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Abstract

Let R be an o-minimal expansion of a group in a language in which
Th(R) eliminates quantifiers, and let C' be a predicate for a valuational
cut in R. We identify a condition that implies quantifier elimination for
Th(R, C) in the language of R expanded by C' and a small number of
constants, and which, in turn, is implied by Th(R, C) having quantifier
elimination and being universally axiomatizable. The condition applies
for example in the case when C' is a convex subring of an o-minimal
field R and its residue field is o-minimal.
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1 Introduction

Throughout, we let R be an o-minimal expansion of a group in a language Lg
in which Th(R) eliminates quantifiers. We expand our language with a unary
predicate C' used to define a valuational cut in R.

The main result of this paper concerns cuts C' that satisfy a condition we call
*. We postpone a complete definition until Section 2 (Definition , but roughly
it says that forking is symmetric in Morley sequences in the cut C. We show that
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for such a cut, Th(R,C) eliminates quantifiers, is universally axiomatizable, and
has definable Skolem functions in the language £ := Lo U {C} expanded by a small
number of constants.

Structures (R,C) as described above are instances of valuational weakly o-
minimal structures. Weakly o-minimal structures were first introduced by Dick-
mann [B]. In [I1I], Macpherson, Marker, Steinhorn proved a basic dichotomy: Ev-
ery weakly o-minimal structure is either valuational or non-valuational. While the
non-valuational ones are rather well-understood (see for example Bar-Yehuda, Has-
son, Peterzil [3]), and have been shown to share many desirable properties with
o-minimal structures, valuational weakly o-minimal structures have been, at least
at a certain level of generality, less Well—exploredEI

Examples of valuational weakly o-minimal structures include structures (R, V),
where R is an o-minimal expansion of a real closed field and V is a predicate for a
convex subring (equivalently, for the cut of a convex subring). We shall denote the
class of all such (R, V) by V. A particularly well-behaved subclass of V is the class
T of T-convex structures, in which our results have been known to hold for a long
time (see van den Dries, Lewenberg [7] and van den Dries [6]). While having proven
to be quite useful, T-convex structures do not include all the cases of interest. For
example, if C' is the cut of the convex hull of Q in R, then (R, C) is in general not
T-convex. However, this case falls into the class O, the subclass of V consisting
of all (R,V) with o-minimal residue field. While not being as well-behaved as T,
O is known to be first-order axiomatizable (see Maiikova [I3]) and the theories of
the structures in O are model-complete relative to quantifier elimination in R and
after expanding the language by a small number of constants (see Ealy, Maifkova
[9]). One has

TCOCV.

We show that all structures in O satisfy property #, and that in ¥V \ O there are
both structures that satisfy * and such that do not.

Our notation and set-up are as follows: Definable shall mean definable with pa-
rameters. If M is a structure, then we write M -definable to mean definable in
the structure M with parameters from M. Let M be an o-minimal structure. If
M < M and a € M\ M, then we denote by M(a) the structure generated by a
in M over M (so M(a) is an abbreviation for dclys(a) and we use these notations
interchangeably). Note that M < M{a) < M.

When M is o-minimal, we follow Marker, Steinhorn [12] (and many others) in
saying that a type ¢ € S1(M) is a cut if there are nonempty disjoint subsets C~
and Ct of M such that C~ < CF, C~ UC*T = M, C~ has no supremum in M,
and ¢ consists of the formulas ¢ < x for all c € C~ and o < ¢ for all ¢ € CT. (Thus,
cuts are precisely the nondefinable 1-types.) We call a cut in M wvaluational if there
is € € M>? such that C'~ is closed under addition by e.

In [T4], Laskowski, Shaw claim to prove the existence of definable Skolem functions
for structures (R, C), but there is a gap in the proof.



