | x = 0 or v(x) ≥ 0}

and its maximal ideal is

Iv := {x ∈ K | x = 0 or v(x) > 0} .

kv := Av/Iv is called the residue field of the valuation.
Uv := Av \ Iv denotes the group of units.

Definition 10 A valuation v on a field K is said to be real if and only if the
residue field kv is formally real (meaning −1 /∈

∑
k2v).

A field admits real valuations if and only if it is formally real. Of course a
formally real field admits real valuations, at least the trivial one.

The converse implication follows from the Baer-Krull theorem which ensures
that if kv admits an ordering, then K admits also at least one ordering.(see
section 1.4).

We now recall the definition of a valuation ring and how one can associate
a valuation to a given valuation ring.

Definition 11 A subring A of a field K is a valuation ring if for any x ∈ K,
either x or x−1belongs to A.

Definition 12 The valuation associated to a valuation ring A of K, with max-
imal ideal I, is given by the canonical quotient map v : K∗ → Γ, where
Γ := K∗/(A\I) is ordered by v(x) ≤ v(y)⇔ yx−1 ∈ A.

Example 13 Given an ordering P in a field K, the convex hull of Q in K is:

A(P ) := {x ∈ K | ∃r ∈ Q r ± x ∈ P} .

A(P ) is a valuation ring in K with unique maximal ideal:

I(P ) := {x ∈ K | ∀r ∈ Q∗ r ± x ∈ P} .

A(P ) is clearly a subring of K; it is a valuation ring because b /∈ A(P )
implies b−1 ∈ A(P ): let b /∈ A(P ), assume b > 0, since b /∈ A(P ) we have in
particular 1 < b, therefore 0 < b−1 < 1 which implies that b−1 ∈ A(P ) because
A(P ) is convex in K with respect to P.

We shall see in 1.3 that the valuation associated to A(P ) is compatible with
the ordering P and pushes down on the residue field an (archimedean) ordering,
hence this valuation is real.
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1.3 Compatibility of an ordering with a valuation.

For this part we can refer to [Be2] and [L]. Note that there is also a more recent
book [EP].

Definition 14 A quadratic preordering T in a field K is said to be fully com-
patible with a valuation v if and only if 1 + Iv ⊂ T.

In this case T induces on the residue field kv a quadratic preordering T .

In the case of an ordering P, we just say that P is compatible with v; then
P , induced by P on the residue field kv, is an ordering of kv.

Example 15 The trivial valuation, sending every element of K to 0, is com-
patible with any ordering of K.

Example 16 The valuation v associated to an ordering P of K with valuation
ring

A(P ) := {x ∈ K | ∃r ∈ Q r ± x ∈ P}

is compatible with P.

Proof. I(P ) := {x ∈ K | ∀r ∈ Q∗ r ± x ∈ P} being the maximal ideal of
A(P ) we have 1 + I(P ) ⊂ P . Hence the valuation is compatible with P. Then
P induced by P on the residue field kv is an archimedean ordering; in fact:

P is an ordering: clearly P is closed under addition and multiplication and
P ∪ −P = kv. If −1 was in P we would have −1 = a for some a ∈ P ∩ A(P ).
Then 1 + a ∈ I(P ), hence −a ∈ 1 + I(P ) ⊂ P, so we would get a = 0 which is
impossible.

This ordering P is archimedean: for any x ∈ A(P ) there exists some r ∈ Z
such that −r <P x <P r, hence in the residue field we have −r <P x <P r, and
therefore P is an archimedean ordering of kv.

Theorem 17 Let P be an ordering of K, and v be a valuation on K; the
following are equivalent:

(1) 0 <P a ≤P b⇒ v(a) ≥ v(b) in Γ (the value group of v).
(2) The valuation ring Av is convex in K with respect to P .
(3) The maximal ideal Iv of Av is convex in K with respect to P .
(4) v is compatible with P (i.e. 1 + Iv ⊂ P ).

Proof. (1)⇒ (2) Av convex in K means that if x <P y <P z, with x, z ∈ Av
then y ∈ Av, or equivalently 0 <P a <P b with b ∈ Av implies a ∈ Av.

From (1) we deduce that v(a) ≥ v(b) ≥ 0 in Γ hence a ∈ Av.
(2) ⇒ (3) Assume 0 <P a <P b with b ∈ Iv then 0 <P b−1 <P a−1. Since

b−1 /∈ Av using (2) we deduce a−1 /∈ Av, hence a ∈ Iv, Iv being the ideal of non
invertible elements of Av.

(3)⇒ (4) Let m ∈ Iv, if 1 +m /∈ P then 1 +m ∈ −P, so 1 +m <P 0 hence
0 <P 1 <P −m. Using the convexity of Iv in K for P, since −m ∈ Iv too, this
yields 1 ∈ Iv which is impossible.
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(4) ⇒ (1) Assume 0 <P a ≤P b and v(a) < v(b) in Γ; then we deduce
0 < v(b) − v(a) = v( ba ), hence b

a ∈ Iv, and also − b
a ∈ Iv and a 6= b. From (4)

we get 1 + (− b
a ) ∈ P , so a−b

a >P 0, hence a >P b which is impossible.

Theorem 18 Let F be the family of all valuation rings of K compatible with
a given ordering P , then:

(1) the valuation rings in F form a chain under inclusion;
(2) the smallest element of F is A(P ).

Proof. (1) Suppose A,B ∈ F and A " B, let a ∈ A\B and a > 0. We
prove that B ⊂ A. Consider 0 < b ∈ B, by the convexity of B in K we cannot
have 0 < a ≤ b, so we must have 0 < b ≤ a. From the convexity of A in K, we
deduce b ∈ A.

(2) Let A ∈ F , A is convex in K and contains Z, hence A contains A(P ) the
convex hull of Q in K.

Note that any subring of K containing a valuation ring must itself be a
valuation ring, hence F consists of all subrings of K containing A(P ). Remark
also that A ⊂ A′ implies I ′ ⊂ I.

Definition 19 The place associated to the valuation ring A of K, with valua-
tion v on K, is an application λ : K → kv ∪ {∞} , where λ |A is the canonical
surjection from A to kv, and is an homomorphism for addition and multiplica-
tion extended to kv ∪ {∞} by x+∞ =∞ and x · ∞ =∞ (with x 6= 0).

In fact if a ∈ A then λ(a) = a = a+ I ; and if a /∈ A then λ(a) =∞.

1.4 The Baer-Krull theorem.

Original references are [Ba] and [K]. One can also refer to [L] and [BCR], this
last one being the basis for the proof given below. There exists also a more
general version in [BeBr].

Theorem 20 Let A be a real valuation ring of K, and let v be the associated
valuation. Let P be an ordering in the residue field kv. Denote χv,P the set of all

orderings Pi in K inducing the given P in kv. Then there is a bijection between
χv,P and Hom(Γ,Z/2) where Γ denotes the value group of v.

