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A GENERALIZATION OF DEDEKIND CRITERION

Munish Kumar and Sudesh K. Khanduja
Department of Mathematics, Panjab University, Chandigarh, India

Let K = ���� be an algebraic number field with � in the ring AK of algebraic integers
of K and f�x� be the minimal polynomial of � over the field � of rational numbers. For
a rational prime p, let f̄ �x� = ḡ1�x�

e1 � � � ḡr �x�
er be the factorization of the polynomial

f̄ �x� obtained by replacing each coefficient of f�x� modulo p into product of powers of
distinct irreducible polynomials over �/p� with gi�x� monic. In 1878, Dedekind proved
that if p does not divide �AK � �����, then pAK = ℘

e1
1 � � � ℘

er
r , where ℘1	 � � � 	 ℘r

are distinct prime ideals of AK , ℘i = pAK + gi���AK with residual degree f�℘i/p� =
deg ḡi�x�. He also gave a criterion which says that p does not divide �AK � ����� if
and only if for each i, we have either ei = 1 or ḡi�x� does not divide M�x� where
M�x� = 1

p
�f�x�− g1�x�

e1 � � � gr �x�
er �. The analog of the above result regarding the

factorization in AK′ of any prime ideal � of AK is in fact known for relative extensions
K′/K of algebraic number fields with the condition “p � � �AK � �����” replaced by the
assumption “every element of AK′ is congruent modulo � to an element of AK���

�†�”.
In this article, our aim is to give a criterion like the one given by Dedekind which
provides a necessary and sufficient condition for assumption �†� to be satisfied.

Key Words: Factorization of prime ideals; Ramification and extension theory.

2000 Mathematics Subject Classification: 11S15; 11Y05.

1. INTRODUCTION

Let K = ���� be an algebraic number field with � an algebraic integer and
f�x� be the minimal polynomial of � over the field � of rational numbers. Let AK

denote the ring of algebraic integers of K. The determination of the prime ideal
decomposition in AK of any rational prime p is one of the major problems in
Algebraic Number Theory and is related to the decomposition of the polynomial
f̄ �x� obtained by replacing each coefficient of f�x� by its residue modulo p. In 1878,
Dedekind proved the following result in this direction.

Dedekind’s Theorem. Let K = ���� be an algebraic number field with f�x� as
the minimal polynomial of the algebraic integer � over �. Let p be a rational prime.
Let f̄ �x� = ḡ1�x�

e1 � � � ḡr �x�
er be the factorization of f̄ �x� as a product of powers of

distinct irreducible polynomials over �/p�, with gi�x� monic polynomials belonging
to ��x�. Suppose that p does not divide the index of the subgroup ���� in AK�
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1480 KUMAR AND KHANDUJA

then pAK = ℘
e1
1 � � � ℘er

r , where ℘1	 � � � 	 ℘r are distinct prime ideals of AK , ℘i = pAK +
gi���AK with residual degree f�℘i/p� = deg ḡi�x� for all i.

Dedekind also gave a criterion (stated below) to verify when the condition “p
does not divide �AK 
 �����” is satisfied (cf. Cohen, 1993, Theorem 6.1.4; Dedekind,
1878; Montes and Nart, 1992).

Dedekind Criterion. Let K = ����	 f�x�, and g1�x�	 � � � 	 gr�x� be as in the
above theorem. Let M�x� denote the polynomial 1

p
�f�x�− g1�x�

e1 � � � gr�x�
er � with

coefficients from �. Then p does not divide �AK 
 ����� if and only if for each i, we
have either ei = 1 or ḡi�x� does not divide M�x�.

It can be easily verified that p does not divide �AK 
 ����� if and only if AK ⊆
��p����, ��p� being the localization of � at the prime ideal p�. Keeping this in mind,
the following result is a generalization of Dedekind’s Theorem stated above (for
proof, see Janusz, 1996, Chap. I, Theorem 7.4).

