
ar
X

iv
:1

91
0.

09
12

3v
4 

 [
m

at
h.

A
C

] 
 9

 N
ov

 2
02

0

NÉRON DESINGULARIZATION OF EXTENSIONS OF
VALUATION RINGS

WITH AN APPENDIX BY KĘSTUTIS ČESNAVIČIUS

DORIN POPESCU

Abstract. Zariski’s local uniformization, a weak form of resolution of singular-
ities, implies that every valuation ring containing Q is a filtered direct limit of
smooth Q-algebras. Given an immediate extension of valuation rings V ⊂ V ′

containing Q we show that V ′ is a filtered direct limit of smooth V -algebras. This
corrects a paper of us [23] where we thought that we may reduce to the case when
the value groups are finitely generated. For this correction we use an infinite tower
of ultrapowers construction that rests on results from model theory.

1. A version of local uniformization

Zariski proved in characteristic 0 in [34], that any integral algebraic variety X
equipped with a dominant morphism v : Spec(V ) → X from a valuation ring V
can be “desingularized along V ”: there exists a proper birational map X̃ → X for
which the lift ṽ : Spec(V ) → X̃ of v supplied by the valuative criterion of properness
factors through the regular locus of X̃. This implies the following theorem.

Theorem 1. (Zariski) Every valuation ring V containing a field K of characteristic
zero is a filtered direct limit of smooth K-subalgebras of V (in particular they are
regular rings).

A smooth algebra is here finitely presented. A ring map A → A′ is ind-smooth
if A′ is a filtered direct limit of smooth A-algebras. A filtered direct limit (in other
words a filtered colimit) is a limit indexed by a small category that is filtered (see
[32, 002V] or [32, 04AX]). A filtered union is a filtered direct limit in which all
objects are subobjects of the final colimit, so that in particular all the transition
arrows are monomorphisms. The above theorem says that K → V is ind-smooth.
Actually, Zariski proved that V is a filtered union of smooth K-subalgebras of V .
One goal of this paper is to show a weaker statement:

Theorem 2. Let V ⊂ V ′ be an immediate extension of valuation rings containing
Q. Then V ⊂ V ′ is ind-smooth. If dimV = dimV ′ = 1 and the residue field
extension of V ⊂ V ′is trivial then V ⊂ V ′ is ind-smooth if and only if the value
group extension of V ⊂ V ′ is trivial.

The proof follows from Theorem 21, Lemma 29 and Proposition 38. The above
result was stated by mistake in [23] in a more general case. A different proof of
Theorem 1 is given in Theorem 35 and the method use some facts from model
theory described below.
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3. The method of proof. To achieve the desingularization claimed in Theorem
2, we replace the initial V by the limit Ṽ of a certain countable tower of iterated
ultrapowers of V , constructed in such a way that Ṽ would, in turn, be an immediate
extension of a filtered increasing union of valuation rings for which one knows local
uniformization. To then conclude, we argue that large immediate extensions and
ultrapowers interact well with desingularization.

The techniques we use include extensions of steps of the General Néron desin-
gularization, notably, Lemma 7 that is also key for reductions to complete rank
1 cases. In the purely transcendental case, Kaplansky’s classification [12] of Os-
trowski’s pseudo-convergent sequences plays an important role.

The utility of desingularizing immediate extensions is evident already in the case
when V ′ is complete of rank 1 with a finitely generated value group Γ′. Such a V ′ has
a coefficient field k, so, by choosing a presentation Γ′ ∼= Zval(x1)⊕· · ·⊕Zval(xn), one
obtains the immediate extension V ′ ∩ k(x1, . . . , xn) ⊂ V ′. To show that V = k ⊂ V ′

is ind-smooth, it remains to observe that a local uniformization of V ′∩k(x1, . . . , xn)
may be constructed using Perron’s algorithm in the style of Zariski.

The goal of the tower of ultrapowers argument given in the Appendix is to over-
come the obstacle that in general Γ may not be finitely generated and there may
not even be a group section s : Γ → K∗ to val : K∗ → Γ (roughly, such an s suf-
fices). Nevertheless, s can always be arranged for any finitely generated submonoid
of Γ, and the idea is to then use the following fact from model theory: for a system
of equations whose finite subsystems have solutions in V , the entire system has a
solution in a well-chosen ultrapower of V (see the Appendix).

This fact, which rests on the Keisler–Kunen theorem about the existence of good
ultrafilters, permits us to obtain s at the expense of passing to an ultrapower.
However, such a passage replaces Γ by its corresponding ultrapower Γ∗ and, in order
to extend s to this Γ∗, we then need another ultrapower and some model-theoretic
facts about algebraic compactness that ensure that Γ → Γ∗ be a split injection.
Even though the new ultrapower again enlarges the value group, by repeating the
construction countably many times, in the limit we find our final s and can conclude.

We should mention that the proof of the main part of Theorem 2 uses only Lemma
7 and Corollary 19. The last sentence from Theorem 2 needs the method explained
above together with some facts from André homology.

We owe thanks to Kęstutis Česnavičius especially for the Appendix, but also for
many ideas and his great help on the presentation of the paper. Also we owe thanks
to the referees who pointed out several mistakes in a previous version of the paper
especially in the former Proposition 20.

2. A reduction to the case of complete valuation rings of rank 1

We begin by reviewing the following class of generators of the singular ideal.
For a finitely presented ring map A → B, an element b ∈ B is standard over A

if there exists a presentation B ∼= A[X1, . . . , Xm]/I and f1, . . . , fr ∈ I with r ≤ m
such that b = b′b′′ with b′ = det((∂fi/∂Xj))1≤i, j≤r ∈ A[X1, . . . , Xm] and a b′′ ∈
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A[X1, . . . , Xm] that kills I/(f1, . . . , fr) (our standard element is a special power of
the standard element from [33, Definition, page 9] given in the particular case of the
valuation rings). Any multiple of an element b standard over A is standard over A.
The definition is compatible with base change: more precisely, for any morphism
A → A′, elements of B standard over A map to elements of B ⊗A A′ standard over
A′.

Lemma 4. For a finitely presented ring map A → B, the loci of vanishing of
standard over A elements of B cut out the locus of non-smoothness of Spec(B) →
Spec(A). The radical of the ideal generated by the elements of B standard over A is
HB/A.

Proof. The argument is standard (compare with [8], [33, 4.3]) but we include it due
to the lack of a convenient reference.

If b ∈ B is standard over A, then Bb is the localization of the standard smooth
A-algebra (A[X1, . . . , Xn]/(f1, . . . , fr))det((∂fi/∂Xj))1≤i, j≤r

(see [32, 00T8]), so is A-
smooth. Conversely, if Bb is the coordinate ring of a smooth neighborhood of a fixed
prime p ⊂ B, then we may choose a presentation B[X1, . . . , Xm]/I and f1, . . . , fr ∈ I
such that, at the expense of localizing at p further. The module (I/I2)b is a free Bb-
module with a basis given by the classes of f1, . . . , fr and (I/I2)b →

⊕m
i=1Bb ·dXi is

a split injection such that dXr+1, . . . , dXm maps to a basis for the quotient. The first
condition and Nakayama’s lemma [32, 00DV] then supply an i ∈ I with (1+i/bn)Ib ⊂
(f1, . . . , fr)b for some n > 0. It follows that bN (bn + i) for some N > 0 kills
I/(f1, . . . , fn) and maps to a power of b in B. The second condition implies that
b′ = det (∂fi/∂Xj))1≤i, j≤r is a unit in Bb, so that b′ divides some power of b in B.
In conclusion, some power of b is standard over A, as desired. �

To stress the relevance of the desingularization lemma 7, we recall the following
well-known lemma (see [33, (1.5)] or [32, 07C3]) and definitions, which will be crucial
throughout this paper.

Lemma 5. For a ring R and a set S of finitely presented R-algebras, an R-algebra
R′ is a filtered direct limit of elements of S if and only if every R-morphism B → R′

with B a finitely presented R-algebra factors as B → S → R′ for some S ∈ S.

By [26, 1.8] (see also [32, 07GC]), a map of Noetherian rings is ind-smooth if
and only if A′ is A-flat and has geometrically regular A-fibers. In particular, a field
extension K ′/K is ind-smooth if and only if it is separable.

Concretely, by Lemma 5, a ring map A → A′ is ind-smooth if and only if every
factorization A → B → A′ with B finitely presented over A can be refined to
A → B → S → A′ with S smooth (or merely ind-smooth) over A. Thus, a finite
product or a filtered direct limit of ind-smooth A-algebras is ind-smooth. Evidently,
ind-smooth morphisms are stable under base change. They are also stable under
compositions, in fact, we have the following slightly finer criterion.

Lemma 6. For an ind-smooth map A → A′ and a map A′ → A′′ such that for every
factorization A → B → A′′ with B finitely presented over A the induced factorization
A′ → A′ ⊗A B → A′′ can be refined to A′ → A′ ⊗A B → S ′ → A′′ for some smooth
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A′-algebra S ′, the map A → A′′ is ind-smooth. In particular, the composition of
ind-smooth maps is ind-smooth.

Proof. It suffices to argue that the map A → A′ → S ′ is ind-smooth. For this, we
express A′ as a filtered direct limit of smooth A-algebras Si, note that S ′ descends
to a smooth Si-algebra S ′

i for some i, and conclude that S ′ is then the filtered direct
limit of the smooth A-algebras S ′

j = Sj ⊗Si
S ′
i with j ≥ i. �

The following lemma originates in [24, (7.1)] and its variants have appeared, for
instance, in [33, 18.1], [26, 7.2], [32, 07CT], [15, Proposition 3], and [28, Proposition
5]. The version below differs in two aspects: we do not assume Noetherianness and do
not require the elements a or b to come from the base ring A. The latter improvement
is particularly convenient for our purposes—we recall that in the General Néron
desingularization arranging for b to come from A is an additional step before one
can apply the desingularization lemma (compare with, for instance, [32, 07F4]).

Lemma 7. For a commutative diagram of ring morphisms

B
((❘❘

❘❘
❘❘ B

b 7→ a
��

++❲❲❲❲
❲❲❲

❲❲

A
''PP

PP
PP

66❧❧❧❧❧❧
V that factors as follows A

44✐✐✐✐✐✐✐✐✐

))❚❚❚
❚❚

❚ V/a3V

A′

77♥♥♥♥♥♥
A′/a3A′

44❤❤❤❤❤

with B finitely presented over A, a b ∈ B that is standard over A, and a nonzerodi-
visor a ∈ A′ that maps to a nonzerodivisor in V that lies in every maximal ideal of
V , there is a smooth A′-algebra S such that the original diagram factors as follows:

B

##●
●
●
●
●
●
●

,,❨❨❨❨❨
❨❨❨

❨❨❨
❨❨❨

A
))❙❙

❙❙
❙❙

55❦❦❦❦❦❦ V.

A′ // S

55❦❦❦❦❦❦

Proof. The finitely presented A′-algebra B ⊗A A′ comes equipped with a morphism
to V and a retraction modulo b3 to A′/a3A′ that sends b to a. Moreover, the image
of b in B ⊗A A′ is standard over A′. Thus, by replacing A by A′ and B by B ⊗A A′,
we reduce to the case A = A′.