The proof requires the following lemma.

Lemma 21 Let K be a field and v be a real valuation on K; let γ be the positive
cone of an ordering of kv. Then there exists at least one ordering on K, with
positive cone P , compatible with v (or with λv the place associated with v) such
that P = γ.

Proof of lemma.
Let A be the valuation ring associated to v.
Let T :=

{
x ∈ K | ∃y ∈ K ∃z ∈ A\I λv(z) >γ 0 and x = y2z

}
, we first show

that T is a proper quadratic preordering of K.
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It is clear that if x1, x2 ∈ T , then x1x2 ∈ T , and if x ∈ T then x2 ∈ T.
Now suppose that −1 ∈ T , then ∃y ∈ K ∃z ∈ A\I such that λv(z) >γ 0 and

−1 = y2z. Hence z = −y−2, but λv(−y−2) ≤γ 0, so we cannot have λv(z) >γ 0.
Hence we get −1 /∈ T .

To show that T is closed under addition, let x1, x2 ∈ T, so x1 = y21z1
and x2 = y22z2 with z1, z2 ∈ A\I, λv(z1) >γ 0 and λv(z2) >γ 0. Then write
x1 + x2 = y21z1 + y22z2 = y21z1(1 + z−11 z2y

−2
1 y22). Assume that y2y

−1
1 ∈ A,

otherwise y1y
−1
2 is in A. Let z = 1+z−11 z2y

−2
1 y22 , λv(z) = 1+λv(z

−1
1 z2y

−2
1 y22) =

1+(λv(z1))−1λv(z2)(λv(y
−1
1 y2))2, hence z ∈ A\I with λv(z) >γ 0 and x1+x2 =

(z1z)y
2
1 is in T .

Now there exists P an ordering containing the proper preordering T . A is
convex in K for P because from 1 + I ⊂ T we deduce 1 + I ⊂ P. Suppose x ∈ I,
v(x) > 0, hence v(1 + x) = 0 so 1 + x ∈ A\I and λv(1 + x) = 1 >γ 0. We can
write 1 + x = (1 + x)12 and deduce 1 + x ∈ T .

We also have P = γ since P ⊃ T and T = γ. Indeed T ⊂ γ is clear. Let
z ∈ γ and z be such that λv(z) >γ 0, then z ∈ A\I and writing z = z12 we get
z ∈ T.

Proof of Baer-Krull theorem.
From the lemma we know that there exists an ordering P, with A convex in

K for P and P = γ. Let Q be any element of χ(K) such that Q is compatible
with v (or with λv) and Q = γ.

Define the following mapping

χ(K) → Hom(Γ,Z/2)

Q → < P,Q >

Here < P,Q > is defined by < P,Q > (v(x)) = 0 if x has same sign for P
and for Q, and < P,Q > (v(x)) = 1 otherwise.

We show that < P,Q > is a well defined group homorphism from Γ to Z/2.
It is clear that x 7−→< P,Q > (v(x)) is a group homomorphism from K∗ →

Z/2 with kernel containing A\I: if x ∈ A\I then λv(x) >γ 0 or λv(x) <γ 0, so
for any Q such that Q = γ we have x >Q 0 or x <Q 0. Hence having same sign
for P and Q we get < P,Q > (v(x)) = 0. Hence < P,Q > is a well defined
group homomorphism from Γ to Z/2.

The mapping Q 7→< P,Q > is injective because < P,Q > and P entirely
determine Q (the sign of x for Q follows from knowing the sign of x for P and
< P,Q > (v(x))).

We now have to show that the mapping Q 7→< P,Q > is surjective.
Let ϕ ∈ Hom(Γ,Z/2). Define :
Q := {x ∈ K | x = 0 or (ϕ(v(x)) = 0 if x ∈ P ) or (ϕ(v(x)) = 1 if x ∈ −P )}.
We must prove that Q is the positive cone of an ordering. It is obvious that

Q 6= K, Q ·Q ⊂ Q, K2 ⊂ Q, and Q ∪ −Q = K.
It remains to prove that Q + Q ⊂ Q. Let x, y ∈ Q\ {0} , assume x−1y ∈ A

(otherwise xy−1 ∈ A), we distinguish two cases.
Case 1. If x−1y ∈ I, v(x−1y) > 0, then v(1 + x−1y) = 0, 1 + x−1y ∈ A\I

and 1+x−1y ∈ P because 1+ I ⊂ P. Hence 1+x−1y ∈ (A\I)∩P which implies
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that 1 + x−1y ∈ Q since (A\I) ∩ P ⊂ Q. Writing x + y = x(1 + x−1y) we get
x+ y ∈ Q as a product of two elements of Q.

Case 2. If x−1y /∈ I then x−1y ∈ A\I and v(x−1y) = 0 implying in turn
ϕ(v(x−1y)) = 0. Since x−1y ∈ Q we deduce from the definition of Q that
x−1y ∈ P. Thus 1 + x−1y ∈ P, but also 1 + x−1y ∈ A and since λv(1 +
x−1y) = λv(1) + λv(x

−1y) we get λv(1 + x−1y) > 0 and 1 + x−1y /∈ I. Finally
1 + x−1y ∈ (A\I) ∩ P , hence belongs to Q. Again writing x+ y = x(1 + x−1y)
we get x+ y ∈ Q as a product of two elements of Q.

Verify now that A is Q-convex : let m ∈ I, v(m) > 0 hence v(1 + m) = 0,
λv(1 + m) = 1 >γ 0, and 1 + m ∈ P . v(1 + m) = 0 and 1 + m ∈ P imply in
turn that 1 +m ∈ Q.

Also Q = γ is obvious from P = γ and definition of Q.

As a consequence of the Baer-Krull theorem, if Γ/2Γ has, as vector space
over Z/2, a basis of n classes, then χv,P has 2n elements Pi. Hence the lifting

of P to K is unique if and only if Γ is 2−divisible.

2 On R-places.

2.1 R-place associated to an ordering.

For a complete presentation of these notions one can refer to [L], or in a more
geometrical setting to [Schü1], [Schü2] and [Schü3].

Let K be a real field and P be an ordering on K. Let v denote the valuation
associated to the valuation ring A(P ). From previous results we know that
(kv,P ) can be uniquely embedded in (R,R2) since P is archimedean. Denote
this embedding by i and let π be the canonical mapping from K into kv ∪ {∞}
(where if a /∈ A(P ), then π(a) =∞).

Definition 22 The R-place associated to P is λP : K → R ∪ {∞} defined by
the following commutative diagram:

K
λP−→ R ∪ {∞}

π ↘ ↗ i

kv ∪ {∞}

Explicitly λP (a) = ∞ when a /∈ A(P ), and λP (a) = inf{r ∈ Q | a ≤P r} =
sup{r ∈ Q | r ≤P a} if a ∈ A(P ). In fact it is known that any R-place arises in
this way from some ordering P (see [L], 9.1).
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2.2 The space of R-places.