As stated above, we let R be an o-minimal expansion of a group in a language
Ly. We assume that Ly is such that Ty = Th(R) eliminates quantifiers in Lo, and
that £y and T have been expanded by definitions as follows: for each Ly-formula
d(x1,...,2,,y) such that

To FVay ...V, Ay ¢(z1,...,T0,Y)
we add a new function symbol f to Ly and the axiom

(X1, .oy, f(T1,. .., T0))

to the theory Ty. Then Ty is universally axiomatizable.
By C we shall denote a unary predicate for a convex, downward closed set such
that the type
{z>rireCtUu{e<r:r>C}

is a cut. In the special case when C' is the downward closure of a valuation ring, we
shall also use C for the valuation ring itself. We write C'(M) for the interpretation
of C in a structure M. We consider (R,C) in the language £ = Lo U {C}, and
we use T to denote the theory of (R,C) (in the language £). We work inside a
monster model (R, C) of T. In particular, if M <R, then in (M, C') the predicate
C is realized by the set C(R) N M.

For A C R, by S1(A) we mean the 1-types in the (o-minimal!) language Lo
over A. Similarly, dcl shall always be dcl in the o-minimal language L.

We will use the following properties of nondividing which hold in all theories
(see [1] Lemma 5.2 for a proof):

e (monotonicity) If A J/dc B, Ag € A and By C B, then Aq J/(é By.
e (base monotonicity) Suppose D C C C B. If A L% B, then A Lg B.

o (left transitivity) Suppose D C C' C B. If B | 4 A and C' | A, then

B |9 A
Furthermore, we will use that forking and dividing are the same in o-minimal
theories. (See the remarks preceding Proposition 2.8 together with Corollary 5.6 in

[4] for a proof that forking is the same as dividing in weakly o-minimal theories).
This allows us to also use the following:

e (extension) If A | , B and B D B, then there is A’ =pc A such that
, .
A | o B-
Finally, we note a useful observation about o-minimal structures.

Fact 1.1 Let p € S1(R) be non-isolated. Then there is no Ly-definable over R
decreasing function mapping the set of realizations of p in R to itself.

PROOF: A decreasing function with the above property would have a fixed point
a realizing p. But then a € dcl(R), a contradiction with p including {z # r|r € R}.
U



2 The (non)-symmetry of forking in Morley se-
quences in invariant one-types in o-minimal struc-
tures

We wish to establish Theorem an analogue of Theorem 3.3 [9], which gives a
sufficient and necessary condition for a superstructure (R{a),C) of (R, C) to be an
elementary extension.

In [9], this theorem is proved with the help of Theorem 2.7 [9], which says that in
o-minimal expansions of groups, forking in Morley sequences in invariant one-types
is symmetric. Unfortunately, while working towards the results presented here, we
realized that the proof of Theorem 2.7 in [9] has a gap, and that the theorem does
not hold in the stated generality. While this does not pose a problem for the model
completeness result in [9] (Theorem 2.7 holds in the context of [9], namely, when
V is a convex subring of an o-minimal field R with o-minimal residue field — see
Appendix), here we need to bridge the gap in the proof of Theorem 3.3. We do this
by additionally assuming that the cut C has property * (see Definition .

Definition 2.1 Given an A-invariant type p over R, and B D A, a Morley
sequence in p over B is any sequence ty,ta,... in R constructed as follows: let
t1 E p|lp and having defined ty,. .., t,, let thi1 = plBe, .1, -

Note that in a Morley sequence over B, ¢; | B t1...t;_1 and moreover the sequence
is indiscernible over B.

Proposition 2.2 Let p € S1(R) be the global type C(R) < x and x < R>CH),
and let ty,...,t, form a finite Morley sequence in p over R. Let g € S1(R) be the
global type implied by v < = for all v € R with r < RZ®)  and x < RZCW) (i.e.
the R-invariant type at the opposite side of the cut from p). Then the following are
equivalent:

1. There is no function f, Lo-definable over Rtats .. .t,_1, which maps a cofinal
sequence in C'(R) onto a coinitial sequence in the convex hull of R>C(R) jp
R.

2t | pta. .t
3. tn,...,t1 is a finite Morley sequence in ¢ € S1(R) over R.