Generalized Dedekind Theorem. Let R be a Dedekind domain with field of
fractions K. Let L be a finite separable extension of K and S be the integral closure
of R in L. Suppose that � belonging to S generates the extension L/K and f�x�

in R�x� is the minimal polynomial of � over K. Let � be a nonzero prime ideal
of R, R� be the localization of R at � and S� be the integral closure of R� in L.
For any g�x� in R�x�, let ḡ�x� denote the polynomial obtained by replacing each
coefficient of g�x� by its image under the canonical homomorphism from R onto
R/�. Let f̄ �x� = ḡ1�x�

e1 � � � ḡr �x�
er be the factorization of f̄ �x� into powers of distinct

irreducible polynomials over R/� with each gi�x� monic. Assume that S� = R����
�†�.

Then

�S = ℘
e1
1 � � � ℘er

r

where ℘1	 � � � 	 ℘r are distinct prime ideals of S	℘i = �S + gi���S with residual
degree f�℘i/�� = deg ḡi�x�.

In order to apply the last theorem in an effective way one needs a criterion to
decide when a prime ideal � of R satisfies assumption �†� of this theorem. This has
led us to consider the following problem.

How can we formulate a criterion like Dedekind Criterion which gives some
necessary and sufficient conditions so that assumption �†� is satisfied, that is, S� =
R����? As R� is a discrete valuation ring, a solution to the above problem is given
by the following theorem which is the main result of this article.

Theorem 1.1. Let R be a Dedekind domain with quotient field K. Let L = K���	 S

and f�x� be as in Generalized Dedekind Theorem. Let � be a nonzero prime ideal of R,
�0 be a prime element of the discrete valuation ring R� and let g�x� �→ ḡ�x� denote the
canonical homomorphism from R��x� onto �R/���x�. Let S� the integral closure of R� in
L. Suppose that f̄ �x� = ḡ1�x�

e1 � � � ḡr �x�
er is the factorization of f̄ �x� into powers of

distinct irreducible polynomials over R/� with gi�x� monic in R�x�. If M�x� belonging
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A GENERALIZATION OF DEDEKIND CRITERION 1481

to R��x� is defined by

f�x� = g1�x�
e1 � � � gr�x�

er + �0M�x�	 (1)

then S� = R���� if and only if ḡi�x�
ei−1 is coprime with M�x� for 1 ≤ i ≤ r.

Remark. It may be pointed out that our proof of Theorem 1.1 is entirely on
different lines from the proof of the particular case of this theorem when R = �.

2. SOME PRELIMINARY RESULTS

Let R be a Dedekind domain having quotient field K, L = K��� be a finite
separable extension of K, with � in the integral closure S of R in L. Recall that the
conductor of R��� in S is given by �x ∈ R��� � xS ⊆ R���. It is a nonzero ideal of
S (cf. Narkiewicz, 1990, Proposition 4.12; Neukirch, 1999, Chapter I, Lemma 2.9).
Indeed there exist d ∈ R	 d �= 0 such that

dS ⊆ R���� (2)

3. PROOF OF THEOREM 1.1 FOR COMPLETE DISCRETE RINGS

In what follows for any valuation v of a field K	Rv will denote its valuation
ring, mv the maximal ideal of Rv. The residue field Rv/mv will be denoted by K when
the underlying valuation is clear. For any element � in Rv	 �̄ will denote its v-residue,
that is, the image of � under the canonical homomorphism from Rv onto Rv/mv.

In this section, we will prove Theorem 1.1 when R = Rv is the valuation ring
of a complete discrete valuation v of K with value group � and L = K��� is a finite
separable extension of K of degree n with � in the valuation ring Rw of the unique
prolongation w of v to L. In view of Hensel’s lemma, the minimal polynomial f�x�
of � over K can be expressed as

f�x� = ��x�e + �0M�x�	 (3)

where ��x� is a monic polynomial in Rv�x� such that �̄�x� is irreducible over the
residue field of v and �0 is a prime element of v (see Neukirch, 1999, Chapter II,
4.6). It is required to be shown that

Rw = Rv��� ⇔ either e = 1 or e > 1 and �̄�x� � �M�x�� (4)

Observe that �̄�x� being the minimal polynomial of the w-residue �̄ of � over K, does
not divide M�x� if and only if M��̄� �= 0̄, which is the same as saying that w�M���� =
0. Therefore, on substituting x = � in (3), it is clear that

�̄�x� � � M�x� ⇔ w������ = w��0�

e
= 1

e
� (5)

If e = 1, then �̄ is a root of the irreducible polynomial f̄ �x� ∈ K�x� and
�1̄	 �̄	 � � � 	 �̄n−1 is a linearly independent set over K. This shows that for any
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1482 KUMAR AND KHANDUJA

element
∑n−1

i=0 ai�
i belonging to K���	 ai ∈ K, we have w�

∑n−1
i=0 ai�

i� = mini v�ai��
consequently, Rw = Rv��� in this case.

Assume now that e > 1 and �̄�x� � � M�x�, hence w������ = 1/e in view of (5).
As the value group of v is �, we see that the index of ramification e�w/v� ≥ e and
residue degree f�w/v� ≥ deg �̄�x�. Since n = e�deg �̄�x��, it follows that e�w/v� =
e and f�w/v� = deg �̄�x�. So ���� is a prime element of w and the residue field
of w is K��̄� = K��̄�. In particular the polynomial ring Rv��� contains a set of
representatives of Rw/mw. Therefore, any element u belonging to the complete
discrete valuation ring Rw can be written as

u = h0���+ h1�������+ h2�������
2 + · · · 	 hi��� ∈ Rv���� (6)

By virtue of (2), we see that there exists a non-negative integer j such that the set
�� ∈ Rw �w��� ≥ j

e
 is contained in Rv���. It now follows from (6) that any element

u of Rw belongs to Rv��� as desired.
Conversely, assume that Rw = Rv��� and e > 1. It is to be shown that

�̄�x� � � M�x� which in view of (5) is equivalent to requiring that

w������ = 1
e
� (7)

By hypothesis Rw = Rv���, so �̄ will generate the residue field L/K. It follows that
e�w/v� = �L
K�

deg��x� = e. Therefore (7) is proved as soon as we show that e′w������ < 1
for all positive integers e′ < e. Suppose to the contrary that there exists an integer
e′ < e such that e′w������ ≥ 1, that is, w�����

e′

�0
� ≥ 0, which is impossible as Rw =

Rv��� and
����e

′

�0
does not belong to Rv���. This completes the proof of (7) and hence

the proof of Theorem 1.1 in case Rv is a complete discrete valuation ring.

4. REDUCTION OF THE PROBLEM TO COMPLETE BASE FIELDS

For any valued field �K	 v�	 �K̂	 v̂� will denote its completion. In this section,
v is a fixed discrete valuation of a field K and A is the algebraic closure of the
completion K̂ of K with respect to v. The unique prolongation of v̂ to A will again
be denoted by v̂. For � belonging to A with v̂��� ≥ 0	 �̄ will denote its image in
the residue field of the valuation of A extending v̂. For a polynomial F�x� with
coefficients in the valuation ring Rv̂ of v̂, F�x� will have its usual meaning.

With the above notations, we prove the following theorem.

Theorem 4.1. Let �K	 v� be a discrete valued field and L = K��� be a finite separable
extension of K, with � in the integral closure S of Rv in L. Suppose that the
minimal polynomial f�x� of � over K has the factorization f�x� = ∏s

i=1 Fi�x� into monic
irreducible polynomials over K̂. Let �i be a root of Fi�x� and wi be the prolongation of
v to L defined by

wi

(∑
j

aj�
j

)
= v̂

(∑
j

aj�
j
i

)
	 aj ∈ K� (8)
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A GENERALIZATION OF DEDEKIND CRITERION 1483

Then S = Rv��� if and only if Fi�x� and Fj�x� are coprime polynomials for i �= j and
Rŵi

= Rv̂��i� for 1 ≤ i ≤ s.

