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The classical theory of Gröbner bases, as developed by Bruno Buchberger, can be
expanded to utilize objects more general than term orders. Each term order on the

polynomial ring k[x] produces a filtration of k[x] and a valuation ring of the rational

function field k(x). The algorithms developed by Buchberger can be performed by using
directly the induced valuation or filtration in place of the term order. There are many
valuations and filtrations that are suitable for this general computational framework

that are not derived from term orders, even after a change of variables. Here we study
how to translate between properties of filtrations and properties in valuation theory, and
give a characterization of which valuations and filtrations are derived from a term order

after a change of variables. This characterization illuminates the properties of valuations
and filtrations that are desirable for use in a generalized Gröbner basis theory.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bruno Buchberger’s approach to the ideal membership problem led to the development
of a reduction process that relied heavily upon term orders. Robbiano (1986) placed
this theory in a larger context by examining graded structures and determining how
term orders can be thought of as just a small part of the entire computational theory.
Similarly, Sweedler (1986) developed a computational framework for working with ideals
in polynomial rings and algebras by using a valuation-theoretic approach.

Let (V,m) be a valuation ring of the rational function field k(x) such that k ⊂ V . If
we wish to perform computations in an underlying polynomial ring k[x] of k(x) in the
setting of Sweedler (1986), then we require the following three conditions on V :

(i) V ∩ k[x] = k,
(ii) k + m = V , and
(iii) V is well-ordered in some sense with respect to k[x].

We address the first two properties in this paper, and discuss how they translate into the
language of filtrations in Lemmas 4.7 and 4.8. One can begin with a term order on k[x]
and define the associated valuation ring of k(x) by

V = {0} ∪ {f/g | f, g ∈ k[x]? and LT(f) ≤ LT(g)}.
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Properties (i) and (ii) can be demonstrated easily, and property (iii) follows from the
well-orderedness of term orders.

Although the theory in Sweedler (1986) has been developed in terms of valuation
rings, it is useful to translate the theory into results about valuations and filtrations.
By translating properties about valuation rings into properties about valuations, we are
able to simplify the language and proofs. It makes it easier to justify that our candidates
for good valuation rings are well-ordered. In fact, one only has to check that the image
of the polynomial ring under the valuation is a well-ordered subset of the value group.
Although the computations are made easier with valuations rather than the intrinsic
valuation rings, the theoretic framework is more closely related to classical Buchberger
theory in the context of filtrations. Since we can think of Buchberger theory as a reduction
process in terms of stepping through the pieces of a filtration or graded algebra, it makes
sense to do much of the analysis in this area, and thus provides motivation for the second
half of this paper.

We choose valuation theory as our first direction of exploration since the results are
more easily stated and proved in this area than in the study of filtrations. It is worth
mentioning that our definition of a valuation includes an ordering on the corresponding
value group that is opposite to what is more commonly found in the literature. However,
the notion of valuation given by Artin (1957) is essentially the same as ours except Artin
includes 0 as a smallest element where we simply exclude it. Since our work is more
closely linked to the theory of Gröbner bases and term orders than valuation theory we
choose this order so that the results can be stated more simply.

As we saw, each term order on k[x] produces a valuation ring in k(x), and hence, pro-
vides us also with the natural corresponding valuation. Conversely, we question whether
we can characterize which valuation rings of k(x) come from a term order on k[x], possibly
with a change of variables. The reason for the possible change of variables is that we are
looking for an intrinsic characterization involving ring-theoretic or module-theoretic con-
ditions. The characterization should be independent of a specific parametrization of the
polynomial ring. In other words, it should not be dependent upon a specific choice of vari-
ables for the polynomial ring. One would hope to find conditions whereby if a valuation
or valuation ring satisfies those conditions, then it is possible to find a choice of variables
for the polynomial ring whereby the filtration coincides with a term order valuation with
regard to a term order on the chosen variables. We produce such a characterization in
Theorem 2.6, which leads us to the discovery of valuations that do not come from a term
order in suitable variables, yet are still well-behaved in that they are well-ordered and
suitable for use in Sweedler (1986). In Mosteig (2000, 2002) and Mosteig and Sweedler
(2001), we formulate such examples of valuations by using generalized power series.

Our second direction of exploration involves the study of nested filtrations. A nested
filtration of a ring A is simply a collection of subsets of A that is totally ordered under
inclusion. We study many properties of filtrations and demonstrate how to translate them
into properties about valuations and valuation rings. In particular, we study filtrations
with the following fundamental properties: full union (Section 3.1), intersects to zero
(Section 3.1), one-dimensional graded components (Section 3.2), strong multiplicativity
(Section 3.3), and non-negativity (Section 3.3). We say that a filtration is regular if it
has all of the five listed properties above, and it turns out that regular filtrations are
related to valuations that have properties (i) and (ii) above.

Graded algebras arise naturally as the associated graded algebras of an algebra with a
filtration. Given a polynomial ring k[x] with a term order ≤σ, there is a natural filtration
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we can define on k[x] (see Example 3.1). In this case, the associated graded algebra is
isomorphic to k[x]. Another way in which this can happen is similar to the manner in
which an automorphism is used in our definition of valuations that come from a term
order in suitable variables in Section 2.2. Namely, suppose that φ : k[u] → k[x] is an
algebra isomorphism. If k[u] has a filtration then the images, under φ, of the filtrands of
k[u] form a filtration on k[x]. On the level of associated graded algebras, φ induces an
isomorphism between the associated graded algebra of k[u] and the associated graded
algebra of k[x]. Thus, by beginning with a term order filtration on k[u], and using φ to put
a filtration on k[x], we see that the associated graded algebra of k[x] has one-dimensional
graded components and is isomorphic k[x]. Nevertheless the associated graded algebra
of k[x] need not come from a term order filtration. Just as Theorem 2.6 characterizes
which valuations come from a term order in suitable variables, we give a characterization
of which filtrations come from a term order in suitable variables in Theorem 5.9.

Given a k-algebra A, we define a k-filtration to be a filtration in which the filtered pieces
are k-subspaces of A. One of the conditions necessary for a filtration on k[x] to come
from a term order in suitable variables is well-orderedness. In fact, well-orderedness is
a required condition for most reduction algorithms, and so it suggests the important
question of whether non-negative, strongly multiplicative k-filtrations on k[x] must
necessarily be well-ordered. If this were so, it might allow the possibility of using all
such orders in computer algebra systems. The importance of such filtrations is closely
related to the importance of term orders themselves. Namely, they allow the formulation
of an associated graded algebra, leading terms, a valuation, reduction, S-pairs and a
generalization of Buchberger’s test and algorithms as described in Sweedler (1986).

On the other hand, producing a non-negative, strongly multiplicative k-filtration
on k[x] that is not well-ordered has some use because it cannot come from a term
order filtration and so it would show that a filtration being a non-negative, strongly
multiplicative k-filtration on k[x] does not imply that the filtration must be a term order
filtration. As it turns out there are non-negative, strongly multiplicative k-filtrations on
k[x] that are not well-ordered. The first such examples were given by Mosteig (2000). In
addition, Mosteig (2000) demonstrates the existence of a regular well-ordered filtration
on k[x, y] for fields of both positive characteristic and characteristic zero. In characteristic
zero, we yet have no example of a regular filtration that is not well-ordered, but we do
have well-ordered filtrations (written in the language of valuations) that do not come from
term orders in suitable variables (see Mosteig, 2000, 2002; Mosteig and Sweedler, 2001).
This raises the open question of whether there exist regular filtrations on a polynomial
ring of characteristic zero that are not well-ordered.

2. Valuations and Term Orders

We begin by reviewing the fundamentals of valuation theory, and then focus on a
class of valuations on rational function fields that arise from term orders on underlying
polynomial rings. Such valuations naturally give rise to the value monoid Nn of n-tuples
of natural numbers. We then give criteria describing which valuations come from a term
order in suitable variables.

2.1. valuations

Whenever A is a ring, we use A∗ to denote the multiplicative group of invertible
elements of A and we use A? to denote the non-zero elements of A.
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By monoid we mean a set with an associative law of composition and a two-sided
identity. Throughout this paper, we will assume that all monoids are commutative. We
say (M,≤) is an ordered monoid if M is a monoid endowed with a total order ≤ such
that for all a, b, c ∈M ,

a ≤ b⇒ a + c ≤ b + c.

Given a total order ≤ on a monoid, we say that a < b, or that a is strictly less than b,
whenever a ≤ b and a 6= b.

A valuation ring V of a field K is a subring such that for all a ∈ K∗, a ∈ V or a−1 ∈ V .
Given a valuation ring V of a field K, the corresponding value group is the multiplicative
quotient group

G = K∗/V ∗.

The natural quotient map
ν : K∗ → K∗/V ∗

is called the valuation associated to V where G is given the following total order: for
a, b ∈ K∗,

ν(a) ≤ ν(b) iff a/b ∈ V.

Since −1 ∈ V it follows that ν(a) = ν(−a) for all a ∈ K?. The order on G
accommodates the following strong triangle inequality,

ν(a + b) ≤ max(ν(a), ν(b)) for a, b ∈ K∗ with a + b 6= 0, (1)

which can be strengthened further:

ν(a + b) = max(ν(a), ν(b)) for a, b ∈ K∗ with ν(a) 6= ν(b). (2)

One may recover V from ν and the ordering on G. If idG is the identity of G, the
corresponding valuation ring is

V = {0} ∪ {a ∈ K∗ | ν(a) ≤ idG} (3)

with unique maximal ideal

m = {0} ∪ {a ∈ K∗ | ν(a) < idG}. (4)

A useful consequence of these expressions for V and m is the observation that for
a, b ∈ K∗,

ν(a) ≤ ν(b) iff a = vb for some v ∈ V ; (5)
ν(a) < ν(b) iff a = vb for some v ∈ m. (6)

Conversely, given a group homomorphism ν, from K∗ to a totally ordered group G,
that satisfies (1) and (2), we see that ν is a valuation with value group isomorphic to
K∗/V ∗ where V is given by (3).

Definition. The residue class field of a valuation ν with valuation ring V is V/m. Given
v ∈ V, π(v) is called the image of v in the residue class field, where π : V → V/m is the
canonical projection.

Lemma 2.1. Let ν be a valuation on K with valuation ring V and let k be a subfield
of K that lies in V . Assume that k maps isomorphically to the residue class field of ν,
or equivalently, that V = k ⊕ m as Abelian groups. If a and b are non-zero elements
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of K such that ν(a) ≤ ν(b), then there exists a unique λ ∈ k such that a = λb or
ν(a − λb) < ν(b). Equivalently, there exists a unique λ ∈ k such that a − λb = xb for
some x ∈ m.

Proof. Since ν(a) ≤ ν(b) we have by (5) that a = vb for some v ∈ V . Since V = k ⊕m
there is a unique λ ∈ k such that v = λ + x for some x ∈ m. Thus a− λb = xb. Clearly,
x = 0 if and only if a = λb. If x 6= 0, then by (6) we have ν(xb) < ν(x). We see by (6)
that if ν(a− λb) < ν(b), then a− λb = xb for some x ∈ m. 2

Given a valuation on a field, we often focus on its restriction to subrings of the field,
and so we make the following definition.

Definition. Suppose that ν is a valuation on K and A is a subring of K. The submonoid
ν(A?) of the value group is called the value monoid of A.

Example 2.2. (Sweedler, 1986) Given a term order “≤σ” on k[x] in k(x),

Vσ = {0} ∪ {f/g | f, g ∈ k[x]? and LT(f) ≤σ LT(g)}

is a valuation ring with maximal ideal

mσ = {0} ∪ {f/g | f, g ∈ k[x]? and LT(f) <σ LT(g)}.

If ν denotes the associated valuation, we say that ν (and V ) comes from a term order.
Given two non-zero polynomials f, g ∈ k[x],LT(f) ≤σ LT(g) if and only if f/g ∈ Vσ,

by the definition of Vσ. However, this is just the condition for the inequality defined on
the value group and so

LT(F ) ≤σ LT(g)⇔ νσ(f) ≤ νσ(g). (7)

Lemma 2.3. Suppose ν is a valuation (with valuation ring V and maximal ideal m) on
k(x) that comes from a term order on k[x]. Then

(i) k ⊂ V .
(ii) The residue class field of V is k.
(iii) The elements of the value monoid of k[x] are non-negative.
(iv) The value monoid of k[x] is isomorphic to Nn.

Proof.

(i) Since each λ ∈ k can be written as λ/1, we have k ⊂ Vσ.
(ii) We see by (i) that k is embedded isomorphically into the residue class field via

the canonical projection π : Vσ → Vσ/mσ. We need to show that the restriction
of π to k is surjective. That is, given f/g ∈ Vσ, we wish to find λ ∈ k such that
π(f/g) = π(λ).

Given f/g ∈ Vσ, we have LT(f) ≤σ LT(g). If LT(f) <σ LT(g), then f/g ∈ mσ,
and so π(f/g) = π(0). If LM(f) = LM(g), then LT(f) = λLT(g) for some λ ∈ k?,
and so LT(f − λg) <σ LT(g). Therefore, LT((f − λg)/g) ∈ mσ, and so

f

g
= λ +

f − λg

g

expresses f/g as the sum of λ and an element of mσ, showing that π(f/g) = π(λ).
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(iii) Since LT(f) ≥σ 1 for all f ∈ k[x]∗, we have 1/f ∈ Vσ, and so by the order defined
on the value group, ν(f) ≥ ν(1).

(iv) We define a map γ : ν(k[x]?) → Nn and show that it is a monoid isomorphism.
For each f ∈ k[x]∗, we can uniquely write its leading term as LT(f) = λxe for
some e ∈ Nn and λ ∈ k∗. Define γ(ν(f)) to be e ∈ Nn. The first matter is to show
that γ is well-defined. Note that ν(f) = ν(g) if and only if f/g ∈ V ∗

σ . However,
f/g ∈ V ?

σ whenever LM(f) = LM(g). Thus if ν(f) = ν(g), then f and g yield the
same exponent e ∈ Nn, and so γ is well-defined. Since the exponent of the leading
monomial of 1 ∈ k[x] is 0 ∈ Nn, and the exponent of the leading monomial of a
product of polynomials is the sum of the exponents of the leading monomials of
each polynomial, γ is a monoid map. Now γ(ν(xi)) = ei where ei is the vector of
length n consisting of all zeros except for a 1 in the ith position. Thus the image of
γ contains a monoid generating set of Nn, and hence γ is surjective. It remains to
be shown that γ is injective. If γ(ν(f1)) = γ(ν(f2)), then LM(f1) = LM(f2), and
so ν(f1) = ν(f2), Thus γ is an isomorphism of monoids. 2

In Example 2.2, the valuation ring does not contain the original polynomial ring.
However, by using a different construction we can guarantee that the polynomial ring
is contained in the valuation ring. First, we define the trailing term trail(f) of a
polynomial f as the smallest non-zero term (as given by the term order) that appears
in the polynomial f . This gives another example of a valuation ring arising from a
polynomial ring with a term order.