PRrOOF: First note that for n = 2, (1) is always true by Fact as an Ly-definable
over R function mapping a cofinal segment of C'(R) to a coinitial segment of the
convex hull of RZ¢®) in R would be a decreasing Lo-definable over R function
mapping a complete type over R to itself. Also, it is always the case that t; | g b2
and t1 = q|gt,, since if either of these failed to be true, there would be some Lo-
definable over R function f with f(t2) > ¢;. As already noted, such a function
cannot be decreasing. But nor can it be increasing, as f~1(¢;) would be less than
to, contradicting the choice of 5.
So we will assume n > 2, and set t = to,...,t,_1.



3. = 2. Clearly, t1 = q|Rru, implies #; J/thn.

2. = 1. Assume that f; maps a cofinal sequence in C'(R) to a coinitial sequence
of the convex hull of R¢® in R. Then #; < filtn) < R>C(R) and thus t; is
contained in the interval (t2, f;(¢,)). This witnesses t1 J, g ttn

1. = 3. Assume that t1 [~ q|gru,, , and, without loss of generality, assume that n
is the least such. Then there is an element s € R{tt,) realizing ¢q|g with t; < s.
Write s = f,(t,) for some Ly-definable over R function f. We claim that f, maps a
cofinal sequence in C(R) onto a coinitial sequence in in the convex hull of R>¢ ()
in R.

We first show that f; is strictly decreasing on some interval I containing a
cofinal sequence in C(R) and that f,(I N C(R)) is contained in the convex hull of
R>C() in R: By o-minimality of R(t), f¢ is continuous and strictly monotone on
some interval I with endpoints in dcl(Rt) and containing ¢,,. Since t, ¢, is a Morley
sequence in p over R, the left endpoint of I is contained in the convex hull of C(R)
in R(t). For sufficiently big ¢ € C~ we have t; < fi(c), since t,, € {z: fi(x) > t1},
and {z: fy(z) > t1} is Lo-definable over R(t1t). Moreover, fi(c) < R>U) would
yield a contradiction with the minimality of n. So we have fi(¢,) < fi(c), hence f;
is decreasing on I, and f;(I N C(R)) is contained in the convex hull of RZ“() in
R.

It remains to show that f;(C(R) N I) is coinitial in the convex hull of R>¢ ()
in R. Suppose not. Then there is ¢ € RZU) with ¢ < f,(C(R) N I). Then
f7 () < t, but realizes p|r. This contradicts the definition of ¢,,.

O

Definition 2.3 Let p € S1(R) be the global type C(R) < z and x < R>C0),
We say that the cut defined by C in R has property x (or (R,C) has property x)
if whenever t = t1,...,t, form a finite Morley sequence in p over R, then the
equivalent conditions of Proposition hold.

We use C both for a predicate in the expanded language £ and to denote a cut,
i.e. a non-definable 1-type in the the o-minimal language Ly. Property * is better
thought of as a property of an o-minimal 1-type rather than as a property of the
predicate C.

Proposition 2.4 Let p € S1(R) be a global R-invariant type such that p|gr is the
type corresponding to C(R) and assume further that (R,C) has property . Let
t1,...,ty be a finite Morley sequence in p over R. Then

tl---tk\Ltk-&-l-utn andtk+1...tnj/t1...tk.
R R

for all k with 1 < k < n.



Proor: First note that p, ¢ in Proposition [2.2| are the only global R-invariant
extensions of the type corresponding to C'(R). Now use 2. of Proposition
and the fact that for any a,b;,bs,c, one has aJ/Cblbg == aJ/cbl by, and

aJ-’cbl by and by J-/ch = ab; J-/cbZ' O

Proposition 2.5 (R,C) has property = implies that C' defines a valuational cut in
R.

Proor: Consider (R,C) with C' non-valuational. We denote by p € S1(R) the
type implied by C'(R) < z and z < R>“(®). Let t,, t5, 3 be a finite Morley sequence
in p over R. In particular, t3 <ty < t;.

Since C' is non-valuational, 0 < t; —to < R>?, so ty — (t; — t2) = p|r and thus
t3 < to — (tl - tQ). That is, t1 < tg + (tg - t3). Likewise, 0 < to — t3 < R>O, SO
to+ (t2 —t3) = p|g. Hence the formula to < x <ty + (t2 —t3) witnesses t1 J//R tots.
[l

Proposition 2.5] cannot be strengthened to an equivalence, as the following example
shows.