Proof. It is known that w1	 � � � 	 ws are all the distinct prolongations of v to L
(cf. Neukirch, 1999, Chapter II, 8.1, 8.2). Also S is a Dedekind domain with
unique factorization having s maximal ideals, say ℘1	 � � � 	 ℘s with ℘i = mwi

∩ S
(see Borevich and Shafarevich, 1966, Chapter 3, Sec. 4, Theorem 7). Since Fi�x�
is an irreducible polynomial over the completion K̂, in view of Hensel’s Lemma
there exists a positive integer ei and a monic polynomial �i�x� ∈ Rv�x�, with �̄i�x�
irreducible over the residue field of v such that Fi�x� = �̄i�x�

ei .
Suppose first that S = Rv���. We now show that Fi�x� and Fj�x� are relatively

prime polynomials when i �= j. By Chinese Remainder Theorem, there exists an
element � ∈ S such that � ≡ 0 �mod℘i� and � ≡ 1 �mod℘j�. Since S = Rv���, there
exists h�x� ∈ Rv�x� such that � = h���. Then

wi�h���� > 0	 wj�h���− 1� > 0� (9)

Keeping in mind (8), we can rewrite (9) as v̂�h��i�� > 0 and v̂�h��j�− 1� > 0, that
is,

h̄��̄i� = 0̄	 h̄��̄j� = 1̄� (10)

As each �̄l�x� is irreducible over the residue field of v and has �̄l as a root, it follows
from (10) that �̄i�x� divides h̄�x� and �̄j�x� does not divide h̄�x�. Therefore �̄i�x� �=
�̄j�x�, which proves that Fi�x� and Fj�x� are relatively prime.

It remains to be shown that Rŵi
= Rv̂��i�	 1 ≤ i ≤ s. Keeping in mind that

S = Rv���, the homomorphism from Rv��� induced by mapping � to �i indeed gives
an isomorphism from S/℘i onto the residue field of ŵi. Therefore the ring Rv��i�
contains a prime element �i (say) of ŵi and a set of representatives for the residue
field of ŵi. Consequently, any element u ∈ Rŵi

can be written as

u = h0��i�+ h1��i��i + h2��i��
2
i + · · · 	 hl��i� ∈ Rv��i�	 l ≥ 0� (11)

By virtue of (2), there exists an integer t ≥ 0 such that the set �� ∈ Rŵi
� ŵi��� ≥

tv̂��i� is contained in Rv̂��i�. It now follows from (11) that

u = h0��i�+ · · · + ht��i��
t
i + �	 � ∈ Rv̂��i��

As �i and hl��i� belong to Rv̂��i�, we conclude that u ∈ Rv̂��i�, which proves the
desired equality.

Conversely, suppose that Fi�x�	 F j�x� are relatively prime and Rŵi
= Rv̂��i� for

1 ≤ i �= j ≤ s. To establish Rv��� = S, we prove that none of the ideals ℘i divides
the conductor � of Rv��� in S. This will prove that the conductor � is a unit ideal.

Let ni denote the residue degree of wi/v and �0 a prime element of v, so that

�0S = ℘
n1
1 � � � ℘ns

s � (12)
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1484 KUMAR AND KHANDUJA

We first verify that ideals �i���S for 1 ≤ i ≤ s are proper ideals which are pairwise
comaximal. Since Fi�x� = �̄i�x�

ei 	 and Fj�x� = �̄j�x�
ej are relatively prime, there

exists ui�x�	 uj�x� in Rv�x� such that

�̄i�x�ūi�x�+ �̄j�x�ūj�x� = 1̄�

consequently, �i���ui���+ �j���uj��� = 1+ �0uij��� for some uij�x� ∈ Rv�x� which
proves that �i���S + �j���S = S. Using the equalities Fi�x� = �̄i�x�

ei and Fi��i� = 0,
we see that �̄i��̄i� = 0̄. Therefore, it follows from (8) that wi��i���� = v̂��i��i�� > 0�
consequently, there exist positive integers ti such that

�i���S = ℘
ti
i 	 1 ≤ i ≤ s� (13)

Set

I = ℘
n2
2 � � � ℘ns

s 	 � = �
n2
2 ��� � � � �ns

s ���� (14)

It is clear from (13) that the element � of Rv��� belongs to I\℘1. Keeping in mind
(2), there exists a non-negative integer m such that

�m
0 S ⊂ Rv���� (15)

Our claim is that �m ∈ �� since � does not belong to ℘1, this will imply that ℘1 does
not divide �. Arguing similarly for other ℘i	 i ≥ 2, we shall conclude that � is not
divisible by any ℘i, so � will be the unit ideal, that is, S = Rv���.

It only remains to verify the claim. Let � be any element of S. Using the
hypothesis Rŵ1

= Rv̂��1� and the fact that Rv is dense in Rv̂, we see that there exists
� ∈ Rv��� such that w1��− �� ≥ n1m, consequently �− � belong to ℘

n1m
1 . It follows

from (12), (14), and (15) that

��− ���m ∈ ℘
n1m
1 Im = ��0S�

m ⊂ Rv����

Since � and �m are in Rv���, we see that ��m ∈ Rv��� as desired.

5. DEDUCTION OF THEOREM 1.1

Let v be a discrete valuation of the field K with valuation ring R� and �0 be
a prime element of v. We retain the notations introduced in the opening lines of
Section 4. Let

f�x� = F1�x� � � � Fs�x� (16)

be the factorization of f�x� into monic irreducible polynomials over K̂. Let �i be a
root of Fi�x� and wi denote the prolongation of v to L defined by (8). On applying
Theorem 4.1, we see that S� = R���� if and only if r = s and Rŵi

= Rv̂��i� for 1 ≤
i ≤ s. In case r = s, if necessary after permuting the indices, we can write

Fi�x� = gi�x�
ei + �0Mi�x�	 Mi�x� ∈ Rv̂�x��
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A GENERALIZATION OF DEDEKIND CRITERION 1485

consequently, in view of (16) and (1), there exists ��x� ∈ Rv̂�x� such that

M�x� =
r∑

i=1

( r∏
j=1	j �=i

gj�x�
ej

)
Mi�x�+ �0��x�� (17)

By virtue of the result proved in the third section, we have Rŵi
= Rv̂��i� for any i ≥ 1

if and only if ḡi�x�
ei−1 and Mi�x� are coprime. Therefore it now follows from (17)

that when r = s, then Rŵi
= Rv̂��i� if and only if ḡi�x�

ei−1 and M�x� are coprime for
1 ≤ i ≤ r. Thus the theorem is proved once we show that in case r < s, then there
exists an index i such that ei > 1 and ḡi�x� divides M�x�.

Assume that r < s, so there exist distinct indices k and l such that Fk�x� and
Fl�x� are not coprime. If necessary after renaming, assume that

ḡk�x� �Fk�x� and ḡk�x� �Fl�x�� (18)

Therefore ek > 1. The proof is complete as soon as it is shown that ḡk�x� �M�x�. For
each i, 1 ≤ i ≤ s, there exists �i�x� ∈ �g1�x�	 � � � 	 gr�x� and Hi�x� ∈ Rv̂�x� such that

Fi�x� = �i�x�
di + �0Hi�x�	 di ≥ 1� (19)

Using (1) and (19), we see that there exists �1�x� ∈ Rv̂�x� such that

r∏
i=1

gi�x�
ei + �0M�x� =

s∏
i=1

�i�x�
di + �0

s∑
i=1

( s∏
j=1	j �=i

�j�x�
dj

)
Hi�x�+ �2

0�1�x�

=
r∏

i=1

gi�x�
ei + �0

s∑
i=1

( s∏
j=1	j �=i

�j�x�
dj

)
Hi�x�+ �2

0�1�x�

and hence M�x� = ∑s
i=1�

∏s
j=1	j �=i �j�x�

dj �Hi�x�+ �0�1�x�� In view of (18) and (19),
the last equality clearly shows that ḡk�x� divides M�x� as desired.

Remark. Let R���� and S� be as in Theorem 1.1 and � be the conductor of R���
in S. One can easily show that S� = R���� if and only if � does not divide the norm
ideal NL/K���. It is known that the above condition is equivalent to saying that
every element of S is congruent to an element of R��� modulo �S (for proof see
Narkiewicz, 1990, Lemma 4.7).
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