Since the images of a and b in V agree modulo a3V , these images are unit multiples
of each other. We write

B = A[X1, . . . , Xm]/I and f1, . . . , fr ∈ I

and choose b′ = det((∂fi/∂Xj)1≤i, j≤r) ∈ A[X1, . . . , Xm] and a b′′ ∈ A[X1, . . . , Xm]
that kills I/(f1, . . . , fr) with b = b′b′′ in B. In these coordinates, we fix a map

A[X1, . . . , Xm]

��

// // B // // B/b3B

��
A[X1, . . . , Xm]

f 7→f̃
// A that makes the diagram

A // // A/a3A

commute, so that f̃ ∈ a3A for every f ∈ I. In particular, the assumption b 7→ a

gives b̃′b′′ ≡ a mod a3A. It follows that

b̃′b′′ = au for some u ∈ 1 + a2A,

so that, in particular, u maps to a unit in V .
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We consider the m×m matrix ∆ given by



∂f1/∂X1 ∂f1/∂X2 . . . ∂f1/∂Xr ∂f1/∂Xr+1 ∂f1/∂Xr+2 . . . ∂f1/∂Xm

∂f2/∂X1 ∂f2/∂X2 . . . ∂f2/∂Xr ∂f2/∂Xr+1 ∂f2/∂Xr+2 . . . ∂f2/∂Xm
...

... . . . ...
...

... . . . ...
∂fr/∂X1 ∂fr/∂X2 . . . ∂fr/∂Xr ∂fr/∂Xr+1 ∂fr/∂Xr+2 . . . ∂fr/∂Xm

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

... . . . ...
...

... . . . ...
0 0 . . . 0 0 0 . . . 1




that satisfies det(∆) = b′. We let Ad(∆) denote the adjoint matrix, so that

Ad(∆) ·∆ = ∆ ·Ad(∆) = b′ · Idm×m.

We let xi and x′
i be the images in V of Xi and X̃i, respectively, so that, by con-

struction, xi − x′
i ∈ a3V . Moreover, a is a nonzerodivisor in V and there we have

that
( t1

...
tm

)
∆̃

(
(x1−x′

1)/a
2

...
(xm−x′

m)/a2

)
satisfies ti ∈ aV and a ˜b′′Ad(∆)

( t1
...
tm

)
= u

(
x1−x′

1

...
xm−x′

m

)
.

We let T1, . . . , Tm be new variables and set
( h1

...
hm

)
= u

(
X1−X̃1

...
Xm−X̃m

)
−a ˜b′′Ad(∆)

( T1

...
Tm

)
, so that hi ∈ A[X1, . . . , Xm, T1, . . . , Tm].

By construction, if we map Ti to ti in V , then the hi map to 0, so we obtain the
map

ϕ : Au[X1, . . . , Xm, T1, . . . , Tm]/(h1, . . . , hm) → V given by Xi 7→ xi, Ti 7→ ti.

Since we have inverted u, the source of this map may be identified with Au[T1, . . . , Tm].
To proceed further, we will use Taylor’s formula to express each fi in terms of this
identification.

By Taylor’s formula, for any ring R, any section R[X1, . . . , Xm]
f 7→ f̃
−−−→ R, and any

f ∈ R[X1, . . . , Xm],

f − f̃ −
m∑

i=1

˜(∂f/∂Xi)(Xi − X̃i) ∈ (X1 − X̃1, . . . , Xm − X̃m)
2 ⊂ R[X1, . . . , Xm].

In particular, by applying this with R = A[T1, . . . , Tm] and letting d denote the
maximal total degree of any monomial that appears in some fi, we obtain

Qi ∈ (T1, . . . , Tm)
2 ⊂ A[T1, . . . , Tm]

for which

udfi − udf̃i ≡ ud−1ab̃′′ ( ˜(∂fi/∂X1), . . . , ˜(∂fi/∂Xm))Ãd(∆)

( T1

...
Tm

)
+

a2Qi mod (h1, . . . , hm) ≡ ud−1ab̃′′b̃′Ti + a2Qi ≡ a2udTi + a2Qi mod (h1, . . . , hm)
5



We have f̃i = a2bi for some bi ∈ aA, and for 1 ≤ i ≤ r we set

gi = udbi + udTi +Qi ∈ A[T1, . . . , Tm], so that a2gi ≡ udfi mod (h1, . . . , hm).

This achieves the promised expression of fi in terms of the identification of the
source of ϕ with A[T1, . . . , Tm] and simultaneously shows that each gi vanishes in V ,
so that ϕ induces a map

ϕ : Au[X1, . . . , Xm, T1, . . . , Tm]/(I, g1, . . . , gr, h1, . . . , hm) → V.

In A[X1, . . . , Xm] the element b′b′′−au lies in the ideal (X1−X̃1, . . . , Xm−X̃m), so in
the quotient Au[X1, . . . , Xm, T1, . . . , Tm]/(h1, . . . , hm) it lies in the ideal a(T1, . . . , Tm).
It then follows from the definition of b′′ and the fact that after inverting u and mod-
ulo (h1, . . . , hm) the ideal (g1, . . . , gr) contains (f1, . . . , fr) that some element from
the coset a(u+ (T1, . . . , Tm)) kills the image of I in

Au[X1, . . . , Xm, T1, . . . , Tm]/(g1, . . . , gr, h1, . . . , hm).

Setting u′ = det((∂gi/∂Tj)1≤i,j≤r), we deduce that the same then holds in the local-
ization

(Au[X1, . . . , Xm, T1, . . . , Tm]/(g1, . . . , gr, h1, . . . , hm))u′
∼=

(Au[T1, . . . , Tm]/(g1, . . . , gr))u′.

However, the latter is smooth over A, to the effect that a is a nonzerodivisor in the
ring above. It follows that even some element u′′ ∈ u+ (T1, . . . , Tm) kills the image
of I in the ring above. By construction, both u′ and u′′ map to units in V and ϕ
factors through the A-smooth algebra

S = (Au[X1, . . . , Xm, T1, . . . , Tm]/(g1, . . . , gr, h1, . . . , hm))u′u′′ .

�

In some situations, when applying Lemma 7 we will not initially have a map
A′ → V . The following lifting lemma will help to bypass this obstacle. Its key novel
aspect is that the elements s, s′, and v need not come from the base ring A (compare
with [24, (8.1], [33, (17.1)], or [32, 07CP]).

Lemma 8. For a ring morphism A → V with V local, a smooth A-algebra S, an
element s ∈ S, a nonunit v ∈ V , and a factorization

A → S
s 7→ v
−−−→ V/vnV for some n ≥ 2,

there are a smooth A-algebra S ′, an element s′ ∈ S ′, and factorizations

A → S ′ s′ 7→uv
−−−−→ V with u ∈ V ∗ and A → S

s 7→ s′
−−−→ S ′/s′nS ′ → V/vnV ;

if s is the image of an element a ∈ A, then one may choose s′ = a.

Proof. Due to the local structure of smooth and étale morphisms [32, 054L,00UE],
by localizing S around the preimage of the maximal ideal of V , we may assume that
S is standard étale over a polynomial A-algebra, that is, that

S ∼= (A[X1, . . . , Xd, Y ]/(f))g·∂f/∂Y for some f, g ∈ A[X1, . . . , Xd, Y ] with f monic in Y .
6



For a suitable n ∈ N, some unit multiple of s ∈ S of the form (g · (∂f/∂Y ))N · s lifts
to an s̃ ∈ A[X1, . . . , Xd, Y ]. Letting x1, . . . , xd, y be some lifts to V of the images of
X1, . . . , Xd, Y in V/vnV , we find that the A-morphism

A[X1, . . . , Xd, Y ]
Xi 7→xi, Y 7→ y
−−−−−−−−→ V

maps s̃ to a unit multiple of v (as may be checked modulo vn), so it maps f to s̃nw
for some w ∈ V . Thus, we obtain the A-morphism

S ′ = (A[X1, . . . , Xd, Y,W ])g·∂f/∂Y ·∂(f−s̃nW )/∂Y /(f − s̃nW )
W 7→w
−−−−→ V.

By construction, S ′ is A-smooth and, setting s′ = s̃ · (g · ∂f/∂Y )−N in S ′ we have
the identification

S ′/s′nS ′ ∼= (A[X1, . . . , Xd, Y,W ])g·∂f/∂Y ·∂(f−s̃nW )/∂Y /(f, s
′n) ∼= ((S/snS)[W ])∂(f−s̃nW )/∂Y

with s′ corresponding to s and compatibly with the maps to V/vnV . The main part
of the claim follows, and for the remaining assertion about a note that if s is the
image of an a ∈ A, then we may choose N = 0 and s̃ = s′ = a above. �

For desingularizing valuation rings, the above lemmas will be useful in several
different ways. We illustrate this right away with the following results that facilitate
passage to completions.

Proposition 9. For a ring A, a dense extension of valuation rings (see Section 3)
V ⊂ V ′, K the fraction field of V , a ring morphism A → V , a finitely presented
A-algebra B, and maps

A → B → V such that B → K factors through some A-smooth localization of B

suppose that there exist a smooth A-algebra S ′ and a factorization A → B → S ′ →
V ′. Then there exist a smooth A-algebra S and a factorization A → B → S → V . In
particular, there exist a smooth A-algebra S and a factorization A → B → S → V
if there exist a smooth A-algebra Ŝ and a factorization A → B → Ŝ → V̂ , V̂ being
the completion of V .

Proof. By hypothesis HB/AV 6= 0 and let b ∈ HB/AV , b 6= 0. Let B ∼= A[Y ]/I,
Y = (Y1 . . . , Ym), I being a finitely generated ideal. Changing A by A[Z], B by
B[Z], the map B[Z] → V being given by Z → b, we may assume that b comes in
fact from A. Indeed, if S is given for B, let us say as in (1) then S[Z] could be
taken for B[Z] as in (1). Similarly as in [15, Lemma 4] we may assume that for some
polynomials f = (f1, . . . , fr) from I, we have b ∈ NMB for some N ∈ ((f) : I) and a
r×r-minor M of the Jacobian matrix (∂fi/∂Yj). Thus we may assume b is standard
for B over V , which is necessary later to apply Lemma 7. Note that the composite
map B → V → V/b3V ∼= V ′/b3V ′ factors through a smooth A/b3A-algebra. By
Lemma 7 B → V factors through a smooth A-algebra as well.

Indeed, since V/b3V ∼= V ′/b3V ′, Lemma 8 supplies a smooth A-algebra S ′
0, an

s′ ∈ S ′, a factorization A → S ′
0 → V that sends s′ to a unit multiple of b in V , and

7



a factorization
B/b3B // S ′/b3S ′

))❚❚
❚

b 7→ s′
��

A
77♦♦♦

,,❳❳❳❳
❳❳❳

❳❳❳
❳❳❳ V/b3V.

S ′
0/s

′3S ′
0

55❥❥❥

The local ring of S ′
0 at the preimage of the maximal ideal of V is a domain (see

[32, 033C], ) and s′ is nonzero in this local ring, so it is a nonzerodivisor there.
Thus, Lemma 7 applies and supplies a smooth S ′

0-algebra S ′′ with a factorization
A → B → S ′′ → V . Note that S ′′ is a smooth A-algebra. �

To draw further consequences, we will use the following well-known result of
Nagata (see [20, Theorem 4] or [32, 053E]).

Lemma 10. Any finitely generated, flat (equivalently, torsion free) algebra over a
valuation ring is finitely presented.

Corollary 11. For a local injection V → V ′ of valuation rings that induces a
separable extension K ′/K of fraction fields, if the map V → Ṽ ′ is ind-smooth, Ṽ ′

being the completion of V ′, then so is V → V ′.

Proof. The separability assumption and Lemma 10 imply that Proposition 9 applies
to every finite type V -subalgebra B ⊂ V ′: a limit argument reduces to showing that
the smooth locus of B over V is nonempty, which follows from the separability of
Frac(B)/K thanks to [10, (6.7.4.1) in IV2] and [10, (17.5.1) in IV4]. It then remains
to apply Lemma 5. �

The work above allows us to relate certain “formal desingularization” extensions
of valuation rings studied in [25, section 6] to “weak desingularization” (that is,
ind-smooth) extensions as follows.

Proposition 12. Fix a local injection V → V ′ of valuation rings with fraction fields
K → K ′ such that val(V \ {0}) is cofinal in val(V ′ \ {0}) and for each 0 6= v ∈ V
the map V/vV → V ′/vV ′ is ind-smooth, a finitely presented A-algebra B, and maps
V → B → V ′ such that the map B → K ′ factors through some V -smooth localization
of B. There is a smooth V -algebra S and a factorization V → B → S → V ′. If, in
addition, K ′/K is separable, then V ′ is ind-smooth over V .

Proof. In the case when K ′/K is separable, B could be any finite type V -subalgebra
of V ′, which is finitely presented by Lemma 10. So the last assertion follows from
the rest and Lemma 5. For the assertion about B, we use Lemma 4 to choose
an element b ∈ B standard over V that does not die in V ′. We assume that b is
not a unit in V ′ (or else we may set S = Bb) and we choose a 0 6= v ∈ V with
val(v) > val(b), where val(b) denotes the valuation of b considered in V ′. By our
assumptions, there are a smooth V/v3V -algebra S̄, an s ∈ S̄, and a factorization
V → B → S̄

s 7→ v
−−−→ V ′/v3V ′ such that b | s in S̄. Thus, since S̄ lifts to a smooth

V -algebra (see [3, (1.3.1)] or [32, 07M8]), Lemma 8 supplies a smooth V -algebra S ′,
an s′ ∈ S ′, a factorization V → S ′ → V ′ that sends s′ to a unit multiple of v, and
a factorization V → B → S̄

s 7→ s′
−−−→ S ′/s′3S ′ → V ′/v3V ′. Since b | s′ in S ′/s′3S ′, by
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replacing S ′ by its localization by an element of 1+ s′2S ′ if necessary we may ensure
that a | s′ in S ′ for some lift a ∈ S ′ of b ∈ S ′/s′3S ′. Then we have a factorization

V → B
b 7→ a
−−−→ S ′/a3S ′ → V ′/a3V ′.

As in the proof of Lemma 9, Lemma 7 then supplies a smooth V -algebra S. �

The following localization lemma, a variant of [27, Lemma 2], [33, (12.2)], or
[32, 07F9], will permit us to localize our valuation rings when arguing their ind-
smoothness.

Lemma 13. For ring maps A → B → V with B of finite type over A, a prime
P ⊂ V with preimage p ⊂ A, and a factorization A → B → S ′ → VP for a finitely
presented Ap-algebra S ′, there are a finitely presented A-algebra S, an s ∈ S with
Ss ⊗A Ap ≃ S ′[X,X−1], and a factorization

A → B → S → V such that S → VP factors as S → Ss ⊗A Ap → VP.

Proof. Following the argument of [33, (12.2)], we choose a presentation

S ′ ≃ (B ⊗A Ap)[X1, . . . , Xn]/(f1(X1, . . . , Xn), . . . , fm(X1, . . . , Xn))

(see [32, 00F4]) in which the polynomials fi have coefficients in B, and we set

S = B[X0, X1, . . . , Xn]/(X
N
0 f1(X1/X0, . . . , Xn/X0), . . . , X

N
0 fm(X1/X0, . . . , Xn/X0))

for a large enough N > 0 for which each XN
0 fi(X1/X0, . . . , Xn/X0) is a (necessarily

homogeneous) polynomial in X0, X1, . . . , Xn of positive degree and coefficients in B.
We set s = X0, so that a desired isomorphism Ss ⊗A Ap ≃ S ′[X,X−1] is induced
by the change of variables X0 7→ X and Xi 7→ XXi for 1 ≤ i ≤ n. To build the
map S → V , we first choose x1, . . . , xn ∈ V and t ∈ V \ P such that Xi maps to
xi/t ∈ VP. Continuing to use abusive notation for homogeneous polynomials, we
note that the (“homogeneous” in t, x1, . . . , xn) elements tNfi(x1/t, . . . , xn/t) of V die
in VP, so they are killed by some t′ ∈ V \P. Thus, the B-morphism

B[X0, X1, . . . , Xn] → V given by X0 7→ t′t, X1 7→ t′x1, . . . , Xn 7→ t′xn

factors through S. By construction, the resulting morphism S → VP factors through
the localization Ss ⊗A Ap of S, as desired. �

We are ready for the promised reduction to complete, one-dimensional valuation
rings.

Proposition 14. Consider the following property of a valuation ring V and a sub-
ring A ⊂ V :

(∗) every A → B → V with B a finite type A-algebra such that B → Frac(V )
factors through an A-smooth localization of B has a refinement A → B → S → V
with S smooth over A.

For a finite dimensional valuation ring V with a subfield A ⊂ V , if for all con-

secutive primes q′ ⊂ q ⊂ V the complete height one valuation ring ˜(V/q′)q satisfies
(∗), then so does V .
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Proof. We fix a finite type A-algebra B equipped with a factorization A → B → V
as in (∗), which we need to factor further as A → B → S → V for some smooth
A-algebra S. When B → V itself factors through an A-smooth localization of B,
there is nothing to show. Otherwise, since V is of finite height, we may choose the
minimal prime q ⊂ V whose preimage in B does not lie in the A-smooth locus of
Spec(B) and the largest prime q′ ( q ⊂ V properly contained in q (the assumption
in (∗) ensures that q′ exists). Thanks to Lemma 13, we may replace V by Vq to

reduce to the case when q is the maximal ideal (so that ˜(V/q′)q = Ṽ/q′): indeed,
once we resolve this case, then, by using Lemma 13, we will be able to refine B to
an A-algebra that either is smooth or for which q is strictly larger, and, by iteration,
we will then arrive at a desired S.

By Lemma 4, there is an element b ∈ B standard over A that maps to q \ q′. The
property from (∗) of Ṽ/q′ then supplies a smooth A-algebra S ′, an element s ∈ S ′

(the image of b), and a factorization

B

b 7→ s
��

,,❨❨❨❨❨
❨❨❨

A

55❥❥❥❥❥❥❥❥❥

))❙❙
❙❙

❙❙ Ṽ/q′/b3Ṽ/q′ ∼= V/b3V.

S ′/s3S ′

22❡❡❡❡❡❡❡❡

Thanks to Lemma 8, we may change S ′ in order to make sure that the map S ′/s3S ′ →
V/b3V lifts to an A-morphism S ′ → V . This puts us in a situation in which we
may apply Lemma 7 to obtain a smooth S ′-algebra S with a desired factorization
A → B → S → V . �

3. Ind-smoothness of large immediate extensions of valuation rings

Our next goal is to find a large class of extensions of valuation rings that are
ind-smooth. The argument combines classical results from valuation theory that
go back to Kaplansky, results from [23] (see Lemma 15 and its proof), and the
desingularization lemmas from Section 2.

Consider the case when V is not noetherian and its associated valuation has rank
one. In the Noetherian case a immediate extension of valuation rings V ⊂ V ′ is
dense, but in general case it need not be. If V ⊃ Q the problem is solved by
Ostrowski’s Defektsatz [22] but when the characteristic of the residue field of V is
> 0 the immediate algebraic extensions present extra difficulties.

An inclusion V ⊂ V ′ of valuation rings is an immediate extension if it is local
as a map of local rings and induces isomorphisms between the value groups and
the residue fields of V and V ′. For such a V ⊂ V ′, letting K ′/K be the induced
fraction field extension, we have V = V ′∩K (see [5, (4.1) in VI]). Moreover, for any
subextension K ′/K ′′/K and the valuation ring V ′′ = V ′ ∩ K ′′, both V ⊂ V ′′ and
V ′′ ⊂ V ′ are then also immediate extensions (to check the value group requirement
one uses that any v′′ ∈ V ′′ is a unit if and only if so is its image in V ′).

For example, for any valuation ring V , the extension V ⊂ Ṽ is immediate (see
[33]), Ṽ ′ being the completion of V ′.
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For a valuation ring V with the fraction field K, a sequence {vi}i<ω in K indexed
by the ordinals i less than a fixed limit ordinal ω is pseudo-convergent if

val(vi − vi′′) < val(vi′ − vi′′) (that is, val(vi − vi′) < val(vi′ − vi′′)) for i < i′ <
i′′ < ω (see [12], [33]). A (possibly nonunique) pseudo-limit of a pseudo-convergent
sequence {vi}i<ω is an element α ∈ K with

val(α− vi) < val(α− vi′) (that is, val(α− vi) = val(vi − vi′)) for i < i′ < ω. A
pseudo-convergent sequence {vi}i<ω in K is

(1) algebraic if some f ∈ K[T ] satisfies val(f(vi)) < val(f(vi′)) for large enough
i < i′ < ω;

(2) transcendental if each f ∈ K[T ] satisfies val(f(vi)) = val(f(vi′)) for large
enough i < i′ < ω.

(Here “large enough” means larger than a fixed ordinal ω′ < ω that is allowed to
depend on f .) In both cases, [12, Theorems 1, 2] describe the valuation of K ′ that
extends V of K. For instance, in the transcendental case, by [12, Theorem 2], this
valuation on K(t) is given by setting

val(((f(t))/(g(t))) = val(f(vi))− val(g(vi)) for large enough i < ω.

These results lead to [12, Theorem 4]: a valuation ring V has no nontrivial immediate
extensions if and only if each pseudo-convergent sequence in its fraction field K has
a pseudo-limit in K. If for all γ ∈ Γ, the value group of V , there exists i < i′

sufficiently large such that val(vi − vi′) > γ then we call {vi}i<ω fundamental. As in
[23, Lemma 3.2] we get the following lemma.

Lemma 15. For an immediate extension V ⊂ V ′ of valuation rings and a transcen-
dental pseudo-convergent sequence (vi)i<ω in K, which has a pseudo-limit v′ in K ′

but no pseudo-limit in K the valuation ring V ′′ = V ′ ∩K(v′) is a filtered union of
smooth V -subalgebras.

Proof. For each i set xi = (v′ − vi)/(vi+1 − vi), so that xi is a unit in V ′. Let m′ be
the maximal ideal of V ′. We show that for every polynomial 0 6= f ∈ V [t] it holds

f(v′) ∈ f(vi) · (1 +m′ ∩ V [xi]) for every large enough i < ω.

Since {vi}i<ω is transcendental, for each g(t) ∈ K[t], the value val(g(vi)) is constant
for large i. Moreover, for large i the values val(v′ − vi) are strictly increasing as i
increases. Thus, in the Taylor expansion1

f(v′) =
∑deg f

n=0 (D
(n)f)(vi) · (v

′ − vi)
n with D(n)f ∈ V [t]

the values val((D(n)f)(vi) · (v
′ − vi)

n) are pairwise distinct for every large enough i.
Consequently, since val(f(v′)) = val(f(vi)) for large i, we conclude that

val((D(n)f)(vi) · (v
′ − vi)

n) > val(f(vi)) for every n > 0 and large enough i < ω.

It remains to note that

(v′ − vi)
n = xn

i · (vi+1 − vi)
n and val(v′ − vi) = val(vi+1 − vi),

1The polynomials D(n)f ∈ R[t] for f ∈ R[t] make sense for any ring R: indeed, one constructs the
Taylor expansion in the universal case R = Z[a0, . . . , adeg f ] by using the equality n!·(D(n)f) = f (n).
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which is enough for our claim. In particular, we get that f(v′) is transcendental over
K. The element xi is transcendental over K, so V [xi] ⊂ V ′ is the polynomial algebra.
Moreover, for i < i′ < ω we have xi = xi′ ·(vi′+1−vi′)/(vi+1−vi)+(vi′−vi)/(vi+1−vi),
so V [xi] ⊂ V [xi′ ] ⊂ V ′. Consequently, we arrive at a nested sequence

{V [xi]m′∩V [xi]}i<ω of ind-smooth V -subalgebras of V ′,

and, it remains to show that every element of V ′′ belongs to some V [xi]m′∩V [xi]. In
fact, it suffices to show that each 0 6= f ∈ V [t] satisfies

f(v′) ∈ f(vi) · (1 +m′ ∩ V [xi]) for every large enough i < ω

which was done above. �

Lemma 16. For an immediate extension V ⊂ V ′ of valuation rings containing Q

with value group Γ ⊂ R every algebraic pseudo-convergent sequence (vi)i<α in K,
which is not a fundamental sequence but has a pseudo-limit v′ in K ′ has also a
pseudo-limit in K.

Proof. By [12, Theorem 3] there exists an immediate extension of valued fields K ⊂
K(u) such that u is algebraic over K and it is a pseudo-limit of (vi) in K(u). As
a consequence of Ostrowski’s Defektsatz [22, Sect 9, No 55] (see [23, Corollary 4.2],
or [25, Corollary 3.10]) we see that K ⊂ K(u) is dense, that is, u belongs to the
completion of K. Thus (vi) has a pseudo-limit in K by [25, Lemma 2.5]. �

Remark 17. The above lemma is false if the characteristic of the residue field of a
valuation rings is > 0 (see [25, Example 3.13] inspired by [22, Sect 9, No 57]).

Proposition 18. For an immediate extension V ⊂ V ′ of valuation rings containing
Q with value group Γ ⊂ R, V ′ is ind-smooth over V .

Proof. Applying Lemma 15 possible infinitely, even uncountably many, we find a
pure transcendental extension K ′′ ⊂ K ′ of K such that V ′′ = V ′∩K ′′ is ind-smooth
over V and all transcendental pseudo-convergent sequences in V ′′ over V having a
pseudo limit in V ′, which are not fundamental sequences, have pseudo-limits in V ′′.
By Lemma 16 we see that this holds also for algebraic pseudo-convergent sequences
from V ′′, which are not fundamental sequences. It follows that the extension V ′′ ⊂ V ′

is dense using [12, Theorem 1]. Now, it is enough to apply Lemma 7 to see that V ′ is
ind-smooth over V ′′. Indeed, let B ⊂ V ′ be a finitely generated V ′′-subalgebra and
w its inclusion. By separability, w(HB/V ′′) 6= 0 and choose an element d ∈ V ′′, which
is standard for B over V ′′. Then the composite map B → V ′ → V ′/d3V ′ ∼= V ′′/d3V ′′

factors obviously to a smooth V ′′/d3V ′′-algebra. By Lemma 7 w factors through a
smooth V ′′-algebra. �

Corollary 19. For an extension V ⊂ V ′ of valuation rings containing Q with the
same value group Γ ⊂ R, V ′ is ind-smooth over V .

Proof. By Proposition 9 we may reduce to the case when V , V ′ are complete and so
they are Henselian since dimV = 1 , that is, they contain their residue fields k, k′.
Let K, K ′ be the fraction fields of V , resp. V ′. Then V ′ is an immediate extension
of V ′′ = V ′ ∩K(k′) and so it is ind-smooth by the above proposition. Express k′ as
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a filtered union of some finitely generated field extensions (ki) of k. It is enough to
see that Vi = V ′ ∩K(ki) is an ind-smooth extension of V . But Vi is even essentially
smooth over V because ki is so over k. �

4. Extensions of valuation rings

The following proposition is an extension of Corollary 19.

Proposition 20. Let V ⊂ V ′ be an extension of valuation rings containing Q.
Suppose dimV < ∞ and the value group extension of V ⊂ V ′ is trivial. Then V ′ is
ind-smooth over V .

Proof. For the proof we apply Lemma 5.
Let E be a V -algebra of finite presentation, let us say E ∼= V [Y ]/I, Y =

(Y1 . . . , Ym), I being a finitely generated ideal. Let w : E → V ′ be a V -morphism.
We will show that w factors through a smooth V -algebra. E is finitely generated
and so it is Imw. By Lemma 10 we see that Imw is finitely presented. So we may
replace E by Imw, that is we may assume w injective. By separability we have
w(HE/V ) 6= 0, let us assume that w(HE/V )V

′ ⊃ zV ′ for some z ∈ V , z 6= 0. Replac-
ing z by a power of it we may assume that z =

∑s
i bib

′
i for some bi = det(∂fij/∂Yji)

for some systems of polynomials fi from I and b′′i ∈ V [Y ] which kills I/(fi). Simi-
larly as in [15, Lemma 4] we may assume that we can take s = 1, that is for some
polynomials f = (f1, . . . , fr) from I, we have z ∈ NME for some N ∈ ((f) : I) and
a r× r-minor M of the Jacobian matrix (∂fi/∂Yj) (since V ′ is a valuation ring this
reduction is much easier). Thus we may assume z is standard over V (see the be-
ginning of Section 2), which is necessary later to apply Lemma 7. Let q′2 ∈ SpecV ′,
be the minimal prime ideal of zV ′ and q2 = q′2 ∩ V . As the value group extension of
V ⊂ V ′ is trivial we have q′2 = q2V

′.
Let q1 ∈ SpecV , q1 ⊂ q2 be the greatest prime ideal of V not containing z.

Then q1 6= q2. The extension Vq2/q1Vq2 ⊂ V ′
q′2
/q1Vq′2

has the trivial value group

extension. and so it is ind-smooth by Corollary 19. The composite map E
w
−→ V ′ →

V ′
q′2
/q2V

′
q′2

factors by a smooth Vq2/q1Vq2-algebra G, let us say it is the composite

map E
α
−→ G

β
−→ V ′

q′2
/q2V

′
q′2

. We may assume that G = (Vq2/q1Vq2)[U ]g′h/(g), with
U = (U1, . . . , Ul), g′ = ∂g/∂U1, g, h ∈ V [U ] by [33, Theorem 2.5] and let β be given
by U + (g) → u + q1V

′
q′2

for some u ∈ (V ′
q′2
)l. Note that [33, Theorem 2.5] gives

just that a localization of G has the form a localization of C = (Vq2/q1Vq2)[U ]g′/(g)
and so the above composite map factors through a Ch for some h ∈ V [Y ]. Then
g(u) ≡ 0 modulo q1V

′
q′2

and in particular g(u) ≡ 0 modulo z3V ′
q′2

. Then g(u) = z3t

for some t ∈ V ′
q′2

. Note that the composite map E → V ′ → V ′
q′2

factors through
the smooth Vq2-algebra D = (Vq2[U, T ]/(g − z3T ))g′h modulo z3, where T → t. By
Lemma 7 we see that E → V ′

q′2
factors through a smooth D-algebra D′ which is also

smooth over Vq2. Using Lemma 13 we see that w factors through a finitely presented
V -algebra E ′′, let us say through a map w′′ : E ′′ → V ′ with w′′(HE′′/V ) 6⊂ q′2. More
precisely, by Lemma 13 there exist a finitely presented V -algebra E ′′ and c ∈ E ′′

with E ′′
c ⊗V Vq

∼= D′[X,X−1] and a factorization V → E → E ′′ → V ′ such that
13



E ′ → V ′
q′ factors through E ′ → E ′

c ⊗V Vq → V ′
q′ . Note that dimV ′ = dim V < ∞

because V, V ′ have the same value group. We arrive in finite steps using induction
on dimV ′/zV ′ in the case when z is a unit, that is we can embed E in a smooth
V -algebra. This is enough by Lemma 5. �

Theorem 21. Let V ⊂ V ′ be an immediate extension of valuation rings containing
Q. Then V ′ is ind-smooth over V .

Proof. Let K ⊂ K ′ be the fraction field of V ⊂ V ′ and K ′′ ⊂ K ′ a pure transcen-
dental extension of K generated by a transcendental basis of K ′/K, that is K ′/K is
algebraic. Applying Lemma 15 possible infinitely and even uncountably many, as in
Proposition 18 we see that V ′′ = V ′∩K ′′ is ind-smooth over V and all transcendental
pseudo-convergent sequences in V ′′ over V having a pseudo limit in V ′, which are
not fundamental sequences, have pseudo-limits in V ′′. Thus we reduce to show that
V ′ is ind-smooth over V when K ′/K is algebraic. Actually, it is enough to assume
K ′/K finite because V ′ is the filtered union of V ′ ∩L for all subfields L ⊂ K ′ which
are finite extension over K.

Let E = V [Y ]/I, Y = (Y1, . . . , Yn) be a finitely generated V -subalgebra of V ′

(so finitely presented by Lemma 10) and a map w : E → V ′. By Lemma 5 it is
enough to show that w factors through a smooth V -algebra. Consider HE/V and
a standard element z ∈ V for E over V , so w(z) ∈ w(HE/V )V

′, as in the proof of
Proposition 20. If V ⊂ V ′ is dense we may apply Proposition 9 to see that w factors
through a smooth V -algebra (note that w(HE/V ) 6= 0 says that the composite map
E → V ′ → K ′ factors through a smooth V -algebra). In the remaining case the
factorization is constructed in some steps: for the standard element z one chooses
adjacent prime ideals q1 ⊂ q of V such that w(z) ∈ qV ′ \ q1V

′ and construct

a factorization E → E ′ w′

−→ V ′ such that w′(HE′/V ) 6⊂ qV ′, where E ′ is finitely

presented over V . If after finite steps we get a factorization E → E(n) w(n)

−−→ V ′ such
that w(n)(HE(n)/V )V

′ = V ′ the goal is reached. A hard problem is to show that
we can find such E(n) in finite steps. For this we will consider a finite partition
Pi, i = 1, . . . , s of SpecV corresponding to those q ∈ SpecV which have the same
dimension fi = fq ≤ f = [K ′ : K] of the fraction field extension Kq ⊂ K ′

q of
V/q ⊂ V ′/qV ′. We will see that to each construction q1 change from one Pj to
another one from Pi with j < i and fi < fj. Finally we arrive in finite steps to the
case fq1 = 1, which is done easily as in the dense case.

Assume V ⊂ V ′ is not dense and q, q1, fq1, (Pi)1≤i≤s as above. More precisely, let
q′ ∈ Spec V ′ be the minimal prime ideal of w(z)V ′ and q = q′ ∩ V . Thus qV ′ = q′

because V ⊂ V ′ is immediate. Let q′1 ∈ Spec V ′ be the prime ideal corresponding
to the maximal ideal of the fraction ring of V ′ with respect to the multiplicative
system generated by z. Then q′1 is the biggest prime ideal of V ′ contained strictly
in q′ and so height(q′/q′1) = 1. Set q1 = q′1 ∩ V . We have fq ≤ fq1.

Let xq be a primitive element of the separable finite extension K ′
q/Kq and gq ∈

V/q[X ] be a primitive polynomial multiple of Irr(xq, Kq) by a nonzero constant of
K. Note that if q, q ∈ Pi, q ⊂ q then fq = fq = fi and gq remains irreducible over
V/q. Clearly, fs = 1 because fm = 1 for the maximal ideal m of V , the extension
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V ⊂ V ′ being immediate. A set Pi has a maximum element for inclusion namely
pi = ∪q∈Pi

q. Indeed, pi is clearly a prime ideal and if fpi < fi then fq < fi for some
q ∈ Pi, which is false.

Assume q1 ∈ Pj . If q1 6= pj then (V/q1)pj ⊂ (V ′/q1V
′)pjV ′ is in fact a localization

of (V/q1)[X ]/(gq1) because g′q1 = ∂gq1/∂X corresponds to a unit in (V ′/q1V
′)pj and

so the composite map E → V ′ → (V ′/q1V
′)pjV ′ factors through an etale V/q1-

algebra of the form ((V/q1)[X ]/(gq1)g′q1h for some h ∈ V [X ]. In particular E →

V ′ → (V ′/(z3))pjV ′ factors through an etale V/(z3)-algebra and by Lemma 7 the
map E → V ′ → V ′

pjV ′ factors through a smooth V -algebra. Using Lemma 13 we
see that w factors through a finitely presented V -algebra E ′, let us say through a
map w′ : E ′ → V ′ with w′(HE′/V ) 6⊂ pjV

′. Changing E by E ′ we see that the new
q belongs to Pi for some i > j. Moreover, the new q1 belongs also to Pi for some
i > j, because otherwise we get q1 = pj.

If q1 = pj then q ∈ Pj+1 and we apply Corollary 19. Then we see that (V/q1)q ⊂
(V ′/q′1)q′ is ind-smooth and as above we see that the composite map E → V ′ →
(V ′/q′1)q′ factors through a smooth V/q1-algebra and finally by Lemmas 7 and 13 we
get that w factors through a finitely presented V -algebra E ′, let us say through a
map w′ : E ′ → V ′ with w′(HE′/V ) 6⊂ qV ′. Now the new q1, that is the old q, belongs
to Pj+1. In some steps (at most s) we arrive to the case when fq1 = 1

If fq1 = 1 then we get fq′′1 = 1 for all q′′1 ∈ Spec V containing q1. Actually, we get
V/q = V ′/q′ and so in particular V/q ⊂ V ′/q′ is ind-smooth. Using Lemma 7 we
see that w factors through a smooth (in fact etale) V -algebra. Applying Lemma 5
we are done. �

Proposition 22. Let V ⊂ V ′ be an extension of valuation rings. Suppose that
(1) V is a discrete valuation ring extending Z(p) with π its local parameter, and

p a prime number.
(2) πV ′ is the maximal ideal of V ′,
(3) the residue field extension of V ⊂ V ′ is separable.

Then V → V ′ is ind-smooth.

Proof. Let E, w, HE/V , z be as in Proposition 20 and we may assume K ′ is the
fraction field of Imw. choose q′2 ∈ SpecV ′ a minimal prime ideal of w(HE/V )V

′.
If q′2 6= πV ′ then using Zariski’s Uniformization Theorem we may change E,w
with some E ′, w′ such that w′(HE′/V )V

′ 6⊂ q′2. Step by step we arrive to the case
when either w(HE/V )V

′ = V ′, or w(HE/V )V
′ is a πV ′-primary ideal. In the first

case, w factors through a localization of E which is smooth. In the second case,
q′1 = ∩i∈Nπ

iV ′ is a prime ideal and the composite map V → V ′ → V ′/q′1 is a regular
map of discrete valuation rings and so an ind-smooth map by the classical Néron
Desingularization. The proof ends by using Lemma 5. �

Corollary 23. Let V be a discrete valuation ring extending Z(p) with p a prime
number and V ′ an ultrapower of V with respect to a nonprincipal ultrafilter on N.
Then V ⊂ V ′ is ind-smooth.

For the proof note that the maximal ideal of V generates the maximal ideal of V ′

and apply the above proposition.
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Proposition 24. Let V be a discrete valuation ring extending Z(p) with p a prime
number and V ⊂ V ′ an extension of valuation rings such that

(1) p is a local parameter of V ,
(2) pV ′ is a m′-primary ideal of V ′, where m′ is the maximal ideal of V ′,
(3) the residue field extension of V ⊂ V ′ is separable.

Then V ′ is a filtered direct limit of regular local rings essentially of finite type over
V .

Proof. As in Proposition 22 we may consider w : E → V ′ and we may reduce
to the case when w′(HE′/V )V

′ is m′-primary ideal. We may assume that ps is a
standard for E over V for some s ∈ N and as in the proof of [30, Theorem 3.6]
there exists a local essentially smooth V -algebra G and b ∈ G such that the map
E/p3sE → V ′/p3sV ′ factors through G/(p3s, p − b). Then a variant of Lemma 7
in the idea of [30, Proposition 3.4] shows that w factors through a local essentially
smooth D = G/(p− b)-algebra D′. This D′ is regular local since D is so. Now apply
Lemma 5. �

5. Structure of equicharacteristic valuation rings possessing a
cross-section

Modulo all the reductions and simplifications that go into the overall proof of
Theorem 2, our ultimate source of expressions of valuation rings as filtered direct
limits of smooth rings is Lemma 26 below. This lemma describes some valuations
on an affine space for which local uniformizations can be constructed by successively
blowing up regular centers as in [31, 4.5, 4.19] following Perron’s algorithm (whose
relevance to the resolution of singularities was explained already in [34]). We present
a more direct argument for this uniformization that is close to [23, Lemma 4.6]
and rests on the following lemma that captures the “combinatorial” part of local
uniformization.

We will need the following lemma (see [7, 2.2], or [23, 4.6.1], or [9, 6.1.30]).

Lemma 25. For a totally ordered abelian group Γ, the submonoid Γ≥0 ⊂ Γ of
nonnegative elements is a filtered union of its finite free submonoids isomorphic to
Zr

≥0, where r ∈ Z≥0 need not be constant.

We include a mixed characteristic version of the following lemma because it re-
quires virtually no additional effort in comparison to the equicharacteristic case that
we will use below.

Lemma 26. (1) For a field F, a valuation ring F ⊂ V with fraction field
F(x1, . . . , xn) such that val(x1), . . . , val(xn) are Z-linearly independent is
a countable direct union of essentially smooth F-algebras.

(2) For a discrete valuation ring Λ with uniformizer π and fraction field F, a
valuation ring Λ ⊂ V that dominates Λ and has fraction field F(x1, . . . , xn)
such that val(π), val(x1), . . . , val(xn) are Z-linearly independent is a countable
direct union of regular local Λ-algebras of the form

(Λ[Y1, . . . , Yn+1]/(π − Y b1
1 · · ·Y

bn+1

n+1 ))(Y1, ..., Yn+1) with gcd(b1, . . . , bn+1) = 1.
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Proof. To avoid repeating the argument, we will prove both claims simultaneously,
so in (1) we set Λ = F and π = 0 and in both parts we set p =Char(Λ/(π)). By [5,
Theorem 1 in VI (10.3)],

γ1 = val(x1), . . . , γn = val(xn), γn+1 = val(π) (resp. γn+1 = 0 if π = 0)

satisfy Γ ∼= Zγ1 ⊕ · · · ⊕ Zγn+1, where Γ is the value group of V . We set N = n + 1
(resp., N = n if π = 0) and use Lemma 25 to find a countable sequence Γ0 ⊂ Γ1 ⊂ . . .
of submonoids of Γ≥0 with Γi ≃ ZN

≥0 for each i and Γ≥0 =
⋃

i≥0 Γi. We fix a Z≥0-basis
νi1, . . . , νiN of Γi with (ν01, . . . , ν0N) = (γ1, . . . , γN), so that the elements νi1, . . . , νiN
are Z-linearly independent in Γ, and we express them in terms of the fixed Z-basis:

νij = dij1γ1 + · · ·+ dijNγN for unique dij1, . . . , dijN ∈ Z and every j = 1, . . . , N.

We set xn+1 = π and note that, by construction, for each i ≥ 0 and 1 ≤ j ≤ N , the
element

yij = x
dij1
1 · · ·x

dijN
N ∈ F(x1, . . . , xn) has valuation νij .

Since Γi′ ⊂ Γi for i′ < i, each yi′j is in a unique way a monomial in the elements
yi1, . . . , yiN :

if we express νi′j = bi′i1νi1+· · ·+bi′iNνiN with bi′ij ∈ Z≥0, then yi′j = y
bi′i1
i1 · · · y

bi′iN
iN .

Since the valuations of yi1, . . . , yiN are Z-linearly independent, the Λ-subalgebra
Λ[yi1, . . . , yiN ] of F(x1, . . . , xn) is the regular ring

Λ[Yi1, . . . , YiN ]/(π − Y b1
i1 · · ·Y bN

iN ) with bi = b0Ni (resp. Λ[Yi1, . . . , YiN ] if π = 0),

where gcd(b1, . . . , bN) = 1 because val(π) is assumed to be a primitive element of Γ
when π 6= 0. In particular, we obtain a nested sequence of Λ-subalgebras

Ri = Λ[yi1, . . . , yiN ](yi1, ..., yiN ) ⊂ V

that are regular (resp., essentially smooth if π = 0) and it remains to argue that
every f ∈ V belongs to some Ri. For this, we first express f as a rational function
as follows:

f = (
∑

λs1, ..., sNx
s1
1 · · ·xsN

N )/(
∑

λ′
r1, ..., rN

xr1
1 · · ·xrN

N ) with λs1, ..., sN , λ
′
r1, ..., rN

∈ Λ×∪{0}.

The linear independence of the γi ensures that the valuations of the monomials that
appear in the numerator (resp., denominator) are all distinct. Thus, by taking out
the monomials with minimal valuations, we reduce to showing that every xα1

1 · · ·xαN

N

with αj ∈ Z and α1γ1 + · · ·+ αNγN > 0 is a product of nonnegative powers of the
elements yi1, . . . , yiN for some i ≥ 0. For this, it suffices to note that α1γ1+· · ·+αnγn
lies in some Γi, and then to express it as a Z≥0-linear combination of the νi1, . . . , νiN :
more precisely, if α1γ1 + · · ·+ αNγN = c1νi1 + · · ·+ cNνiN with cj ∈ Z≥0, then

xα1
1 · · ·xαN

N = yc1i1 · · · y
cN
iN .

�

For a valuation ring V with the value group Γ and the fraction field K, a cross-
section of V is a section

s : Γ → K∗ in the category of abelian groups of the valuation map val : K∗ → Γ.
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(see for details in the Appendix).

Proposition 27. An equicharacteristic valuation ring V that has a cross-section
s : Γ → K∗ and a subfield k ⊂ V lifting the residue field is an immediate extension

V0 =
⋃

i

Vi ⊂ V

of a filtered union of valuation subrings Vi ⊂ V dominated by V such that each Vi

has a finitely generated value group, is a countable increasing union of localizations
of smooth k-subalgebras of V so V0 is ind-smooth over k, and has the restriction of
s as a cross-section.

Proof. By Lemma 25, the submonoid Γ≥0 ⊂ Γ of positive elements is a filtered union
Γ≥0 =

⋃
i Γi of submonoids Γi ≃ Zdi

≥0 with di ≥ 0. Thus, the cross-section s gives
rise to the filtered system of subfields ki = k(s(γ) | γ ∈ Γi) of the field of fractions
K of V . By choosing a Z≥0-basis for Γi and applying [5, Theorem 1, in VI section
10] we see that each ki is a purely transcendental extension of k and that the value
group of the valuation subring Vi = V ∩ ki of V is Zdi ≃ ZΓi ⊂ Γ. By construction,
s restricts to a cross-section of Vi and, by Lemma 26, each Vi is a filtered union
of localizations of k-subalgebras. The construction ensures that V is an immediate
extension of the resulting V0. �

6. Counterexamples when the value groups are finitely generated

Lemma 28. Let V ⊂ V ′ be an extension of valuation rings which is ind-smooth.
Then ΩV ′/V , that is H0(V, V

′, V ′) in terms of Andre-Quillen homology, is a flat
V ′-module and H1(V, V

′, V ′) = 0 (the last homology is usually denoted by ΓV ′/V ).

Proof. Assume that V ′ is the filtered direct limit of some smooth V -algebras Bi,
i ∈ I. Then ΩBi/V is projective over Bi and H1(V,Bi, Bi) = 0 by e.g [33, Theorem
3.4]. But ΩV ′/V , and H1(V, V

′, V ′) are filtered direct limits of V ′ ⊗Bi
ΩBi/V resp.

V ⊗Bi
H1(V,Bi, Bi) by [33, Lemma 3.2], which is enough. �

Lemma 29. Let V ⊂ V ′ be an extension of valuation rings of dimension one with
the same residue field and let Γ ( Γ′ be their value group extension. Assume that
Γ′/Γ has torsion. Then the extension V ⊂ V ′ is not ind-smooth.

Proof. Let γ ∈ Γ′ \ Γ be such that nγ ∈ Γ for some positive integer n. Choose an
element x ∈ V ′ such that val(x) = γ. Then xn = zt for some z ∈ V and an unit
t ∈ V ′. Thus the system S of polynomials Xn = zT , TT ′ = 1 over V has a solution
in V ′. If V ′ is ind-smooth over V then S has a solution in a smooth V -algebra and
so one (x̃, t̃, t̃′) in the completion of V . But then γ = val(z)/n = val(x̃) must be in
Γ which is false. �

Lemma 30. Let V ⊂ V ′ be an extension of valuation rings of dimension one con-
taining Q having the same residue field k. Assume that V contains k and its value
group Γ ⊂ R is dense in R. Also assume that the value group Γ′ ⊂ R of V ′ is
finitely generated (that is finitely generated over 0), Γ 6= Γ′ and Γ′/Γ has no torsion.
Then the extension V ⊂ V ′ is not ind-smooth.
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Proof. Since Γ is free over Z we may take a basis of positive elements γ1, . . . , γm of
Γ which may be completed with some positive elements γm+1, . . . , γn ∈ Γ′ to a basis
of Γ′. Choose x1, . . . , xm ∈ V and xm+1, . . . , xn ∈ V ′ such that val(xi) = γi. Let
V0 = V ∩ k(x1, . . . , xm) and V ′

0 = V ′ ∩ k(x1, . . . , xn).
We will show that ΩV ′

0/V0
has torsion. First assume that n = m + 1. We will

use the proof of [23, Lemma 7.2]. By Lemma 25 Γ+ = ∪j∈NΓj for some monoids
Γj ⊂ Γ+ generated by bases of Γ, the union being filtered. We consider as in the
quoted lemma two real sequences (ui), (vi) which converge in R to γn and such that

1) uj, vj ∈ Γj and uj+1 − uj, vj − vj+1 ∈ Γj+1,
2) vj − uj is an element of the basis νj of Γ generating Γj, we may assume

vj − uj = νj1.
3) uj < γn < vj for all j.
We may also suppose that uj+1 − uj = vj − vj+1 if necessary restricting to a

subsequence of (Γj). Let aj , bj be in V with values uj, resp. vj, and take yjn = xn/aj
and zjn = bj/xn in V ′. As in the proof of Lemma 4.2 a), we have νji = dji1γ1 +

. . .+ djimγm and set yji = x
dji1
1 · · ·x

djim
m ∈ V which has valuation νji, i ∈ [m]. Then

V0 is a filtered union of localizations Bj of k[yj1, . . . , yjm] and V ′
0 is a filtered union

of localizations Cj of Bj [Zj, Z
′
j]/(ZjZ

′
j − yj1) ∼= Bj [zj , z

′
j], where zj = xn/aj and

z′j = bj/xn in V ′. Note that the map Cj → Cj+1 is given by Zj → (aj+1/aj)Zj+1,
Z ′

j → (bj/bj+1)Z
′
j+1.

We claim that the map fj : Cj+1 ⊗Cj
ΩCj/Bj

→ ΩCj+1/Bj+1
given by dzj →

(aj+1/aj)dzj+1, dz′j → (bj/bj+1)dz
′
j+1 is injective. Indeed, an element from Ker fj

induced by w = α⊗ dzj + β ⊗ dz′j, α, β ∈ Cj+1 must go by fj in

α(aj+1/aj)dzj+1 + β(bj/bj+1)dz
′
j+1 ∈< z′j+1dzj+1 + zj+1dz

′
j+1 >

in Cj+1dzj+1 ⊕ Cj+1dz
′
j+1. So α(aj+1/aj) = µz′j+1 and β(bj/bj+1) = µzj+1 for some

µ ∈ Cj+1. It follows that

w = (µ(bj+1/bj)(aj+1/aj))⊗ z′jdzj + (µ(bj+1/bj)(aj+1/aj))⊗ zjdz
′
j

belongs to < z′jdzj + zjdz
′
j >, which shows our claim.

We may assume that val(zj) ≤ val(z′j). For some j′ ≥ j we have z′j = tjzj in Cj′

for some tj in Cj′. We have dzj , dz
′
j in ΩCj′/Bj′

and zjw
′
j = 0, for w′

j = dz′j + tjdzj.
So Cj′ ⊗Cj

ΩCj/Bj
is not torsion free. Here we should point out that the localizations

are given by elements from ρ + ((yj′i)i, zj′, z
′
j′), ρ ∈ k, ρ 6= 0, which cannot kill w′

j.
Since fj are injective we see that ΩV ′

0/V0
has torsion.

Now assume that n > m + 1 and consider V ′′
0 = V ′ ∩ k(x1, . . . , xn−1). Apply

induction on n−m, the case n−m = 1 having been considered above. By induction
hypothesis, we assume that ΩV ′′

0 /V0
has torsion. As above V ′′

0 is a filtered direct limit
of some localizations B̃j of k[ỹj1, . . . , ỹj,n−1] and V ′

0 is the filtered direct limit of some
localizations C̃j of B̃j [z̃j , z̃

′
j]. Set Ij = (ZjZ

′
j − ỹj1) ⊂ B̃j [Zj, Z

′
j]. By definition we

have the following exact sequence

0 → H1(B̃j , C̃j, C̃j) → Ij/I
2
j

d
−→ C̃jdz̃j ⊕ C̃jdz̃

′
j → ΩC̃j/B̃j

→ 0.
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If h ∈ Ij induces an element in Ker d then we get

(∂h/∂Zj)(z̃j, z̃
′
j)dz̃j ⊕ (∂h/∂Z ′

j)(z̃j , z̃
′
j)dz̃

′
j = 0.

But h = h̃(ZjZ
′
j − ỹj1) for some h̃ ∈ B̃j[Zj , Z

′j] and it follows h̃(z̃j , z̃
′
j)z̃

′
j = 0, that

is h̃(z̃j , z̃
′
j) = 0 and so h̃ ∈ Ij . Hence d is injective and H1(B̃j, C̃j, C̃j) = 0.

In the Jacobi-Zariski sequence ([33, Theorem 3.3] applied to V0 → V ′′
0 → V ′

0

0 = H1(V
′′
0 , V

′
0 , V

′
0) → V ′

0 ⊗V ′′
0
ΩV ′′

0 /V0

λ
−→ ΩV ′

0/V0
→ ΩV ′

0/V
′′
0
→ 0

we see that the map λ is injective. It follows that ΩV ′
0/V0

has torsion which proves
our claim.

By Proposition 18 the immediate extension V0 ⊂ V is ind-smooth. Assume,
aiming for contradiction, that V ′ is ind-smooth over V . Then V ′ is ind-smooth over
V0 and by the above lemma we get ΩV ′/V0

flat over V ′. Again by Proposition 18 we
have V ′ ind-smooth over V ′

0 . As in the above lemma we obtain that ΩV ′/V ′
0

is a flat
module over V ′. In the Jacobi-Zariski sequence applied to V0 → V ′

0 → V ′

H1(V
′
0 , V

′, V ′) → V ′ ⊗V ′
0
ΩV ′

0/V0
→ ΩV ′/V0

→ ΩV ′/V ′
0
→ 0

we have H1(V
′
0 , V

′, V ′) = 0 and the last two modules are flat by the above lemma.
We obtain that V ′ ⊗V ′

0
ΩV ′

0/V0
is flat also over V ′ and so ΩV ′

0/V0
is also flat, which is

not possible because it has torsion. Thus V ′ is not ind-smooth over V . �

Remark 31. In the above proof the main point was to show that when Γ′/Γ 6= 0 has
no torsion then ΩV ′

0/V0
has torsion.

Lemma 32. Let V ⊂ V ′ be an extension of valuation rings of dimension one con-
taining Q. Assume that V contains its residue field and its value group Γ ⊂ R is
dense in R. Also assume that the value group Γ′ ⊂ R of V ′ is finitely generated and
Γ′/Γ, Γ 6= Γ′ has no torsion. Then the extension V ⊂ V ′ is not ind-smooth.

Proof. In the proof of Lemma 30 take W = V ′ ∩ Frac(V )(xm+1, . . . , xn). Then the
extension V ⊂ W has the same residue field but the value group extension is Γ ⊂ Γ′.
Then ΩW/V has torsion as in the proof of the quoted lemma. In the Jacobi-Zariski
sequence applied to V,W, V ′

H1(W,V ′, V ′) → V ′ ⊗W ΩW/V → ΩV ′/V

we see that the left module is zero because the valuation extension W ⊂ V ′ is ind-
smooth (see Lemma 28), having the same value group (see Corollary 19). It follows
that ΩV ′/V has torsion. But if V ⊂ V ′ is ind-smooth then ΩV ′/V is torsion free. So
V ⊂ V ′ is not ind-smooth. �

Lemma 33. Let V ⊂ V ′ be an extension of valuation rings of dimension one con-
taining Q with value groups Γ ⊂ Γ′ and having the same residue field k. Assume
that V contains k and its value group Γ ⊂ R is dense in R. Also assume that the
value group Γ′/Γ 6= 0 has no torsion and V ′ has a cross-section s : Γ′ → K ′∗ such
that s(Γ) ⊂ K∗, K,K ′ being the fraction fields of V , resp. V ′. Then the extension
V ⊂ V ′ is not ind-smooth.
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Proof. We follow the proof of the above lemma. Take V0 = V ∩ k(s(Γ)) and V ′
0 =

V ′∩k(s(Γ′)). For every finitely generated Γ1 ⊂ Γ and Γ′
1 ⊂ Γ′ such that Γ1 ⊂ Γ′

1 6⊂ Γ
we see as in the above lemma that for V10 = V ∩ k(s(Γ1)), V ′

10 = V ′ ∩ k(s(Γ′
1)) we

have a torsion in ΩV ′
10/V10

. Then as in the above lemma we get a torsion in ΩV ′
0/V0

by [33, Lemma 3.2] and so in ΩV ′/V which implies that V ′ is not ind-smooth over V
by Lemma 29. �

Lemma 34. Let V ⊂ V ′ be an extension of valuation rings of dimension one con-
taining Q with value groups Γ ⊂ Γ′. Assume that V contains its residue field and
its value group Γ ⊂ R is dense in R. Also assume that the group Γ′/Γ 6= 0 has no
torsion and V ′ has a cross-section s : Γ′ → K ′∗ such that s(Γ) ⊂ K∗, K,K ′ being
the fraction fields of V , resp. V ′. Then the extension V ⊂ V ′ is not ind-smooth.

The proof follows as in Lemma 33 using now Lemma 32.

7. The case when the value group is not finitely generated

A weaker form of Theorem 1 is given below with an independent proof (note that
in the proof of Theorem 21 we do not use the Zariski’s Uniformization Theorem.

Theorem 35. Every valuation ring V containing its residue field k of characteristic
zero is a filtered direct limit of smooth k-algebras (Ri)i, that is the inclusion k ⊂ V
is ind-smooth (in particular, all the Ri are regular rings).

Proof. Let Γ be the value group of V , K the fraction field of V and k̃, Γ̃, Ṽ , K̃,
s̃ : Γ̃ → K̃∗ be given as in Theorem A.10. Note that in the proof of Theorem
A.10 the ultrapoduct k1 ⊂ V1 of k ⊂ V gives an inclusion in V1 of its residue field.
More precisely, given a map f : A → B the ultrapower of f is the map between
the ultrapowers of A and B given by [ai] → [f(ai)]. By induction we see that the
ultraproduct kn ⊂ Vn of kn−1 ⊂ Vn−1 gives an inclusion in Vn of its residue field.
Thus Ṽ = ∪n∈NVn contains its residue field k̃ = ∪n∈Nkn.

By Proposition 27 we see that Ṽ is an immediate extension of a valuation ring
Ṽ0 which is a filtered union of localizations of smooth k̃-algebras. By Theorem 21
we get Ṽ0 ⊂ Ṽ ind-smooth. Hence k ⊂ Ṽ is ind-smooth because k ⊂ k̃ is separable
and so ind-smooth (see Lemma 6). It follows that k ⊂ V is ind-smooth too. Indeed,
let E = k[Y ]/I, Y = (Y1, . . . , Yn) be a finitely generated k-algebra and w : E → V
be a morphism of k-algebras. For the result we will apply Lemma 5 if we show
that w factors through a smooth k-algebra. But the composite map E → V → Ṽ
factors through a smooth k-algebra S = k[Z]/(h), Z = (Z1, . . . , Zs) for a system of
polynomials h from k[Z], thus it is the composite map E

t
−→ S

w̃
−→ Ṽ , where w̃ is

given by Z → z̃ ∈ Ṽ s and t is induced by Y → g ∈ k[Z]n. Then z̃ is a solution of
h and of the system P of polynomial equations g(Z) = w(Y ) over V . Actually, z̃
belongs to some Vn and so h, P has also a solution zn−1 in Vn−1 because Vn is an
ultrapower of Vn−1. By induction we get a solution z ∈ V of h, P . Therefore, w
factors through the map S → V , Z → z. �

Lemma 36. Let B be an A-algebra and An, Bn be the product of n-copies of A,
resp. B. Then ΩBn/An

∼= Ωn
B/A and H1(A

n, Bn, Bn) ∼= H1(A,B,B)n .
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Proof. We treat only the case n = 2. If B = A[X ]/I, X = (Xi)i then B2 =
A2[X ]/J , where J is given by polynomials of the form hf,g =

∑
j=(j1,...,js)

(aj, bj)X
j

for some polynomials f =
∑

ajXj , g =
∑

bjX
j from I. Then ΩB2/A2 is the cokernel

of the map d : J/J2 → ⊕iB
2dXi given by hf,g →

∑
i(∂f/∂Xi, ∂g/∂Xi)dXi =∑

i(∂f/∂XidXi, ∂g/∂XidXi). Also H1(A
2, B2, B2) is the kernel of d and note that

d(h(f,g)) = 0 if and only if d0(f) = 0 and d0(g) = 0, d0 being the map I/I2 →
⊕iBdXi . Hence ΩB2/A2

∼= Ω2
B/A and H1(A

2, B2, B2) ∼= H1(A,B,B)2. �

Lemma 37. Let B be an A-algebra, U and ultrafilter on a set U and B̃, resp. Ã
the ultrapowers of B (see the Appendix for the details), resp. A with respect to
U . Then ΩB̃/Ã (resp. H1(Ã, B̃, B̃)) is the corresponding ultrapower of ΩB/A (resp.
H1(A,B,B)) with respect to U . In particular, ΩB/A has torsion if and only if ΩB̃/Ã

has torsion and H1(Ã, B̃, B̃) = 0 if and only if H1(A,B,B) = 0.

For the proof note for example that ΩB̃/Ã is the direct limit of Πu∈U(ΩB/A)u, where
(ΩB/A)u = ΩB/A (see the Appendix).

Proposition 38. Let V ⊂ V ′ be an extension of valuation rings of dimension one
containing Q such that its residue field extension is trivial. Assume that the value
groups Γ,Γ′ ⊂ R of V respectively V ′ are dense in R and the factor of the value
groups Γ′/Γ 6= 0 has no torsion. Then the extension V ⊂ V ′ is not ind-smooth.

Proof. Using Proposition 9 we may suppose that V, V ′ are complete. So V contains
its residue field. By Variant A.11 we find an extension of valuation rings Ṽ ⊂ Ṽ ′

such that there exists a cross-section s̃ : Γ̃′ → (K̃ ′)∗ such that s̃(Γ̃) ⊂ K̃. We remind
that we wrote Γ′ as a filtered union of finitely generated subgroups (Γ′

i)i∈I and set
Γi = Γ′

i ∩Γ. Set V0i = V ∩ s′(Γi) = V ′ ∩ s′(Γi), V ′
0i = V ′ ∩ s′(Γ′

i). By Remark 31 the
modules ΩV ′

0i/V0i
, i ∈ I have torsion. Note that the filtered union V01 of V0i, i ∈ I is

a valuation ring with value group Γ, and similarly consider V ′
01 which has the value

group Γ′. Clearly, ΩV ′
01/V01

has torsion since it is the limit of V ′
01 ⊗V ′

01
ΩV ′

0i/V0i
. Set

Ṽ0 = Ṽ ∩ s′(Γ̃), Ṽ ′
0 = Ṽ ′ ∩ s′(Γ̃′). By iteration we define the extensions V0n ⊂ Vn

and V ′
0n ⊂ V ′

n with the same value group Γn, Γ′
n obtained taking n-ultrapowers of Γ,

resp. Γ′ and we see that ΩV ′
0n/V0n

has torsion by Lemma 37. Then ΩṼ ′
0/Ṽ0

has torsion
since it is the limit of Ṽ ′

0 ⊗V ′
0n
ΩV ′

0n/V0n
.

Assume that V ⊂ V ′ is ind-smooth. In the Jacobi-Zariski sequence applied to
Ṽ0, Ṽ , Ṽ ′

H1(Ṽ , Ṽ ′, Ṽ ′) → Ṽ ′ ⊗Ṽ ΩṼ /Ṽ0
→ ΩṼ ′/Ṽ0

→ ΩṼ ′/Ṽ → 0

we claim that the left module is zero and the last module has no torsion by Lemmas
28, 37 because ΩV ′/V has no torsion and H1(V, V

′, V ′) = 0, V ⊂ V ′ being ind-
smooth. More precisely, we see that ΩV ′

n/Vn
has no torsion and H1(Vn, V

′
n, V

′
n) = 0

for all n using Lemma 28 and by iteration Lemma 37. At the limit we get our claim.
Also ΩṼ /Ṽ0

is flat (so it has no torsion) since the extension Ṽ0 ⊂ Ṽ is ind-smooth
having the same value group (see Proposition 20). It follows that ΩṼ ′/Ṽ0

has also no
torsion.
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Now, in the Jacobi-Zariski sequence applied to Ṽ ′
0 , Ṽ

′
0 , Ṽ

′

H1(Ṽ0, Ṽ
′, Ṽ ′) → Ṽ ′ ⊗Ṽ ′

0
ΩṼ ′

0/Ṽ0
→ ΩṼ ′/Ṽ0

we see that the left module is zero by Lemma 28 because Ṽ ′
0 ⊂ Ṽ ′ is ind-smooth by

Proposition 20. As above ΩṼ ′
0/Ṽ0

has torsion and so ΩṼ ′/Ṽ0
has torsion too, which is

false. �
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Appendix. Cross-sections via infinite towers of ultrapowers
by Kęstutis Česnavičius2

The goal of this Appendix is to show that by replacing a valuation ring by the limit
of an infinite tower of its suitable ultrapowers one may arrange the valuation map
val : V \ {0} → Γ to admit a multiplicative section (see Theorem A.10). For this,
we use techniques from model theory, specifically, the Keisler–Kunen theorem about
the existence of good ultrafilters:3 the idea is that constructing a section amounts
to solving a system of equations for which any finite subsystem has a solution, and
such systems always have solutions in well-chosen ultrapowers. For instance, if the
system is countable, then solutions exists in any nonprincipal ultrafilter on N, and
in general the main subtlety is in constructing the ultrafilter (within ZFC).

A.1. Cross-sections of valuation rings. For a valuation ring V with the value
group Γ and the fraction field K, a cross-section of V is a section

s : Γ → K∗ in the category of abelian groups to the valuation map val : K∗ → Γ.

Concretely, s is a group homomorphism such that val(s(γ)) = γ for γ ∈ Γ. For
a submonoid M ⊂ Γ, a partial cross-section defined on M is a monoid morphism
s : M → K∗ (concretely, s(0) = 1 and s(m+m′) = s(m)s(m′)) with val(s(m)) = m
for m ∈ M . Evidently, partial cross-sections exist for M ≃ Zr

≥0 and correspond to
choices of tuples of elements of K∗ whose valuations form the standard basis of Zr

≥0.

Example A.2. Cross-sections exist when Γ is free as a Z-module, for instance,
when it is finitely generated. As we now explain, they also exist when V is strictly
Henselian of residue characteristic p and there is a free subgroup Γ0 ⊂ Γ such that
Γ/Γ0 is torsion with (Γ/Γ0)[p

∞] = 0. Indeed, we first define s on Γ0 and then, by
Zorn’s lemma, reduce to the situation in which s is already defined on some subgroup
Γ′ ⊃ Γ0 and needs to be extended to a Γ′′ ) Γ′ with Γ′′/Γ′ cyclic of order n prime to
p. For the latter, we first choose an x ∈ V such that val(x) lies in Γ′′ and generates
the quotient Γ′′/Γ′, which gives the following equation in V :

xn = u · s(n · val(x)) for some u ∈ V ∗.

Since p ∤ n, Hensel’s lemma [10, IV, 18.5.17] (which is the Implicit Function Theorem
in this context) now implies that the equation Xn = u has a solution in V , so we
may adjust x to assume that u = 1. Granted this, s then extends to Γ′′ by setting

2CNRS, UMR 8628, Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, Université Paris-
Saclay, 91405 Orsay, France. Email: kestutis@math.u-psud.fr

I thank Dorin Popescu for helpful discussions and for hosting me during a visit to Romania
in March 2019. I thank Matthias Aschenbrenner for helpful comments. This project has received
funding from l’Agence Universitaire de la Francophonie and the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 851146).

3After this appendix was written, we learned of a much simpler way to deduce sharper versions
of Theorem A.10 and Variant A.11 from the results reviewed in §A.8, see [1, 3.3.39, 3.3.40]. We
left this appendix in place in case the method used here would prove useful for other purposes.
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s(val(x)) = x: indeed, any relation N · val(x) = γ with N ∈ Z and γ ∈ Γ′ must be
a multiple of such a relation with N = n, so s(N · val(x)) = s(γ).

A.3. Ultrafilters and ultraproducts. We recall that an ultrafilter on a nonempty
set U is a set U of subsets of U that is closed under finite intersections, closed under
taking supersets, does not contain the empty set, and for every U ′ ⊂ U contains
either U ′ or U \U ′. Such a U is principal if it consists of all the subsets containing
some fixed u ∈ U , and is nonprincipal otherwise. An ultrafilter U is countably
incomplete if some countable collection of elements of U has an empty intersection.
Such a U is also nonprincipal and it exists whenever U is infinite (see [4, §A.3, 8.4]).
We view any ultrafilter U as a partially ordered set, where U ′ ≤ U ′′ if U ′ ⊇ U ′′.

For any category C that has small products and filtered direct limits, the ultra-
product of a set {Cu}u∈U of objects of C with respect to an ultrafilter U on U , which
we denote abusively by

∏
U
Cu, is

lim−→U ′∈U
(
∏

u∈U ′ Cu) where transition maps are projections onto partial products

(the limit is filtered because U is closed under finite intersections). In the case when
all the Cu are the same object C ∈ C, we call

∏
U
C an ultrapower of C.

A.4. Ultraproducts of valuation rings. We will work with ultraproducts of rings
or modules. For instance, an ultraproduct of fields is again a field: every nonzero
element is invertible (thanks to the axiom that U ′ ∈ U or U \ U ′ ∈ U ). Likewise,
an ultraproduct

∏
U
Vu of valuation rings {Vu}u∈U with fraction fields {Ku}u∈U is a

valuation ring with fraction field
∏

U
Ku: for any nonzero element v of the latter,

either v or v−1 lies in
∏

U
Vu. We see similarly that

(1) the maximal ideal of
∏

U
Vu is the ultraproduct

∏
U
mu of the maximal ideals;

(2) the residue field of
∏

U
Vu is the ultraproduct

∏
U
ku of the residue fields;

(3) the value group of
∏

U
Vu is the ultraproduct

∏
U
Γu of the value groups;

(4) the monoid of nonnegative elements (
∏

U
Γu)≥0 is identified with

∏
U
(Γu)≥0.

The existence of “well-chosen” ultrapowers mentioned above rests on the Keisler–
Kunen theorem from model theory that we recall in the following lemma. Keisler
proved it in [13] assuming the Generalized Continuum Hypothesis and Kunen gave
an unconditional proof in [16, Theorem 3.2].

Lemma A.5 ([6], Theorem 6.1.4). For an infinite set U , there is a countably in-
complete ultrafilter U on U such that for any inclusion-reversing function

f : {finite subsets of U} → U , there is a function f0 : {finite subsets of U} → U

that is also inclusion-reversing and satisfies

f0(U
′) ⊂ f(U ′) and f0(U

′∪U ′′) = f0(U
′)∩f0(U

′′) for all finite subsets U ′, U ′′ ⊂ U.

Of course, the requirement that f0 be inclusion-reversing is superfluous: it is a
special case of the requirement that f0 transform finite unions into intersections.

We now verify that the ultrapowers that result from the ultrafilters supplied by
Lemma A.5 have the promised property of solvability of systems of equations.
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Proposition A.6. For an infinite cardinal κ, every ultrafilter U supplied by Lemma
A.5 for a set U of cardinality κ is such that: for any ring R (resp., and any left
R-module M), any polynomial (resp., linear) system of equations

{gi({Xσ}σ) = 0}i∈I (resp., {
∑

σ ri, σXσ = mi}i∈I) with #I ≤ κ

in variables {Xσ}σ and coefficients in
∏

U
R (resp., ri, σ ∈

∏
U
R and mi ∈

∏
U
M)

has a solution in
∏

U
R (resp.,

∏
U
M) as soon as so do all its finite subsystems.

Proof. The assertion is a concrete case of the model-theoretic [6, Theorem 6.1.8], and
the latter is sharper in multiple aspects. For convenience, we recall the argument.

For brevity, we denote the system in question by {gi = 0}i∈I and we lift it to
a system {g̃i = 0}i∈I with coefficients in

∏
u∈U R (resp., and in

∏
u∈U M) and the

same variables {Xσ}σ by lifting the nonzero coefficients along the surjection
∏

u∈U R ։
∏

U
R (resp., and along

∏
u∈U M ։

∏
U
M for the mi).

Since U is countably incomplete, we may fix a decreasing sequence

U ⊃ U0 ⊃ U1 ⊃ U2 ⊃ · · · of sets in U with
⋂

n≥0 Un = ∅.

We then define a function

f : {finite subsets of I} → U

by letting pru denote the projection onto the u-th factor of
∏

u∈U and setting

f(I ′) := U#I′ ∩ {u ∈ U | the system {pru(g̃i) = 0}i∈I′ is solvable in R (resp., M)}.

The well-definedness of f follows from the solvability of the subsystem {gi = 0}i∈I′ in∏
U
R (resp.,

∏
U
M) and from the stability of U under supersets. By construction,

f(I ′) ⊃ f(I ′′) whenever I ′ ⊂ I ′′, so, since #I ≤ #U , Lemma A.5 supplies a function

f0 : {finite subsets of I} → U such that f0(I
′) ⊂ f(I ′), f0(I

′∪I ′′) = f0(I
′)∩f0(I

′′)

for all finite subsets I ′, I ′′ ⊂ I (technically, to apply Lemma A.5 we first embed I into
U as a subset and then extend f to finite subsets U ′ ⊂ U by the rule U ′ 7→ f(U ′∩I)).

For each u ∈ U , we set

Iu := {i ∈ I | u ∈ f0({i})}.

Whenever, i1, . . . , in ∈ Iu are pairwise distinct, we have

u ∈ f0({i1}) ∩ · · · ∩ f0({in}) = f0({i1, . . . , in}) ⊂ f({i1, . . . , in}) ⊂ Un,

so, since the Un have empty intersection, each Iu is finite. Then the preceding display
applied to an enumeration of Iu shows that u ∈ f(Iu), to the effect that the system
{pru(g̃i) = 0}i∈Iu has a solution {xσ, u}σ in R (resp., M).

We claim that {xσ := (xσ, u)u∈U}σ gives a solution in
∏

U
R (resp.,

∏
U
M) to the

system {gi = 0}i∈I . Indeed, for every i ∈ I we have f0({i}) ∈ U and for every
u ∈ f0({i}) we have i ∈ Iu, so g̃i({xσ}σ) = 0 in the projection on

∏
u∈f0({i})

. �

The argument is not specific to rings or modules, and it also shows the following.
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Variant A.7. For an infinite cardinal κ, every ultrafilter U supplied by Lemma A.5
for a set U of cardinality κ is such that: for any monoid G, any system

{gi({Xσ}σ) = g′i({Xσ}σ)}i∈I with #I ≤ κ

of monomial equations in variables {Xσ}σ and coefficients in
∏

U
G has a solution

in
∏

U
G as soon as so does each of its finite subsystems.

As we now review, Proposition A.6 supplies algebraically compact ultrapowers.

A.8. Algebraic compactness. We fix a ring R and recall that a map M → M ′

of left R-modules is pure if the map M ′′ ⊗R M → M ′′ ⊗R M ′ is injective for every
right R-module M ′′. An R-module M is algebraically compact (or pure-injective) if
every pure map M → M ′ of R-modules is a split injection. For example, if M is an
algebraically compact abelian group (so R = Z), then every short exact sequence

0 → M → M ′ → M ′/M → 0 of abelian groups with (M ′/M)tors = 0 splits.

A concrete criterion for algebraic compactness is given by [11, 7.1 (with 6.5)]: a left
R-module M is algebraically compact if every system of equations

{
∑

σ ri, σXσ = mi}i∈I with ri, σ ∈ R and mi ∈ M

has a solution in M as soon as so do all its finite subsystems. Moreover, by [11,
7.28, 7.29], it suffices to consider systems with cardinality #I ≤ max(#R,#Z). In
particular, thanks to Proposition A.6, there is an ultrafilter U such that for any
R-module M , the R-module

∏
U
M is algebraically compact.

With model-theoretic input in place, we turn to the tower of ultrapowers argument
in Theorem A.10. The final input is the following lemma proved in [7, 2.2], [23, 4.6.1],
or [9, 6.1.30] that captures the “combinatorial” part of local uniformization.

Lemma A.9. For a totally ordered abelian group Γ, the submonoid Γ≥0 ⊂ Γ of
nonnegative elements is a filtered increasing union of its finite free submonoids iso-
morphic to Zr

≥0 (where r ∈ Z≥0 need not be constant).

Theorem A.10. For a valuation ring V with value group Γ, there is a countable
sequence of ultrafilters U1,U2, . . . on some respective sets U1, U2, . . . for which the
valuation rings {Vn}n≥0 defined inductively by V0 := V and Vn+1 :=

∏
Un+1

Vn are
such that the valuation ring

Ṽ := lim−→n≥0
Vn has a cross-section s̃ : Γ̃ → K̃∗,

where K̃ and Γ̃ are the fraction field and the value group of Ṽ .

Proof. We let Kn and Γn denote the fraction field and the value group of Vn, so that
Γn+1

∼=
∏

Un+1
Γn and Kn+1 =

∏
Un+1

Kn (see §A.4) with

Γ̃ ∼= lim
−→n≥0

Γn and K̃ ∼= lim
−→n≥0

Kn.

The idea is to build ultrafilters Un one by one using Lemma A.5 in such a way that
a desired cross-section

s̃ : Γ̃ → K̃∗ would be the limit of compatible partial cross-sections sn : Γn → K∗
n+1.
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For this, as an initial step, we replace V by a suitable ultrapower to ensure that
the abelian group Γ is algebraically compact (see §A.8). Granted this, it suffices to
carry out the inductive step: setting Γ−1 := 0 for convenience and assuming that
we have already constructed sn−1 and Vn for some n ≥ 0 in such a way that the
abelian groups Γn−1 and Γn are algebraically compact, it suffices to construct Vn+1

with Γn+1 algebraically compact in such a way that sn−1 extends to an sn.
The role of algebraic compactness is to split the map Γn−1 →֒ Γn

∼=
∏

Un
Γn−1

whose cokernel is torsion free:

Γn
∼= Γn−1 ⊕G for some subgroup G ⊂ Γn.

Thanks to this splitting, we only need to build an ultrafilter Un+1 and a partial
cross-section sG : G → (

∏
Un+1

Kn)
∗ such that

∏
Un+1

Γn is algebraically compact.
In fact, we let Un+1 be any ultrafilter as in Lemma A.5 applied to the cardinal
max(#Γn,#Z). Then

∏
Un+1

Γn is necessarily algebraically compact by the criterion
reviewed in §A.8 and Proposition A.6.

The subgroup G inherits a total order from Γn, and any partial cross-section

sG≥0
: G≥0 → (

∏
Un+1

Vn) \ {0} will give rise to a desired sG.

For each g ∈ G>0, we fix a vg ∈ Vn with val(vg) = g. Then sG≥0
amounts to a solution

in
∏

Un+1
Vn of the following system of equations in variables {Xg, Ug, U

′
g}g∈G>0:

{Xg+g′ = XgXg′, XgUg = vg, UgU
′
g = 1}g, g′∈G>0.

Likewise, for any submonoid G′ ⊂ G≥0, the restriction of sG≥0
|G′ , that is, a partial

cross-section defined on G′, amounts to a solution in
∏

Un+1
Vn of the subsystem

consisting of those equations that only involve the variables {Xg, Ug, U
′
g}g∈G′. How-

ever, a partial cross-section G′ →
∏

Un+1
Vn (and even G′ → Vn) certainly exists if

G′ ≃ Zd
≥0, and, by Lemma A.9, the monoid G≥0 is a filtered increasing union of

such G′. This implies that every finite subsystem of the above system has a solution
in
∏

Un+1
Vn (and even in Vn). Then, by Proposition A.6, the entire system has a

solution in
∏

Un+1
Vn, which completes the inductive step. �

Variant A.11. For every faithfully flat map V ⊂ V ′ of valuation rings with value
groups Γ ⊂ Γ′ such that Γ′/Γ is torsion free, there is a countable sequence of
ultrafilters U1,U2, . . . on some respective sets U1, U2, . . . for which the valuation
rings {Vn}n≥0 and {V ′

n}n≥0 defined inductively by V0 := V and V ′
0 := V ′ with

Vn+1 :=
∏

Un+1
Vn and V ′

n+1 :=
∏

Un+1
V ′
n are such that the valuation ring

Ṽ ′ = lim−→n≥0
V ′
n with K̃ ′ := Frac(Ṽ ′) has a cross-section s̃ : Γ̃′ → K̃ ′∗

whose restriction to the value group Γ̃ of Ṽ := lim
−→n≥0

Vn lands in K̃ := Frac(Ṽ ).

Proof. An ultrapower of an ultrapower is itself an ultrapower [6, 6.5.2], so we may
make an initial replacement of V and V ′ by suitable large ultrapowers and use §A.8
with Proposition A.6 to ensure that Γ is algebraically compact and later absorb
the appearing initial ultrafilter into U1 (alternatively, we could simply insert this
initial ultrafilter as U1 without using loc. cit.). Then, thanks to the torsion-freeness
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assumption on Γ′/Γ, the inclusion Γ ⊂ Γ′ splits. A choice of a splitting induces a
compatible splitting on any ultrapower, so the proof of Theorem A.10 continues to
give the claimed variant granted that we take advantage of the splitting to build the
cross-section in such a way that its restriction to Γ̃ lands in K̃. �
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