Example 2.6 Let R be the field of the real algebraic numbers and let R’ = R({e),
the structure generated over the real algebraic numbers by a positive infinitesimal €.
Let C be the cut of w. The cut of m is a non-valuational cut in R but a valuational
cut in R'. However, the same argument as in Proposition shows t1 LR/ tots.

Later, we shall see that if C' is the cut of a convex subring whose residue field
is o-minimal, then (R, C) has property * (Proposition . On the other hand,
if C = V is a convex subring of R, then the o-minimality of the residue field
is not a necessary condition for C' to have property %, as the following example
demonstrates.

Example 2.7 Let R be a big elementary extension of the real exponential field,
and let a € R>Q. We set V =, (—a™,a"). The residue field of (R,V) is not o-
minimal, since the inverse function of the exponential induces a map In: k>0 — Kk,
where In(k>%) C k is bounded above but does not have a supremum in k. However,
letting O be the convex hull of Q, we see that (R,V) and (R, Q) are interdefinable
via the Lo-definable function f(x) = }2—2 The residue field of (R, 0) is R and is
thus o-minimal. (In fact, (R, Q) is even T-convex.) Thus, the cut corresponding to
O has property *, and therefore so does the cut corresponding to V.

While Example shows that (R, C') might not satisfy *, one might still hope that
* holds whenever C is a predicate for a valuation ring, but this is also not true.
Here is an example illustrating this.

Example 2.8 Set Ry = Rexp, the real exponential field, and let M be a countably
saturated elementary extension of Ryg. We pick a1 € M>Q and set Ry = Ro{a1) and



Vi =U, (—at,a}) € Ry. We define (Riq1, Vit1) inductively by letting ap41 € M
be such that Vi, < apy1 < R,?Vk, Ryy1 = Ri(ags1), and Vi = U, (—af 1, a5,1) €
Rit1. Finally we set R =, Ry and V =J, Vi. Our aim is to show that V' does
not have property *.

Lemma 2.9 Let f(z,y) = yi%, and let t3 < ty < t1 be a finite Morley sequence
in p over R, where p € S1(R) is the type V < x < R>Y. Then

t1 < f(tg,tg) < R>V.

In Q41
Ina; °

PROOF: For each i, we let g; € Ri+1 be such that af' = a;11, i.e. g; =
CLamm 1: Q < g; < R7©

By our choice of a;+1, g; > k for all k € N. Moreover, if there was r € RfQ
with r < g;, then V; < al < af' = a;41. But since a] € R;, this would imply that
aj € V;, a contradiction.

1
CLAIM 2 : git1 < gF for all k € N.

By Claim 1, giy1 < gi- For any k, f(z) = z*

ng > g; is impossible.

is increasing and f(O) C O, so

Note that {afﬁ_l}g’il is a coinitial sequence in RV : If not, then there would be

r € R™Y such that r < af', for alli. Butr € Rj>vj for some j, hence a¥’, <7, a
contradiction. So Claim 8 will complete the proof.

CrLaM 3: Fori € {1,2}, we set h; := lér;til (sot; = tfb_;_l) Then, for all i,

h i
ty <ty® <afy, = flai, aip1).

To prove that th? < ajiy for all i, assume towards a contradiction that i is such

that th* > af',. Then

hy > gilna;4q S gilna;1q __ 9

T Inty T gipilnaie (9i41)?

1 1
By Claim 2, we have (9171‘1)2 > g/, so hg > g?. It follows that

(97,%) c R>V

_ 4ho
lp = 13" > a3 i+l

a contradiction with to realizing p|g.



It is left to show that t, < th*. If not, then th* > th2, so hy > hy. We would

| Intoy

then be able to find k such that ty* < ay, which is equivalent to ty""* < t,. On the
other hand, Btz > ok g g,

7 Inag Inag
In tg
ty' " >t > afh, >V,
In tg
a contradiction with t;"Tk < t. O

Lemma shows that tq J//Rtth, and hence V' does not have property *.

We conclude this section with a lemma showing that property * is preserved by
passing to certain superstructures.

