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A NON-ARCHIMEDEAN VERSION

OF THE TIETZE–URYSOHN THEOREM

OVER HENSELIAN VALUED FIELDS

KRZYSZTOF JAN NOWAK

Abstract. We give a non-Archimedean version of the Tietze–
Urysohn theorem for continuous functions definable over Henselian
valued fields. Two main ingredients of the proof are resolution of
singularities and various consequences of our closedness theorem.
Also used is that irreducible simple normal crossing divisors are
definable retracts of their clopen neighborhoods.

1. Main result

In the paper, we fix a Henselian valued field K considered in the
language L of Denef–Pas. The ground field K is assumed to be of
equicharacteristic zero, not necessarily algebraically closed and with

valuation of arbitrary rank. Denote by v, Γ = ΓK , K
◦, K◦◦ and K̃ the

valuation, its value group, the valuation ring, maximal ideal and residue
field, respectively. By the K-topology on Kn we mean the topology
induced by the valuation v. The word ”definable” will usually mean
”definable with parameters”. Our main purpose is to establish the
following non-Archimedean, definable version of the Tietze–Urysohn
extension theorem.

Theorem 1.1. Every continuous L-definable function f : A → K

on a closed subset A of the projective space Pn(K) has a continuous
extension F to Pn(K).

Section 2 contains some preliminary results needed in the proof of
Theorem 1.1. It will be given in Section 3, relying on resolution of
singularities and on various consequences of our closedness theorem
(see [17, 18] and [19] for the analytic non-Archimedean version). Also
used is that irreducible simple normal crossing divisors are L-definable
retracts of their clopen neighborhoods (Lemma 3.1).
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The classical Tietze–Urysohn extension theorem says that every con-
tinuous (and bounded) real valued map on a closed subset of a normal
space X can be extended to a continuous (and bounded) function on
X . Afterwards the problem of extending maps into metric spaces or lo-
cally convex linear spaces was investigated by several mathematicians,
i.al. by Hausdorff [12], Dugundji [8], Arens [1] or Michael [16]. Next,
Ellis [10] established analogues of their results, concerning the exten-
sion of continuous maps defined on closed subsets of zero-dimensional
spaces with values in various types of metric spaces. They apply, in
particular, to continuous functions from ultranormal spaces into a sep-
arable field with non-Archimedean absolute value and to continuous
functions from ultraparacompact spaces into an arbitrary complete
field with non-Archimedean absolute value. Hence follows his ana-
logue of the Tietze–Urysohn theorem from [9] on extending continuous
functions from ultranormal spaces into a locally compact field with
non-Archimedean absolute value. Note that ultranormal spaces are
precisely those of great inductive dimension zero (cf. [11, Chap. 7])
and that the class of ultraparacompact spaces coincides with that of
ultranormal and paracompact spaces.

Finally, let us mention that in this paper we shall not treat the
problem of simultaneous extension of continuous functions or, in other
words, of the existence of a linear (continuous) extender. This problem,
going back to Dugundji [8], was extensively studied by many specialists
(see e.g. [6] for references). A non-Archimedean version of the Dugundji
extension theorem was given in the paper [13].

2. Preliminary results

We first provide some preliminary results used in the proof of The-
orem 1.1. We begin with a presentation of L-definable sets due to van
den Dries [7]; see [18, Section 9] for the adaptation to the language of
Denef-Pas considered here.

Proposition 2.1. Every L-definable subset A of Kn is a finite union
of intersections of Zariski closed with special open subsets of Kn. A
fortiori, A has the following presentation

(2.1) A = ((V1 \W1) ∩G1) ∪ . . . ∪ ((Vs \Ws) ∩Gs),

where Wi  Vi are Zariski closed subsets and Gi are clopen L-definable
subsets of Kn, j = 1, . . . , s. ✷

Remark 2.2. The above proposition is also valid for L-definable subsets
A of the projective space Pn(K) and, more generally, of the K-rational
points V (K) of any algebraic variety V .
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We still some results concerning the closedness theorem. Below one
of its consequences.

Proposition 2.3. Let X be a closed L-definable subset of (K◦)n and
{Ui : i = 1, . . . , k} a finite open covering of X. Then there exists a
finite clopen L-definable partitioning {Vi : i = 1, . . . , k} of X such that
Vi ⊂ Ui for i = 1, . . . , k.

Proof. By induction, it suffices to consider the case k = 2. Then

(X \ U1) ∩ (X \ U2) = ∅

and it follows from the closedness theorem that

(X \ U1)− (X \ U2)

is a closed subset of (K◦)n. Hence

0 6∈ (X \ U1)− (X \ U2)

and there is an r ∈ Γ such that

((X \ U1) +Bn(r)) ∩ ((X \ U2) +Bn(r)) = ∅,

where

Bn(r) := {a ∈ Kn : v(a) := min{v(a1), . . . , v(an)} > r}

is an n-ball of radius r. The above two sets are open of course, and
also closed, again by the closedness theorem. We thus get two clopen
subsets

X \ ((X \ U1) +Bn(r)) ⊂ U1 and X \ ((X \ U2) +Bn(r)) ⊂ U2

which cover X . Putting

V1 := X \ ((X \ U1) +Bn(r)) and V2 := X \ V1

concludes the proof. �

We immediately obtain

Corollary 2.4. Let X be a closed L-definable subset of Pn(K) and
{Ui : i = 1, . . . , k} a finite open covering of X. Then there exists a
finite clopen partitioning {Vi : i = 1, . . . , k} of X such that Vi ⊂ Ui for
i = 1, . . . , k. ✷

LetM be a non-singular variety. Recall that a closed subvariety V of
X with irreducible components V1, . . . , Vs has simple normal crossing
at a point a ∈ V if, in suitable local coordinates x1, . . . , xn at p, each
Vj is defined by equations

xi1 = . . . = xik = 0, 1 ≤ i1 < . . . < ik ≤ n,
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in a Zariski open neighborhood of p. If this holds at every point p ∈ V ,
we say that V is a simple normal crossing subvariety.

Now we are going to combine the above results with resolution of
singularities; for references on the latter we refer the reader to e.g. [14,
Chap. III].

Proposition 2.5. Let A be a closed L-definable subset of Pn(K) with
presentation 2.1 from Proposition 2.1. Without loss of generality, we
may assume that Vj, j = 1, . . . , s, are irreducible subvarieties of Pn(K).
Then there exist a composite σ :M → Pn(K) of blow-ups along smooth
centers and a finite clopen partitioning {Ui : i = 1, . . . , k} of M such
that
i) σ is biregular over Pn(K) \Z for a nowhere dense subvariety Z of

the variety V1 ∪ . . . ∪ Vs;
ii) each Ui, i = 1, . . . , k, is a chart on M with local coordinates

x1, . . . , xn;
iii) for each j = 1, . . . , s, the pre-image Xj := σ−1(Vj) is a sim-

ple normal crossing subvariety of M (including M itself), namely the

union of the birational transform Ṽj of Vj and a part of the exceptional
divisor E := σ−1(Z), which is a simple normal crossing divisor. More
precisely, on each chart Ui the pre-image Xj ∩ Ui is simple normal
subvariety of Ui with respect to the local coordinates x1, . . . , xn.
Under the circumstances, the pre-image Aσ := σ−1(A) on each chart

Ui is of the form

(2.2) Aσ ∩ Ui := σ−1(A) ∩ Ui = (X1 ∩H1 ∩ Ui) ∪ . . . ∪ (Xs ∩Hs ∩ Ui)

with the clopen sets Hj := σ−1(Gj).

Proof. Via resolution of singularities, we can of course find a composite
σ : M → Pn(K) of blow-ups along smooth centers which is biregular
off the singular locus Z of the subvariety V1 ∪ . . . ∪ Vs and such that
the pre-image

X := σ−1(V1 ∪ . . . ∪ Vs)

is a simple normal crossing subvariety of M ; namely the union of the

birational transform Ṽ1 ∪ . . . Ṽs of V1 ∪ . . . ∪ Vs and of the exceptional
divisor E := σ−1(Z) being a simple normal crossing divisor. Obviously,
M may be regarded as a subvariety of a projective space PN(K) for
some N ∈ N. Next, take a finite Zariski open covering of charts {Ui :
i = 1, . . . , k} with local coordinates x1, . . . , xn with respect to which
X ∩ Ui is a simple normal crossing subvariety. Now, by Corollary 2.4,
we can replace this covering with a clopen L-definable partitioning.
Hence the conclusion of the proposition follows immediately. �
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Finally, we recall yet another direct consequence of the closedness
theorem, namely a descent property whereby one can apply resolution
of singularities in the general non-Archimedean case in much the same
way as over locally compact ground fields. It was established in our
papers [17, 18] (and inspired by the joint paper [15]).

Proposition 2.6. Consider a smooth K-variety X and the blow-up
σ : Y −→ X along a smooth center. Let D be an L-definable subset of
the set X(K) of K-rational points of K. Then the restriction

σ : Y (K) ∩ σ−1(D) −→ D

is a definably closed quotient map. Therefore every continuous L-
definable function

G : Y (K) ∩ σ−1(D) −→ K

that is constant on the fibers of the blow-up σ descends to a unique
continuous L-definable function F : D −→ K. ✷

3. Proof of the extension theorem

Now, having disposed of the preliminary results of Section 2, we can
prove the non-Archimedean version of the Tietze–Urysohn theorem.

Proof of Theorem 1.1. Keep the notation of Proposition 2.5 and
proceed with induction on the dimension dimA = dim(V1 ∪ . . . ∪ Vs).
We adopt, in particular, presentation 2.2 on each clopen chart Ui.

Since dimZ < dimA, the induction hypothesis allows us to assume
that the function f vanishes on Z ∩ A. We shall have established the
theorem once we extend the function g := fσ = f ◦σ to a continuous L-
definable function G onM which vanishes on Z. Indeed, σ is biregular
over Pn(K) \ Z and G vanishes on Z. Therefore G is constant on
the fibers of σ. Hence and by the descent property (Proposition 2.6),
G descends to a unique continuous L-definable function F on Pn(K).
Clearly, F is an extension of f we are looking for.

Since {Ui : i = 1, . . . , k} is a clopen L-definable partitioning of M ,
it suffices to find a global extension of g on each fixed chart U := Ui

with local coordinates x1, . . . , xn. To this end we need the following

Lemma 3.1. Every divisor Hi := {x ∈ U : xi = 0} is a retract of a
clopen neighborhood Ωi of Hi in U , which is retracted by the L-definable
map

ωi : Ωi → Hi, (x1, . . . , xn) 7→ (x1, . . . , xi−1, 0, xi+1, . . . , xn),

induced by the coordinate map.
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Proof. Note that a polynomial map f : KN → KN , f(a) = b, with
coefficients in K◦ and non-zero Jacobian e(a) 6= 0 at a, is an open em-
bedding of the N -ball BN (a, v(e(a))) onto the N -ball Bn(b, 2 · v(e(a)))
(cf. [18, Proposition 2.4]); here

BN(a, r) := {x ∈ KN : v(x− a) > r}

is the ball with center a and radius r.

Similarly, for an implicite function y = f(x) given by a finite number
of polynomial equations with coefficients in K◦ and for each point (a, b)
of its graph, f is uniquely determined in a polydisk

{(x, y) : v(x) > 2 · v(e(a, b)), v(y) > v(e(a, b))},

where e(a, b) 6= 0 is the suitable minor of the Jacobian matrix of those
equations (cf. [18, Proposition 2.5]). Apply these facts to the suitable
equations of the non-singular subvariety M of PN (K) and to the coor-
dinate map φ = (x1, . . . , xn) on U . Since the suitable minors do not
vanish on U , it follows from the closedness theorem that the valuation
of those minors are uniformly bounded from above on U . Hence there
is an r ∈ Γ such that for each point a ∈ U the coordinate map φ is
injective on U ∩ BN(a, r); here balls are with respect to the ambient
projective space PN(K).

Now we show that for each i = 1, . . . , n, say i = n, there is a ρi ∈ Γ,
ρ ≥ r, such that φ is injective on the ρ-hull

Hi(ρ) := (Hi +BN(0, ρ)) ∩ U

of Hi in U . Otherwise there would exist distinct points a, b ∈ U ⊂
PN(K), a 6= b, with the n-th coordinate xn arbitrarily close to 0 and
such that

φ(a) = (x1(a), . . . , xn(a)) = φ(b) = (x1(b), . . . , xn(b)).

Consider the set

Σ := {(a, b) ∈ U × U : a 6= b, φ(a) = φ(b), xn(a) = xn(b) 6= 0}

and the map

ψ : U × U → K2, ψ(a, b) = (xn(a), xn(b)).

Then (0, 0) would be an accumulation point of the image ψ(Σ). Hence
and by the closedness theorem, (0, 0) = ψ(c, d) for an accumulation
point (c, d) of the set Σ. Then φ(c) = φ(d), xn(c) = xn(d) = 0 and
thus c, d ∈ Hn. Since the divisor Hn has no self-intersections on the
chart U , we get c = d. Therefore every neighborhood of the point
(c, c) has points of the set Σ, which contradicts the injectivity of the
coordinate map φ on U ∩BN(c, r).
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Take ρ := max {ρ1, . . . , ρn}. Then every map ωi, i = 1, . . . , n, given
by the formula

ωi(x1, . . . , xn) = (x1, . . . , xi−1, 0, xi+1, . . . , xn)

is a well defined map on the ρ-hull

Ωi := (Hi +BN (0, r)) ∩ U

of the divisor Hi in U . Clearly ωi makes Hi an L-definable retract of
Ωi which is — again by the closedness theorem — a clopen subset of
U , as asserted. �

Repeated application of the above lemma yields the following

Corollary 3.2. The conclusion of Lemma 3.1 holds also for the coor-
dinate subvarieties

{x ∈ U : xi1 = . . . = xip = 0}, 1 ≤ i1 < . . . < ip ≤ n,

of the chart U . ✷

At this stage we are able to extend the function g to the chart U .
Since every coordinate subvariety is a retract of its clopen L-definable
neighborhood in U , our extension process is similar to global extending
of continuous functions from a union of coordinate subspaces of Kn.
It is done by induction on the dimension dimM (i.e. the number of
local coordinates), and consists in correcting step by step, taking into

account the restriction of g to the successive birational transforms Ṽj.

Each such restriction is extended first to Ṽj by the induction hypothesis,
and next to U through the retracting map and by putting zero outside
its clopen domain. This reasoning is rather routine and we finish the
proof, leaving the details to the reader. ✷

We conclude the paper with the following comment.

Remark 3.3. It is very plausible that such a non-Archimedean version of
the Tietze–Urysohn theorem will also hold over Henselian valued fields
with analytic structure (whose theory was developed in the papers [3,
4, 5]). We are currently working on this problem. A more general
context of tame non-Archimedean geometry was recently investigated
in the paper [2], devoted to the Lipschitz structure of definable sets
as well. It seems, however, that the analogues problem of extending
Lipschitz continuous functions is much more complicated and requires
an essentially new approach.
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