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SOME RESULTS OF GEOMETRY OVER

HENSELIAN FIELDS WITH ANALYTIC STRUCTURE

KRZYSZTOF JAN NOWAK

Abstract. The paper develops non-Archimedean geometry over
Henselian valued fields with analytic structure; the case of com-
plete rank one valued fields with the Tate algebra of strictly con-
vergent power series being a classical example. The algebraic case
was treated in our previous papers. Here we are going to carry
over the research to the general analytic settings. We also prove
that certain natural rings of analytic functions are excellent and
regular. Several results are established as, for instance, piecewise
continuity of definable functions, curve selection for definable sets,
several versions of the  Lojasiewicz inequality or Hölder continu-
ity of definable functions continuous on closed bounded subsets of
the affine space. Likewise as before, at the center of our approach
is the closedness theorem to the effect that every projection with
closed bounded fiber is a definably closed map. It enables applica-
tion of resolution of singularities and of transformation to a normal
crossing by blowing up (here applied to certain rings of analytic
functions) in much the same way as over locally compact ground
fields. Here we rely on elimination of valued field quantifiers, term
structure of definable functions and b-minimal cell decomposition,
due to Cluckers–Lipshitz, as well as on relative quantifier elimina-
tion for ordered abelian groups, due to Cluckers–Halupczok. Be-
sides, other two ingredients of the proof of the closedness theorem
are existence of the limit (after finite partitioning of the domain)
for a definable function of one variable and fiber shrinking, being
a relaxed version of curve selection.
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1. Introduction

The paper develops non-Archimedean geometry over Henselian val-
ued fields of equicharacteristic zero with analytic structure. This is
done in the case of separated analytic structures, whose theory is briefly
recalled in Section 2. However, the results established here remain valid
in that of strictly convergent analytic structures, because every such a
structure can be extended in a definitional way (extension by Henselian
functions) to a separated analytic structure (cf. [5]). Complete, rank
one valued fields with the Tate algebra of strictly convergent power se-
ries are a classical example. Geometry over Henselian valued fields in
the algebraic case was treated in our previous articles [18, 19]. We are
now going to carry over the research to the general analytic settings.

Throughout the paper, we shall usually assume that the ground val-
ued field K is of equicharacteristic zero, not necessarily algebraically

closed. Denote by v, Γ = ΓK , K◦, K◦◦ and K̃ the valuation, its value
group, the valuation ring, maximal ideal and residue field, respectively.
The multiplicative norm corresponding to v will be denoted by | · |. By
the K-topology on Kn we mean the topology induced by the valuation
v. As before, at the center of our approach is the following closedness
theorem

Theorem 1.1. Let K be a Henselian valued field with separated ana-
lytic structure in the analytic language L. Given an L-definable subset
D of Kn, the canonical projection

π : D × (K◦)m −→ D

is definably closed in the K-topology, i.e. if B ⊂ D × (K◦)m is an
L-definable closed subset, so is its image π(B) ⊂ D.

We immediately obtain two consequences.

Corollary 1.2. Let D be an L-definable subset of Kn and Pm(K) stand
for the projective space of dimension m over K. Then the canonical
projection

π : D × Pm(K) −→ D

is definably closed. ✷

Corollary 1.3. Let A be a closed L-definable subset of Pm(K) or of
(K◦)m. Then every continuous L-definable map f : A → Kn is defin-
ably closed in the K-topology. ✷

Theorem 1.1 will be proven in Section 4. The strategy of proof in the
analytic settings will generally follow the one in the algebraic case from
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our papers [18, 19]. Here we apply elimination of valued field quantifiers
for the theory THen,A, term structure of definable functions and b-
minimal cell decompositions with centers due to Cluckers–Lipshitz [4],
as well as relative quantifier elimination for ordered abelian groups (in a
many-sorted language with imaginary auxiliary sorts) due to Cluckers–
Halupczok [3]. Besides, in the proof of the closedness theorem, we rely
on the local behavior of definable functions of one variable and on fiber
shrinking, being a relaxed version of curve selection.

Majority of the results, established in the subsequent sections, rely
on the closedness theorem. It enables, in particular, application of
resolution of singularities and of transformation to a normal crossing
by blowing up in much the same way as over locally compact ground
fields.

Non-archimedean analytic geometry over Henselian valued fields has
a long history (see e.g. [8, 10, 14, 12, 11, 15, 16, 4, 5]). The concept
of fields with analytic structure is recalled for the reader’s convenience
in Section 2 following the last two papers mentioned above. It was
introduced by Cluckers–Lipshitz–Robinson [6]. In the next section, we
prove that certain natural rings of analytic functions, namely Aloc

p (K)

and A‡
m,n(K), are excellent and regular.

In Section 5, we give two direct applications of the closedness theo-
rem, namely theorems on existence of the limit (Proposition 5.1) and
on piecewise continuity (Theorem 5.3). Note that our proof of the
closedness theorem makes use of a certain version of the former result
(Proposition 4.4).

Section 6 contains several versions of the  Lojasiewicz inequality with
an immediate consequence, Hölder continuity of definable functions
continuous on closed bounded subsets of Kn. We only state the results,
because the proofs of the algebraic versions from our papers [18, 19]
can be repeated almost verbatim.

Finally, in the last section, we establish a general version of curve
selection for definable sets. It differs from the classical one in that
the domain of the selected curve is only a definable subset of the unit
disk. Its proof relies on the closedness theorem, transformation to a
normal crossing by blowing up (applied to excellent regular local rings
Aloc

p (K) of analytic function germs examined in Section 3), elimination
of valued field quantifiers, relative quantifier elimination for ordered
abelian groups, and a result from piecewise linear geometry to which
fiber shrinking comes down.
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2. Fields with analytic structure

In this section, we remind the reader, following the paper [4], the
concept of a separated analytic structure.

Let A be a commutative ring with unit and with a fixed proper

ideal I  A; put Ã = A/I. A separated (A, I)-system is a certain
system A of A-subalgebras Am,n ⊂ A[[ξ, ρ]], m,n ∈ N; here A0,0 = A
(op. cit., Section 4.1). Two kinds of variables, ξ = (ξ1, . . . , ξm) and
ρ = (ρ1, . . . , ρn), play different roles. Roughly speaking, the variables
ξ vary over the valuation ring (or the closed unit disc) K◦ of a valued
field K, and the variables ρ vary over the maximal ideal (or the open
unit disc) K◦◦ of K.

For a power series f ∈ A[[ξ, ρ]], we say that

1) f is ξm-regular of degree d if f is congruent to a monic polynomial
in ξm of degree d modulo the ideal

I[[ξ, ρ]] + (ρ)A[[ξ, ρ]];

2) f is ρn-regular of degree d if f is congruent to ρdn modulo the ideal

I[[ξ, ρ]] + (ρ1, . . . , ρn−1, ρ
d+1
n )A[[ξ, ρ]].

The (A, I)-system A is called a separated pre-Weierstrass system if
two usual Weierstrass division theorems hold with respect to division
by each f ∈ Am,n which is ξm-regular or ρn-regular. By Weierstrass
division, units of Am,n, being power series regular of degree 0, are
precisely elements of the form c + g, where c is a unit of A and

g ∈ A◦
m,n := (I, ρ)Am,n.

Also introduced is the concept of rings C of A-fractions with proper
ideal C◦ (where C◦ := I if C = A) and with rings Cmn of separated
power series over C; put C◦

m,n := (C◦, ρ)Cm,n.

A pre-Weierstrass system A is called a separated Weierstrass system
if the rings C of fractions enjoy the following weak Noetherian property:
If

f =
∑

µ,ν

cµ,νξ
µρν ∈ Cm,n with cµ,ν ∈ C,

then there exist a finite set J ⊂ Nm+n and elements gµ,ν ∈ C◦
m,n,

(µ, ν) ∈ J , such that

f =
∑

(µ,ν)∈J

cµ,ν ξ
µ ρν (1 + gµ,ν).
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The above condition is a form of Noetherianity and implies, in partic-
ular, that if

f =
∑

µ,ν

aµν ξ
µρν ∈ Am,n,

then all the coefficients aµν are linear combinations of finitely many
of them and, moreover, if a coefficient aµν is ”small”, so can be the
coefficients of such a combination. Consequently, the Gauss norm on
each Am,n is defined whenever A = F ◦ and I = F ◦◦ for a valued field
F . Moreover, then the weak Noetherian property is equivalent to the
condition that for every f ∈ Am,n, f 6= 0, there is an element c ∈ F
such that cf ∈ Am,n and ‖cf‖ = 1.

Let A be a separated Weierstrass system and K a valued field. A
separated analytic A-structure on K is a collection of homomorphisms
σm,n from Am,n to the ring of K◦-valued functions on (K◦)m × (K◦◦)n,
m,n ∈ N, such that

1) σ0,0(I) ⊂ K◦◦;
2) σm,n(ξi) and σm,n(ρj) are the i-th and (m+ j)-th coordinate func-

tions on (K◦)m × (K◦◦)n, respectively;
3) σm+1,n and σm,n+1 extend σm,n, where functions on (K◦)m×(K◦◦)n

are identified with those functions on

(K◦)m+1 × (K◦◦)n or (K◦)m × (K◦◦)n+1

which do not depend on the coordinate ξm+1 or ρn+1, respectively.

It can be shown via Weierstrass division that analytic A-structures
preserve composition; more precisely, functions from Ak,l may substi-
tute for the variables ξ and functions from A◦

k,l may substitute for the
variables ρ (op. cit., Proposition 4.5.3). When considering a particular
field K with analytic A-structure, one may assume that ker σ0,0 = (0).
Indeed, replacing A by A/ker σ0,0 yields an equivalent analytic struc-
ture on K with this property. Then A = A0,0 can be regarded as a
subring of K◦.

If the ground field K is trivially valued, then K◦◦ = (0) and the ana-
lytic structure reduces to the algebraic structure given by polynomials.
If K is non-trivially valued, then the function induced by a power series
from Am,n, m,n ∈ N, is the zero function iff the image in K of each of
its coefficients is zero (op. cit., Proposition 4.5.4).

A separated analytic A-structure on a valued field K can be uniquely
extended to any algebraic extension K ′ of K; in particular, to the
algebraic closure Kalg of K (op. cit., Theorem 4.5.11). (The forego-
ing properties remain valid for strictly convergent analytic structures
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too.) Every valued field with separated analytic structure is Henselian
(op. cit., Proposition 4.5.10).

Remark 2.1. From now on, we shall always assume that the ground
field K is non-trivially valued and that σ0,0 is injective. Under the
assumptions, one can canonically obtain by extension of parameters a
(unique) separated Weierstrass system A(K) over (K◦, K◦◦) so that
K has separated analytic A(K)-structure; a similar extension can be
performed for any subfield F ⊂ K (op. cit., Theorem 4.5.7). (This
technique holds for strictly convergent Weierstrass systems as well.)

Now we can describe the analytic language L of an analytic structure
K determined by a separated Weierstrass system A. We begin by
defining the semialgebraic language LHen. It is a two sorted language
with the main, valued field sort K, and the auxiliary RV -sort

RV = RV (K) := RV ∗ ∪ {0}, RV ∗(K) := K×/(1 + K◦◦);

here A× denotes the set of units of a ring A. The language of the valued
field sort is the language of rings (0, 1,+,−, ·). The language of the
auxiliary sort is the so-called inclusion language (op. cit., Section 6.1).
The only map connecting the sorts is the canonical map

rv : K → RV (K), 0 7→ 0.

Since
K̃× ≃ (K◦)×/(1 + K◦◦) and Γ ≃ K×/(K◦)×,

we get the canonical exact sequence

1 → K̃ → RV (K) → Γ → 0.

This sequence splits iff the valued field K has an angular component
map.

The analytic language L = LHen,A is the semialgebraic language
LHen augmented on the valued field sort K by the reciprocal function
1/x (with 1/0 := 0) and the names of all functions of the system A,
together with the induced language on the auxiliary sort RV (op. cit.,
Section 6.2). A power series f ∈ Am,n is construed via the analytic
A-structure on their natural domains and as zero outside them. More
precisely, f is interpreted as a function

σ(f) = fσ : (K◦)m × (K◦◦)n → K◦,

extended by zero on Km+n \ (K◦)m × (K◦◦)n.

In the equicharacteristic case, however, the induced language on the
auxiliary sort RV coincides with the semialgebraic inclusion language.
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It is so because then [4, Lemma 6.3.12] can be strengthen as follows,
whereby [4, Lemma 6.3.14] can be directly reduced to its algebraic
analogue. Consider a strong unit on the open ball B = K◦◦

alg. Then
rv(Eσ)(x) is constant when x varies over B. This is no longer true in the
mixed characteristic case. There, a weaker conclusion asserts that the
functions rvn(Eσ)(x), n ∈ N, depend only on rvn(x) when x varies over
B; actually, rvn(Eσ)(x) depend only on x mod (n ·K◦◦

alg) when x varies
over B, as indicated in [5, Remark A.1.12]. Under the circumstances,

the residue field K̃ is orthogonal to the value group ΓK , whenever the
ground field K has an angular component map or, equivalently, when
the auxiliary sort RV splits (in a non-canonical way):

RV (K) ≃ K̃ × ΓK .

This means that every definable set in the auxiliary sort RV (K) is
a finite union of the Cartesian products of some sets definable in the

residue field sort K̃ (in the language of rings) and in the value group sort
ΓK (in the language of ordered groups). The orthogonality property
will often be used in the paper, similarly as it was in the algebraic case
treated in our papers [18, 19].

Remark 2.2. Not all valued fields K have an angular component map,
but it exists if K has a cross section, which happens whenever K is
ℵ1-saturated (cf. [2, Chap. II]). Moreover, a valued field K has an
angular component map whenever its residue field k is ℵ1-saturated
(cf. [22, Corollary 1.6]). In general, unlike for p-adic fields and their
finite extensions, adding an angular component map does strengthen
the family of definable sets. Since the K-topology is L-definable, the
closedness theorem is a first order property. Therefore it can be proven
using elementary extensions, and thus one may assume that an angular
component map exists.

Denote by L∗ the analytic language L augmented by all Henselian
functions

hm : Km+1 × RV (K) → K, m ∈ N,

which are defined by means of a version of Hensel’s lemma (cf. [4],
Section 6).

Let THen,A be the theory of all Henselian valued fields of charac-
teristic zero with separated analytic A-structure. Two crucial results
about analytic structures are Theorems 6.3.7 and 6.3.8 from [4]), stated
below.
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Theorem 2.3. The theory THen,A eliminates valued field quantifiers,
is b-minimal with centers and preserves all balls. Moreover, THen,A has
the Jacobian property.

Theorem 2.4. Let K be a Henselian field with separated analytic A-
structure. Let f : X → K, X ⊂ Kn, be an L(B)-definable function for
some set of parameters B. Then there exist an L(B)-definable function
g : X → S with S auxiliary and an L∗(B)-term t such that

f(x) = t(x, g(x)) for all x ∈ X.

It follows from Theorem 2.3 that the theory THen,A admits b-minimal
cell decompositions with centers (cf. [7]).

3. Rings of analytic function germs and of

overconvergent analytic functions

Keeping the notation from [4], put

A†
m,n(K) := K ⊗K◦ Am,n(K).

By the weak Noetherian property, we immediately get

A†
m,n(K)◦ := {f ∈ A†

m,n(K) : ‖f‖ ≤ 1} = Am,n(K) =

{f ∈ A†
m,n(K) : |fσ(a, b)| ≤ 1 for all (a, b) ∈ (K◦

alg)
m × (K◦◦

alg)
n}

and

A†
m,n(K)◦◦ := (K◦◦, ρ)A†

m,n(K)◦ = Am,n(K)◦ =

{f ∈ A†
m,n(K) : |fσ(a, b)| < 1 for all (a, b) ∈ (K◦

alg)
m × (K◦◦

alg)
n}.

It is demonstrated in [4, Section 5] that the classical Rückert theory

from [1, Section 5.2.5] applies to the rings A†
m,0(K) and A†

0,n(K). In-
deed, for any f ∈ Am,0(K) or f ∈ A0,n(K), f 6= 0, there is an a ∈ K
such that af ∈ Am,0(K) or af ∈ A0,n(K), respectively, ‖af‖ = 1, and
af is regular after a Weierstrass change of variables. Hence those rings
enjoy many good algebraic properties. The authors conjecture that
those properties are shared also by the rings Am,n(K) of separated an-
alytic functions. Their conjecture, however, seems to be a problem
yet unsolved. We prove in this section that the rings of analytic func-
tion germs and of overconvergent analytic functions, determined by a
separated analytic structure, are excellent and regular.

Remark 3.1. For application of resolution of singularities in the proof
of curve selection in Section 7, it suffices to make use of local rings of
analytic function germs.
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Put

∆m,n(r) := {(ξ, ρ) ∈ Km+n : |ξi| ≤ r, |ρj| < r} = c · ∆n,m(1)

with c ∈ K, c 6= 0, and r = |c|. For any f ∈ Am,n(K), the power series

fc(ξ, ρ) := f(ξ/c, ρ/c) ∈ K[[ξ, ρ]]

determines a function

fσ
c : ∆m,n(r) −→ K◦.

Put

Am,n(K, r) := {f c : f ∈ Am,n(K)}, A†
m,n(K, r) := K ⊗K◦ Am,n(K, r),

(obviously, this definition does not depend on the choice of c with
|c| = r), and let

Aloc
m,n(K) :=

⋃

r>0

Ar
m,n(K), A‡

m,n(K) :=
⋃

r>1

Ar
m,n(K)

be the direct limits of the systems of rings

A†
m,n(K, r) ⊂ A†

m,n(K, s), s < r,

with r > 0 and r > 1, respectively. Under the assumptions imposed
on analytic structures throughout the paper, one can identify a power
series fc with the analytic function fσ

c . We call Aloc
m,n(K) and A‡

m,n(K)
the rings of analytic function germs (at 0 ∈ Km+n) and overconvergent
analytic functions, respectively. It is not difficult to check that Aloc

m,n(K)
are local rings with maximal ideal generated by the variables ξ and ρ.

Remark 3.2. In fact, it follows from [4, Prop. 4.5.3] (on preserving
composition) that the rings Aloc

m,n(K) depend only on p = m+n. Hence
the variables ξ and ρ play locally the same role, and thus the use of
double indices m,n is immaterial and refers rather to the names of
variables. Therefore it is more natural to denote these local rings of
analytic function germs by Aloc

p (K) := Aloc
m,n(K) with p = m + n.

Also note that the Gauss norm and supremum norm on A†
m,n(K)

coincide whenever the residue field K̃ is infinite (maximal modulus
principle; cf. [4, Remark 5.2.8] or [1, Section 5.1.4, Proposition 3] for
the classical case).

Consider now any f ∈ Am,n(K) and c ∈ K◦◦, c 6= 0. Similarly as in
the classical case of strictly convergent power series elaborated in [1,
Section 5.2.3 and 5.2.4], the power series af1/c is, after a Weierstrass
change of variables, regular with respect to any of the variables ξ or
ρ for some a ∈ K. Therefore Weierstrass preparation and division, as
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well as the Weierstrass finiteness theorem hold for the rings Aloc
p (K)

and A‡
m,n(K). The latter enables induction on the number of indeter-

minates. In particular, for any maximal ideal of the rings under study,
its residue field is a finite extension of the ground field K. Hence also
applicable here is Rückert’s theory (op. cit., Section 5.2.5) We can thus
state the following

Theorem 3.3. The rings Aloc
p (K) and A‡

m,n(K), p,m, n ∈ N, are Noe-
therian factorial Jacobson rings. Furthermore, there is a one-to-one
correspondence between the maximal ideals of A‡

m,n(K) and the orbits

of
(
K◦

alg

)m+n
under the Galois group of Kalg over K, and the rings

A‡
m,n(K) satisfy the Nullstellensatz. ✷

Hence we obtain two corollaries.

Corollary 3.4. The ring Aloc
p (K), p ∈ N, is an excellent regular local

ring of dimension p.

Proof. The dimension of Aloc
p (K) = Aloc

m,n(K) is ≥ p = m + n because
one has the chain of prime ideals

(0) ⊂ (ξ1) ⊂ . . . ⊂ (ξ1, . . . , ξm, ρ1) ⊂ . . . ⊂ (ξ1, . . . , ξm, ρ1, . . . , ρn).

Since the maximal ideal is generated by p = m + n variables ξ and
ρ, the converse inequality and the regularity of Aloc

p (K) follows imme-

diately. Finally, observe that Aloc
p (K) contains its residue field K of

characteristic 0, and that

∂/∂ξ1, . . . , ∂/∂ξm, ∂/∂ρ1, . . . , ∂/∂ρn

are derivatives of Aloc
p (K) over K such that

∂ξi/∂ξj = δij and ∂ρi/∂ρj = δij.

Hence and by the Jacobian criterion for excellence [17, Theorem 102],
the ring Aloc

p (K) is excellent, concluding the proof. �

Corollary 3.5. The ring A‡
m,n(K), m,n ∈ N, is an excellent regular

ring of dimension m + n.

Proof. Taking into account that each maximal ideal of A‡
m,n(K) comes

from a point in
(
K◦

alg

)m+n
, the foregoing proof can be repeated mutatis

mutandi. �

We still recall [4, Remark 5.2.8]. Given an ideal J of A†
m,n(K), the

elements of A†
m,n(K)/J define functions on

V (J) :=
{
x ∈

(
K◦

alg

)m
×
(
K◦◦

alg

)n
: f(x) = 0 for all f ∈ J

}
.
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Since Kalg admits quantifier elimination in the language of valued fields
with the multiplicative inverse and names of the elements of

⋃
m,nA

†
m,n,

the supremum norm

‖f‖sup := sup{|f(x)| : x ∈ V (J)} for f ∈ A†
m,n(K)/J

is well defined, takes values in |Kalg| and is a norm provided that
A†

m,n(K)/J is reduced. Therefore the rings A†
m,n(K), m,n ∈ N, satisfy

the Nullstellensatz and there is a one-to-one correspondence between
the maximal ideals of A†

m,n(K) and the orbits of
(
K◦

alg

)m
×
(
K◦◦

alg

)n
under the Galois group of Kalg over K.

Finally, note that resolution of singularities applies to excellent reg-
ular schemes (cf. [24, Theorem 1.1.3] or [13], Corollary 3 on p. 146
along with the explanations on p. 161, for the classical case of ex-
cellent regular local rings). In particular, it applies to the scheme
X := Spec (Aloc

p (K)). Below we state a version which refers, in fact, to
transformation to a normal crossing by blowing up.

Theorem 3.6. Let f1, . . . , fk ∈ Aloc
p (K). Then there exists a finite

composite of blow-ups π : X̃ → X along smooth centers such that

f1 ◦ π, . . . , fk ◦ π are simple normal crossing divisors on X̃. ✷

Remark 3.7. It is well known that in the conclusion one can require

f1 ◦ π, . . . , fk ◦ π

to be linearly ordered with respect to divisibility relation at each point

in X̃ .

It is possible to adapt here Serre’s concept of analytic manifolds
([23], Part II, Chap. III) with respect to the class of analytic function
germs induced (via translations) by Aloc

p (K). Though this concept is
quite weak, it is sufficient for our further applications. For simplicity,
we shall denote by the same symbol a function germ or a set germ and
its representative. This convention will not lead to confusion. Clearly,
X , X̃ and the map π : X̃ → X correspond respectively to

1) a polydisk ∆p(r) := ∆p,0(r) and a closed (in the K-topology)

analytic submanifold X̃0 of ∆p(r) × PN (K), for some 0 < r < 1 and
N ∈ N;

2) the restriction to X̃0 of the projection of ∆p(r)×PN(K) onto the
first factor.

We may regard X0 and X̃0 as the sets of ”K-rational points” of X

and X̃ , respectively. Summing up, we obtain
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Corollary 3.8. Let f1, . . . , fk ∈ Aloc
p (K). Then there exists a finite

composite of blow-ups π0 : X̃0 → ∆p(r) along smooth analytic subman-
ifolds such that the pull-backs f1 ◦ π0, . . . , fk ◦ π0 are simple normal

crossing divisors on X̃0. The map π0 is surjective and definably closed
by virtue of the closedness theorem.
Moreover, one can require

f1 ◦ π0, . . . , fk ◦ π0

to be linearly ordered with respect to divisibility relation at each point

in X̃0. It means that at each point a ∈ X̃0 there are local analytic
coordinates x = (x1, . . . , xp) with x(a) = 0 such that

fi ◦ π0(x) = ui(x) · xαi , i = 1, . . . , k,

where the ui are analytic units at a, ui(a) 6= 0, αi ∈ Np, and the
monomials xαi, i = 1, . . . , k, are linearly ordered by divisibility relation.

4. Proof of the closedness theorem

In the algebraic case, the proofs of the closedness theorem given in
our papers [18, 19]) make use of the following three main tools:
• elimination of valued field quantifiers and cell decomposition due

to Pas;
• fiber shrinking ([18, 19, Proposition 6.1]);
• and the theorem on existence of the limit ([18, Proposition 5.2]

and [19, Theorem 5.1]).

In this paper, we apply analytic versions of quantifier elimination,
cell decomposition and term structure (Theorems 2.3 and 2.4) due to
Cluckers–Lipshitz.

Now recall the concept of fiber shrinking. Let A be an L-definable
subset of Kn with accumulation point

a = (a1, . . . , an) ∈ Kn

and E an L-definable subset of K with accumulation point a1. We call
an L-definable family of sets

Φ =
⋃

t∈E

{t} × Φt ⊂ A

an L-definable x1-fiber shrinking for the set A at a if

lim
t→a1

Φt = (a2, . . . , an),

i.e. for any neighbourhood U of (a2, . . . , an) ∈ Kn−1, there is a neigh-
bourhood V of a1 ∈ K such that ∅ 6= Φt ⊂ U for every t ∈ V ∩ E,
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t 6= a1. When n = 1, A is itself a fiber shrinking for the subset A of K
at an accumulation point a ∈ K.

Proposition 4.1. (Fiber shrinking) Every L-definable subset A of Kn

with accumulation point a ∈ Kn has, after a permutation of coordi-
nates, an L-definable x1-fiber shrinking at a.

Its proof was reduced, by means of elimination of valued field quan-
tifiers, to Lemma 4.2 below ([19, Lemma 6.2]), which, in turn, was
obtained via relative quantifier elimination for ordered abelian groups.
That approach can be repeated verbatim in the analytic settings.

Lemma 4.2. Let Γ be an ordered abelian group and P be a definable
subset of Γn. Suppose that (∞, . . . ,∞) is an accumulation point of P ,
i.e. for any δ ∈ Γ the set

{x ∈ P : x1 > δ, . . . , xn > δ} 6= ∅

is non-empty. Then there is an affine semi-line

L = {(r1t + γ1, . . . , rnt + γn) : t ∈ Γ, t ≥ 0} with r1, . . . , rn ∈ N,

passing through a point γ = (γ1, . . . , γn) ∈ P and such that (∞, . . . ,∞)
is an accumulation point of the intersection P ∩ L too. ✷

In a similar manner, one can obtain the following

Lemma 4.3. Let P be a definable subset of Γn and

π : Γn → Γ, (x1, . . . , xn) 7→ x1

be the projection onto the first factor. Suppose that ∞ is an accumu-
lation point of π(P ). Then there is an affine semi-line

L = {(r1t+γ1, . . . , rnt+γn) : t ∈ Γ, t ≥ 0} with r1, . . . , rn ∈ N, r1 > 0,

passing through a point γ = (γ1, . . . , γn) ∈ P and such that ∞ is an
accumulation point of π(P ∩ L) too.

The above two lemmas will be often used in further reasonings.

As for the theorem on existence of the limit, here we first prove,
using Theorem 2.4, a weaker version given below. The full analytic
version (Proposition 5.1) will be established in Section 4 by means of
the closedness theorem.

Proposition 4.4. Let f : E → K be an L-definable function on a
subset E of K and suppose 0 is an accumulation point of E. Then
there is an L-definable subsets F ⊂ E with accumulation point 0 and
a point w ∈ P1(K) such that

lim
x→0

f |F (x) = w.
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Moreover, we can require that

{(x, f(x)) : x ∈ F} ⊂ {(xr, φ(x)) : x ∈ G},

where r is a positive integer and φ is a definable function, a compos-
ite of some functions induced by series from A and of some algebraic
power series (coming from the implicit function theorem). Then, in
particular, the definable set

{(v(x), v(f(x))) : x ∈ (F \ {0}} ⊂ Γ × (Γ ∪ {∞})

is contained in an affine line with rational slope

q · l = p · k + β,

with p, q ∈ Z, q > 0, β ∈ Γ, or in Γ × {∞}.

Proof. In view of Remark 2.1, we may assume that K has separated
analytic A(K)-structure. We apply Theorem 2.4 and proceed with
induction with respect to the complexity of the term t. Since an an-

gular component map exists (cf. Remark 2.2), the sorts K̃ and Γ are
orthogonal in

RV (K) ≃ K̃ × ΓK .

Therefore, after shrinking F , we can assume that ac (F ) = {1} and

the function g goes into {ξ} × Γs with a ξ ∈ K̃s, and next that ξ =
(1, . . . , 1); similar reductions were considered in our papers [18, 19]. For
simplicity, we look at g as a function into Γs. We shall briefly explain
the most difficult case where

t(x, g(x)) = hm(a0(x), . . . , am(x), (1, g0(x))),

assuming that the theorem holds for the terms a0, . . . , am; here g0 is
one of the components of g. In particular, each function ai(x) has, after
partitioning, a limit, say, ai(0) when x tends to zero.

By Lemma 4.3, we can assume that

(4.1) pv(x) + qg0(x) + v(a) = 0

for some p, q ∈ N and a ∈ K \ {0}. By the induction hypothesis, we
get

{(x, ai(x)) : x ∈ F} ⊂ {(xr, αi(x)) : x ∈ G}, i = 0, 1, . . . , m,

for some power series αi(x)) as stated in the theorem. Put

P (x, T ) :=

m∑

i=0

ai(x)T i.
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By the very definition of hm and since we are interested in the vicinity
of zero, we may assume that there is an i0 = 0, . . . , m such that

∀ x ∈ F ∃ u ∈ K v(u) = g0(x), ac u = 1,

and the following formulas hold

(4.2) v(ai0(x)ui0) = min {v(ai(x)ui), i = 0, . . . , m},

v(P (x, u)) > v(ai0(x)ui0), v

(
∂ P

∂ T
(x, u)

)
= v(ai0(x)ui0−1).

Then hm(a0(x), . . . , am(x), (1, g0(x))) is a unique b(x) ∈ K such that

P (x, b(x)) = 0, v(b(x)) = g0(x), ac b(x) = 1.

By [19, Remarks 7.2, 7.3], the set F contains the set of points of the
form crtNqr for some c ∈ K with ac c = 1, a positive integer N and all
t ∈ K◦ small enough with ac t = 1. Hence and by equation 4.1, we get

g0(c
rtNqr) = g0(c

r) − v(tNpr).

Take d ∈ K such that g0(c
r) = v(d) and ac d = 1. Then

g0(c
rtNqr) = v(dt−Npr).

Thus the homothetic change of variable

Z = T/dt−Npr = tNprT/d

transforms the polynomial

P (crtNqr, T ) =
m∑

i=0

αi(ct
Nq)T i

into a polynomial Q(t, Z) to which Hensel’s lemma applies (cf. [21,
Lemma 3.5]):

(4.3) P (crtNqr, T ) = P (crtNqr, dt−NprZ) =
m∑

i=0

αi(ct
Nq) · (dt−NprZ)i = (αi0(ct

Nq) · (dt−Npr)i0 ·Q(t, Z).

Indeed, formulas 4.2 imply that the coefficients bi(t), i = 0, . . . , m, of
the polynomial Q are power series (of order ≥ 0) in the variable t, and
that

v(Q(t, 1)) > 0 and v

(
∂ Q

∂ Z
(t, 1)

)
= 0

fot t ∈ K0 small enough. Hence

v(Q(0, 1)) > 0 and v

(
∂ Q

∂ Z
(0, 1)

)
= 0.
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But, for x(t) = crtNqr, the unique zero T (t) = b(x(t)) of the polynomial
P (x(t), T ) such that

v(b(x(t))) = v(dt−Npr) and ac b(x(t)) = 1

corresponds to a unique zero Z(t) of the polynomial Q(t, Z) such that

v(Z(t)) = v(1) and ac Z(t) = 1.

Therefore the conclusion of the theorem can be directly obtained via
the implicit function theorem (cf. [19, Proposition 2.5]) applied to the
polynomial

P (A0, . . . , Am, Z) =
m∑

i=0

AiZ
i

in the variables Ai substituted for ai(x) at the point

A0 = b0(0), . . . , Am = bm(0), Z = 1.

�

Now we can readily proceed with the

Proof of the closedness theorem (Theorem 1.1). We must show that if
B is an L-definable subset of D×(K◦)n and a point a lies in the closure
of A := π(B), then there is a point b in the closure of B such that
π(b) = a. As before (cf. [19, Section 8]), the theorem reduces easily to
the case m = 1 and next, by means of fiber shrinking (Proposition 4.1),
to the case n = 1. We may obviously assume that a = 0 6∈ A.

By b-minimal cell decomposition, we can assume that the set B is a
relative cell with center over A. It means that B has a presentation of
the form

Λ : B ∋ (x, y) → (x, λ(x, y)) ∈ A× RV (K)s,

where λ : B → RV (K)s is an L-definable function, such that for
each (x, ξ) ∈ Λ(B) the pre-image λ−1

x (ξ) ⊂ K is either a point or
an open ball; here λx(y) := λ(x, y). In the latter case, there is a
center, i.e. an L-definable map ζ : Λ(B) → K, and a (unique) map
ρ : Λ(B) → RV (K) \ {0} such that

λ−1
x (ξ) = {y ∈ K : rv (y − ζ(x, ξ)) = ρ(x, ξ)}.

Again, since the sorts K̃ and Γ are orthogonal in RV (K) ≃ K̃ ×Γ, we
can assume, after shrinking the sets A and B, that

λ(B) ⊂ {(1, . . . , 1)} × Γs ⊂ K̃s × Γs;
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let λ̃(x, y) be the projection of λ(x, y) onto Γs. By Lemma 4.3, we can
assume once again, after shrinking the sets A and B, that the set

{(v(x), v(y), λ̃(x, y)) : (x, y) ∈ B} ⊂ Γs+2

is contained in an affine semi-line with integer coefficients. Hence
λ(x, y) = φ(v(x)) is a function of one variable x. We have two cases.

Case I. λ−1
x (ξ) ⊂ K◦ is a point. Since each λx is a constant func-

tion, B is the graph of an L-definable function. The conclusion of the
theorem follows thus from Proposition 4.4.

Case II. λ−1
x (ξ) ⊂ K◦ is a ball. Again, application of Lemma 4.3

makes it possible, after shrinking the sets A and B, to arrange the
center

ζ : Λ(B) ∋ (x, ξ) → ζ(x, v(x)) = ζ(x) ∈ K

and the function ρ(x, ξ) = ρ(v(x)) as functions of one variable x. Like-
wise as it was above, we can assume that the set

P := {(v(x), ρ(v(x))) : x ∈ A} ⊂ Γ2

is contained in an affine line pv(x) + qρ(v(x)) + v(c) = 0 with integer
coefficients p, q, q 6= 0; furthermore, that P contains the set

Q := {(v(ctqN), ρ(v(ctqN))) : t ∈ K◦}

for a positive integer N . Then we easily get

ρ(v(ctqN )) = ρ(c) − pNv(t) = v(ct−pN).

Hence the set B contains the graph

{(ctqN , ζ(ctqN) + ct−pN) : t ∈ K◦}.

As before, the conclusion of the theorem follows thus from Proposi-
tion 4.4, and the proof is complete. ✷

5. Direct applications

The framework of b-minimal structures provides cell decomposition
and a good concept of dimension (cf. [7]), which in particular satisfies
the axioms from the paper [9]. For separated analytic structures, the
zero-dimensional sets are precisely the finite sets, and also valid is the
following dimension inequality, which is of great geometric significance:

(5.1) dim ∂E < dimE;

here E is any L-definable subset of Kn and ∂E := E \ E denotes the
frontier of A.
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We first apply the closedness theorem to obtain the following full
analytic version of the theorem on existence of the limit.

Proposition 5.1. Let f : E → P1(K) be an L-definable function on
a subset E of K, and suppose that 0 is an accumulation point of E.
Then there is a finite partition of E into L-definable sets E1, . . . , Er

and points w1 . . . , wr ∈ P
1(K) such that

lim
x→0

f |Ei (x) = wi for i = 1, . . . , r.

Proof. We may of course assume that 0 6∈ E. Put

F := graph (f) = {(x, f(x) : x ∈ E} ⊂ K × P1(K);

obviously, F is of dimension 1. It follows from the closedness theorem
that the frontier ∂F ⊂ K×P1(K) is non-empty, and thus of dimension
zero by inequality 5.1. Say

∂F ∩ ({0} × P1(K)) = {(0, w1), . . . , (0, wr)}

for some w1, . . . , wr ∈ P
1(K). Take pairwise disjoint neighborhoods Ui

of the points wi, i = 1, . . . , r, and set

F0 := F ∩

(
E ×

(
P1(K) \

r⋃

i

Ei

))
.

Let

π : K × P1(K) −→ K

be the canonical projection. Then

E0 := π(F0) = f−1

(
P1(K) \

r⋃

i

Ei

)
.

Clearly, the closure F 0 of F0 in K × P1(K)) and {0} × P1(K)) are
disjoint. Hence and by the closedness theorem, 0 6∈ E0, the closure
of E0 in K. The set E0 is thus irrelevant with respect to the limit at
0 ∈ K. Therefore it remains to show that

lim
x→0

f |Ei (x) = wi for i = 1, . . . , r.

Otherwise there is a neighborhood Vi ⊂ Ui such that 0 would be an
accumulation point of the set

f−1(Ui \ Vi) = π(F ∩ (E × (Ui \ Vi))).

Again, it follows from the closedness theorem that {0} × P1(K) and
the closure of F ∩ (E × (Ui \ Vi)) in K ×P1(K)) would not be disjoint.
This contradiction finishes the proof. �
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Remark 5.2. Let us mention that Proposition 5.1 can be strengthened
as stated below (cf. the algebraic versions [18, Proposition 5.2] and [19,
Theorem 5.1]):

Moreover, perhaps after refining the finite partition of E, there is a
neighbourhood U of 0 such that each definable set

{(v(x), v(f(x))) : x ∈ (Ei ∩ U) \ {0}} ⊂ Γ × (Γ ∪ {∞}), i = 1, . . . , r,

is contained in an affine line with rational slope

q · l = pi · k + βi, i = 1, . . . , r,

with pi, q ∈ Z, q > 0, βi ∈ Γ, or in Γ × {∞}.

Now we turn to a second application, namely the following theorem
on piecewise continuity.

Theorem 5.3. Let A ⊂ Kn and f : A → P1(K) be an L-definable
function. Then f is piecewise continuous, i.e. there is a finite partition
of A into L-definable locally closed subsets A1, . . . , As of Kn such that
the restriction of f to each Ai is continuous.

Proof. Consider an L-definable function f : A → P1(K) and its graph

E := {(x, f(x)) : x ∈ A} ⊂ Kn × P1(K).

We shall proceed with induction with respect to the dimension

d = dimA = dim E

of the source and graph of f .

Observe first that every L-definable subset E of Kn is a finite disjoint
union of locally closed L-definable subsets of Kn. This can be easily
proven by induction on the dimension of E by means of inequality 5.1.
Therefore we can assume that the graph E is a locally closed subset
of Kn × P1(K) of dimension d and that the conclusion of the theorem
holds for functions with source and graph of dimension < d.

Let F be the closure of E in Kn × P1(K) and ∂E := F \ E be the
frontier of E. Since E is locally closed, the frontier ∂E is a closed
subset of Kn × P1(K) as well. Let

π : Kn × P1(K) −→ Kn

be the canonical projection. Then, by virtue of the closedness theorem,
the images π(F ) and π(∂E) are closed subsets of Kn. Further,

dim F = dim π(F ) = d

and
dim π(∂E) ≤ dim ∂E < d;
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the last inequality holds by inequality 5.1. Putting

B := π(F ) \ π(∂E) ⊂ π(E) = A,

we thus get
dim B = d and dim (A \B) < d.

Clearly, the set

E0 := E ∩ (B × P1(K)) = F ∩ (B × P1(K))

is a closed subset of B × P1(K) and is the graph of the restriction

f0 : B −→ P1(K)

of f to B. Again, it follows immediately from the closedness theorem
that the restriction

π0 : E0 −→ B

of the projection π to E0 is a definably closed map. Therefore f0 is a
continuous function. But, by the induction hypothesis, the restriction
of f to A \ B satisfies the conclusion of the theorem, whence so does
the function f . This completes the proof. �

We immediately obtain

Corollary 5.4. The conclusion of the above theorem holds for any
L-definable function f : A → K.

6. The  Lojasiewicz inequalities

Algebraic non-Archimedean versions of the  Lojasiewicz inequality,
established in our papers [18, 19], can be carried over to the analytic
settings considered here with proofs repeated almost verbatim. We thus
state only the results (Theorems 11.2, 11.5 and 11.6, Proposition 11.3
and Corollary 11.4 from [19]). Let us mention that the main ingredi-
ents of the proof are the closedness theorem, elimination of valued field
quantifiers, the orthogonality of the auxiliary sorts and relative quan-
tifier elimination for ordered abelian groups. They allow us to reduce
the problem under study to that of piecewise linear geometry. We first
state the following version, which is closest to the classical one.

Theorem 6.1. Let f, g1, . . . , gm : A → K be continuous L-definable
functions on a closed (in the K-topology) bounded subset A of Km. If

{x ∈ A : g1(x) = . . . = gm(x) = 0} ⊂ {x ∈ A : f(x) = 0},

then there exist a positive integer s and a constant β ∈ Γ such that

s · v(f(x)) + β ≥ v((g1(x), . . . , gm(x)))
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for all x ∈ A. Equivalently, there is a C ∈ |K| such that

|f(x)|s ≤ C · max {|g1(x)|, . . . , |gm(x)|}

for all x ∈ A.

A direct consequence of Theorem 6.1 is the following result on Hölder
continuity of definable functions.

Proposition 6.2. Let f : A → K be a continuous L-definable function
on a closed bounded subset A ⊂ Kn. Then f is Hölder continuous with
a positive integer s and a constant β ∈ Γ, i.e.

s · v(f(x) − f(z)) + β ≥ v(x− z)

for all x, z ∈ A. Equivalently, there is a C ∈ |K| such that

|f(x) − f(z)|s ≤ C · |x− z|

for all x, z ∈ A.

We immediately obtain

Corollary 6.3. Every continuous L-definable function f : A → K on
a closed bounded subset A ⊂ Kn is uniformly continuous.

Now we formulate another, more general version of the  Lojasiewicz
inequality for continuous definable functions of a locally closed subset
of Kn.

Theorem 6.4. Let f, g : A → K be two continuous L-definable func-
tions on a locally closed subset A of Kn. If

{x ∈ A : g(x) = 0} ⊂ {x ∈ A : f(x) = 0},

then there exist a positive integer s and a continuous L-definable func-
tion h on A such that f s(x) = h(x) · g(x) for all x ∈ A.

Finally, put

D(f) := {x ∈ A : f(x) 6= 0} and Z (f) := {x ∈ A : f(x) = 0}.

The following theorem may be also regarded as a kind of the  Lojasiewicz
inequality, which is, of course, a strengthening of Theorem 6.4.

Theorem 6.5. Let f : A → K be a continuous L-definable function
on a locally closed subset A of Kn and g : D(f) → K a continuous
L-definable function. Then f s · g extends, for s ≫ 0, by zero through
the set Z (f) to a (unique) continuous L-definable function on A.
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7. Curve selection

Consider a Henselian field K with a separated analytic A-structure.
In this section, we establish a general version of curve selection for L-
definable sets. Note that the domain of the selected curve is, unlike in
the classical version, only an L-definable subset of the unit disk.

Proposition 7.1. Let A be an L-definable subset of Kp. If a point
a ∈ Kp lies in the closure (in the K-topology) cl (A\{a}) of A\{a}, then
there exist an L-definable map ϕ : K◦ −→ Kp given by power series
from Aloc

p (K), and an L-definable subset E of K◦ with accumulation
point 0 such that

ϕ(0) = a and ϕ(E \ {0}) ⊂ A \ {a}.

Proof. We call the problem under study curve selection for the couple
(A, a). We may assume without loss of generality that a = 0 ∈ Kp. By
elimination of valued field quantifiers, the set A \ {a} is a finite union
of sets defined by conditions of the form

(v(t1(x)), . . . , v(tr(x))) ∈ P, (ac τ1(x), . . . , ac τs(x)) ∈ Q,

where ti, τj are terms of the separated analytic structure A(K), and
P and Q are definable subsets of Γr and ks, respectively. Here it is
convenient to deal with a local concept of term, i.e. a finite composite
of functions analytic near a given point (in some local analytic coordi-
nates) and the reciprocal function 1/x.

One can, of course, assume that A is just a set of this form. We shall
proceed with induction on the complexity of these terms. Its lowering is
possible via successive transformations to a normal crossing by means
of Corollary 3.8 and the three straightforward observations below.

Observation 1. Consider a finite composite of blow-ups

π0 : X̃0 → ∆p(r)

from Corollary 3.8 and put B := π−1
0 (A\ {a}). Since π0 is a surjective,

definably closed map by Corollary 1.2 to the closedness theorem, there
is a point b ∈ cl (B)\B such that π0(b) = a. Clearly, if the couple (B, b)
satisfies the conclusion of Proposition 7.1, so does the couple (A, a).

Observation 2. Suppose that a finite number of L-terms ti, i =
1, . . . , l, have been already transformed to normal crossing divisors with
respect to some local analytic coordinates x = (x1, . . . , xp) near a point
a. Next consider a finite number of other functions fj, j = 1, . . . , q,
analytic near a. After simultaneous transformation of the functions
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fj and the coordinates xk to a normal crossing (possibly taking into
account divisibility relation), all the terms ti and functions fj become
normal crossing divisors (along the fiber over the point a).

Observation 3. Let t(x) be a term of the form

h(f1/g1(x), . . . , fk/gk(x)),

where fi, gi are analytic functions near a point a = 0 ∈ Kp and h is
the interpretation of a function of the language L (extended by zero
off its natural domain). Consider simultaneous transformation to a
normal crossing of the functions fi, gi which takes into account linear
ordering with respect to divisibility relation and a point b such that
π0(b) = a. Then we can assume without loss of generality that the
quotients fi/gi ◦ π0 are normal crossing divisors at b. Otherwise the
term t ◦ π0 would vanish near b, and then we would pass to a term of
lower complexity.

Now it is not difficult to reduce curve selection for the initial couple
(A, a) to curve selection for a couple (B, b) where B is a set defined by
conditions of the form

(v(t1(y)), . . . , v(tr(y))) ∈ P, (ac τ1(y), . . . , ac τs(y)) ∈ Q,

where y are suitable local analytic coordinates near b, each of the ti, τj
is either a normal crossing u(y) ·yα at b, or a reciprocal normal crossing
u(y) · 1/yα at b, where u(b) 6= 0 and α ∈ Np, or vanishes near b.

Since the valuation map and the angular component map composed
with a continuous function are locally constant near any point at which
this function does not vanish, the conditions which describe the set B
near b can be easily expressed in the form

(v(y1), . . . , v(yp)) ∈ P̃ , (ac y1, . . . , ac yp) ∈ Q̃,

where P̃ and Q̃ are definable subsets of Γp and K̃p, respectively.

We thus achieved the same reduction as in the algebraic case studied
in our papers [18, 19]. In this manner, we can repeat verbatim the
remaining part of the proof given in those papers. The main ingredient
of the further reasoning is Lemma 4.2 ([19, Lemma 6.2]) which, in turn,
relies on relative quantifier elimination for ordered abelian groups. �

We conclude the paper with the following comment.

Remark 7.2. We established in the recent paper [20] a non-Archimedean
version of the Tietze–Urysohn extension theorem for continuous func-
tions definable over Henselian valued fields of equicharacteristic zero.
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It is very plausible that such a version will also hold over Henselian
valued fields with analytic structure.
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