Lemma 2.10 Suppose C defines a cut in R which has property x, and let p € S(R)
be the invariant type implied by

{z>clce C(R)}U{z <rlreR andr > C(R)}.
and g € S(R) the type implied by
{x <rlre RRDYU{z>rlre R andr < RZCH},

Then any of the following conditions implies C defines a cut in R{(a;)i<x) which
has property *:

1. (ai)i<x forms a Morley sequence in p over R and
delr((ai)i<s NplR) > C(R).
2. (a;)i<x forms a Morley sequence in q over R and
delr((ai)i<x NplR) € C(R).
3. delg((a;)i<x Np|R) = 0.

PROOF: Assume (1) holds. Take a Morley sequence (t;);<., in p over R{(a;)i<s)-

Then (a;)i<x(ti)i<w is also a Morley sequence in p over R. Note that ¢1(a;)i<s ¢R ty...

because if not, there would be a finite subtuple a;,,...,a;, with

aig...aiktl \X/tg...tn,
R

and, by indiscernibility of the Morley sequence, we would have

tity . trrs fotras . thonits
R



a contradiction with C having property *. From t;(a;)i<x J/Rtg ... ty, it follows
that t1 | g0 tae. it

If (2) holds, one carries out the analogous argument with the Morley sequence
(ti)icw in q.

Now assume (3). Suppose for a contradiction that C' does not define a cut
in R{(a;)i<x) that has property *, and that this is witnessed by a finite Morley
sequence ty < tr—1 < -+ < t1 in p over R{(a;)i<x) and an R-definable function
f, ie. t1 < fu(t), where a is a finite subsequence of (a;)i<x, t = t2,...,t; and
Ja(t) E PlR((a1)i,)- Then the cut defined by C in R{a) does not have property
x. Thus, if we could prove that C defining a cut in R with property * implies
that C also defines a cut with property % in R({a), where a is a singleton and
dclg(a) Np|g = 0, then by applying this fact finitely many times, we could show
C' defines a cut with property * in R{a). So towards a contradiction, we assume C'
does not define a cut with property * in R{a).

Let t, < tp—1 < -+ < t; be a finite Morley sequence in p over R{a) and f an
R-definable function with ¢, < f,(t), where t = to,... 1, and fu(t) = p|r(a)-

Set ] = fo(t) and let ¢ < --- < th < ¢} be a finite Morley sequence in p over
R{a) so that t}, < ty. Since tp(t/R{a)) = tp(t'/R{a}), we have

t = fult) < fult)) < R{a)>CE@),
We now set ¢ = fo(t').

CramM The sequence t7,t5, ..., % is a finite Morley sequence in p over R.

PrOOF: This is proved by induction on k. We clearly have t/ E p|gr. Now
suppose that t,t5,...,t; is a finite Morley sequence in p over R. If t{,t5,...4;
was not, then we would have C' < h(t{,t5,...t;) <t;,,. Let H(x) = h(xz,t5,...,1))
and consider H(t}). The function H is continuous and strictly monotone on some
interval, I, with left endpoint in dclg(t5 . ..t]) and realizing the type p|g, and right
endpoint in the convex hull of R in R.

If H is increasing on that interval, then H(t}) < r for some r € C(R), since
otherwise t1, ..., ; would not be a Morley sequence in p over R. But if H(t}) <,
then any r’ > r, ' € C(R) would have to be such that ¢{ < H='(+') < t/, a
contradicting that C' defines a cut with property * in R.

If H is decreasing, then a coinitial segment of R>“) would have to be mapped
to a cofinal segment of C(R), since if there were any r € R>“(F®) with H(r) =
p|r this would necessarily be less than t; , (since H(r) < H(t{)), contradicting

1>---» 1., being a Morley sequence in p over R. If, on the other hand, r € C(R)
is such that H=*(INR>C(R)) < r, then H~*(r) > ¢}, hence H~'(r) cannot satisfy
p|r because the cut defined by C' in R has property *. But H mapping a coinitial
segment of R>C to a cofinal segment of C'(R) contradicts C' defining a cut in R
with property . O

Note that a € dclg(t],t). Extend t7,¢ to a finite Morley sequence t{,¢',t"” in
p over R. Then t{ < fo(t") and fu(t") F plreay. But fo(t") = foy.(t”) for



some R-definable function g. Hence the functionf(g(...)...) and the finite Morley
sequence t{,t',t"” in p over R witness the failure of * in the cut defined by C' in R,
a contradiction.

O

3 Elementary extensions

The theorem below is an analog of Theorem 3.3, p. 244 in [9]. The difference
between the two statements is that in [9], R is assumed to expand a field and C
(called “V” in [9]) is assumed to be a proper convex subring of R. Moreover, as
already mentioned, Theorem 3.3 in [J] needs an additional assumption to be correct
— such as that the residue field of (R, V) is o-minimal, or, more generally, that V'
has property .

Note that while Theorem 3.3 in [J] is stated as an implication, it is really
an equivalence. The easy direction (which went unstated in [9]) being if (R, C) <
(R(a), C), then we cannot have C(R) < a, f(a) < R where f is an R-definable
function and a € C(R{a)) and f(a) > C(R{a)). Else,

(R(a),C) 3w € C f(x) > C,
hence
(R,C) EJx el f(x) > C,
yielding a contradiction with f being increasing (see Fact .
Theorem 3.1 Suppose C is a cut in R with property *, and let a € R\ R. Then
(R,C) fails to be an elementary submodel of (R{a),C) if and only if there is an

element of C(R({a)) greater than any element of C(R) (WLOG, we may assume
this element is a) and an R-definable function, f, such that

C(R{a)) < f(a) < RZCW),

PrOOF: This may be proved in an almost identical fashion to the proof of Theorem
3.3 [9] (which encompasses paragraphs 2 and 3), and below, for the reader familiar
with that proof, we outline the minor changes needed.

1. All instances of “V” need to be replaced by “C”.
. Replace Theorem 2.7, p. 239 [9] with Corollary

2
3. Corollary 2.9, p. 241 [9] needs the additional assumption that p|g is the type
corresponding to C' and C' has property *.

4. The assumption that (R, V') has property * must be added to the hypotheses
of Lemma 3.1 and appeals to Corollary 2.9 are replaced by appeals to this

hypothesis.
5. Note that the cut of type p in R(a) also has property * by Lemma of
this paper.

10



6. In the proof of Lemma 3.1, p. 242, lines -18 to -15: The field assumption
is used to reduce 4 cases to 2. But the two remaining cases can simply be
proved in the same fashion as Case 2.

7. In the proof of Lemma 3.1, p. 243, lines 1 and 2: “Note that since V is a
group, ...” should be replaced with “Note that since (C, R>%) is a valuational
cut, ...” and on page 243, lines 4,5 “But % [ is also greater than every element
of V', ...” should be replaced with “But S—¢, where € > 0 is such that r—c > ¢
for all r € R>C and all ¢ € C, is also greater than every element of C, ...”.

8. The hypothesis of satisfying property * must be added to the hypotheses
of Lemma 3.2 and Theorem 3.3 and appeals to Lemma (of this paper)
added as appropriate to their proofs.

0

For readers not already familiar with the proofs in [9], this may be a significant
amount of work, especially since the proofs in [9] themselves require one to go
through the proofs in [2] to confirm results implicit, but not stated, therein. We have
therefore included a new, simplified proof of Theorem 3.3 of [9] in the remainder
of this section which includes an easy proof of the results implicit in [2] that we
require. This new proof also contains a result that may be of independent interest,
namely Proposition [3.6] a characterization of the divide between valuational and
non-valuational cuts in neostability theoretic terms.

In order to prove Theorem we will need a result on quantifier elimination
for traces (Proposition together with a statement about the uniformity of this
quantifier elimination (Remark, both of which may be extracted from the proofs
of Baisalov and Poizat in [2].

We shall need the notion of separation which was introduced in [2]:

Definition 3.2 Leta € R™, be R*, ACR, and let p € S1(A). Then a and b are
separated in p over A if either

del(aA) Np(R) < del(bA) Np(R) or del(bA) Np(R) < dcl(aA) Np(R).

(Note that the above condition holds if dcl(aA) Np(R) =0 or dcl(bA) Np(R) =0.)
We say that a and b are A-separated if they are separated in all one-types over A.
Note that if a and b are separated in p and dcl(aA) Np(R) # O then a and b are
A-separated.

We are able to provide short proofs by limiting ourselves to the case where the
externally definable set is a trace of a formula whose parameters form a Morley
sequence in a cut satisfying *, using our result (Proposition on symmetry of
dividing in Morley sequences, thus easily obtaining separated tuples. (This is also
Corollary 2.9 of [9], although there it appeared (incorrectly) without the hypothesis

11



Corollary 3.3 Let p € S1(R) be an R-invariant extension of the Lo-type over R
which states that x realizes the cut C', and assume that latter type has property *.
If t1, ..., t, is a finite Morley sequence in p over R and 1 < k < n, then t1,... tx
is R-separated from tiy1,...,t,.

ProoOF: This is simply Proposition together with the definition of separation.
O

In addition, we shall use the following fact:

Fact 3.4 Let ay,...,ax be such that each a; realizes a cut in R{ay,...a;—1). Then
every element of R{ay,...ar) \ R realizes a cut in R.

ProOOF: This is clear when k£ = 1. Suppose the statement is false, and consider
the minimal k for which it fails. Let b = f(aq,...,ax) witness its failure. Replacing
b with 1/b, if necessary, we may assume that there is a closest element of R to b.
Call this element r. Since b lies in a cut in R{aq,...ax—1), there must be elements
of R{a,...ax—1) between b and r. But these elements must therefore realize a
definable type over R, contradicting the minimality of k. O

Finally, we will need to take a global type, p, invariant over a small model R
where both the invariant type and its restriction to R are non-definable, build a
Morley sequence t1, ..., t, in p over R, and have that p|g;, .+, is also nondefinable.
The following example shows that this is not always the case:

Example 3.5 Let A be the collection of rational numbers less than m and let p
be the global type implied by {x > a | a € A} U{x <r |r > A}. Clearly p is
invariant over the empty set and is valuational (as is any non-definable global type
invariant over a small set). If, however, R is archimedean, then p|g is either a
non-valuational cut or a non-cut. Let R be an archimedean model. If ty,ts,... is a
Morley sequence in p over R then the only realization of p|r in R(t1) is t1 itself. If
plr s a non-cut then, clearly, tp(t1/R) is definable, and if p|g is a non-valuational
cut, then tp(ta/Rty) is definable.

On the other hand, if p| 4 is a valuational type and B D A, then p|p is also valu-
ational (witnessed by the same €). In particular, ¢y, ..., t; is a Morley sequence in p
over A, then p|at, ..+, is also valuational, and we have the following characterization
of valuational cuts:

Proposition 3.6 If p is a global 1-type invariant over a small set A, and B D A,
then the following are equivalent
1. p|p is a valuational type.

2. p|p is a cut and whenever dcl(Bc) contains t |= p|p, then dcl(Bc) contains
more than one realization of p|g.

12



3. For all k, if t1,...,t; is a Morley sequence in p over B then p|pt,. 1, 1
nondefinable.

4. If t1,to is a Morley sequence in p over B, then tp(t1/B) and tp(t2/Bty) are
nondefinable.

PROOF: Since p is a 1-type invariant over B, we may assume, replacing B with
an appropriate subset of dcl(B), that either p is implied by {z > b|be B}U{z <
r|r > B} or pisimplied by {z <b|be BfU{x >r | r < B}. For convenience,
we assume the former. The proof in the latter case is identical.

1. = 2. Let € witness that p|p is valuational, and let ¢ |= p|g. Then t — € = p|p.

2. = 1. Suppose p|p is a cut, and let ¢ be such that ¢, € dcl(Bc) both realize
p|p. Note that |t — | cannot realize the right infinitesimal neighborhood of 0 in
del(B), since p|p is a cut. So let € be a positive element of dcl(B) less than |t — .
This € witnesses that p|p is valuational.

1. = 3. Since p|p is valuational, it is in particular a cut, and so p|p¢, .. ¢, 1S not
the right infinitesimal neighborhood of some element in dcl(Bt;...¢;). On the
other hand, if e witnesses that p|p is valuational and a € dcl(Bt; ... ty) is such that
a = plp, then a—e¢ |= p|p. Thus there is no smallest element of p|pNdcl(Bty ... tx),
and so p|pt, ..+, cannot be the left infinitesimal neighborhood of some element in
dCl(Btl ce tk>.

3. = 4. Clear.

4. = 1. Let t1,ts be a Morley sequence in p over B. Since t; and t; — to are
interdefinable over Btq, and tp(to/By, ) is nondefinable, tp(tq — t2/Bt;) is also non-
definable. In particular, t; —to does not realize the right infinitesimal neighborhood
of 0 in dcl(Bt;), and one may choose positive € € dcl(Bt;) such that t; + € < ;.
Since tp(t1/B) is nondefinable, € does not realize the right infinitesimal neighbor-
hood of 0 in dcl(B), and one may choose positive € € dcl(B) with e < €. This €
witnesses that p|p is valuational.

O

In the proposition below, we let p be a global 1-type which is invariant over
the empty set and is such that p|r has property *. Our aim is to prove that if
we expand the Ly-structure R by a predicate for an externally definable set whose
parameters form a finite Morley sequence in p over R, then every set definable in
this trace expansion is itself the trace of an externally definable set with parameters
from a Morley sequence in p over R.

More precisely, let R be an |R|T-saturated elementary extension of R. Let
S and S be the realizations of 6(x1,..., a5, t1,...,t,) in R and R respectively,
where 0 is an Lo-formula in which the parameters from R are suppressed, and the
t1,...,t, € R form a Morley sequence in p over R. Up until now, £ had been
Ly expanded by C. For the remainder of this section we work in more generality:
Rather than expanding £y by C, we expand by a predicate S, defining, in a slight
abuse of notation, the set S in R, and we denote the language Lo U {S} by L.
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Proposition 3.7 Let ¢ be an L-formula with parameters from R. Then there is
an Lo-formula, T,, such that ¢(R) = 7,(R) N R*, where the parameters of 7, are
in R and form a Morley sequence in p over R.

PrOOF: Let z = (x1,...,x). It suffices to show that if ¢(xg,x) is the trace of
the Lo-formula 7, (20, 2,t1,...,t,), then Jzop(xo, z) is the trace of

7—31’()(,0 = 31‘0(7—@(1.07£7 t17 R 7tn) A Ttp(x07§7 tn+17 o 7t2n))7
where t1,...,to, € R form a Morley sequence in p over R. Suppose r1,...,7r € R
are such that there is ro € R with ¢(rg,r1,...,7%). Then

E ):Tw(To,Tl,...,Tk,tl,...,tn),

and since t1,...,ty, =R tn+1,--.,t2n, one has
R ': Tap(r(),rla~-~a7ﬂk>tn+17-~-,t2n)
as well.
Now suppose that there is no rg € R such that ¢(rg,71,...,7) and assume for

a contradiction that there is 7y € R with

ﬁ’:T@(Foarlw'~7rkat17~~';tn)AT@(FO;Th~'~ark7tn+1w~~;t2n)~

We consider tp(7o/Rt1,...,t,). Either 7y € dcl(Rty,...,t,) or there is an interval
(a,b) containing 7y with a,b € dcl(Rty,...t,) (possibly equal to —oo, 00) such that
any s € (a,b) is such that 7,(s,m1,..., 7%, t1,...,t,). Note that as we are supposing
that there is no element of R in that interval, the entire interval realizes a single
type ¢ € S1(R). Choose 71 € (a,b) with 71 € dcl(Rty,...t,). As p|g is valuational,
tp(ti/Rt1 ... t;—1) is a cut, by Proposition [3.6] This allows us to apply Proposition
B:4) to 71, showing that ¢ is not a definable type. Thus neither a nor b can be in R
or equal to —oo, 0.

Likewise consider tp(7o/Rtn+t1, . - - tan). We obtain either 7y € dcl(Rtp41, .. - tan)
or the existence of an interval (¢, d) analogous to (a,b) above.

Now note that we have contradicted the separation of ