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Abstract

Let K = Q(θ) be an algebraic number field with θ in the ring AK of alge-

braic integers of K and f(x) be the minimal polynomial of θ over the field Q of

rational numbers. For a rational prime p, let f̄(x) = ḡ1(x)e1 ....ḡr(x)er be the fac-

torization of the polynomial f̄(x) obtained by replacing each coefficient of f(x)

modulo p into product of powers of distinct monic irreducible polynomials over

Z/pZ. Dedekind proved that if p does not divide [AK : Z[θ]], then the factorization

of pAK as a product of powers of distinct prime ideals is given by pAK = pe1
1 ....per

r ,

with pi = pAK + gi(θ)AK , and residual degree f(pi/p) = deg ḡi(x). In this paper

we prove that if the factorization of a rational prime p in AK satisfies the above

mentioned three properties, then p does not divide [AK : Z[θ]]. Indeed the analogue

of the converse is proved for general Dedekind domains. The method of proof leads

to a generalization of one more result of Dedekind which characterizes all rational

primes p dividing the index of K.
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1. Introduction.

Let K = Q(θ) be an algebraic number field with θ in the ring AK of algebraic

integers of K and f(x) be the minimal polynomial of θ over the field Q of rational

numbers. The problem of establishing effectively the decomposition of a rational

prime p in AK using the decomposition of f(x) modulo p goes back to Kummer. For

a rational prime p, let f̄(x) = ḡ1(x)e1 ....ḡr(x)er be the factorization of the polynomial

f̄(x) obtained by replacing each coefficient of f(x) modulo p into product of powers

of distinct irreducible polynomials over Z/pZ with gi(x) monic. In 1878, Dedekind

[1] proved that if p does not divide [AK : Z[θ]], then pAK = pe1
1 ....per

r , where p1, ...., pr

are distinct prime ideals of AK , pi = pAK + gi(θ)AK with residual degree f(pi/p) =

deg ḡi(x). Dedekind also characterized those primes p which divide the index of Z[θ]

in AK (henceforth referred to as index of θ) for all generating elements θ in AK of

the extension K/Q. In this direction, he proved the following theorem (cf. [1], [6,

Theorem 4.34]).

Theorem A. Let K be an algebraic number field. Let i(K) denote the greatest

common divisor of the indices of all generating elements in AK of the extension

K/Q. A rational prime p divides i(K) if and only if for some natural number f, the

number of prime ideals of AK lying over p with residual degree f, is strictly greater

than the number of monic irreducible polynomials of degree f over the field with p

elements.

It can be easily verified that for a generating element θ of K/Q, a rational prime p

does not divide the index of θ if and only if AK ⊆ Z(p)[θ], Z(p) being the localization

of Z at the prime ideal pZ. Keeping this in mind, the theorem stated below is a

generalization of the result of Dedekind stated in the opening lines of the paper (see

[2, Chapter I, Theorem 7.4]).
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Theorem B. Let R be a Dedekind domain with field of fractions K. Let L be a

finite separable extension of K and S be the integral closure of R in L. Let f(x) in

R[x] be the minimal polynomial of a generating element θ ∈ S of L/K. Let p be a

non-zero prime ideal of R, Rp be the localization of R at p and Sp be the integral

closure of Rp in L. Let f̄(x) = ḡ1(x)e1 ....ḡr(x)er be the factorization of the polynomial

f̄(x) obtained by replacing each coefficient of f(x) modulo p into powers of distinct

irreducible polynomials over R/p with each gi(x) monic. If Sp = Rp[θ], then

pS = ℘e1
1 ....℘er

r , ℘i = pS + gi(θ)S, f(℘i/p) = deg gi(x) (1)

with ℘1, ..., ℘r distinct prime ideals of S.

The following question naturally arises.

Does the result of Theorem B hold with a hypothesis weaker than Sp = Rp[θ]?

In this paper, it is shown that the answer to the above question is the negative.

Indeed we prove

Theorem 1.1. Let R,S, p, f(x) and g1(x), ..., gr(x) be as in Theorem B. If pS =

℘e1
1 ....℘er

r is the factorization of pS into powers of distinct prime ideals of S with

℘i = pS + gi(θ)S and f(℘i/p) = deg gi(x), then Sp = Rp[θ].

Let f̄(x) = ḡ1(x)e1 ....ḡr(x)er be as in Theorem B. Then there exists a polynomial

M(x) with coefficients in the localization Rp of R at the prime ideal p such that

f(x) = g1(x)e1 ...gr(x)er + π0M(x), where π0 is a prime element of Rp. It has been

recently proved (as a generalization of the well known Dedekind Criterion stated in

[5]) that the condition Sp = Rp[θ] is the same as saying that for each i, 1 ≤ i ≤ r,

either ei = 1 or ḡi(x) does not divide M̄(x) (see [3]).

It may be pointed out that as shown in Lemma 2.1, the condition Sp = Rp[θ]

is equivalent to saying that p does not divide NL/K(Cθ), where the conductor Cθ of
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R[θ] is defined by

Cθ = {x ∈ R[θ]| xS ⊂ R[θ]}. (2)

Using the method of proof of Theorem 1.1, we have extended Theorem A to all

Dedekind domains with finite norm property. We shall denote by iS/R the greatest

common divisor of the ideals NL/K(Cθ), where θ runs over all generating elements

belonging to S of the extension L/K and Cθ is as defined by (2).

In section 3, the following theorem is proved.

Theorem 1.2. Let R be a Dedekind domain with finite norm property having quo-

tient field K and S be the integral closure of R in a finite separable extension L of

K. Let p be a non-zero prime ideal of R with factorization ℘e1
1 ....℘et

t as a product of

powers of distinct prime ideals of S. Then p does not divide iS/R if and only if there

exist distinct monic irreducible polynomials V1, ..., Vt over R/p satisfying deg Vi =

residual degree of ℘i/p for 1 ≤ i ≤ t.

It may be remarked that in the particular case when K = Q(θ) is an algebraic

number field with discriminant dK and f(x) is the minimal polynomial of θ over Q,

then as is well known (see [6, Proposition 4.18])

NK/Q(Cθ) =
NK/Q(f ′(θ))

dK

Z = [AK : Z[θ]]2Z;

consequently iAK/Z is the ideal of Z generated by i(K)2 and hence Theorem 1.2

indeed generalizes Theorem A.

We shall apply Theorem 1.2 to obtain the following results, the analogues of

which are already known for absolute extensions K/Q (cf. [6, Proposition 4.36]).

Theorem 1.3. Let R,S, K, L be as in Theorem 1.2 and p be a non-zero prime ideal

of R. If p divides iS/R, then | R/p |< [L : K].
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Corollary 1.4. With R, S, K, L as above, assume in addition that L/K is a cubic

extension. If p is a prime ideal of R dividing iS/R, then | R/p |= 2. A prime ideal p

of R divides iS/R if and only if pS is a product of three distinct prime ideals of S.

2. Proof of Theorem 1.1.

In what follows, R is a Dedekind domain with quotient field K and S the integral

closure of R in finite separable extension L of K of degree n, p is a non-zero prime

ideal of R and Rp, Sp are as in Theorem B.

The following lemma is already known (cf. [6, Lemma 4.32]). For reader’s

convenience, we prove it here.

Lemma 2.1. Let θ belonging to S be a generating element of L/K and Cθ be

the conductor of R[θ] defined by (2). The following conditions are equivalent for a

non-zero prime ideal p of R.

(i) Sp = Rp[θ];

(ii) p does not divide the ideal NL/K(Cθ);

(iii) pS ∩R[θ] = p[θ].

Proof. It is known that S is a finite R-module (cf. [7, Chapter I, p. 45]). Let

{u1, ..., um} be a system of generators of S as an R-module.

(i)⇒(ii) Keeping in mind the assumption Sp = Rp[θ], we can write

ui =
n−1∑
j=0

aijθ
j, aij ∈ Rp, 1 ≤ i ≤ m, 0 ≤ j ≤ n− 1.

So there exists c ∈ R\p such that cui ∈ R[θ] for 1 ≤ i ≤ m. Hence cS ⊆ R[θ]. As c

belongs to Cθ ∩ (R\p), it follows that NL/K(Cθ) is not divisible by p, which proves

that (i)⇒(ii).

(ii)⇒(i) We first show that

Cθ ∩R * p. (3)
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Write Cθ = Qa1
1 ...Qas

s as a product of powers of distinct prime ideals of S. Let qi

denote the prime ideal of R lying below Qi. By our assumption, p does not divide

NL/K(Cθ) and thus none of the qi is p. As Cθ ∩ R contains (and hence divides)

qa1
1 ...qas

s , it follows that p does not divide Cθ ∩ R, which proves (3). So we can

choose an element c belonging to Cθ ∩ R which does not belong to p. Recall that

{u1, ..., um} is a system of generators of S as an R-module. By choice, c belongs to

Cθ\p, therefore the elements cui ∈ R[θ] and thus ui ∈ Rp[θ] for 1 ≤ i ≤ m. This

proves that S ⊆ Rp[θ] and hence Sp = Rp[θ] as desired.

(iii)⇒(i) Let vp denote the discrete valuation of K with valuation ring Rp. Sup-

pose to the contrary that (i) does not hold. Then there exists ξ =
n−1∑
i=0

aiθ
i ∈ S, ai ∈ K

such that ξ does not belong to Rp[θ]. So there exists an index i for which ai does

not belong to Rp, i.e., min
i
{vp(ai)} < 0. Let b ∈ p be such that

vp(b) = −min
i
{vp(ai)} = −vp(aj) (say).

Then bξ =
n−1∑
i=0

aibθ
i belongs to Rp[θ] and vp(ajb) = 0. Choose c ∈ R\p such that

aibc ∈ R for all i, then ajbc ∈ R\p. Recall that b ∈ p, so bcξ =
n−1∑
i=0

aibcθ
i ∈ pS ∩R[θ]

but does not belong to p[θ], which contradicts (iii). This completes the proof of

(iii)⇒(i).

(i)⇒(iii) Clearly p[θ] ⊆ pS ∩ R[θ]. To prove equality, let η =
n−1∑
i=0

aiθ
i, ai ∈ R be

an element of pS ∩ R[θ]. By hypothesis S ⊆ Rp[θ], so η ∈ pRp[θ]; consequently

ai ∈ pRp ∩R = p for each i.

Proof of Theorem 1.1. In view of the hypothesis ℘i = pS + gi(θ)S, it is clear that

if ei > 1, then ℘2
i does not divide gi(θ)S. In case ei = 1 and ℘2

i divides gi(θ)S, then

on replacing gi(x) by gi(x) + π0, where π0 ∈ p\p2, we may assume without loss of

generality that ℘2
i - gi(θ)S, 1 ≤ i ≤ r.
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Suppose to the contrary that Sp 6= Rp[θ]. Then by Lemma 2.1, p[θ] $ pS ∩R[θ].

So there exists a polynomial

T (x) ∈ R[x], deg T (x) ≤ n− 1, n = [L : K] (4)

such that T (θ) ∈ pS but T (θ) does not belong to p[θ]. In particular, the polynomial

T̄ (x) with coefficients in R/p is non-zero. Set F (x) = g1(x)e1 ....gr(x)er . It follows

from (1) that

F (θ) ≡ 0(mod pS). (5)

Let D̄(x) denote the g.c.d. of F̄ (x) and T̄ (x). Write

D̄(x) =
r∏

i=1

ḡi(x)di , 0 ≤ di ≤ ei. (6)

There exist polynomials A(x), B(x) in R[x] and C(x) ∈ p[x] such that

A(x)F (x) + B(x)T (x) = D(x) + C(x).

Substituting x = θ in the above equation and keeping in mind (5) as well as the fact

T (θ) ≡ 0(mod pS), we have

D(θ) ≡ 0(mod pS). (7)

It follows from (6) and (7) that

r∏
i=1

gi(θ)
di ≡ 0(mod pS). (8)

Note that for i 6= j, ℘j and gi(θ)S are coprime, for otherwise ℘j divides gi(θ)S+pS =

℘i which is not so. It now follows from (8) and the factorization of pS that ℘ei
i

divides gi(θ)
diS. As assumed in the opening lines of the proof, ℘2

i does not divide

gi(θ)S. Therefore di ≥ ei for 1 ≤ i ≤ r, which together with (6) gives, di = ei and

consequently deg D̄(x) = deg F̄ (x) = n. But D̄(x) being the g.c.d. of F̄ (x) and
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T̄ (x) has degree not exceeding n−1 by virtue of (4). This contradiction proves that

Sp = Rp[θ].

3. Proof of Theorems 1.2, 1.3 and Corollary 1.4.

Proof of Theorem 1.2. Let ni denote the residual degree of ℘i/p. If a non-zero

prime ideal p of R does not divide iS/R, then there exists a generating element θ for

the extension L/K such that p does not divide NL/K(Cθ); consequently Sp = Rp[θ]

in view of Lemma 2.1. Theorem B then proves the existence of distinct monic

irreducible polynomials over R/p of degrees n1, ..., nt.

To prove the converse, suppose there exist distinct monic irreducible polynomials

V1(x), ..., Vt(x) over R/p with deg Vi = ni. We have to find a generating element θ ∈
S, such that p does note divide NL/K(Cθ). Let gi(x) ∈ R[x] be a monic polynomial

such that ḡi(x) = Vi(x). Since R has finite norm property, the finite field R/p has

only one extension S/℘i of degree ni. Hence every irreducible polynomial over R/p

of degree ni has a root in S/℘i. Therefore there exists an element θi ∈ S such that

gi(θi) ≡ 0(mod ℘i). Since R/p is a perfect field, an irreducible polynomial over R/p

cannot have multiple roots, so g′i(θi) does not belong to ℘i. If gi(θi) ∈ ℘2
i for some

i, then replacing θi by θi + πi with πi ∈ ℘i\℘
2
i and keeping in mind that

gi(θi + πi) = gi(θi) + πig
′
i(θi) +

π2
i

2!
g′′i (θi) + ....,

we see that gi(θi + πi) does not belong to ℘2
i . So it can be assumed without loss of

generality that gi(θi) does not belong to ℘2
i .

By Chinese Remainder Theorem, there exists ξ ∈ S satisfying ξ ≡ θi(mod ℘2
i ) for

1 ≤ i ≤ t. Choose η ∈ S such that L = K(ξ, η). Let l, m denote the degrees of exten-

sions of K(ξ)/K and L/K(ξ) respectively. Let ξ = ξ(1), ..., ξ(l) be the K−conjugates

of ξ and η = η(1), ..., η(m) be the K(ξ)−conjugates of η. Choose a non-zero element

a of p2 which is different from ξ(i)−ξ(i′)

η(j′)−η(j) for 1 ≤ i 6= i′ ≤ l, 1 ≤ j 6= j′ ≤ m; this is

possible because R and hence p2 is infinite. Then ξ(i) + aη(j), 1 ≤ i ≤ l, 1 ≤ j ≤ m
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are distinct. Thus θ = ξ + aη has lm distinct K-conjugates. So θ generates the

extension L/K and θ ≡ ξ ≡ θi(mod ℘2
i ), 1 ≤ i ≤ t. It will be shown that p does not

divide NL/K(Cθ).

Set Pi = pS + gi(θ)S, we first prove that

℘i = Pi = pS + gi(θ)S. (9)

It is clear that ℘i divides Pi but ℘2
i does not divide Pi (because gi(θ) does not

belong to ℘2
i ). Moreover for i 6= j we have ℘j does not divide Pi, since otherwise we

would have gi(θ) ≡ 0(mod ℘j) which would give gi(θj) ≡ 0(mod ℘j). But in view

of gj(θj) ≡ 0(mod ℘j), ḡi(x) and ḡj(x) would have a common root in S/℘j, which

is not possible, since they are relatively prime. As Pi divides pS, therefore Pi is

not divisible by prime ideals different from ℘1, ..., ℘t and so ℘i = Pi = pS + gi(θ)S,

1 ≤ i ≤ t.

Set F (x) = g1(x)e1 ...gt(x)et . Using (9) and proceeding exactly as in the proof of

Theorem 1.1, one can show that the assumption Sp 6= Rp[θ] leads to a contradiction.

Thus p does not divide NL/K(Cθ) in view of Lemma 2.1.

Proof of Theorem 1.3. Let q, n denote respectively the number of elements of R/p

and the degree of the extension L/K. Let rq(m) stand for the number of monic

irreducible polynomials of degree m over the finite field R/p. It is known that [4,

Chapter VII, Exercise 22]

rq(m) =
1

m

∑

d|m
µ(d)qm/d (10)

where µ is the Möbius function. Since a finite field has irreducible polynomials of all

degrees, the sum
∑

d|m
µ(d)qm/d on the right hand side of (10) is positive and divisible

by q, so

rq(m) ≥ q

m
. (11)
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Observe that for any k, 1 ≤ k ≤ n, in view of the fundamental equality (see [6,

Theorem 4.1]), there are atmost n/k prime ideals of S dividing p which have residual

degree k. Let p be a prime ideal dividing iS/R. So by Theorem 1.2, there exists a

number k, 1 ≤ k ≤ n such that rq(k) is strictly less than the number of prime ideals

of S lying over p with residual degree k, which is less than or equal to n/k in view

of the above observation. It now follows from (11) that

q

k
≤ rq(k) <

n

k

and hence q < n as desired.

Proof of Corollary 1.4. Applying Theorem 1.3, we see that if p divides iS/R, then

| R/p |< 3. Keeping in mind that there are only two linear monic irreducible poly-

nomials over the field of two elements and the fact that a finite field has irreducible

polynomials of each degree, the second assertion immediately follows from Theorem

1.2.
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