The space of R-places of a field K is the set M(K) = {λP | P ∈ χ(K)}, where
χ(K) denotes the space of orderings of K. M(K) is equipped with the coarsest
topology making continuous the evaluation mappings defined for every a ∈ K
by:

ea : M(K) −→ R ∪ {∞}

λP 7→ λP (a)

Recall that the usual topology on χ(K) is the Harrison topology generated
by the open-closed Harrison sets:

H(a) = {P ∈ χ(K) | a ∈ P}.

With this topology χ(K) is a compact totally disconnected space. Craven
has shown in [C] that every compact totally disconnected space is homeomorphic
to the space of orderings χ(K) of some field K.

Now consider the mapping Λ defined by:

Λ : χ(K) −→M(K)

P 7→ λP

With the previous topologies on χ(K) and M(K) the mapping Λ is a continuous,
surjective and closed mapping.

M(K) equipped with the above topology is a compact Hausdorff space.
Remark that this topology on M(K) is also the quotient topology inherited
from the above topology on χ(K).

2.3 R-places and the Real Holomorphy Ring.

We now provide some facts on the real holomorphy ring which has heavy links
with orderings and R-places.

Definition 23 The real holomorphy ring, denoted H(K), is the intersection of
all real valuation rings of K.

From the results in part 1 we obtain H(K) = ∩
P∈χ(K)

A(P ).

We also have:

H(K) = A(
∑

K2) = {a ∈ K | ∃n ∈ N, n ≥ 1 | n± a ∈
∑

K2}.

H(K) is a Prüfer ring with quotient field K (see [L], p.85). Recall that a
Prüfer ring is a ring R ⊂ K such that, for any prime ideal p in R, the localization
Rp is a valuation ring in K.
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In the sequel we denote the real spectrum of the real holomorphy ring of K
by:

Sper(H(K)) = {α = (p,α), p ∈ Sper(H(K)), α ordering of quot(H(K)/p)}.

Relations between χ(K), M(K) and H(K) are given by the next theorem.

Theorem 24 (Becker-Gondard, [BG2]). The following diagram is commuta-
tive:

χ(K)
sper i−→ MinSperH(K)

↓ Λ ↓ sp
M(K)

res→ Hom(H(K),R)
j→MaxSperH(K)

where the horizontal mappings are homeomorphisms, and the vertical ones
continuous surjective mappings (see definitions below).

Hence χ(K) the space of orderings of K is homeomorphic to MinSperH(K),
and the space M(K) of R-places on K is homeomorphic to MaxSperH(K).

The mappings in the above diagram are defined as follows:

Λ : χ(K) −→M(K) is given by P 7→ λP (see 2.2).

sper i : χ(K) −→MinSperH(K) is given by P 7→ P ∩H(K).

sp : MinSperH(K) −→MaxSperH(K) is given by α 7−→ αmax ,
where αmax is the unique maximal specialization of α.

res : M(K) −→ Hom(H(K),R) is given by λ 7→ λ|H(K).

j : Hom(H(K),R) −→MaxSperH(K) is given by ϕ 7→ αϕ,
where αϕ = ϕ−1( R2) or, using the notation for the real spectrum,
αϕ = (kerϕ, α) with α = R2 ∩ quot(ϕ(H(K)).

All the spaces in the diagram are compact and the topologies of M(K) and
MaxSperH(K) are the quotient topologies inherited through Λ and sp.

3 Fans (level 1 case).

In this section we mainly follow the notations and proofs of [L].
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3.1 Quadratic preorderings.

The compatibility of a quadratic preordering with a valuation can be of two
types. Given T a proper quadratic preordering in a real field K, v a valuation
on K is compatible with T if it is compatible with some ordering P containing
T . v is called fully compatible with T if it is compatible with every ordering P
containing T . Below we give alternative characterizations.

Definition 25 Given T a proper quadratic preordering in a real field K, and v
a valuation on K with unique maximal ideal Iv in the associated valuation ring
Av:

(1) v is fully compatible with T if and only if 1 + Iv ⊂ T .
(2) v is compatible with T if and only if (1 + Iv) ∩ −T = ∅.
(3) v is compatible with T if and only if T is a preordering in the residue

field kv.

We set χ/T := {P ordering | P ⊃ T}.
A way of building fully compatible preorderings is to use the ”wedge product”

introduced in 1978 by Becker in [Be1] and Becker, and Brocker in [BeBr].

Definition 26 Let K be a real field, let A be a valuation ring in K, and π :
A −→ kv be the projection map. Let T be a preordering of K and let S be a
preordering of kv such that S ⊃ T . The wedge product is defined by T ∧ S :=
T · π−1(S\{0}).

We refer the reader to Lam’s book ([L], p.21) to verify that T ∧ S is a
preordering in K, fully compatible with v, and such that residually T ∧ S = S.

There is also an alternative definition for the wedge product:
T ∧ S = ∩

{
orderings P | P ⊃ T and P ∈ χ/S

}
3.2 Fans of level 1.

In the context of preorderings fans were first presented by Becker and Köpping
in [BK].

Definition 27 Let K be a real field and let T be a proper quadratic preordering
in K. T is a fan if and only if for any S ⊃ T, such that −1 /∈ S and such that
S∗ = S\{0} is a subgroup of K∗ satisfying [K∗ : S∗] = 2, S is an ordering in
K.

Note that if T is a fan any preordering containing T is again a fan. There is
an alternative useful characterization of a fan given in [L] (p.40), with proof of
equivalence:

Proposition 28 A preordering T is a fan if and only if for any a ∈ K∗\ − T
we have T + aT ⊂ T ∪ aT. Such an element a is said T -rigid.
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First examples of fans are the trivial fans : these are orderings P and inter-
section of two orderings P1 ∩ P2.

Further examples will be given later when dealing with orderings of higher
level.

Another example is the pullback Ŝ of a trivial fan S in kv. Namely Ŝ =
K2∧S = K2 ·π−1(S\ {0}) is a fan in K. In fact Bröcker’s trivialization theorem
given later in 3.3 says that all fans arise in this way.

Fans are well behaved for compatibility with real valuations.

Theorem 29 Let K be a real field, v a valuation on K, and T a preordering
in K. Then the followings hold:

(a) If v is compatible with T , T is a fan implies that T is a fan in kv;
(b) If v is fully compatible with T , T is a fan if and only if T is a fan.

Proof.
(a) We use proposition 28 charactrizing a fan. Let b ∈ A\I such that b /∈ −T

we shall show that b is T -rigid . T being a fan let t1 + t2b ∈ T + bT ⊂ T ∪ bT
hence there exist t3 or t4 such that t1 + t2b = t3 or t1 + t2b = t4b. Going down
to kv we get t1 + t2b = t3 or t1 + t2b = t4b hence t1 + t2b ∈ T ∪ bT , and T is a
fan.

(b) We use the definition of a fan. Assume v is fully compatible with T and
T is a fan we have to prove that T is a fan. Let W ⊃ T be such that −1 /∈ W,
W ∗ = W\{0} is a subgroup of K∗ and [K∗ : W ∗] = 2, we have to prove that
W is an ordering. We first show that W is an ordering. If −1 = w for some
w ∈W ∩A, then −1 = w+m for some m ∈ I, so −w = 1+m ∈ 1+ I ⊂ T ⊂W
hence −1 ∈ W which is impossible. Since T is a fan and W ∗ a subgroup
of k∗v such that

[
k∗v : W ∗

]
= 2, W is an ordering. Form the wedge product

W ∧W = W · π−1(W\{0}) = W · (1 + I) ⊂ W · T ⊂ W , since from [L] (p.22)
W · π−1(W\{0}) = W · (1 + I) ); then W ∧W ⊂W holds, hence W = W ∧W
is an ordering.

3.3 Trivialization of fans.

A remarkable result is Bröcker’s theorem on trivialization of fans ([Brö]).

Theorem 30 Let K be a real field and T ⊂ K be a fan. Then there exists a
valuation v, fully compatible with T, such that the pushdown T in the residue
field kv is a trivial fan.

The theorem follows from propositions 31 and 32 below. We use the proof
given by Lam ([L], p. 94).

Proposition 31 Let T be a non-trivial fan in the field K. Then there exists a
non-trivial valuation v on K, fully compatible with T.
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The proof of proposition 31 requires three lemmas.

Lemma 1. Let G be an ordered group (written additively), and H be a
subgroup of G. If H does not contain a non-trivial convex subgroup of G, then
for any positive element h ∈ H there exists g ∈ G\H such that 0 < g < h.

Proof of lemma 1. Let C := {g ∈ G | ∃n ∈ N − nh ≤ g ≤ nh}. C is the
convex hull of the subgroup of G generated by h, hence a convex subgroup.
Assume there does not exist an element g as in the statement, then for any
g ∈ G, 0 ≤ g ≤ h implies g ∈ H. By easy induction on n it follows that for any
n ∈ N, −nh ≤ g ≤ nh implies g ∈ H. Hence {0} 6= C ⊆ H, contradicting the
assumption that H does not contain a non-trivial convex subgroup of G.

Lemma 2. Let T be a fan in the field K. Let v1 be a valuation on K with
value group Γ1; if v1(T ∗) does not contain a non-trivial convex subgroup of Γ1,
then v1 is fully compatible with T.

Proof of lemma 2. We claim that the condition:
”for every m in the unique maximal ideal M1, and for every t ∈ U1 ∩ T ,
a unit belonging to T, t+m ∈ T implies that 1 +M1 ⊂ T”
entails that v1 is fully compatible with T.

We distinguish two cases:
Case 1. Assume v1(m) /∈ v1(T ∗).
In this case (T · m) ∩ U1 = ∅; so in particular m /∈ −T, since v1(m) > 0.

Since T is a fan, t+m ∈ T +T ·m = T ∪T ·m. We have to show that t+m ∈ T.
Clearly t+m ∈ U1 because v1(t+m) = 0 since v1(t) = 0 and v1(m) > 0. Since
(T ·m) ∩ U1 = ∅ we get t+m /∈ T ·m hence t+m ∈ T.

Case 2. Assume v1(m) ∈ v1(T ∗).
Apply lemma 1 to H := v1(T ∗). Since v1(m) is a positive element of H there

exists x such that v1(x) /∈ H and 0 < v1(x) < v1(m). Now let t + m = t′ + m′

where t′ := t + x and m′ = m − x. From x ∈ M1 we get t′ ∈ U1, and
since v1(m′) /∈ v1(T ∗), case 1 gives t′ ∈ T. Finally from v1(x) < v1(m) we get
v1(m′) = v1(m − x) = min {v1(m), v1(x)} = v1(x) /∈ v1(T ∗). Thus using again
case 1, we get t′ +m′ ∈ T, and hence t+m ∈ T.

Lemma 3. Let T ⊂ K be a non trivial fan and P ∈ χ/T . Let vP : K∗ −→ Γ
be the canonical valuation associated with P ; then vP (T ∗) 6= Γ. In particular
vP is not the trivial valuation so every ordering in χ/T is non archimedean.

For the proof of this last lemma we refer to Lam [L], corollary 12-11 of lemma
12-10 p. 95.

Proof of proposition 31. Given a non trivial fan T ⊂ K, fix v0 : K∗ � Γ0

such that v0(T ∗) 6= Γ0 (for instance, take P ∈ χ/T and let v0 be the valuation
vP associated with A(P )). Now consider the convex subgroups of Γ0 contained
in v0(T ∗); they form a chain under inclusion. The union of them ∆ is the
largest convex subgroup contained in v0(T ∗). By quotienting we can coarsen
the valuation v0 into a valuation v1 : K∗ � Γ1 := Γ0/∆. Then v1(T ∗) cannot
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contain a non-trivial convex subgroup of Γ1. Hence, by lemma 2, v1 is fully
compatible with T. Since [Γ1 : v1(T ∗)] = [Γ0 : v0(T ∗)] > 1, v1 is a non trivial
valuation.

Proposition 32 For any preordering T in a field K, the followings are equiv-
alent:

(1) T is a fan in K.
(2) There exists a valuation v1 on K, fully compatible with T , such that,

with respect to v1, T pushes down to a trivial fan in the residue field, hence[
K
∗

: T
∗] ≤ 4.

Proof of proposition 32.
(2)⇒(1) Trivially if v1 exists, is fully compatible with T, and pushes down

to a trivial fan T , then T is a fan.
(1)⇒ (2) From the previous proposition we know that there exists a valuation

v fully compatible with T, hence T is a fan in the residue field kv.

If
[
k∗v : T

∗] ≥ 8, then T would be a non-trivial fan, and applying lemma 3 to

T in kv we would get a non-trivial valuation on kv fully compatible with T . But
from proposition 12-3 in [L], kv has no non-trivial valuation fully compatible
with T . Then just take v1 = v.

For the geometric point of view on fans we refer to [AR] and [ABR].

4 Valuation fans and examples.

From now on preorderings are NOT supposed to be quadratic.
Let us recall the definition of a general preordering. A preordering T in a

field K is a subset T ⊆ K, satifying:
T + T ⊆ T, T · T ⊆ T, 0, 1 ∈ T, −1 /∈ T, T ∗ = T\{0} is a subgroup of K∗.

4.1 Valuation fans (of any level).

Definition 33 (Jacob, [J1]). Let K be a field; a valuation fan in K is a pre-
ordering T such that there exists v a real valuation on K, v fully compatible
with T (meaning 1 + Iv ⊂ T ), and v induces an archimedean ordering on the
residue field kv.

More precisely, a preordering T in K is a valuation fan if and only if A(T ) =
{x ∈ K | ∃r ∈ Q r±x ∈ T} is a valuation ring with associated valuation v fully
compatible with T, and T in kv is an (archimedean) ordering.

There is an alternative characterization for valuation fans, sometimes useful
in model theory:

Proposition 34 (Jacob, [J2]). A preordering T in a field K is a valuation fan
if and only if for any x /∈ ±T we have either 1± x ∈ T or 1± x−1 ∈ T.

13



Example 35 Usual orderings P are valuation fans (of level 1, i.e.
∑
K2 ⊂ P ).

It is I think important for real algebraic geometry to understand mini-
mal valuation fans of level 1. They are defined as valuation fans not prop-
erly containing any valuation fan which is a quadratic preordering. Of course
such a minimal valuation fan T0 pushes down an archimedean ordering in the
residue field of K for the valuation associated to the valuation ring given by:
A(T0) = {x ∈ K | ∃r ∈ Q r ± x ∈ T0} .

But a better way to understand these minimal valuation fans, in relation
with R-places, is:

Example 36 Let λ be a R − place on a field K, let Λ−1(λ) = {Pi | λPi
= λ},

then T = ∩Pi is a valuation fan and it is a minimal valuation fan of level 1.

4.2 Orderings of higher level.

Further examples of valuation fans are provided by Becker’s orderings of higher
level.

Definition 37 (Becker, [Be1]). Let K be a commutative formally real field,
P ⊂ K is an ordering of level n if:

∑
K2n ⊂ P, P + P ⊂ P, P.P ⊂ P.

Hence P ∗ is a subgroup of K∗. When K∗/P ∗ ' Z/2nZ, then the ordering is
called of exact level n.

A very interesting paper on sums of d-th powers in rings with some relation
to orderings of higher level is [Jo].

The orderings of level 1 are the usual total orderings.

Example 38 If K = R((X)), there exist two usual orderings:

P+ = K2 ∪XK2 and P− = K2 ∪ −XK2

And for every prime p there exist two orderings of exact level p:

Pp,+ = K2p ∪XpK2p and Pp,− = K2p ∪ −XpK2p.

All these orderings are associated to the unique R-place of R((X)), and for
the associated valuation they all induce the same archimedean ordering in the
residue field.

These higher level orderings have important links with sums of powers; we
refer the reader to [Be4] and just mention the following important theorems:

Theorem 39 (Becker, [Be1]). Let K be a real field, then:∑
K2n = ∩{Pi | Pi ordering of level dividing n} .

Theorem 40 (Becker, [Be1]). Let K be a field, and let p be a prime. The
followings are equivalent:

(1)
∑
K2 6=

∑
K2p.

(2) K admits an ordering of exact level p.
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In the case where the level is a power of 2, Becker’s results yield ([Be1]):

Theorem 41 In a field K the followings are equivalent:
(1) ∀a ∈ K a2 ∈

∑
K4 ;

(2) Every real valuation on K has a 2-divisible value group.
(3) K does not admit any ordering of exact level 2.

On the side of R-places we obtain as a corollary that λP = λQ if and only
if P and Q are two usual orderings beginning a 2-primary chain of higher level
orderings. Such a chain has been defined by Harman in [H] (see later definition
45).

Hence the mapping Λ : χ(K) −→M(K) is a bijection if and only if K does
not admit any ordering of exact level 2.

4.3 Another approach with signatures.

Usual orderings can be recast in terms of signatures. A signature is a group
morphism, σ : K∗ −→ {±1}, with additivily closed kernel; then P = kerσ∪{0}
is an ordering of K.

The notion of a signature has a higher level analog:

Definition 42 (Becker, [Be3]). A signature of level n on a field K is a mor-
phism of abelian groups:

σ : K∗ → µ2n

such that the kernel is additively closed, where µ2n denotes the group of 2n-th
roots of 1.

Clearly if σ is a signature of level n, then P = kerσ ∪ {0} is an ordering of
higher level with exact level dividing n.

There exists also a much more general notion of signature involving valuation
fans:

Definition 43 ( Schwartz, [S2]). A generalized signature in a field K is a
morphism of abelian groups, σ : K∗ → G, such that the kernel is a valuation
fan.

5 Algebraic closure of a field equipped with a
valuation fan.

Several notions of a closure, under algebraic extensions, of a field equipped
with either higher level orderings or higher level signatures, either valuation fans
or generalized signatures, have been introduced and studied in the literature.
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Since R-places are closely related with some valuation fans of level 1, one can
also consider a notion of closure under algebraic extensions of a field equipped
with a R-place λ, by considering the closure of a field equipped with the val-
uation fan T = ∩

{
Pi | Pi ∈ Λ−1(λ)

}
where Λ−1(λ) = {Pi | λPi

= λ}. Such
closures might be important in Real Algebraic Geometry.

All these notions of closure can be unified in one theory, the theory of
Henselian Residually Real-Closed fields (HRRC fields).

In this section we present without any proof the main features of this theory,
from an algebraic point of view.

Definition 44 (Becker, Berr, Gondard, [BBG]). A field K is henselian resid-
ually real-closed (HRRC) if and only if it admits an henselian valuation v with
real-closed residue field kv.

Recall that a valuation v on a field K, with valuation ring Av, is henselian
if it satisfies Hensel’s lemma : ”For any monic polynomial f ∈ Av[X], if f has
a simple root β ∈ kv, then f has a root b ∈ Av such that b = β ”.

The henselian residually real-closed fields have been variously named in the
literature: they are called real henselian fields in Brown [Br], [Br2], fields real-
closed with respect to a signature in Schwartz [S2] and almost real-closed fields
in Delon-Farre [DF].

5.1 Examples of HRRC fields.

The basic examples of henselian residually real-closed fields arise in a classi-
cal way as follows (see [Fu]): given R a real-closed field, and Γ a totally or-
dered abelian group, let R((Γ)) = {

∑
γ
aγt

γ | γ ∈ Γ, aγ ∈ R} be the set of

generalized power series with support well ordered, where support
∑
γ
aγt

γ =

{γ ∈ Γ | aγ 6= 0}.

In R((Γ)) one can define:

- Multiplication by: tγtδ = tγ+δ;

- Addition by:
∑
γ
aγt

γ +
∑
δ

bδt
δ =

∑
α

(aα + bα)tα;

- Order by:
∑
γ
aγt

γ >K 0⇔ am >R 0, where m = min(support
∑
γ
aγt

γ);

- Valuation by: v : R((Γ))→ Γ and v(
∑
γ
aγt

γ) = m = min(support
∑
γ
aγt

γ).

It is well-known that R((Γ)) is a field, admitting v as a henselian valuation
with real-closed residue field R and value group Γ; hence R((Γ)) is an HRRC
field.
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5.2 Subtheories of the theory of HRRC fields.

Let v be a real valuation on a field K, kv its residue field, Γv its value group, and
let S be a set of primes. Relations between various subtheories of the theory
of HRRC fields are described by the following diagram where arrows indicate
subtheories.

Henselian Residually Real-Closed Fields (HRRC)
v henselian valuation , kv real-closed field

closed for generalized signature, or for valuation fan
↓

HRRC fields of type S (p /∈ S ⇒ Γv p-divisible)

↙ ↘
S−generalized real-closed fields (S finite) Rolle fields
if p /∈ S then Γv is p-divisible Γv odd divisible
if p ∈ S and Γv is not p-divisible then HRRC field of type {2}
Γv/pΓv ' Z/pZ ; closed for
higher level ordering or chain signature

↓ ↘ ↙ ↓
Real-closed fields Chain-closed fields
∅-generalized real-closed {2}-generalized real-closed
Γv divisible Γv/2Γv ' Z/2Z
closed for a usual order closed for an ordering of level 2k

In the diagram above, most of the theories correspond to some notion of
closure, under algebraic extensions, of a field equipped with some object. With
an ordering (real-closed field), with an ordering of exact level a power of 2
(chain-closed field), with an ordering of exact level a power of p where p is
prime ({p}-real-closed fields), with an ordering of exact level n (S-generalized
real-closed fields of exact type S (p ∈ S ⇔ Γv not divisible, and for all p ∈ S,
p | n), or with a valuation fan (henselian residually real-closed field).

5.3 On the question of the uniqueness of closure.

For a field equipped with a usual ordering it is well known that the real
closure is unique up to K-isomorphism.

Even for chain-closed fields this is not true anymore. In order to recover the
uniqueness of the closure, up to K-isomorphism, one needs to consider a closure
for a whole chain of orderings with levels powers of 2 in the sense of Harman:

Definition 45 (Harman, [H]). A 2-primary chain of orderings in a field K is:

(Pn)n∈N = (P0,P1, ..., Pn, ...)

P0 being a usual ordering and Pn an ordering of level 2n−1, such that

Pn∪ − Pn= (P 0∩Pn−1) ∪ −(P 0∩Pn−1).
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Theorem 46 (Harman, [H]). A field K equipped with a 2-primary chain of or-
derings admits a closure under algebraic extensions unique up to K-isomorphism.
The closure is called a chain-closed field and it is equal to the intersection of
two real-closures of K for P0 and P1.

For generalized real-closed fields, in order to recover the uniqueness up to
K-isomorphism, Niels Schwartz has introduced the notion of chain signature.

Definition 47 (Schwartz, [S1]). A chain signature on a field K is a homomor-
phism:

ϕ : K∗ → {1,−1} × Ẑ

such that kerϕ is a valuation fan, where Ẑ =
∏

Ẑp and Ẑp denotes the additive
group of p-adic integers.

One can recover orderings of higher level by taking:
Pn(ϕ) = ϕ−1(1× nẐ) ∪ {0} .

Theorem 48 (Schwartz, [S1]). A field K equipped with a chain signature ϕ
admits a closure under algebraic extensions unique up to K-isomorphism. This
closure is a HHRC field.

In the more general situation of a field equipped with a valuation fan we can
also ensure the uniqueness of the closure by considering a field equipped, not
only with a single valuation fan, but with a whole chain of valuation fans.

From Brown’s work we can derive the following:

Theorem 49 (Brown, [Br]). Let R and R′ be two HRRC fields, algebraic ex-
tensions of a field K, then the followings are equivalent:

(1) R and R′ are K-isomophic.
(2) R2n ∩K = R′2n ∩K for all n ∈ N .

In fact these Tn = R2n∩K are valuation fans, which form a chain of valuation
fans (Tn)n∈N as defined below; this chain is said to be induced on K by R.

Definition 50 (Becker-Berr-Gondard, [BBG]). A chain of valuation fans in a
field K is defined as (Tn)n∈N such that:

(1) K2n ⊂ Tn;
(2) Tn.m ⊂ Tn;
(3) (Tn)m ⊂ Tn.m;
(4) T ∗n/T

∗
n.m ⊂ T ∗1 /T ∗n.m is the subgroup of elements of exponent m.

With this notion we have been able to obtain the following theorem:

Theorem 51 (Becker-Berr-Gondard, [BBG]). Any field K, equipped with a
chain of valuation fans (Tn)n∈N, admits a closure under algebraic extensions
R, unique up to K-isomorphism. Then R is a HRRC field, and R induces on
K a chain of valuation fans (Tn)n∈N (i.e. Tn = R2n ∩K for all n).
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5.4 Properties of HHRC fields.

Henselian residually real-closed fields have a lot of nice properties ; we list, again
without any proof, some of them below. Main reference is [BBG].

Let K be an HRRC field then:

(1) K is a real field;

(2) Every algebraic extension of K is a radical extension;

(3) K has no real extension of degree p ∈ P\S.
Note that whenever 2 ∈ S, one can replace (3) by (3’) ”K has no extension

of degree p ∈ P\S”;

(4) ∀n ∈ N , K is n-pythagorean : K2n +K2n = K2n;

(5) K is hereditarily pythagorean, i.e., every algebraic extension is again a
pythagorean field;

(6) ∀n ∈ N , K2n is a fan (refer to definion 27, or to characteriztion 28 for
such preorderings);

(7) ∀n ∈ N , K2n is a valuation fan, i.e. it is a preordering such that:
∀x /∈ ±K2n either 1± x ∈ K2n or 1± x−1 ∈ K2n;

(8) All real valuations on K are henselian;

(9) The set of real valuation rings in K is totally ordered by inclusion;

(10) The smallest real valuation ring in K is:

A(K2) = A(K2n) = H(K)

where A(T ) = {x ∈ K | ∃n ∈ N n± x ∈ T}, T being a valuation fan, and where
H (K ) is the real holomorphy ring (i.e. the intersection of all real valuation
rings);

(11) K admits a unique R-place which can be defined using the valuation
ring A(K2) and the associated valuation (see definition 22);

(12) Jacob’s ring J( ∩
n∈N

K2n) is the biggest valuation ring with real-closed

residue field. This ring is defined as follows. If T is a valuation fan, the ring
J(T ) is equal to J1(T ) ∪ J2(T ) where:

J1(T ) = {x ∈ K | x /∈ ±T et 1 + x ∈ T}
and

J2(T ) = {x ∈ K | x ∈ ±T et xJ1(T ) ⊂ J1(T )}).
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These fields have been studied from a model theoretic point of view; the pre-
ceding theories are all elementary theories, with nice first order axiomatizations
(see [BBG], [De1], [De2], [Di], [G1] and [G3]).

The significance of Jacob’s ring for the model theory of these fields appears
in [J2], and also later with the transfer theorem obtained by Delon and Farre
[DF].

6 R-places in Real Algebraic Geometry.

6.1 Separation of connected components in M(K).

Higher level orderings provide a tool to separate connected components in the
space of R-places M(K).

Theorem 52 (Becker-Gondard, [BG2]). Let K be a real field. Two R-places
λP and λQ, associated to usual orderings P and Q, are in two distinct connected
components of M(K) if and only if:

∃b ∈ K∗ (b ∈ P ∩ −Q and β2 ∈
∑

K4).

Proof. This criterion is obtained using higher level orderings, more precisely
orderings of exact level 2.

Recall H(a) = {P ∈ χ(K) | a ∈ P}, χ(K) = H(a) ∪ H(−a) and for a 6= 0
H(a) ∩H(−a) = ∅, but Λ(H(a)) ∩ Λ(H(−a)) may be non empty.

Nevetherless, if there exist b /∈
∑
K2 with b2 ∈

∑
K4, then there does not

exist P ∈ H(b) and Q ∈ H(−b) such that λP = λQ.
Otherwise b /∈ (P ∩Q) ∪ −(P ∩Q) and λP = λQ imply, as said before, that

there exists an ordering of level 2, P2, such that:

P2 ∪ −P2 = (P ∩Q) ∪ −(P ∩Q)

with b /∈ P2 ∪ −P2, hence b2 /∈ P2 , so b2 /∈
∑
K4 = ∩P2,i , where the P2,i run

over the set of all orderings with level dividing 2.

Assume that λP et λQ (with P 6= Q) are in the same connected component
C of M(K) , and that there exists b ∈ K∗such that b ∈ P ∩−Q with b2 ∈

∑
K4.

Λ being closed C ∩ Λ(H(b)), and C ∩ Λ(H(−b)) form a partition of C into two
non empty closed sets, impossible.

Conversely:
If λP et λQ are in C and C ′, two distinct connected components of M(K),

M(K) being a compact Hausdorff space there exists an open-closed set U such
that U ⊃ C and U c = (M(K)\U) ⊃ C ′.

Let X = Λ−1(U) and Y = Λ−1(U c). X and Y form a partition of χ(K). Λ
being surjective we get : Λ−1(Λ(Λ−1(U))) = Λ−1(U) so Λ−1(Λ(X)) = X, and
similarly Λ−1(Λ(Y )) = Y.
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The following lemma from Harman ensures then the existence of b such that
X = H(b) and Y = H(−b) with b2 ∈

∑
K4, hence we have b ∈ P ∩ −Q with

b2 ∈
∑
K4.

Harman’s Lemma ([H]). If χ(K) = χ1 ∪ χ2, where χ1 and χ2 are disjoint
open-closed sets such that Λ−1(Λ(χ1)) = χ1 and Λ−1(Λ(χ2)) = χ2, then there
exist a such that χ1 = H(a) and χ2 = H(−a).

6.2 Number of connected components of a smooth real
projective variety.

Using R-places, the real holomorphy ring and a result of Bröcker on the fibers
of central points, we have been able to obtain the following theorem:

Theorem 53 (Becker-Gondard, [BG2]). Let Y be a smooth projective variety
on R , with function field K = R(Y ). Suppose Y (R) 6= ∅, then | π0(Y (R)) |, the
number of connected components of Y (R), is given by:

| π0(Y (R)) |= 1 + log2[(K∗2 ∩
∑

K4) : (
∑

K∗2)2].

This result is in the spirit of Harnack’s result giving as upper bound, g + 1,
for the number of connected components of a smooth projective curve V (R)
where g is the genius of V ; but here we obtain a formula with equality and for
any dimension.

The theorem also shows clearly the known fact that the number of connected
components is a birational invariant among the smooth varieties with given
function field.

The first proof (1992) of this result is given in [BG2]. The theorem is a
corollary of the two lemmas below which make use of the connected components
of the space of R-places M(K).

Two new proofs have been found in 2003-2004 by Jean-Louis Colliot-Thélène
(see [CT]), who derived the result from one of his previous papers, and by Claus
Scheiderer (see [Sche]), who used geometric arguments avoiding R-places, higher
level orderings and real holomorphy ring.

Lemma 54 Let Y be a smooth projective variety on R, with function field K =
R(Y ). Suppose Y (R) 6= ∅, and let | π0(Y (R)) | denote the number of connected
components of Y (R). Then holds:

| π0(Y (R)) |=| π0(M(K) | .

In lemma 54 and below, | π0(M(K) | denotes the number of connected
components of M(K) equipped with the topology defined in 2.2.

Lemma 55 For any real field K:

| π0(M(K)) |= 1 + log2[(K∗2 ∩
∑

K4) : (
∑

K∗2)2].

21



Sketch of proof of the lemma 54:
We use the center map c : M(K)→ Y ( R), defined by x = c(λ) = c(Vλ) the

unique point (since Y is projective) whose local ring ox is dominated by Vλ, the
valuation ring associated to the R-place λ.

- In this case it is known [e.g. [BCR], Prop. 7.6.2 (ii), p. 133] that c is
surjective, the central points being the closure of regular points. And one can
prove that c is continuous.

- Bröcker proved, in an unpublished manuscript, that the fiber of a central
point has a finite number of connected components, and that if x is a regular
point then the fiber is connected.

Now we just have to use the following topological lemma: ”If a mapping
between two compact spaces X and Y is continuous and surjective, and if each
fiber is connected, then it induces a bijection between π0(X) and π0(Y ), the sets
of connected components of X and Y ”.

Sketch of proof of lemma 55:
It is known from [B2] that | π0(M(K)) |= log2[E : E+], where E is the

group of units of the real holomorphy ring H(K), and E+ = E ∩
∑
K2.

Then we prove that the quotient group (K∗2 ∩
∑
K4)/(

∑
K∗2)2 is isomor-

phic to E/(E+ ∪ −E+).

7 Towards abstract R-places.

The space of orderings of a field, studied in relation with quadratic forms and
real valuations, have been the origin of the theory of abstract spaces of orderings
(1979-80) and of Marshall’s problem:

”Is every abstract space of orderings the space of orderings of some field ?”
In [M] it is proved that one can always associate to an abstract space of

orderings a “P -structure“ (partition of the space of orderings into subspaces
which are fans, and such that any fan intersects only one or two classes). Such
a P -structure is a candidate to be analogous to the space of R-places in the field
case. But it appeared that not any P -structure is a Hausdorff space, hence we
have to improve this notion to fit with the space of R-places in the field case.

7.1 Abstract spaces of orderings (level 1 case).

Abstract space of orderings have been introduced using signatures by Marshall
in [M]:

Definition 56 An abstract space of orderings is (X,G), where G is a group of
exponent 2 (hence abelian), -1 a distinguished element of G, and X a subset of
Hom(G, {1,−1}) such that:

(1) X is a closed subset of Hom(G, {1,−1});
(2) ∀σ ∈ X σ(−1) = −1;
(3) ∩

σ∈X
kerσ = 1 (where kerσ = {a ∈ G | σ(a) = 1});
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(4) For any f and g quadratic forms over G:

DX(f ⊕ g) = ∪{DX 〈x, y〉 | x ∈ DX(f), y ∈ DX(g)}.

In the above definition DX(f) denotes the set {a ∈ G represented by f}, i.e.
there exists g such that f ≡X 〈a〉 ⊕ g where f ≡X h if and only if f and h have
same dimension, and have for any σ ∈ X same signature.

On the side of fans, seen as sets of signatures on a field, a four elements fan
of level 1 is characterized by:

σ0σ1σ2σ3 = 1

and it corresponds to the fan seen as a preordering: T =
3
∩
i=0

kerσi ∪ {0}.

In the abstract situation a abstract fans have been defined by Marshall.

Definition 57 An abstract fan is an abstract space of orderings (X,G) such
that X = {σ ∈ Hom(G, {1,−1}) | σ(−1) = −1}.

It is also characterized by: if σ0, σ1, σ2 ∈ X then the product σ0σ1σ2 ∈ X.

What was expected to correspond to the space of R-places of the field case
in the context of abstract spaces of orderings is called a P -structure and has
been defined as follows by Marshall in [M3].

Definition 58 A P -structure is an equivalence relation on a space of orderings
(X,G) such that the canonical mapping Λ : X → M , where M is the set of
equivalence classes, satisfies:

(1) Each fiber is a fan;

(2) If σ0σ1σ2σ3 = 1 then {σ0, σ1, σ2, σ3} has a non empty intersection with
at most two fibers.

Marshall has proved that every abstract space of orderings has a P -structure,
generally not unique. But unlikely the case of the space of R-places in a field, this
P -structure M equipped with the quotient topology, is not always Hausdorff.

7.2 Abstract spaces of signatures (higher level)

In the higher level case, one can also define abstract spaces of signatures (similar
to 4.3 in the field case).

Definition 59 An abstract space of signatures of of level 2n is (X,G), G abelian
group of exponent 2n, X ⊂ Hom(G,µ2n) such that:
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(0) ∀σ ∈ X, ∀k ∈ N with k odd, σk ∈ X;
(1) X is a closed subset of Hom(G,µ2n);
(2) ∀σ ∈ X σ(−1) = −1 (−1 distinguished element of µ2n);
(3) ∩

σ∈X
kerσ = 1 (where kerσ = {a ∈ G | σ(a) = 1});

(4) For any f and g forms over G

DX(f ⊕ g) = ∪{DX 〈x, y〉 | x ∈ DX(f), y ∈ DX(g)}.

In fields, the space of R-places is known as soon as one knows the usual
orderings and the orderings of level 2. Using this idea in the abstract situation
we have been able to obtain a theorem which can be seen as the first case of a
P -structure which looks like an abstract space of R-places.

Theorem 60 (Gondard-Marshall, [GM]). Let (X,G) be a subspace of a space
of signatures (X ′, G′) with 2-power exponent.

For σ0, σ1 ∈ X, define σ0 ∼ σ1 if σ0σ1 = τ2 ∈ X ′2.
Then the followings are equivalent:

(1) If σ0σ1σ2σ3 = 1, then either σ0 is in relation by ∼ with exactly one of
the σ1, σ2, σ3, or σ0 is in relation by ∼ with everyone of the σ1, σ2, σ3.

(2) ∼ defines a P -structure on X.

Moreover in this case the induced P -structure defined on X by ∼ has a
Hausdorff topology.

The key idea for proving the theorem is that in the field case, studied by
Harman in [H], for any P2, ordering of level 2, holds for some orderings P0, P1:

a2 ∈ P2 ⇐⇒ a ∈ P2 ∪ −P2 = (P0 ∩ P1) ∪ (−(P0 ∩ P1)).
Hence on the side of abstract signatures we get τ(a2) = τ(a)2 = σ0(a)σ1(a).

7.3 Open problems.

1 - Study in the field case the space of level 1 valuation fans VF(K), and its rela-
tion with SperH(K). The motivation is that χ(K), isomorphic to minSperH(K),
consists of valuation fans Pi, and that to a R-place λ in M(K), which is
isomorphic to maxSperH(K), can be associated a valuation fan of level 1:
Tλ = ∩

{
Pi | Pi ∈ Λ−1(λ)

}
where Λ−1(λ) = {Pi | λPi = λ}. Or work on the

same question dealing with signatures.

2 - Characterize the topological spaces which are realizable as spaces of R-
places. Partial results in that direction have been recently obtained in [EO],
[KK], [KMO] and [MMO].

It will be useful to study for a field K the space of connected components
of the space of R-places of K, π0(M(K)). This might be some kind of space of
orderings. Another question in this area is: in which cases are the connected
components of M(K) homeomorphic?
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Also it is known from Schülting’s results (see [Schü1]) that M(K(X)) have
the same number of connected components as M(K). Does M(K((X))) have
the same number of connected components as M(K) ? (Conjecture is yes).

3 - Construct a finer theory for abstract spaces of orderings taking into
account the R-places. For example, Q(2

1
2 ) and R((X)) have isomorphic spaces

of orderings, but the first one has two R-places and no ordering of level 2, and
the second one has only one R-place but has a 2-primary chain of higher level
orderings.

4 - Try to define a notion of abstract space of valuation fans, and write a
theory of abstract R-places. Both are linked because of the minimal valuation
fans of level 1 defined from a R-place λ by Tλ = ∩

{
Pi | Pi ∈ Λ−1(λ)

}
, where

Λ−1(λ) = {Pi | λPi = λ}. Then use abstract R-places to solve Marshall’s
problem of realizability of abstract spaces of orderings.
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Géométrie Réelle et Formes Quadratiques (1982), 1-40 and 139-181.

[Be3] E. Becker. Extended Artin-Schreier theory of fields, Rocky Mountain
J. of Math., vol 14, #4 (1984), 881-897.

[Be4] E. Becker. The real holomorphy ring and sums of 2n-th powers, LNM
959 (1982), 139-151.
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(1990), 13-20.

[DG] F. Delon and D. Gondard. 17ème problème de Hilbert sur les corps
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