Example 2.4. Given a term order ≤σ on k[x] in k(x), define

Vσ = {0} ∪ {f/g | f, g ∈ k[x]? and trail(f) ≥σ trail(g)}.

Then V is a valuation ring with unique maximal ideal

mσ = {0} ∪ {f/g | f, g ∈ k[x]? and trail(f) >σ trail(g)}.

In this example, V contains the polynomial ring because f = f/1 and trail(f) ≥
trail(1) = 1.

2.2. term orders in suitable variables

We wish to consider valuations and valuation rings that come from a term order on k[x]
followed by an automorphism of k[x]. This is the same as considering valuations that come
from a term order on k[x] = k[x1, . . . , xn] with respect to a change of variables. We found
that taking the direct approach, either considering k[x] together with an automorphism
or considering k[x] together with a change of variables, leads to confusion. To avoid such
confusion we introduce a second polynomial ring k[u] = k[u1, . . . , un] and a k-algebra
isomorphism φ : k[u]→ k[x].

Suppose that k[u] has a term order ≤σ. As in Example 2.2, the order ≤σ gives rise to
the valuation ring Vσ in k(u). The k-algebra isomorphism φ : k[u]→ k[x] extends to an
isomorphism k(u)→ k(x), which is also denoted by φ. The isomorphism φ : k(u)→ k(x)
maps Vσ (isomorphically) to φ(Vσ), a valuation ring in k(x) with maximal ideal φ(mσ).
Since Vσ = k⊕mσ and φ is the identity on k it follows that φ(Vσ) = k⊕φ(mσ). In other
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words, φ(Vσ) has residue class field k. It is straightforward to check the following:

φ(Vσ) = {0} ∪ {f/g | f, g ∈ k[x]? and LT(φ−1(f)) ≤σ LT(φ−1(g))}
φ(mσ) = {0} ∪ {f/g | f, g ∈ k[x]? and LT(φ−1(f)) <σ LT(φ−1(g))}. (8)

We introduce the notation Vφ(σ) and mφ(σ) to denote φ(Vσ) and φ(mσ), respectively. We
use νφ(σ) to denote the valuation on k(x) arising from Vφ(σ), and we use φ∗ to denote the
restriction of φ to k(u)∗. Note that φ∗ is a multiplicative group isomorphism from k(u)∗

to k(x)∗ and carries V ∗
σ isomorphically to V ∗

φ(σ). Hence φ∗ induces an ordered group
isomorphism of the value groups, k(u)∗/V ∗

σ → k(x)∗/V ∗
φ(σ), which we denote by φ̄∗. We

have the following commutative diagram, which is the key to proving Lemma 2.5.

k(u)∗
φ∗−−−−→ k(x)∗yνσ

yνφ(σ)

k(u)∗/V ∗
σ

φ̄∗−−−−→ k(x)∗/V ∗
φ(σ)

(9)

Definition. Let ν be a valuation on k(x) with valuation ring V . We say that ν or
V comes from a term order in suitable variables on k[x] if there is a polynomial ring
k[u] with term order ≤σ and k-algebra isomorphism φ : k[u] → k[x] whereby ν = νφ(σ)

or equivalently V = Vφ(σ). The isomorphism φ : k[u] → k[x] is called the associated
isomorphism.

In the proof of Theorem 2.6, we are given a valuation ν and a term order ≤σ, and
we use them to construct an isomorphism φ : k[u] → k[x]. Note that we are forced to
define φ in the given matter, and so it is uniquely defined, thus justifying the terminology
“associated isomorphism”.

Lemma 2.5. Suppose that ν comes from a term order in suitable variables on k[x]. The
value monoid of k[x] with respect to the valuation νφ(σ) is isomorphic to Nn and consists
solely of non-negative elements.

Proof. Let φ : k[u] → k[x] be the associated isomorphism. We shall show that φ̄∗

carries the value monoid of k[u] with respect to νσ isomorphically to the value monoid of
k[x] with respect to νφ(σ). Now, νσ is defined as the valuation of k(u)∗ that comes from
the term order ≤σ on k[u]. Thus by Lemma 2.3, the values monoid of k[u] with respect to
the valuation νσ is isomorphic to Nn and consists solely of non-negative elements. Thus
we need only demonstrate our original claim concerning φ̄∗.

Consider k[u]? ⊂ k(u)∗ and follow its path under each composite in the commutative
diagram in (9). For the first composite, φ?(k[u]?) = k[x]?, and νφ(σ)(k[x]?) is the value
monoid of k[x] with respect to the valuation νφ(σ). For the second composite, νσ(k[u]?)
is the value monoid of k[u] with respect to νσ, and φ̄∗(νσ(k[u]?)) is an isomorphic copy
of νσ(k[u]?). Since the two composites are equal the lemma follows. 2

The following characterizes valuations on k(x) that come from term orders in suitable
variables.

Theorem 2.6. Let ν be a valuation on k(x) with valuation ring V and maximal ideal
m. Then ν comes from a term order in suitable variables on k[x] if and only if it satisfies
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all of the following properties:

(i) k ⊂ V .
(ii) The residue class field of V is k.
(iii) The elements of the value monoid of k[x] are non-negative.
(iv) The value monoid of k[x] is isomorphic to Nn.

Proof. Suppose that ν comes from a term order in suitable variables on k[x] and let
φ : k[u] → k[x] be the associated isomorphism. By Lemma 2.5, parts (iii) and (iv) are
satisfied. By Lemmas 2.1 and 2.3, k ⊂ Vσ and Vσ = k ⊕ mσ. Since φ is a k-algebra
isomorphism from k(u) to k(x) and it maps Vσ isomorphically to Vφ(σ), it follows that
k ⊂ Vφ(σ) and Vφ(σ) = k⊕mφ(σ). Hence (i) and (ii) are satisfied, concluding the proof of
the only if direction.

Conversely, suppose that (i)–(iv) are satisfied. Since the value monoid is isomorphic to
Nn, we identify the two and assume the value monoid is precisely Nn. Let {e1, . . . , en} be
the standard basis for Nn as a monoid where ei is the vector of length n consisting of all
zeros except for a 1 in the ith position. For each ei choose fi ∈ k[x]∗ such that ν(fi) = ei.
We will prove that {f1, . . . , fn} is an algebraically independent set that generates k[x] as
an algebra. Assuming this has been established, we can define a k-algebra isomorphism
φ : k[u]→ k[x] where ui 7→ fi. By the choices we have made, ν(φ(ue)) = e ∈ Nn for any
monomial ue ∈ k[u]. Thus ν ◦ φ maps distinct monomials in k[u] to distinct values in
Nn. This allows us to define a term order on k[u] as follows: for monomials ue,uf ∈ k[u]
define ue <σ uf if and only if ν(φ(ue)) < ν(φ(uf )) in the ordered value group. All
monomials of k[u] are greater than or equal to u0 = 1 since the value monoid is assumed
to be non-negative. Moreover, compatibility of “≤σ” with multiplication of terms follows
from ν being a homomorphism of multiplicative groups, and so “≤σ” is a term order.
Since ue <σ uf if and only if ν(φ(ue)) < ν(φ(uf )), it is easy to see by the strong triangle
inequality (2) that for any p ∈ k[u]∗, ν(φ(p)) = ν(φ(LT(p))). Therefore,

ν(f) ≤ ν(g)⇔ ν(φ(φ−1(f))) ≤ ν(φ(φ−1(g)))
⇔ ν(φ(LT(φ−1(f)))) ≤ ν(φ(LT(φ−1(g))))
⇔ LT(φ−1(f)) ≤σ LT(φ−1(g)),

and so by the top equation in (8),

φ(Vσ) = {0} ∪ {f/g | f, g ∈ k[u]? and ν(f) ≤ ν(g)}.

However, this set can be rewritten as

{0} ∪ {h ∈ k(x)∗ | ν(h) ≤ idG},

and so it must be the valuation ring of ν. Hence ν comes from a term order in suitable
variables on k[x].

It remains to be shown that {f1, . . . , fn} is an algebraically independent set that
generates k[x] as an algebra. Note that k[x] has transcendence degree n over k and
the set {f1, . . . , fn} only has n elements. Therefore, if {f1, . . . , fn} generates k[x], then
it is an algebraically independent set.

Note that the order on the image-ring submonoid Nn induced by ν is a total order on
Nn that is compatible with addition in Nn. Moreover, all the elements of Nn are non-
negative with respect to this order due to (iii), and so by Dickson’s Lemma, the order
induced by ν is a well-ordering on Nn.
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We now show that k[x] ⊆ k[f1, . . . , fn]. Suppose, for contradiction, there exists
a f ∈ k[x] such that f /∈ k[f1, . . . , fn]. Among such elements, choose f so that
ν(f) = (e1, . . . , en) is minimal with respect to the ordering on Nn induced by ν. Since
ν(fe1

1 fe2
2 · · · fen

n ) = (e1, . . . , en) it follows from Lemma 2.1 that for some λ ∈ k,

f = λfe1
1 fe2

2 . . . fen
n or ν(f − λfe1

1 fe2
2 . . . fen

n ) < ν(f).

If f = λfe1
1 fe2

2 . . . fen
n , then f ∈ k[f1, . . . , fn], a contradiction. If f 6= λfe1

1 fe2
2 . . . fen

n

and ν(f − λfe1
1 fe2

2 . . . fen
n ) < ν(f), then by the minimality of ν(f) it follows that

f−λfe1
1 fe2

2 . . . fen
n ∈ k[f1, . . . , fn]. But then f = (f−λfe1

1 fe2
2 . . . fen

n )+(λfe1
1 fe2

2 . . . fen
n ),

thus showing that f is the sum of two elements of k[f1, . . . , fn], and hence itself lies in
k[f1, . . . , fn]. This is, once again, a contradiction, and so k[x] = k[f1, . . . , fn]. 2

This leads us to the following corollary as suggested by Dexter Kozen.

Corollary 2.7. If ν be a valuation on k(x1, . . . , xn) with valuation ring V , then ν
comes from a term order on k[x] if and only if it satisfies:

(i) k ⊂ V .
(ii) The residue class field of V is k.
(iii) The elements of the value monoid of k[x] are non-negative.
(iv) The value monoid of k[x] is isomorphic to Nn.
(v) If xm and xn are distinct monomials, then ν(xm) 6= ν(xn).

Proof. If ν comes directly from a term order, then property (v) certainly holds, and
(i)–(iv) hold due to Theorem 2.6.

Conversely, suppose (i)–(v) hold. Given distinct terms xm,xn, we have that ν(xm) 6=
ν(xn), and so ν defines a total order on the set of monomials. By Theorem 2.6, we
know there exists an automorphism φ : k[u] → k[x] and a term order on k[u] such that
ν(xm) < ν(xn) whenever LT(φ−1(xm)) < LT(φ−1(xn)). Using this we can show that all
monomials in k[x] are non-negative and that the order is compatible with multiplication,
and so ν comes from a term order. 2

3. Filtrations

In this section we present the material that is fundamental to working with nested
filtrations on an arbitrary ring A. Throughout this section and the following sections, A
is assumed to be a commutative ring containing a field k. It may be helpful for the reader
to consider the conditions and results in this section for the particular case where A is
a polynomial ring. In fact, we will see in Example 3.1 a filtration on a polynomial ring
that arises from a term order. This fundamental example raised many of the questions
that motivated much of the present research.

We discuss filtrations and many of the desirable properties needed for the computa-
tional framework discussed in the valuation-theoretic context in Sweedler (1986). Each
filtration provides a quasi-order and equivalence relation on the original ring. In the case
the ring A is a k-algebra, this quasi-order will provide us with a method of construct-
ing an associated k-vector space. If we require more properties of our filtration such as
multiplicativity, then this k-vector space can be made into a k-algebra.
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3.1. nested filtrations

In the general definition of an ascending filtration on a set A, one has F , a set of subsets
of A, where for S, T ∈ F there exists U ∈ F with S ⊂ U ⊃ T . A descending filtration F
has the property such that for S, T ∈ F , there exists U ∈ F with S ⊃ U ⊂ T . Because this
paper is concerned with the interaction between term orders, valuations and filtrations,
the relevant filtrations are nested filtrations. Thus we only consider nested filtrations,
and we frequently say “filtration” when we mean “nested filtration”.

Definition. Let F be a subset of the power set of A. That is, F is a set whose elements
are subsets of A. We call F a nested filtration on A if for any S, T ∈ F , either S ⊂ T or
S ⊃ T . In this case, the elements of F are called the filtered pieces or filtrands of A.

Definition. A filtration F has full union if

A =
⋃

{S∈F|S 6=A}

S.

Note that we do not say that F has full union if A = ∪S∈FS but rather we exclude
A from the union. This is because given a filtration F , if A /∈ F , then one may add A
to F to form F ′ = {A} ∪ F . Moreover, if A ∈ F , then one may exclude A from F by
forming F ′ = F \ {A}. Either way, F ′ and F have the same essential properties, as seen
in Proposition 3.4. Therefore, the presence or absence of A in F should not be a factor in
definitions, properties, results, etc. In fact, as the reader proceeds through this section,
numerous instances will be seen where the presence or absence of A in F is irrelevant. This
is typically achieved by conditioning or indexing over the set F \{A} = {S ∈ F | S 6= A}.

Definition. A filtration F intersects to zero if

{0} =
⋂

S∈F
S.

As will become evident from examples, it is common for {0} to be the unique minimal
element of F . In such situations, F obviously intersects to zero.

Here now is the filtration on a polynomial ring arising from a term order. This filtration
exhibits the properties we look for in other filtrations. Many of the results in this paper
arise from considering possible generations of term order filtrations.

Example 3.1. Let k[x] be a polynomial ring with term order “≤σ”. We denote the
collection of monomials in k[x] by M[x]. We define a term order filtration Fσ on k[x] as
follows. For each e ∈ Nn define the filtrand

k[x]≤σe = Spank({xu ∈M[x] | xu ≤σ xe})

where Spank represents the k-subspace of k[x] spanned by the indicated monomials. Let
Fσ consist of {0} together with all of the subspaces of k[x] of the form k[x]≤σe for e ∈ Nn.
We also define

k[x]<σe = Spank({xu ∈M[x] | xu <σ xe})
and

k[x]∼σe = {f ∈ k[x]? | LT(f) = xe}.
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We see that Fσ is totally ordered because {0} lies in each k[x]≤σe, and for distinct
monomials xu,xv, either xu <σ xv or xv <σ xu, in which case, respectively, k[x]≤σu ⊂
k[x]≤σv or k[x]≤σv ⊂ k[x]≤σu. Thus Fσ is a filtration. Now, Fσ has full-union because 0
lies in all elements of Fσ and for all f ∈ k[x]? such that LM(f) = xe, we have f ∈ k[x]≤σe.
Also, Fσ intersects to zero because {0} is its unique minimal element.

Note that the set Fσ \{{0}} is indexed by Nn since each k[x]≤σe is distinct for distinct
values of e ∈ Nn. This is easily seen because for distinct monomials xu,xv with xu <σ xv

we have that xv ∈ k[x]≤σv \ k[x]≤σu.
The above filtration satisfies and motivates some properties that we will soon define.

For example, a term order filtration Fσ is a k-filtration since all of the elements of Fσ are
k-subspaces of k[x]. It will also be seen that a term order filtration has one-dimensional
graded components and is strongly multiplicative. Because term order filtrations provide
motivation for many of the definitions and results in this paper, we show how these
definitions and results specifically apply to such filtrations.

3.2. quasi-orders and associated graded vector spaces

A quasi-order is a binary relation that is reflexive, transitive and total. In other words,
a quasi-order is like a total order except a quasi-order lacks the property “a ≤ b and
b ≤ a ⇒ a = b”. To describe the correspondence between valuations and filtrations, a
natural first step is to observe that a natural quasi-order and an equivalence relation
on the ring A can be constructed using a filtration. In the case A is a k-algebra, these
constructions allow us to form an associated graded k-vector space.

Definition. A filtration F on A yields a quasi-order on A called the filtration order.
Given a, b ∈ A, we write a ≤F b if for each S ∈ F where b ∈ S, it follows that a ∈ S.
We write a <F b if a ≤F b but b �F a. Equivalently, a <F b if a ≤F b and there exists
S ∈ F where a ∈ S but b /∈ S.

In Section 5, we will see that for a term order filtration on k[x] we can describe the
quasi-ordering by means of leading monomials. Quasi-orders are transitive, and so they
yield an equivalence relation.

Definition. A filtration F on A yields an equivalence relation on A called the filtration
equivalence. Given a, b ∈ A, we write a ∼F b if a ≤F b and b ≤F a.

Using the filtration order and filtration equivalence, we define the following subsets
of A. Given a ∈ A, we define

A≤Fa = {b ∈ A | b ≤F a} (10)
A<Fa = {b ∈ A | b <F a} (11)
A∼Fa = {b ∈ A | b ∼F a}. (12)

Note that A≤Fa and A<Fa may or may not be filtrands of A. Generally A∼Fa will
not be a filtrand of A. Section 5 exhibits (10)–(12) for the specific case in which A is a
polynomial ring.

Here are some fundamental properties of filtrations.

Lemma 3.2. Let F be a filtration on A and let a, b ∈ A. Then
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(i) The quasi-order is total in the sense that either a <F b or b ≤F a.
(ii) A∼Fa = A≤Fa \A<Fa.
(iii) A≤Fa = ∩{S∈F|a∈S}S. If {S ∈ F | a ∈ S} = ∅, we set

⋂
{S∈F|a∈S} S = A.

(iv) A<Fa = ∪{S∈F|a/∈S}S. If {S ∈ F | a /∈ S} = ∅, we set
⋃
{S∈F|a/∈S} S = A.

(v) A∼Fa = ∩{S∈F|a∈S}S \ ∪{S∈F|a/∈S}S.
(vi) If a ∼F b then A≤Fa = A≤Fb, A<Fa = A<Fb and A∼Fa = A∼Fb.
(vii) If A≤Fa = A≤Fb or A<Fa = A<Fb or A∼Fa ⊂ A∼Fb or A∼Fa ⊃ A∼Fb then a ∼F b.

Proof.

(i) If b �F a, then by definition there exists S ∈ F where a ∈ S but b /∈ S. Suppose
that T ∈ F with b ∈ T . Since we are working filtrations that are nested, either
S ⊂ T or S ⊃ T . It cannot happen that S ⊃ T because b /∈ S but b ∈ T . Thus,
S ⊂ T and a ∈ T . We have shown that for any T ∈ F with b ∈ T , T must also
contain a. Thus a ≤F b. Therefore the conditions for a <F b are satisfied.

(ii) Clearly, A∼Fa ⊂ A≤Fa \A<Fa. On the other hand if b /∈ A<Fa then a ≤F b by part
(i). Thus if b ∈ A≤Fa \A<Fa, it follows that b ∼F a. Hence A≤Fa \A<Fa ⊂ A∼Fa.

(iii) We have b ∈ ∩{S∈F|a∈S}S if and only if b ∈ S for every S ∈ F such that a ∈ S.
This is just the condition for b <F a; i.e. b ∈ A<Fa.

(iv) We have b ∈ ∪{S∈F|a/∈S}S if and only if there exists S ∈ F such that a /∈ S and
b ∈ S. This is just the condition for b ∈ A < Fa; i.e. b ∈ A<Fa.

(v) This follows from (ii)–(iv).
(vi) If a ∼F b then {S ∈ F | a ∈ S} = {S ∈ F | b ∈ s} and {S ∈ F | a /∈ S} = {S ∈ F |

b /∈ S}. By part (iii), A≤Fa = A≤Fb, and by part (iv), A<Fa = A<Fb. Putting this
together in conjunction with (ii), we get A∼Fa = A∼Fb.

(vii) If A≤Fa = A≤Fb then b ∈ A≤Fa and a ∈ A≤Fb. Thus a ∼F b. If A<Fa = A<Fb then
b /∈ A<Fa and a /∈ A<Fb. The order is total, and so b ≮F a implies that b ≥F a.
Similarly a ≮F b implies that a ≥F b. Thus a ∼F b. If A∼Fa ⊂ A∼Fb then a ∈ A∼Fb

since a ∈ A∼Fa. Thus a ∼F b. The result follows similarly for A∼Fa ⊃ A∼Fb. 2

Lemma 3.2 has the following corollary whose proof is left to the reader.

Corollary 3.3. Let F be a filtration on A and let a ∈ A.

(i) A≤Fa = A⇔ a /∈ ∪{S∈F|S 6=A}S.
(ii) A<Fa = ∅ ⇔ a ∈ ∩S∈FS.

The following proposition shows that regarding the quasi-order arising from F , it makes
no difference whether or not A ∈ F .

Proposition 3.4. If F is filtration on A, then F ∪ {A} and F \ {A} are filtrations on
A. Let F and F ′ be filtrations on A where F ′ = F ] {A} (where ] stands for disjoint
union). For a ∈ A, we have the following:

A≤Fa = A≤F′a, A<Fa = A<F′a, A∼Fa = A∼F′a.

Proof. Since a filtration is simply a nested collection of subsets of A, the assertions
about F ∪ {A} and F \ {A} being filtrations are immediate.
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If a, b ∈ A with a ≤F b, then for each S ∈ F with b ∈ S, S must contain a. For T ∈ F ′

with T = A, both a, b ∈ T . For T ∈ F ′ with T 6= A, it follows that T ∈ F and hence if
b ∈ T , then T contains a. Thus a ≤F ′ b. On the other hand, if a ≤F ′ b, then for each
T ∈ F ′ with b ∈ T, T must contain a. Since F ⊂ F ′ it follows that for each T ∈ F with
b ∈ T, T must contain a. Thus a ≤F b. This proves A≤Fa = A≤F′a.

Next, suppose that F and F ′ be filtrations on A where F ′ = F ] {A}. If a, b ∈ A
with a <F b, then there exists S ∈ F with a ∈ S and b /∈ S. But S ∈ F ′ since F ⊂ F ′.
Thus a <F ′ b. On the other hand if a <F ′ b, then there exists T ∈ F ′ with a ∈ T and
b /∈ T . Since b /∈ T it follows that T 6= A and thus T ∈ F . Hence, a <F b. This proves
A<Fa = A<F′a.

It immediately follows from A≤Fa = A≤F′a and A<Fa = A<F′a that A∼Fa = A∼F′a

because A∼Fa is the complement to A<Fa in A≤Fa and A∼F′a is the complement to
A<F′a in A≤F′a. 2

The significance of the preceding proposition is that the quasi-order arising from a
filtration is not affected by the presence or absence of A in the filtration. Thus a filtration
cannot be uniquely determined by the quasi-order it induces. We would always change
the filtration by adding or removing A to obtain a different filtration which induces the
same quasi-order. In fact, A is not the only possible addition to a filtration F which will
not change the quasi-order arising from F . It is not difficult to show that if a ∈ A and
A<Fa /∈ F then one may augment F to include A<Fa without changing the partial order
determined by F . Such a possible change is illustrated by the following example.

Example 3.5. If k[x, y] has the pure lex term order with y <lex x, then k[y] =
k[x, y]<lexx is not one of the term order filtrands. Thus one can augment the term order
filtration to include k[y] = k[x, y]<lexx without changing the quasi-order determined by
the term order filtration.

Since ∼F is an equivalence relation, it may be used to partition A into equivalence
classes of the form A∼Fa.

Definition. Let F be a filtration on A. We denote by A//F the set of “∼F” equivalence
classes. We denote by A o F the set of subsets of A of the form A≤Fa. The map
ς : A→ A o F is defined by ς(a) = A≤Fa for a ∈ A.

We shall primarily use A o F in place of A//F . In fact, we often identify A//F and
A o F since Proposition 3.6 (i) shows that

A//F → A o F
A∼Fa 7→ A≤Fa = ς(a) (13)

is a well-defined bijective map.

Let us briefly investigate the set A oF . Given a, b ∈ A such that a ≤F b, it follows that
ς(a) = A≤Fa ⊂ A≤Fb = ς(b). Thus A o F is a set of nested subsets of A and A o F has
a total order with respect to inclusion; that is, for S, T ∈ A o F , we have S ≤ T if and
only if S ⊂ T . In Section 5, we consider A o F as a filtration on A. We show that A o F
is in some sense a normalization of F . Section 5 also presents a description of A o F and
related considerations for the specific case where A is a polynomial ring and F comes
from a term order.
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Proposition 3.6. Let F be a filtration on A and let a, b ∈ A. Consider the map
ς : A→ A o F defined in (13).

(i) ς(a) = ς(b) if and only if a ∼F b.
(ii) ς(a) < ς(b) if and only if a <F b.
(iii) If A 6= ∪{S∈F|S 6=A}S, then A \ ∪{S∈F|S 6=A}S is a “∼F” equivalence class of A.
(iv) If a ∈ A \ ∪{S∈F|S 6=A}S, then ς(a) is the unique maximal element of A o F .
(v) If A o F has any maximal element, then A 6= ∪{S∈F|S 6=A}S.
(vi) If ∅ 6= ∩S∈FS, then ∩S∈FS is a “∼F” equivalence class of A.
(vii) If a ∈ ∩S∈FS, then ς(a) is the unique minimal element of A o F .
(viii) If A o F has any minimal element, then ∅ 6= ∩S∈FS.

Proof.

(i) Now, a ∼F b if and only if a ≤F b and b ≤F a. If a ≤F b, then ς(a) = A≤Fa ⊂
A≤Fb = ς(b). In terms of the order on A oF this means that ς(a) ≤ ς(b). Similarly,
b ≤F a implies that ς(b) ≤ ς(a). Thus ς(a) = ς(b). Conversely, if ς(a) = ς(b), then
A≤Fa = A≤Fb. Thus a ∈ A≤Fb and b ∈ A≤Fa; i.e. a ≤F b and b ≤F a.

(ii) Here ς(a) < ς(b) if and only if A≤Fa  A≤Fb if and only if (a ≤F b and b �F a)
if and only if a <F b.

(iii) Suppose that A 6= ∪{S∈F|S 6=A}S. Let a, b be elements in A \ ∪{S∈F|S 6=A}S. By
Corollary 3.3 (i), A≤Fa = A, and thus b ≤F a. Similarly, a ≤F b and so
a ∼F b. Thus A\∪{S∈F|S 6=A}S is contained in a “∼F” equivalence class of A. Now
suppose a ∼F b and a ∈ A \ ∪{S∈F|S 6=A}S. By Lemma 3.2 (vi), A≤Fa = A≤Fb.
By Corollary 3.3 (i), A≤Fa = A, and so A = A≤Fb. Another application of
Corollary 3.3 (i) yields b ∈ A \ ∪{S∈F|S 6=A}S.

(iv) As pointed out in the proof of part (iii), if a ∈ A \ ∪{S∈F|S 6=A}S, then A =
A≤Fa = ς(a). Certainly A is the unique maximal subset of A, and so it is the
unique maximal element of A o F .

(v) Suppose that A o F has a maximal element. This means that there exists a ∈ A
with A≤Fa maximal along sets of the form A≤Fb. Since a filtration is nested, for
b ∈ A, we have b ∈ A≤Fb ⊂ A≤Fa and hence A≤Fa = A. By Corollary 3.3 (i),
a ∈ A \ ∪{S∈F|S 6=A}S. In particular, A 6= ∪{S∈F|S 6=A}S.

(vi) Suppose that ∅ 6= ∩{S∈F}S. Let a ∈ ∩S∈FS. By Corollary 3.3 (ii), A<Fa = ∅.
Thus for b ∈ A we have b ≮F a and so by Lemma 3.2 (i), a ≤F b. Similarly, if
b ∈ ∩S∈FS, then b ≤F a. Thus if a, b ∈ ∩S∈FS, it follows that a ∼F b, and so
∩S∈FS is contained in a “∼F” equivalence class of A. Now suppose a ∼F b and
a ∈ ∩S∈FS. By Corollary 3.3 (ii), A≤Fa = ∅. By Lemma 3.2 (vi), A<Fa = A<Fb,
and so A<Fb = ∅. Thus by Corollary 3.3 (ii), b ∈ ∩S∈FS.

(vii) As pointed out in the proof of part (vi), if a ∈ ∩S∈FS then a ≤F b for any b ∈ A.
Thus A≤Fa ⊂ A≤Fb for all b ∈ A and we have shown that A≤Fa is minimal among
subsets of A of the form A≤Fb. Equivalently, ς(a) is the unique minimal element
of A o F .

(viii) Suppose that A o F has a minimal element. This means that there exists a ∈ A
with A≤Fa minimal among sets of the form A≤Fb. Thus a ≤F b for all b ∈ A
and so A<Fa = ∅. By Corollary 3.3 (ii), it follows that a ∈ ∩S∈FS. In particular,
∩S∈FS 6= ∅. 2
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Note that Proposition 3.6 (iii–v) shows that a filtration F has full union if and only if
A o F does not have a maximal element. Moreover, Proposition 3.6 (vi–viii) shows that
a filtration F intersects to zero if and only if ς(0) is a minimal element of A o F and
ς(0) <F ς(a) for a ∈ A?.

Definition. A filtration F on A is a k-filtration on A if each S ∈ F is a k-subspace
of A.

Lemma 3.7. Let F be a k-filtration on A.

(i) The set A≤Fa is a k-subspace of A for a ∈ A.
(ii) The set A<Fa is a k-subspace of A for a ∈ A \ ∪S∈FS.
(iii) ς(0) is the unique minimal element of A o F .

Proof.

(i) By Lemma 3.2 (iii), it follows that if F is a k-filtration on A, then A≤Fa is a k-
subspace of A. This is because an intersection of subspaces is again a subspace or
in the degenerate case A≤Fa = A.

(ii) It follows from Lemma 3.2 (iv) that A<Fa is a k-subspace of A when it is non-empty
because a (non-empty) union of nested subspaces is again a subspace. The union is
non-empty by Corollary 3.3 (ii).

(iii) Since the elements of F are subspaces, 0 ∈ ∩S∈FS. By Proposition 3.6 (vi), ∩S∈FS
is a “∼F” equivalence class of A. Thus ς(0) = A≤F0 = ∩S∈FS. By Proposition 3.6
(vii), ς(0) = ∩S∈FS is the unique minimal element of A o F . 2

The associated graded vector space of k-filtration has graded components of the form
A≤Fa/A<Fa for a /∈ ∩S∈FS. However, we must be careful to avoid duplicates; i.e. we
must avoid using elements of A that are “∼F” equivalent. This is done by parameterizing
over A o F .

Definition. Let F be a k-filtration on A. The notation (A oF)∗ denotes (A oF)\{ς(0)}.
Given C ∈ (A o F)∗ with C = ς(c), c ∈ A, define the (graded) component

grCA = A≤Fc/A<Fc.

Define the associated graded k-vector space as

grA =
⊕

C∈(AoF)∗

grCA.

An element of grA is called homogeneous if it is an element of a single graded component.

Note that grCA is well-defined because if c′ ∈ A is another element with ς(c′) = C,
then A≤Fc = A≤Fc′ and A<Fc = A<Fc′ .

Definition. A k-filtration F of A has finite-dimensional graded components if for each
C ∈ (A o F)∗ the k-vector space grCA is finite-dimensional. The filtration has one-
dimensional graded components if for each C ∈ (A o F)? the k-vector space grCA is
one-dimensional.
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Suppose that A 6= ∪{S∈F|S 6=A}S. By Proposition 3.6 (iv), each element of A \
∪{S∈F|S 6=A}S corresponds to the largest element of (A o F)∗ under the map ς defined
in (13). The corresponding graded component is A/ ∪{S∈F|S 6=A} S. If the filtration has
finite-dimensional graded components, then A/ ∪{S∈F|S 6=A} S is finite-dimensional, and
if the filtration has one-dimensional graded components then A/ ∪{S∈F|S 6=A} S is one-
dimensional.

Lemma 3.8. Let F be a k-filtration on A with one-dimensional graded components.
Assume that F intersects to zero. Let a ∈ A \ {0}, and let ā denote the image of a
in A≤Fa/A<Fa = grς(a)A, the ς(a)-component of grA.

(i) The singleton set {ā} is a basis for grς(a)A.
(ii) All components of grA have a basis of this form.
(iii) Let S ⊂ A such that ς(S) is a system of representatives of (A o F)?; i.e. under the

surjective map ς : A→ (A o F)?, S maps bijectively to (A o F)?. The subset {s̄}s∈S

of grA is a basis for grA.
(iv) If b ≤Fa, then there is a unique λ ∈ k such that b− λa = 0 or ς(b− λa) < ς(a) in

the order on (A o F)? given by the filtration.
(v) If b ∈ A≤Fa, then there is a unique λ ∈ k where b− λa ∈ A<Fa.

Proof. (i)–(iii) Since the graded components are assumed to be one-dimensional, any
non-zero element is a basis. Such an element is given by ā since a /∈ A<Fa. Since A is the
direct sum of the components, the union of the bases of the components is a basis for A.

(iv) We leave it to the reader to prove the equivalence of (iv) and (v).
(v) Let [b] denote the image of b under the quotient map A≤Fa → A≤Fa/A<Fa. Since

A≤Fa/A<Fa is one-dimensional with basis ā there is a unique element λ ∈ k with [b] = λā.
This is the unique λ ∈ k where b− λa ∈ A<Fa. 2

3.3. multiplicativity of filtrations

We now study multiplicative properties of filtrations and their ramifications. In
particular, we connect multiplicativity with cancellativity (Lemma 3.9) and eventually
give a sufficient condition for the notions of weak and strong multiplicativity to coincide
(Proposition 3.10). Finally, if we are given a strongly multiplicative k-filtration F (on A)
with one-dimensional components, and if F has the extra condition of non-negativity,
then k? consists precisely of the invertible elements of A (Lemma 3.11).

Definition. A filtration is weakly multiplicative if for all a, b, c ∈ A,

a ≤F b⇒ ac ≤F bc.

A weakly multiplicative filtration is called strongly multiplicative if for c 6= 0,

a <F b⇒ ac <F bc.

Strong multiplicativity implies the cancellative property given in Lemma 3.9 (iv). The
converse can also be shown: if F is weakly multiplicative and has the cancellative property
then it is strongly multiplicative.

The power series ring over k in one variable, k[[x]], is an example of an algebra with a
strongly multiplicative k-filtration F where A 6= ∪{S∈F|S 6=A}S. For each positive integer
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i let 〈xi〉 be the ideal generated by xi. Let F consist of all of these ideals. The filtration
has one-dimensional graded components. If we had started with the power series ring in
several variables and let F consist of the powers of the maximal ideal then it would still
be the case that the filtration is strongly multiplicative and A 6= ∪{S∈F|S 6=A}S. However,
in this case the filtration would not have one-dimensional graded components, but rather
would only have finite-dimensional graded components. In these power series examples,
ς(1A) is the unique maximal element of (AoF)?. This coincides with Proposition 3.12 (iii).

Here are some fundamental multiplicative properties of weakly and strongly multi-
plicative filtrations, which we state without proof. We will exploit these properties in the
next section to obtain valuations from filtrations.

Lemma 3.9. Let F be a weakly multiplicative filtration on A and let a, b, c, d ∈ A.

(i) If a ∼F b, then ac ∼F bc.
(ii) If ac <F bc, then a <F b.

Now assume that the filtration is strongly multiplicative.

(iii) If c 6= 0 and ac ≤F bc, then a ≤F b.
(iv) If c 6= 0 and ac ∼F bc, then a ∼F b.
(v) If ad ≤F bc, a >F b, and c or d is non-zero, then d <F c.

It is possible for a weakly multiplicative k-filtration on an integral domain to fail to
be strongly multiplicative. Let A be a k-algebra with a k-filtration that consists of just
three subsets of A : F = {{0}, {k}, {A}}. The filtration ordering is directly described
by 0 <F λ <F a for λ ∈ k∗, a ∈ A \ k. Thus if ab /∈ k for a, b ∈ A \ k, the filtration
is weakly multiplicative. It is not strongly multiplicative if A \ k 6= ∅. Thus if A is a
polynomial ring in one or more variables, this gives a weakly multiplicative but not
strongly multiplicative k-filtration on an integral domain. The next result shows that
adding additional hypotheses forces the notions of weak and strong multiplicativity to
coincide.

Proposition 3.10. Let F be a weakly multiplicative k-filtration on A that intersects to
zero.

(i) A<F1A
contains all zero-divisors of A.

(ii) If F has one-dimensional graded components and A is an integral domain, then F
is strongly multiplicative.

Proof.

(i) Suppose that a ∈ A is a zero-divisor with 1A ≤F a. Since a is a zero-divisor there
is a non-zero element b ∈ A with ab = 0. Multiplying both sides of 1A ≤F a by b
and applying weak multiplicativity yields b = 1Ab ≤F ab = 0. Thus b ≤F 0. By
Proposition 3.6 (vii) and Lemma 3.7 (iii), ς(0) is the unique minimal element in
A o F and ς(0) consists of ∩S∈FS. By the “intersects to zero” hypothesis it follows
that ∩S∈FS = {0} and thus b ≤F 0 implies that b = 0, a contradiction.
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(ii) Suppose that a, b, c ∈ A with a <F b and c 6= 0. We must show that ac <F bc.
Since a <F b it follows that b 6= 0, and hence bc 6= 0 since A is an integral domain.
By weak multiplicativity, it follows that ac ≤F bc. By Lemma 3.8 (iv), there exists
λ ∈ k where ac−λbc <F bc. We shall show that λ = 0, which implies that ac <F bc
as desired. Suppose that λ 6= 0. Then the element a−λb cannot lie in the k-subspace
A≤Fa. This is because a ∈ A≤Fa, and if λ 6= 0 it would follow that b ∈ A≤Fa, thus
contradicting a <F b. Thus a <F a− λb and so a ∈ A≤Fa−λb. Since A≤Fa−λb is a
k-subspace containing a−λb it follows that b ∈ A≤Fa−λb; i.e. b ≤F a−λb. By weak
multiplicativity this implies that bc ≤F (a− λb)c, contradicting ac− λbc <F bc. 2

By Proposition 3.10 all zero divisors of A lie in A<F1A
. Thus if ς(1A) is the smallest

element of (A o F)?, it follow that 0 is the only zero divisor in A and A is an integral
domain.

Definition. We will call a k-filtration on A non-negative if it intersects to zero and
ς(1A) is the smallest element of (A o F)∗.

If k[x] has term order “≤σ”, the term order filtration Fσ is non-negative. This
immediately follows from the definition of a term order.

Lemma 3.11. Let F be a non-negative k-filtration on A with one-dimensional graded
components. Let a be an element of A.

(i) If a ∈ A \ k, then a >F 1A.
(ii) If a ∈ k∗, then a ∼F 1A.

Now assume that the filtration is strongly multiplicative.
(iii) If a is invertible, then a ∈ k.
(iv) k is the unique maximal subfield of A.

Proof.

(i) Suppose that a does not lie in k. If a ≤F 1A, then by Lemma 3.8 (v) there exists
λ ∈ k with a − λ1A ∈ A<F1A

. By the non-negativity assumption this implies that
a− λ1A = 0, contradicting a /∈ k.

(ii) On one hand, k ⊂ A≤F1A
, and on the other hand ς(1A) is the smallest element of

(A o F)?.
(iii) If a /∈ k, then a >F 1A by part (i). We replace d by a−1 and both b and c by 1A in

Lemma 3.9 (v). Since a >F b and c 6= 0, it follows that d <F c; that is, a−1 <F 1A.
Since a−1 6= 0, this contradicts the minimality of 1A in (A o F)?.

(iv) This is clear because by part (ii), k contains all the invertible elements of A. 2

3.4. the associated graded algebra

We show how strong multiplicativity implies that the associated graded vector space
is an algebra, and then discuss properties of this associated graded algebra.

Proposition 3.12. Suppose that F is a weakly multiplicative k-filtration on A.
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(i) A o F is a multiplicative monoid. The identity is ς(1A) and the product is defined
as follows. For C,D ∈ A o F the product CD is defined as ς(cd) where c, d ∈ A with
ς(c) = C and ς(d) = D. For C,D,E ∈ A o F , if C ≤ D then CE ≤ DE.

Now assume that F is strongly multiplicative and 1A /∈ ∩S∈FS. (Note that this second
condition always holds when F intersects to zero.)

(ii) (A oF)? is a submonoid of A oF . For C,D,E ∈ (A oF)?, if C < D then CE < DE.
(A o F)? is cancellative in that CE = DE implies C = D.

(iii) If A 6= ∪{S∈F|S 6=A}S, then ς(1A) is the unique maximal element of (A o F)?.
(iv) The graded k-vector space grA is a graded algebra with respect to the monoid (AoF)?

with product defined as follows. For C,D ∈ (A o F)?, with C = ς(c) and D = ς(d)
for c, d ∈ A, let x ∈ grCA and y ∈ grDA. In other words x is a coset in A≤Fc/A<Fc

and y is a coset in A≤Fd/A<Fd. If either x or y is zero the product xy is (defined
to be) zero. If x and y are non-zero, let a ∈ A≤Fc be a coset representative for x
and let b ∈ A≤Fd be a coset representative for y. Then xy is the element of grCDA
represented by the coset of ab in A≤Fcd/A<Fcd. This definition is extended to all
elements of grA by distributivity.

Proof.

(i) Let c, c′, d, d′ ∈ A with ς(c) = ς(c′) = C and ς(d) = ς(d′) = D. The elements
c, c′, d, d′ are all non-zero because C,D ∈ (A o F)?. Since c ∼F c′ it follows that
c ≤F c′, and by weak multiplicativity, cd ≤F c′d. By symmetry c′d ≤F cd and
hence cd ∼F c′d. Similarly, c′d ∼F c′d′ and so cd ∼F c′d′. This shows that the
product on (A o F)? is well defined. Associativity follows from associativity of the
product on A. The fact that ς(1A) is the unit of (A o F)∗ follows from the fact that
1A is the unit of A.

Suppose that C,D,E ∈ A o F and c, d, e ∈ A with ς(c) = C, ς(d) = D and
ς(e) = E. Assume that C ≤ D or equivalently c ≤F d. If e 6= 0, then by weak
multiplicativity, ce ≤ de. Hence, CE ≤ DE. If e = 0, then ce = 0 = de and
CE = ς(0) = DE. So again CE ≤ DE.

(ii) Since 1A /∈ ∩S∈FS it follows that ς(1A) ∈ (A o F)?. Thus to conclude that (A o F)?

is a submonoid of A o F it remains to show that (A o F)? is closed under products.
Suppose that C,D ∈ (A oF)? with c, d ∈ A where ς(c) = C and ς(d) = D. We must
show that CD ∈ (A oF)?. Since C ∈ (A oF)? it follows that ς(0) 6= C and so 0 <F c.
Since D ∈ (A oF)? it follows that ς(0) 6= D and so 0 6= d. By strong multiplicativity,
0 = 0 · d <F c · d, and so ς(0) < ς(cd) = CD ∈ A o F . In particular ς(0) 6= CD and
CD ∈ (A o F)?. This concludes the proof that (A o F)? is a submonoid of A o F .

Suppose that C,D,E ∈ (A o F)?, and c, d, e ∈ A such that ς(c) = C, ς(d) = D,
and ς(e) = E. Assume that C < D or equivalently c <F d. Now e 6= 0 because
E ∈ (A oF)?. By strong multiplicativity ce <F de. Hence, CE < DE. To show that
(A o F)? is cancellative we must show that C = D if CE = DE. The order on A o F
is a total order and so C < D, C = D or C > D. If C < D or C > D we have
just shown that CE < DE or CE > DE. Thus CE = DE implies that C = E and
(A o F)? is cancellative.

(iii) If A 6= ∪{S∈F|S 6=A}S, then (AoF)? has a unique maximal element by Proposition 3.6
(vi, vii). Let D denote this unique maximal element. If D 6= ς(1A), then D > ς(1A)
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by the maximality of D. In this case multiply both sides of D > ς(1A) by D
and apply part (i) to conclude that Dς(1A) = D and part (ii) to conclude that
D2 > Dς(1A). But D2 > D contradicts D being the unique maximal element of
(A o F)?, and this contradiction proves that D = ς(1A). Hence, ς(1A) is the unique
maximal element of (A o F)?.

(iv) First we show that the product on grA is well-defined. Suppose that a′ ∈ A≤Fc is
another coset representative for x and b′ ∈ A≤Fd is another coset representative for
y. Since x is non-zero both a and a′ lie in A≤Fc \ A<Fc. Thus a ∼F c ∼F a′ and
similarly b ∼F d ∼F b′.
From part (i) it follows that ab ∼F cd ∼F a′b′. Thus both ab and a′b′ lie in
A≤Fcd \ A<Fcd and we may ask if they represent the same coset in A≤Fcd/A<Fcd.
Since a and a′ represent the same coset in A≤Fc/A<Fc it follows that a−a′ ∈ A<Fc,
and so a − a′ <F c. Now, b is non-zero since y is non-zero, and so by strong
multiplicativity (a − a′)b <F cb. Hence, ab and ab′ represent the same coset in
A≤Fcd/A<Fcd. Similarly ab′ and a′b′ represent the same coset in A≤Fcd/A<Fcd,
showing that the product on grA is well-defined. Associativity and the fact that the
coset of 1A in grς(1A) is the unit of grA follow from the respective properties of A. 2

Given a non-zero element u ∈ grA, u is the sum of a finite number of non-zero
homogeneous elements. Since the order on (A o F)? is a total order, u has a largest
non-zero homogeneous component, which is denoted by LT(u).

Let us check back with k[x] equipped with a term order “≤σ” and the term order
filtration Fσ. Using (25) we see that the associated graded algebra is indexed over Nn.
For e ∈ Nn, the coset of xe is a basis of the e-component of the associated graded
algebra. Mapping this coset to xe in k[x] sets up an isomorphism between the associated
graded algebra and k[x]. Under this isomorphism, components LT(u) of grA correspond
to leading terms with respect to a term order.

Proposition 3.13. Suppose that F is a strongly multiplicative k-filtration on A where
1A /∈ ∩S∈FS.

(i) For u, v ∈ grA, LT(uv) = LT(u)LT(v).
(ii) grA is an integral domain.
(iii) If a, b ∈ A with ab = 0, then a or b lies in ∪S∈FS.
(iv) If the filtration intersects to zero, then A is an integral domain.

Proof.

(i) The result holds trivially if u = 0 or v = 0. Assume that u 6= 0 6= v. Then u is the
sum of a finite number of non-zero homogeneous elements. Thus there is a finite set
Cu ⊂ (A o F)? such that for each C ∈ Cu there is a non-zero homogeneous element
uC ∈ grCA where u =

∑
C∈Cu

uC . Let C ′ be the largest element of Cu so that
uC′ = LT(u). Similarly there is a finite set Dv ⊂ (AoF)?, and for each D ∈ Dv there
is a non-zero homogeneous element vD ∈ grDA where v =

∑
D∈Dv

vD. Let D′ be the
largest element of Dv so that vD′ = LT(v). The product uv =

∑
C∈Cu,D∈Dv

uCvD.
Since C ′ > C for C ∈ Cu \ {C ′} and D′ > D for D ∈ Dv \ {D′}, it follows
from Proposition 3.12 (ii) that C ′D′ > CD if C 6= C ′ or D 6= D′. This proves that
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uCvD = LT(uv) once we show that uCvD 6= 0. That is, we have reduced the problem
to showing that the product of non-zero homogeneous elements is non-zero.

Suppose that x and y as the proof of Proposition 3.12 (iv) are non-zero. As shown
in the proof of part (iv), ab ∈ A≤Fcd\<Fcd. Thus the coset of ab in A≤Fcd/A<Fcd

is non-zero. This shows that the product of non-zero homogeneous elements of grA
is not zero.

(ii) In the proof of (i), we showed that if u 6= 0 6= v, then LT(uv) = uCvD 6= 0 and
hence uv 6= 0.

(iii) Let us show that ab 6= 0 if a, b ∈ A \ ∩S∈FS. Since a, b ∈ A \ ∩S∈FS it follows that
both ς(a) and ς(b) lie in (A oF)?. Let ā denote the coset of a in A≤Fa/A<Fa and let
b̄ denote the coset of b in A≤Fb/A<Fb. Both ā and b̄ are non-zero homogeneous
elements in grA. By part (ii), āb̄ 6= 0. By definition, āb̄ is the coset of ab in
A≤Fab/A<Fab. Thus ab 6= 0.

(iv) If the filtration intersects to zero, then ∩S∈FS = {0}. This together with the result
in part (iii) implies that ab 6= 0 for a, b ∈ A?. Thus A is an integral domain. 2

4. Valuations, Valuation Rings, and Filtration

In Section 3, we saw that a nested filtration on a ring A induces a quasi-order on A. In
this section we shall see that if A is an integral domain, the order on A naturally extends
to a quasi-order on the field of fractions K of A and gives rise to a valuation ring in K, and
conversely. This will enable us to study and give examples of filtrations by considering the
associated valuation rings and valuations instead. After extending the filtration quasi-
order on A to its quotient field, we translate various properties about filtrations into
properties about valuation rings and valuations. We also discuss the normalization of
a filtration, and then combine the results of this section to create a bijection between
special classes of valuation rings and filtrations.

4.1. the correspondences

We begin by simply extending the filtration order on a domain to a quasi-order on its
field of fractions. The following simple lemma is stated without proof.

Lemma 4.1. Let A be an integral domain with field of fractions K and let F be a strongly
multiplicative filtration on A. For a, b, c, d ∈ A, define a binary relation on K by

a

b
≤F

c

d
if and only if ad ≤F bc.

This puts a quasi-order on K that extends the quasi-order “≤F” of A.

With respect to the quasi-order in the lemma above, we can define an equivalence
relation on the field of fractions K by defining

a

b
∼F

c

d
if and only if

a

b
≤F

c

b
and

c

d
≤F

a

b

and
a

b
<F

c

d
if and only if

a

b
≤F

c

d
and

c

d
�F

a

b
.
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Using the filtration order and filtration equivalence, we extend some definitions from
A to its field of fractions K as follows. Given a ∈ K, we set

K≤Fa = {b ∈ K | b ≤F a}
K<Fa = {b ∈ K | b <F a}
K∼Fa = {b ∈ K | b ∼F a}.

The following lemma can be proved in a straightforward manner.

Lemma 4.2. Let A be an integral domain with field of fractions K and let F be a strongly
multiplicative filtration on A.

(i) a
b <F

c
d if and only if ad <F bc.

(ii) a
b ∼F

c
d if and only if ad ∼F bc.

(iii) Assuming that a
b 6= 0 6= c

d .

a

b
≤F

c

d
⇔ b

a
≥F

d

c
,

a

b
<F

c

d
⇔ b

a
>F

d

c
,

a

b
∼F

c

d
⇔ b

a
∼F

d

c
.

(iv) The quasi-order on K is total and is strongly multiplicative.
(v) If F is a k-filtration, then K≤F

a
b

is a k-subspace of K. If 0 6= a
b then K<F

a
b

is a
k-subspace of K.

Theorem 4.3. Let A be an integral domain with field of fractions K and let F be a
strongly multiplicative k-filtration on A.

(i) The set K≤F1K
is a k-subalgebra of K and is a valuation ring of K. It is called the

valuation ring associated to F . The set K<F1K
is the maximal ideal of K≤F1K

and
K∼F1K

is the set of invertible elements of K≤F1K
.

(ii) The order “≤F” on K or A may be recovered from either the valuation or the
valuation ring. For u, v ∈ K with v 6= 0 and the valuation ν of the valuation ring
K≤F1K

,

u ≤F v if and only if
u

v
∈ K≤F1K

if and only if ν(u) ≤ ν(v).

(iii) K≤F1K
has residue class field k if and only if F has one-dimensional graded

components.
(iv) The value monoid of A is non-negative if and only if F is a non-negative filtration.

Proof.

(i) By Lemma 4.2 (v), K≤F1K
is k-subspace, and so it is closed under addition. To

prove that it is a k-algebra, we need only demonstrate that it is closed under
multiplication. In fact, we eventually prove that it is a valuation ring. Clearly,
1K ∈ K≤F1K

. By Lemma 4.2 (iii), if a
b >F 1K , then b

a <F 1K , thus showing that
if u ∈ K \K≤F1K

, then u−1 ∈ K≤F1K
. Thus it remains to be demonstrated that

K≤F1K
is closed under products to show that it is a valuation ring. This is clear

because if u ≤F 1K and v ≤F 1K then by strong (or weak) multiplicativity,

u ≤F 1K ⇒ uv ≤F 1Kv = v ≤F 1K .
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We now show that K∼F1K
is the set of invertible elements of K≤F1K

. Suppose u
is an invertible element of K≤F1K

. Then u−1 ≤F 1K , and so by strong (or weak)
multiplicativity, we can multiply both sides of this inequality by u to get 1K ≤F u.
However, since u ∈ K≤F1K

, we have u ≤F 1K , and so u ∼F 1K . Conversely,
suppose u ∈ K∼F1K

; i.e. u ∼F 1K . Then by Lemma 4.2 (iii), u−1 ∼F 1K , and
so u−1 ∈ K≤F1K

. Thus K∼F1K
is the set of invertible elements of K≤F1K

. This
also shows that K≤F1K

\K∼F1K
= K<F1K

is the set on non-invertible elements of
K≤F1K

and hence is the maximal ideal of K≤F1K
.

(ii) Let a, b, c, d ∈ K with u = a
b and v = c

d . Then u
v = ad

bc and we have

u

v
∈ K≤F1K

⇔ ad

bc
≤F 1K ⇔ ad ≤F bc⇔ a

b
≤F

c

d
⇔ u ≤F v.

Since K≤F1K
is the valuation ring, we have

ν(u) ≤ ν(v)⇔ ν

(
u

v

)
≤ idG ⇔

u

v
∈ K≤F1K

where idG denotes the identity of the value group. Note that this recovers the “≤F”
order on A as well as on K since the order on K extends that of A.

(iii) Now, K<F1K
is the maximal ideal of K≤F1K

and k ⊂ K≤F1K
. Thus the residue

class field is k if and only if K≤F1K
= k ⊕ K<F1K

. Since k ∩ K<F1K
= {0}, the

residue class field is k if and only if K≤F1K
= k + K<F1K

. Now suppose that
a/b ∈ K≤F1K

\K<F1K
with a, b ∈ A?. Since a/b ∼F 1K , it follows that a ∼F b.

If F has one-dimensional graded components, there exists c ∈ A≤Fa where
A≤Fa = kc ⊕ A<Fa. Thus there are λ, γ ∈ k∗ and a′, b′ ∈ A<Fa = A<Fb with
a = λc + a′ and b = γc + b′. Hence, a− λ

γ b = a′ − λ
γ b′. Moreover,

a

b
=

λ

γ
+

a− λ
γ b

b
=

λ

γ
+

a′ − λ
γ b′

b
. (14)

Since a′ − λ
γ b′ ∈ A<Fb, it follows that

a′ − λ
γ b′

b
∈ K<F1K

,

and so (14) shows that a/b ∈ k + K<F1K
.

Conversely, suppose that K≤F1K
has residue class field k. To demonstrate that F

has one-dimensional graded components we show that for any b ∈ A? the vector
space A≤Fb/A<Fb is one-dimensional. In fact, we show that the image of b is basis.
Suppose that a ∈ A≤Fb. By Lemma 2.1 there exists λ ∈ k with a − λb = 0 or
ν(a − λb) < ν(b). If a − λb = 0, then a − λb ∈ A<Fb. If ν(a − λb) < ν(b), then
a− λb ∈ A<Fb because in part (ii) we showed that the “≤F” order agrees with the
order coming from ν and the value group.

(iv) We must prove that idG ≤ ν(a) for all a ∈ A? if and only if 1K ≤F a for all a ∈ A?.
But this is immediate from (b) since the “≤F” order agrees with the order coming
from ν and the value group. 2

Note that

ν(a) ≤ ν(b)⇔ a

b
∈ K≤F1K

and a ≤F b⇔ a

b
∈ K≤F1K

.
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The first inequality follows by the order defined on the value group, and the second
follows by Theorem 4.3 (ii). Thus the order on the value group coincides with the order
given by F . Since the valuation was obtained from the filtration, it is not happenstance
that the two orders coincide.

We describe how Theorem 4.3 applies to term order filtrations. In this case, we have
k[x] with term order “≤σ” and term order filtration Fσ. Let K denote k(x), the field of
fractions of k[x]. Then the valuation ring K≤Fσ 1K

in Theorem 4.3 (i) coincides with the
valuation ring previously constructed from a term order in Example 2.2.

Theorem 4.4. Let A be an integral domain with subfield k and field of fractions K. Let
ν be a valuation (with value group G) on K where ν(λ) = idG for λ ∈ K∗. Let M = ν(A?)
be the value monoid of A. For each m ∈M , we associate a subset of A:

A≤νm = {0} ∪ {a ∈ A? | ν(a) ≤m}.

Let Fν be the set of subsets of A consisting of {0} and the A≤νm’s.

(i) Fν \ {{0}} is indexed by M . That is, A≤νn 6= {0} for n ∈ M and A≤νm 6= A≤νn

for m,n ∈M with m 6= n. If m,n ∈M with m < n, then A≤νm ⊂ A≤νn.
(ii) Fν is a k-filtration on A.
(iii) Fν has full union and intersects to zero.
(iv) In terms of the Fν filtration order “≤Fν

” and the subsets A≤Fν a,

A≤Fν 0 = {0} and A≤Fg = A≤νm when a 6= 0 and m = ν(a).

(v) For a, b ∈ A?,

a ≤Fν
b⇔ ν(a) ≤ ν(b), a <Fν

b⇔ ν(a) < ν(b), a ∼Fν
b⇔ ν(a) = ν(b).

(vi) The filtration Fν is strongly multiplicative and the valuation coming from the
filtration Fν given in Theorem 4.3 (i) is equivalent to the original valuation ν.

(vii) The filtration Fν has one-dimensional graded components if and only if the residue
class field of ν is k.

(viii) The filtration Fν is non-negative if and only if ν(1A) is the smallest element of M .

Proof.

(i) Suppose that m,n ∈ M with m 6= n. Since the order on the value group is total,
either m < n or n < m by the order defined on the value group. Suppose that
m < n. Then ν(a) ≤ m < n for any a ∈ A≤νm \ {0} and so a ∈ A≤νn, thus showing
that A≤νm ⊂ A≤νn. Since M is the value monoid of A, there exists b ∈ A? with
ν(b) = n. Then b ∈ A≤νn, but b /∈ A≤νm since ν(b) = n � m. Thus A≤νm 6= A≤νn.
We just showed that for n ∈ M there exists 0 6= b ∈ A≤νn, thus proving that
A≤νn 6= {0}.

(ii) Clearly, the element {0} ∈ Fν is a subset of every other element of Fν . Moreover,
{0} is also a k-subspace of A. Since the order on the value group is total and we
showed in part (i) that A≤νm ⊂ A≤νn if m < n, it follows that Fν is nested.
Thus Fν is a filtration. Let us show that each A≤νm is a k-subspace of A. Now,
0 ∈ A≤νm by the definition of A≤νm. For a ∈ A≤νm \ {0} and λ ∈ k∗, ν(λa) =
ν(λ)ν(a) = idGν(a) = ν(a) ≤ m. Thus λa ∈ A≤νm. Finally, if a, a′ ∈ A≤νm \ {0}
with a + a′ 6= 0, then by the triangle inequality, ν(a + a′) ≤ max(ν(a), ν(a′)) ≤ m.
Hence a + a′ ∈ A≤νm, and so A≤νm is k-subspace of A.
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(iii) Let a be any element of A. If a = 0, then a ∈ A≤νm for all m ∈ M . For a 6= 0 let
m = ν(a) ∈M . Then a ∈ A≤νm. This shows that the union of the A≤νm’s is all of
A, that is, Fν has full union. Moreover, Fν intersects to zero because {0} ∈ Fν .

(iv) Now, {0} is the smallest element of Fν . This directly implies that A≤F0 = {0}.
Next suppose that a ∈ A? and let us verify that A≤Fg = A≤νm for m = ν(a).
Suppose that b ∈ A≤νm so that b = 0 or ν(b) ≤ ν(a). If b = 0, then b lies in all
elements of Fν containing a because 0 lies in all elements of Fν . Suppose that b 6= 0
and S ∈ Fν with a ∈ S. By part (i), S = A≤νn for a unique n ∈M . Since a ∈ A≤νn

it follows that ν(a) ≤ n. Since b ∈ A≤νm it follows that ν(b) ≤ m = ν(a) ≤ n, and
so b ∈ A≤νn = S. Thus b lies in all elements of Fν containing a. We have shown
that b ≤Fν a, and so b ∈ A≤F g. This proves A≤νm ⊂ A≤Fν a.

For the opposite inclusion suppose that b ∈ A≤Fg. Then b lies in all elements of
Fν containing a. In particular, b ∈ A≤νm. This proves A≤Fν a ⊂ A≤νm.

(v) By part (iv), we have

a ≤Fν
b⇔ a ∈ A≤Fν b = A≤νν(b) ⇔ ν(a) ≤ ν(b).

By definition, a <F b is equivalent to a ≤F b and b �F a. But by what we have
just shown, this is equivalent to ν(a) ≤ ν(b) and ν(b) � ν(a). This is equivalent to
ν(a) < ν(b). The verification that a ∼F b ⇔ ν(a) = ν(b) is similar and left to the
reader.

(vi) Let a, b, c ∈ A with a <F b and c 6= 0. If a = 0, then certainly ac <F bc and so we
may assume that a 6= 0. By part (v), it follows that ν(a) < ν(b). Since the value
group is an ordered group, ν(a)ν(c) < ν(b)ν(c). Since ν is multiplicative we have
ν(ac) < ν(bc). Using part (v) again it follows that ac <F bc. Similarly, we can show
that a <F b implies ac ≤F bc, and so the filtration is strongly multiplicative. By
definition, the valuation ring of the filtration is K≤Fν1K . Suppose that a, b ∈ A
with a/b ∈ K≤Fν 1K

. By the definition (in Lemma 4.1) of the extension of “≤F” to
K, it follows that a ≤F b. By part (v), this gives ν(a) ≤ ν(b) and hence a/b lies
in the valuation ring of ν. The argument is reversible, thus showing that K≤Fν 1K

is equal to the valuation ring of ν. Hence ν is equivalent to the valuation coming
from Fν since they have the same valuation ring.

(vii) Let V be the valuation ring of ν and let m be its maximal ideal. Note that k ⊂ V
since ν(λ) = idG for λ ∈ k∗. Thus m and V are k-subspaces of K. Suppose that Fν

has one-dimensional graded components. Let us show that k is a complement to m
in V . Let v ∈ V and write v as a/b where a, b ∈ A with b 6= 0. Then by Lemma 3.8,
there is a unique λ ∈ k where a− λb ∈ A<Fb. We have

a

b
= λ +

a− λb

b
. (15)

Since a − λb ∈ A<Fb it follows that (a − λb)/b lies in the maximal ideal of the
valuation ring and we have shown that k is a complement to the maximal ideal.
Thus if Fν has one-dimensional graded components, then the residue class field is k.

Conversely if the residue class field is k, then k is a complement to the maximal
ideal of V . Let us show that for any a ∈ A?, the coset of a is a k-basis for
A≤Fa/A<Fa. This would establish that Fν has one-dimensional graded components.
Suppose that b ∈ A≤Fa. Since b ≤Fν

a it follows that ν(b) ≤ ν(a) and by (5), b = va
for some v ∈ V . Since k is a complement to m, we have v = λ + x for some λ ∈ k
and x ∈ m. Thus b = λa + xa. Since both b and λa lie in A it follows that xa ∈ A.
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By (6) it follows that ν(xa) < ν(a), and so xa < Fν a. Thus xa ∈ A≤Fa, and b is
congruent to λa modulo A≤Fa.

(viii) By part (v), the filtration order coincides with the order induced by the valuation
ν, and so by Theorem 4.3 (iv), the filtration is non-negative if and only if the value
monoid M is non-negative. Thus Fν is non-negative if and only if there does not
exist ν(a) ∈ M such that ν(a) < idG. Since ν(1A) = idG, this is equivalent to the
condition that ν(1A) is the smallest element of M . 2

4.2. normalized filtrations

Our next task is the matter of starting with a filtration and obtaining a normalized
filtration which induces the same quasi-order. The important restriction here is that if F
and G are two filtrations on A which induce the same quasi-order then they should have
the same normalization. Also, the normalization of a normalization should be the first
normalization. Earlier we defined A o F as the set of subsets of A of the form A≤Fa. We
shall show that A o F is a filtration on A and fulfills the required conditions for being
the normalization of F . We show that a filtration which arises from a valuation (as in
Theorem 4.4) is normalized.

Proposition 4.5. Let F and G be filtrations on A.

(i) A o F is a filtration on A.
(ii) The quasi-order “≤AoF” on A is the same as “≤F”. That is, for a ∈ A:

A≤Fa = A≤AoFa, A<Fa = A<AoFa, A∼Fa = A∼AoFa.

(iii) If F and G induce the same quasi-order on A then A o F = A o G.
A o F is considered to be the normalization of F and F is called normalized if
F = A o F .

(iv) Since AoF is a filtration on A, one can form Ao(AoF). Passing to the normalization
is a “unipotent” process in that

A o F = A o (A o F).

Proof.

(i) By Lemma 3.2 (i) it follows that for a, b ∈ A either a ∈ A<Fb or b ∈ A≤Fa. In the
former case A≤Fa ⊂ A<Fb ⊂ A≤Fb and in the latter A≤Fb ⊂ A≤Fa. Hence, A o F
is nested and so is a filtration on A.

(ii) Let us show that for a ∈ A,

A≤Fa = ∩{b∈A|a∈A≤F b}A≤Fb. (16)

Since a ∈ A≤Fa it follows that a ∈ {b ∈ A | a ∈ A≤Fb}. Thus A≤Fa is the unique
minimal set among those being intersected on the right-hand side of (16). Hence
the intersection is as claimed. The sets on the right-hand side of (16) are the sets
in the A oF filtration which contain a. Thus by Lemma 3.2 (iii) applied to the A oF
filtration we have that for a ∈ A,

A≤AoFa = ∩{T∈AoF|a∈T}T = ∩{b∈A|a∈A≤F b}A≤Fb = A≤Fa. (17)
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Next let us show that for a ∈ A,

A<Fa = ∩{b∈A|a/∈A≤F b}A≤Fb. (18)

Since the quasi-order “≤F” on A is total, if a /∈ A≤Fb then b ∈ A<Fa and
A≤Fb ⊂ A<Fa. Thus each set among those being unioned on the right-hand
side of (18) lies in A<Fa and so A<Fa ⊃ ∪{b∈A|a/∈A≤F b}A≤Fb. For the opposite
inclusion, if b ∈ A<Fa then a /∈ A≤Fb and so A≤Fb occurs among the sets
being unioned on the right-hand side of (18). Since b ∈ A≤Fb this shows that
A<Fa ⊂ ∪{b∈A|a/∈A≤F b}A≤Fb, and thus establishes (18). The sets on the right-hand
side of (18) are the sets in the A o F filtration which do not contain a. Thus by
Lemma 3.2 (iv) applied to the A o F filtration we have that for a ∈ A,

A<AoFa = ∪{T∈AoF|a/∈T}T = ∪{b∈A|a/∈A≤F b}A≤Fb = A<Fa. (19)

Now, (17) and (19) show that “≤AoF” is the same quasi-order on A as “≤F”.
It immediately follows from A≤Fa = A≤AoFa and A<Fa = A<AoFa that A∼Fa =
A∼AoFa, because A∼Fa is the complement to A<Fa in A≤Fa and A∼AoFa is the
complement to A<AoFa in A≤AoFa.
Note that it was necessary to verify both (17) and (19) because “F” and “A o F”
are quasi-orders and not orders.

(iii) A o F is the set of subsets of A of the form A≤Fa and A o G is the set of subsets of
A of the form A≤Ga. By assumption F and G induce the same quasi-order on A.
Thus A≤Fa = A<Ga for a ∈ A. Hence, A o F = A o G.

(iv) By part (ii), A o F induces the same quasi-order on A as does F . Thus (iv) follows
from (iii) with G = A o F . 2

Theorem 4.4 defines a filtration Fν in terms of a valuation ν. Let us show that Fν is
a normalized filtration.

Proposition 4.6. The filtration Fν defined in Theorem 4.4 is a normalized filtration.

Proof. Suppose that a ∈ A. Theorem 4.4 (iv), if a = 0 then A<Fν0 = {0}, and if a 6= 0
then A≤Fν a

= A≤νν(a). Note that Fν is defined to be precisely these subsets of A. Thus
Fν = A o Fν , proving that Fν is a normalized filtration. 2

4.3. regular filtrations and complementary valuation rings

According to Sweedler (1986), there are two properties of valuation rings of primary
interest in the context of computing analogs of Gröbner bases via valuation theory. The
first property is well-orderedness, and it is discussed in the introduction. The second
property of importance is described in the following definition.

Definition. Let A be an integral domain with field of fractions K, and let k be a field
contained in A. Let V be a valuation ring in K and let m denote the maximal ideal
of V . We say V is a complementary valuation ring to A in K if A ∩ m = {0} and
V = (A ∩ V ) + m. If, in addition, k ⊂ V and A ∩ V = k, then we say that V is a
k-complementary valuation ring to A in K.
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According to Sweedler (1986), V is a complementary valuation ring to k[x] in its field
of fractions in Example 2.2.

Definition. We call a k-filtration F on a ring A regular if it has full union (Section 3.1),
intersects to zero (Section 3.1), has one-dimensional graded components (Section 3.2), is
strongly multiplicative (Section 3.3), and is non-negative (Section 3.3).

Lemma 4.7. Each k-complementary valuation ring V to A gives rise to regular, normal-
ized filtration on A.

Proof. Let V be a k-complementary valuation ring to A in K and let ν be the associated
valuation. Let Fν be the associated filtration, as defined in Theorem 4.4. By Theorem 4.4,
Fν is a k-filtration with full union and intersects to zero. Since V is a k-complementary
valuation ring to A in K, V = (A ∩ V ) + m and A ∩ V = k. Thus V/m ∼= A ∩ V = k,
and so by Theorem 4.4 (vi), the filtration has one-dimensional graded components. By
Theorem 4.4 (vi), the filtration is strongly multiplicative. We need now only justify that
Fν is non-negative. Suppose a ∈ A and a <Fν

1K . So ν(a) <ν (1K), and so a ∈ m. Since
A ∩m = {0}, we have a = 0. Thus Fν is non-negative. The filtration Fν is normalized
by Proposition 4.6. 2

Lemma 4.8. Each regular filtration on A gives rise to a k-complementary valuation
ring V to A.

Proof. From Theorem 4.3, we get a valuation ring V = {a ∈ K | a ≤Fν
1K} with

maximal ideal m = {a ∈ K | a <Fν
1K}. We need to prove that V is a k-complementary

valuation ring to A in K. First, we prove that A ∩ V = k.
Since F is a k-filtration, we have that for all λ ∈ k, λ ∼Fν

1K . Therefore, λ ∈ V , and
so k ⊆ V . Since k ⊆ A, we have k ⊆ A ∩ V .

Conversely, suppose a is a non-zero element of A ∩ V . Therefore, a ≤Fν 1K . Since F
is one-dimensional, there exists λ ∈ k such that a− λ <Fν 1K . Since F is non-negative,
a = λ. Thus A ∩ V ⊆ k, and so we have equality.

We now need to show that V = (A ∩ V ) + m. The reverse containment is clear; we
need only justify the forward containment. Let v be a non-zero element of V . Therefore,
v ≤Fν

1K . Since V sits insides the field of fractions of A, there exist non-zero a, b ∈ A
such that v = a/b. In this case, a ≤Fν

b. There exists λ ∈ k such that a − λb <Fν
b,

and so by dividing by b (using strong multiplicativity), we get v − λ <Fν 1K . Therefore,
v − λ ∈ m. Since v = λ + (v − λ) and λ ∈ k = A ∩ V , we have v ∈ (A ∩ V ) + m. 2

For a k-complementary valuation ring V to A, let α(V ) be the regular, normalized
filtration on A defined as in Lemma 4.7. For a regular filtration F on A, let β(F) be the
k-complementary valuation ring V to A defined as in Lemma 4.8. This gives the following
correspondence. {

k-complementary
valuation rings to A

} α−→
β←−

{
regular, normalized

filtrations on A

}
. (20)

Proposition 4.9. The operations α and β are inverses to one another, and hence give
a bijective correspondence.
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Proof. The fact that β ◦ α is the identity map was shown in Theorem 4.4 (vi).
We now show that α ◦ β is the identity map. Given a filtration F , Theorem 4.3 produces

the valuation K≤F1K
. Then Theorem 4.4 produces a filtration whose filtrands are of the

form A≤νm, where m = ν(a). Thus by Theorem 4.3 (ii), u ∈ A≤νm ⇔ ν(u) ≤ ν(a) ⇔
u ≤F a ⇔ u ∈ A≤a. Since F is normalized, all of its filtrands are of the form A≤a, and
so the filtrands of F and [α ◦ β](F) are identical. 2

5. Filtrations and Term Orders

In this section, we discuss filtrations on polynomial rings that come from term orders
in suitable variables, and give an intrinsic characterization of such filtrations. We begin
with basic definitions, and then we specialize some of the results from Section 3 to
polynomial rings with term order filtrations. To complete our characterization, we make
a few intermediate developments concerning general filtrations. In particular, we show
how to place a natural monoid structure on the normalization of a filtration in case F is
weakly multiplicative.

5.1. term order filtrations

In preparation of the characterization of which filtrations on the polynomial ring arise
from term orders in suitable variables, we need to carefully describe the properties of
filtrations arising from term orders. Let us begin by specifically describing the sets (10)–
(12) for the case where A = k[x] and the filtration is Fσ for a term order “≤σ” on k[x].
It is left to the reader to verify the following equalities:

k[x]≤Fσ 0 = {0}, k[x]<Fσ 0 = ∅, k[x]∼Fσ 0 = {0}. (21)

The sets k[x]≤σe, k[x]<σe and k[x]∼σe are defined in Example 3.1. Recall that k[x]≤σe

is defined as Spank({xu ∈ M[x] | xu ≤σ xe}), and k[x]<σe and k[x]∼σe are defined
similarly. If LM(g) = xe, then

k[x]≤Fσ g = k[x]≤σe, k[x]≤Fσ g = k[x]<σe, k[x]∼Fσ g = k[x]∼σe. (22)

Recall that Fσ consists of {0} together with all of the subspaces of k[x] of the form
k[x]≤σe for e ∈ Nn. Thus Fσ consists of the sets k[x]≤Fσ f for f ∈ k[x]. Since k[x] o Fσ is
defined as the set of subsets of A of the form A≤Fσ a, we have shown that

Fσ = k[x] o Fσ. (23)

As is immediate from the definition, for a term order filtration the sets in Fσ are
k-subspaces of k[x].

Next let us consider the structure of k[x] o Fσ. Since Fσ intersects to zero, {0} is a
“∼Fσ” equivalence class and

ς(0) = k[x]≤Fσ 0 = k[x]∼Fσ 0 = {0}

is the unique minimal element of k[x] o Fσ. Let us denote this element of k[x] o Fσ by
“−∞”. As observed in (22), k[x]∼Fσ g = k[x]∼σe and as observed below, Fσ \ {{0}} is
indexed by Nn. This gives us the following bijective correspondence:

{−∞} ] Nn ←→ k[x] o Fσ. (24)

Under this correspondence −∞ corresponds to k[x]≤Fσ 0 and e ∈ Nn corresponds to
k[x]≤Fσ xe .
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The order on {−∞} ] Nn corresponding to the order on k[x] o Fσ is given as follows.
We say that −∞ is the unique minimal element and for e, f ∈ Nn, e ≤ f if and only if
xe ≤σ xf . In other words, this order agrees with the term order “≤σ”.

For k[x] with term order “≤σ” and term order filtration Fσ, (24) gives the following
correspondence:

Nn ←→ (k[x] o Fσ)?. (25)
It follows from (22) that for e ∈ Nn, the one-dimensional k space spanned by the mono-
mial xe is a vector space complement to k[x]<Fσ g in k[x]≤Fσ g. Thus k[x]≤Fσ g/k[x]<Fσ g

is one-dimensional and the filtration Fσ has one-dimensional graded components.
Let k[x] be a polynomial ring with term order “≤σ”. A term order has the following

compatibility properties.

xe ≤ xf ⇒ xexg ≤ xfxg,

xe < xf ⇒ xexg < xfxg,

which must be inherited by the term order filtration, as stated in the next result.

Proposition 5.1. Every term order filtration is strongly multiplicative.

Using the notion of normalization, we can rephrase (23) as follows.

Proposition 5.2. Every term order filtration is a normalized filtration.

5.2. the associated monoid

Now we present the natural monoid structure on AoF when F is a weakly multiplicative
filtration and the natural submonoid structure on (A o F)∗ when F is a strongly
multiplicative filtration. To begin, assume that F is a weakly multiplicative filtration
on A. By Lemma 3.9 (i), if a, b, c, d ∈ A with a ∼F b and c ∼F d and ac ∼F bc ∼F bd,
hence there is a well-defined product on A//F , the set of “∼F” equivalence classes (3.6),
where

A∼Fa ∗A∼Fc = A∼Fac. (26)
Because the multiplicative structure of A is associative and has unit 1A we have the
following proposition.

Proposition 5.3. The product on A//F given by (26) is associative and has unit
A∼F1A

.

In (13) we identify A//F with A o F . Therefore where (26) gives the product on A//F ,
Proposition 3.12 gives the corresponding product on A o F via

A≤FaA≤Fc = A≤Fac.

Proposition 5.4. Let F be a weakly multiplicative filtration on A.

(i) Using the monoid structure on A o F given by Proposition 3.12 and the monoid
structure on A//F given by (26), the map A//F → A o F given by (13) is a monoid
isomorphism.
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(ii) Ignoring the additive structure of A and simply viewing A as a multiplicative monoid,
the map A→ A//F , a→ A∼Fc, and the map ς : A→ A o F are monoid maps.

Proof.

(i) The map A//F → A o F sends A∼Fa to A≤Fa and has already been shown to be
bijective. The description of the monoid structure (26) on A//F and the description
in Proposition 3.12 of the monoid structure on A o F show that A//F → A o F is a
monoid map.

(ii) Multiplicativity of both maps simply comes down to A∼Fa ∗A∼Fc = A∼Fac in A//F
and ς(a)ς(c) = ς(ac) in A o F , for a, c ∈ A. Each map carries 1A to the identity of
their respective ranges because A∼F1A

is the identity of A//F and ς(1A) = A≤F1A

is the identity of A o F . 2

Section 4.1 shows that a strongly multiplicative filtration on an integral domain A
gives rise to a valuation ν on K, the field of fractions of A, and vice versa. When A is
viewed as a multiplicative monoid as in Proposition 5.4 (ii), A? is a submonoid. If ν is a
valuation on K, then the restriction

ν |A? : A? → ν(K?) (27)

is a monoid map whose image ν(A?) is the value monoid of A. It is natural to ask how the
monoid map (27) relates to the monoid maps in (iv) above. Our next goal is to show that
(A o F)? is naturally isomorphic to the value monoid of A with respect to the valuation
induced by F .

Proposition 5.5. Let A be an integral domain with field of fractions K. Suppose that
F is a strongly multiplicative k-filtration on A and K≤F1K

is the valuation ring in K
arising from F as given in Theorem 4.3 (i). Let ν be the valuation coming from K≤F1K

and let ν(A?) be the value monoid of A. There are bijective, monoid, order preserving
maps ν(A?)→ (A o F)? and (A o F)? → ν(A?) defined as follows. For a ∈ A?:

ν(A?)→ (A o F)?, ν(a) 7→ ς(a) and (A o F)? → ν(A?), ς(a) 7→ ν(a).

These maps are inverse ordered monoid isomorphisms to one another.

Proof. First let us show that the proposed maps ν(A?) → (A o F)? and (A o F)? →
ν(A?) are well-defined. For a, b ∈ A?, it follows from Theorem 4.3 (ii) that

ν(a) ≤ ν(b)⇔ a ≤F b⇔ ς(a) ≤ ς(b),

and hence
ν(a) = ν(b)⇔ a ∼F b⇔ ς(a) = ς(b).

This shows that each of the proposed maps is independent of the coset representative
used to define that map, and hence the proposed maps are well-defined. It is clear that
they are inverses of one another, and hence they are bijective. This also shows that the
maps are order preserving.

It remains to show that the maps ν(A?)→ (A o F)? and (A o F)? → ν(A?) are monoid
maps. This follows from the fact that the surjective maps

ς |A? : A? → (A o F)? and ν |A? : A∗ → ν(A?)

are monoid maps. 2
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We next describe the monoid structure on k[x] o Fσ and (k[x] o Fσ)? where Fσ is the
filtration defined in Example 3.1 (for a term order “≤σ” on k[x]). For this purpose we
refer to the description of k[x] o Fσ and (k[x] o Fσ)? in (24) and (25).

Choose 0 as a coset representative of ς(0) = k[x]≤Fσ 0, which is the element denoted
“−∞” in (24). For e ∈ Nn choose xe as a coset representative of ς(xe) = k[x]≤Fσ xe

which is the element denoted “e” in (24). Using Proposition 5.4 and the fact that
0 · 0 = 0, 0 · xe = 0 and xe · xf = xe+f , it follows that the correspondence (24) is a
monoid isomorphism between the additive monoid {−∞} ] Nn and the multiplicative
monoid k[x] o Fσ. Moreover, the correspondence (25) is a monoid isomorphism between
the additive monoid Nn and the multiplicative monoid (k[x] o Fσ)?.

5.3. characterizing term order filtrations

We are finally prepared to discuss filtrations that come from term orders in suitable
variables and give a characterization. We begin with a few preliminary results.

Definition. Suppose that F is a filtration on A and a, c ∈ A where a <F C. We say
that a lies justF below c and that c lies justF above a if the conditions of Lemma 5.6 are
satisfied. Condition (i) is the motivation for the terminology “justF below” and “justF
above”.

Lemma 5.6. Suppose that F is a filtration on A and a, c ∈ A where a <F c. The following
conditions are equivalent.

(i) If b ∈ A with a ≤F b ≤F c, then either a ∼F b or b ∼F c.
(ii) If T ∈ F with a ∈ T but c /∈ T , then T = A≤Fa.
(iii) A≤Fa = A<Fc.
(iv) A≤Fc is the smallest element of A o G properly containing A≤Fa.

Proof.

(i)⇒ (iv) We have A≤Fa ⊂ A≤Fc since a <F c. Suppose that b ∈ A where A≤Fa ⊂
A≤Fb ⊂ A≤Fc. Then a ≤F b ≤F c and so either a ∼F b or b ∼F c. If a ∼F b,
then A≤Fa = A≤Fb, and if b ∼F c, then A≤Fb = A≤Fc. Hence A≤Fc is the smallest
element of A o G properly containing A≤Fa.

(iv)⇒ (iii) We have A≤Fa ⊂ A<Fc since a <F c. Let us show the opposite inclusion.
If b ∈ A<Fc, then b <F c, and so A≤Fb ( A≤Fc. By the minimality of A≤Fc, it
cannot be the case that A≤Fa ( A≤Fb. By the fact that A oG is totally ordered with
respect to inclusion it follows that A≤Fb ⊂ A≤Fa and so b ∈ A≤Fa. Thus we have
shown that A<Fc ⊂ A≤Fa. This proves A<Fa = A<Fc and finishes (iv)⇒ (iii).

(iii)⇒ (ii) Let us show that A≤Fa ⊂ T ⊂ A<Fc. Since we are assuming A≤Fa = A<Fc,
this will show that T = A≤Fa. Suppose that a ∈ T and b ∈ A≤Fa. Then b ∈ S for
all S ∈ F with a ∈ S. In particular, b ∈ T and so A≤Fa ⊂ T . Suppose that c /∈ T
and b ∈ T . Then T is an element of F containing b and excluding c. Thus b <F c,
and so T ⊂ A<Fc.

(ii)⇒ (i) Since b ≤F c, if b �F c, then b <F c. Hence there exists T ∈ F with b ∈ T and
c /∈ T . Since a ≤F b, it follows that a ∈ T and so (ii) implies that T = A≤Fa. since
b ∈ T this shows that b ≤F a. Hence a ∼F b. 2



Valuations and Filtrations 431

Definition. Suppose that U ⊂ A and a ∈ A. We say that a is a maximalF element of
U if a ∈ U and u ≤F a for all elements u ∈ U .

Proposition 5.7. Suppose that F is a filtration on A, a ∈ A and S ∈ F .

(i) If a lies justF below some element of A, then A≤Fa is an element of F .
(ii) If {ζ ∈ A o F | ζ > ς(a)} has a minimal element, then A≤Fa 6= A and A≤Fa is an

element of F .
(iii) The element a ∈ A is a maximalF element of A≤Fa.
(iv) If a is a maximalF element of S, then S = A≤Fa.

Proof.

(i) Suppose that c ∈ A where c lies justF above a. Then a <F c and so there exists
T ∈ F with a ∈ T but c /∈ T . Hence, by Lemma 5.6 (ii), T = A≤Fa.

(ii) Suppose that {ζ ∈ A o F | ζ > ς(a)} has a minimal element ς(c) for c ∈ A. Then
a <F c and so A≤Fa ( A≤Fc. In particular, A≤Fa 6= A.

Let us show that a lies justF below c. Suppose that a ≤F b ≤F c so that
ς(a) ≤ ς(b) ≤ ς(c). If a <F b, then ς(b) ∈ {ζ ∈ A o F | ζ > ς(a)}. By the minimality
of ς(c) it follows that ς(c) ≤ ς(b) and so b ∼F c, showing that a lies justF below c.
It now follows from part (i) that A≤Fa is an element of F .

(iii) Certainly, a ∈ A≤Fa and by the definition of A≤Fa it follows that u ≤F a for all
u ∈ A≤Fa.

(iv) Suppose that a is a maximalF element of S. First we show that A≤Fa ⊂ S. Suppose
that b ∈ A≤Fa. By the definition of “≤F”, b ∈ S′ for all S′ ∈ F where a ∈ S′.
Thus b ∈ S and we have shown that A≤Fa ⊂ S. To verify the opposite containment,
suppose that s ∈ S. By the maximalityF of a, it follows that s ≤F a. Thus s ∈ A≤Fa

and so S ⊂ A≤Fa. Therefore, a is a maximalF element of S, and so S = A≤Fa. 2

Definition. A k-filtration is well-ordered if A o F is well-ordered where its elements are
compared via set-inclusion.

Note that in the case of a k-filtration, ς(0) is always the unique minimal element of
A oF . Hence A oF is well-ordered if and only if (A oF)\{ς(0)} = (A oF)? is well-ordered.
The fact that term order filtrations are well-ordered comes from (24).

Corollary 5.8. Let G be a well-ordered filtration on A where A o G does not have a
maximal element. Then G = A o G if and only if each W ∈ G has a maximalGelement.

Proof.

(⇒): Now, A o G consists of sets of the form A≤Ga for a ∈ A and by Proposition 5.7 (iii),
a is a maximalG element of A≤Ga. Hence if G = A o G, then every W ∈ G has a
maximalG element.

(⇐): We show that G ⊂ A o G and A o G ⊂ G. Suppose that W ∈ G. By hypothesis, if
w is a maximalG element of W , then W = A≤Gw by Proposition 5.7 (iv). Hence,
W = ς(a) ∈ A o G and G ⊂ A o G.
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Next, let us show that ς(a) = A≤Ga ∈ G for a ∈ A. This will prove that A oG ⊂ G.
By hypothesis, A≤Ga is not a maximal element of A o G and so there are elements
of A o G properly containing A≤Ga. By the hypothesis of A o G being well-ordered
there exists c ∈ A where A≤Gc is the smallest element of A o G properly containing
A≤Ga. By Lemma 5.6 (iv), it follows that a lies justG below c. By Proposition 5.7
this implies that A≤Ga ∈ G for a ∈ A. 2

In Section 2.2 we defined what it means for a valuation or valuation ring to come from
a term order in suitable variables. In the same spirit we shall define what it means for a
filtration to come from a term order in suitable variables.

Suppose that k[u] is a polynomial ring with term order “≤σ” and k-algebra isomor-
phism φ : k[u]→ k[x]. The term order “≤σ” gives rise to the filtration Fσ on k[u]. The
elements of Fσ are subspaces of k[u] and the k-algebra isomorphism φ : k[u] → k[x]
carries these subspaces to subspaces of k[x], giving the filtration on k[x]. We denote this
filtration on k[x] by φ(Fσ).

Definition. Suppose that k[u] is a polynomial ring with term order ≤σ. Let Fσ denote
the term order filtration on k[u]. Suppose that k[x] is a polynomial ring and φ is a
k-algebra isomorphism φ : k[u] → k[x]. The filtration on k[x] consisting of the subsets
of k[x] that are the images under φ of the sets in the filtration Fσ on k[u] is denoted
“φ(Fσ)”. More precisely,

φ(Fσ) = {φ(S) | S ∈ Fσ}.
Since φ is an isomorphism the filtration φ(Fσ) shares the properties of Fσ such as
being strongly multiplicative, intersecting to zero, and having one-dimensional graded
components. A filtration G on k[x] is said to come from a term order in suitable variables
on k[x] if there is a polynomial ring k[u] with term order ≤σ and k-algebra isomorphism
φ : k[u] → k[x] whereby G equals φ(Fσ). The isomorphism φ : k[u] → k[x] is called the
associated isomorphism.

As in the case of valuations coming from a term order in suitable variables, the
associated isomorphism is uniquely determined. We note in the proof of Theorem 5.9
that there is only one way to define the isomorphism φ.

By using the valuation associated to a filtration, one may characterize when a filtration
induces and some quasi-order as filtration that comes from a term order in suitable
variables. This would proceed by starting with the filtration, using Theorem 4.3 to obtain
a valuation ring, and then using Theorem 2.6 to characterize when the valuation ring
comes from a term order in suitable variables. Rather than pursue this course, here is a
more intrinsic, more direct characterization of when a quasi-order and a filtration come
from a term order in suitable variables.

Theorem 5.9. Let G be a filtration on k[x].

A. k[x] o G comes from a term order filtration in suitable variables if conditions (i)–(iv)
are satisfied.

B. G comes from a term order filtration in suitable variables if and only if (i)–(v) are
satisfied.

(i) G is a strongly multiplicative k-filtration that intersects to zero.
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(ii) G has one-dimensional graded components.
(iii) ς(1k[x]) is the smallest element of (k[x] o G)?.
(iv) (k[x] o G)? and Nn are isomorphic as monoids.
(v) Each W ∈ G has a maximalGelement.

Proof. Suppose that conditions (i)–(iv) are satisfied. Since (k[x] o G)? is isomorphic
to Nn, choose and fix one such isomorphism as an identification. In this way consider
(k[x] o G)? to be Nn. By Proposition 3.12(ii), the order on (k[x] o G)? is strongly
multiplicative. By hypothesis ς(1k[x]) is the smallest element of (k[x] o G)?. A term order
is defined as a total order (with additional properties) either on the monomials in k[x], or
equivalently, on the set Nn. Since we are identifying (k[x] o G)? with Nn, we note that the
order on (k[x] o G)? is a term order, and by Dickson’s lemma (Becker and Weispfenning,
1993), there are no infinite descending sequences in (k[x] o G)?. Hence every non-empty
subset has a minimal element and (k[x] o G)? is well-ordered. Let {e1, . . . , en} be the
standard basis for Nn where ei is the vector of length n consisting of all zeros except for
a 1 in the ith position. For each ei, choose fi ∈ k[x] such that ς(fi) = ei. Let us show
that {f1, . . . , fn} is an algebraically independent set that generates k[x] as an algebra.

Since k[x] has transcendence degree n over k and the set {f1, . . . , fn} only has
n elements, if {f1, . . . , fn} generates k[x] as an algebra, then it is an algebraically
independent set. Suppose that k[f1, . . . , fn], the subalgebra of k[x] generated by
f1, . . . , fn, is a proper subalgebra of k[x]. Among the elements in k[x] \ k[f1, . . . , fn]
choose f where ς(f) is minimal. This is possible because (k[x] o G)? is well-ordered.
Suppose ς(f) = (e1, . . . , en). Since ς(fe1

1 fe2
2 · · · fen

n ) also equals (e1, . . . , en) it follows that
f ∼F fe1

1 fe2
2 · · · fen

n . By the hypothesis concerning one-dimensional graded components,
one may apply Lemma 3.8 (iv) to conclude that there exists λ ∈ k with

f − λfe1
1 fe2

2 · · · fen
n = 0

or
ς(f − λfe1

1 fe2
2 · · · fen

n ) < ς(fe1
1 fe2

2 · · · fen
n ) = (e1, . . . , en).

It cannot be that f − λfe1
1 fe2

2 · · · fen
n = 0 since f ∈ k[x] \ k[f1, . . . , fn]. It cannot be that

ς(f−λfe1
1 fe2

2 · · · fen
n ) < (e1, . . . , en) since f−λfe1

1 fe2
2 · · · fen

n ∈ k[x]\k[f1, . . . , fn] and this
would contradict the minimality of ς(f). Hence, there cannot exist f ∈ k[x]\k[f1, . . . , fn],
and so k[x] = k[f1, . . . , fn].

Let us define a k-algebra isomorphism φ : k[u] → k[x] where ui 7→ fi or equivalently
φ(g(u1, . . . , un)) = g(f1, . . . , fn). The map φ is an algebra isomorphism because
{f1, . . . , fn} generates k[x] is an algebra and is an algebraically independent set.

For (b1, . . . , bn) = b ∈ Nn, consider

ς(φ(ub)) = ς(f b1
1 f b2

2 · · · f bn
n ) = b1e1 + b2e2 + · · ·+ bnen = (b1, b2, . . . , bn) = b.

Since the order on Nn is a term order, we use φ to pull the order on Nn back to a term
order on k[u]. Let us denote this term order on k[u] by “<ρ” which is defined as follows.
For b, c ∈ Nn set ub <ρ uc if and only if b < c in the order on Nn. Now φ carries the
Fρ filtration over to k[x] to give the filtration φ(Fρ) on k[x] as given by the definition
of a filtration coming from a term order in suitable variables. Here φ is the associated
isomorphism. We shall show that φ(Fρ) equals k[x] oG. This will prove that k[x] oG comes
from a term order filtration in suitable variables.

We verify that φ(Fρ) equals k[x]oG by the usual strategy of showing that φ(Fρ) ⊃ k[x]oG
and φ(Fρ) ⊂ k[x] o G. Thus we must justify the following two statements:
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(a) {0} ∈ φ(Fρ) and for f ∈ k[x]? there exists c ∈ Nn where k[x]≤Gf = φ(k[u]≤ρuc).
(b) φ({0}) ∈ k[x] o G and if c ∈ Nn, then there exists f ∈ k[x] where φ(k[u]≤ρuc) =

k[x]≤Gf .

(a) We have {0} ∈ φ(Fρ) because {0} = φ({0}) for {0} ∈ Fρ. Next suppose that
f ∈ k[x]?. We shall show that k[x]≤Gf = φ(k[u]≤ρuc) where c ∈ Nn with ς(f) = c.
If b ∈ Nnw here ub ≤ρ uc, then by the definition of the term order in k[u] it follows
that ς(φ(ub)) = b ≤ c = ς(f). Hence by Proposition 3.6 (iv) it follows that φ(ub) ≤G f .
Since k[u]≤ρuc is spanned by {ub}ub≤ρuc , it follows that φ(k[u]≤ρuc) ⊂ k[x]≤Gf . For
the opposite inclusion, suppose that k[x]≤Gf ⊂/ φ(k[u]≤ρuc). So there exists v ∈ k[x]≤Gf

where v /∈ φ(k[u]≤ρuc). Since Nn is well-ordered, among the elements v ∈ k[x]≤Gf where
v /∈ φ(k[u]≤ρuc) choose such a v where ς(v) is minimal. Set b = ς(v). Then b = ς(v) ≤
ς(f) = c. Hence ub ∈ k[u]≤ρuc and φ(ub) ∈ k[x]≤Gf . Since ς(v) = b = ς(φ(ub)) it follows
from Lemma 3.8 (iv) that there exists λ ∈ k with v − λφ(ub) = 0 or ς(v − λφ(ub)) < b.
But v − λφ(ub) cannot equal zero because v /∈ φ(k[u]≤ρuc). If ς(v − λφ(ub)) < b, then
by the minimality of b it follows that v−λφ(ub) ∈ φ(k[u]≤ρuc). This would again imply
that v ∈ φ(k[u]≤ρuc), another contradiction. Hence it follows that k[x]≤Gf ⊂ φ(k[u]≤ρuc).
Hence k[x]≤Gf = φ(k[u]≤ρuc), thus finishing (a).

(b) First we show that φ({0}) ∈ k[x] o G. Since φ({0}) = {0} we must show
that {0} ∈ k[x] o G. Suppose not. Then ∩S∈k[x]oGS = ∩{0}6=S∈k[x]oGS. By hypothesis
(iii), ς(1k[x]) is the smallest element of (k[x] o G)?. Thus ∩{0}6=S∈k[x]oGS = k[x]≤G1k[x] .
This would contradict hypothesis (i), which states that G intersects to zero. Hence,
φ({0}) = {0} ∈ k[x] o G.

For the second part of (b), suppose that c ∈ Nn. We must show φ(k[u]≤ρuc) ∈ k[x] o G,
i.e. that there exists f ∈ k[x] where φ(k[u]≤ρuc) = k[x]≤Gf . In fact we show that f can
be chosen as φ(uc), i.e. that φ(k[u]≤ρuc) = k[x]≤Gφ(uc).

Suppose that b ∈ Nn where ub ≤ρ uc. Then, as above, by the definition of the term
order on k[u] it follows that ς(φ(ub)) = b ≤ c = ς(φ(uc)). Hence, φ(ub) ≤G φ(uc). Since
k[u]≤ρuc is spanned by {ub}ub≤ρuc it follows that φ(k[u]≤ρuc) ⊂ k[x]≤G(uc). To show that
φ(k[u]≤ρuc) ⊃ k[x]≤Gφ(uc) we must show that if g ∈ k[x] with g ≤G φ(uc), then g = φ(h)
for h ∈ k[u]≤ρuc . Since we have already shown that φ is an isomorphism, there is a unique
element h ∈ k[u] with g = φ(h). It remains to show that h ∈ k[u]≤ρuc . Let LM(h) = ub.
By the construction of the term order on k[u] it follows that φ(ub) ∼G φ(h) = g. Since
g ≤G φ(uc) it follows that φ(ub) ≤G φ(uc). Applying ς to both sides gives

b = ς(φ(ub)) ≤G ς(φ(uc)) = c.

By the definition of the term order filtration on k[u] this implies that ub ∈ k[u]≤ρuc

and since ub is the lead monomial of h this implies h ∈ k[u]≤ρuc .
We have completed the opposite inclusion establishing (b) and that φ(Fρ) equals

k[x] o G. Hence, k[x] o G comes from a term order filtration in suitable variables. The next
part of the proof is to show that if the hypothesis (v) is also satisfied, then φ(Fρ) equals
G. This is easy to establish because we have established that φ(Fρ) equals k[x] o G and
with hypothesis (v) we can apply Corollary 5.8 to conclude that k[x] o G equals G. Hence,
φ(Fρ) equals G and G comes from a term order filtration in suitable variables.

It remains to show that if k[x]oG comes from a term order filtration in suitable variables,
then (i)–(iv) are satisfied and if G comes from a term order filtration in suitable variables,
then (i)–(v) are satisfied. Suppose that G comes from a term order filtration in suitable
variables. To be more specific, suppose that k[u] is a polynomial ring with term order ≤σ.
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Let Fσ denote the term order filtration on k[u] and let φ : k[u]→ k[x] be the k-algebra
isomorphism whereby G equals φ(Fσ).

By Example 3.1, a term order filtration is a k-filtration. As observed in the remarks
after (25), a term order filtration has one-dimensional graded components. Since 0 is
the smallest element of Nn with respect to a term order, ς(1k[u]) is the smallest element
of (k[u] o Fσ)?. By Proposition 5.1, a term order filtration is strongly multiplicative.
As shown in the remarks following Proposition 5.5, (k[u] o Fσ)? is isomorphic to Nn. A
term order filtration intersects to zero because {0} is one of the filtrands. Finally, in a
term order filtration all of the filtrands are of the form k[u]≤σh for h ∈ k[u] (which has a
maximal element, namely h). Since φ is an isomorphism, G has all these properties and
so G satisfies (i)–(v). 2

Example 3.5 shows that hypothesis (v) in Theorem 5.9 is needed. In the example, a pure
lex term order filtration is augmented to include k[x, y]<lexx = k[y] without changing the
quasi-order determined by the term order filtration. Call this new filtration G′. Since the
quasi-order is unchanged, hypotheses (i)–(iv) still hold for G′. However, the new filtrand
k[y] = k[x, y]<lexx ∈ G′, does not have a maximalG ′ element and hence G′ cannot come
from a term order filtration in suitable variables. To see that k[x, y]<lexx does not have a
maximalG′ element, note that 1 <lex y <lex y2 <lex y3 <lex · · · , and for any polynomial
a ∈ k[y] = k[x, y]<lexx there is a positive integer m where a <lex ym. Hence, k[x, y]<lexx

cannot have a maximalG′ element. (It is appropriate to use “<lex” interchangeably with
“<G′” since the quasi-order determined by G′ is the same as the quasi-order determined
by G, the “<lex” quasi-order.)
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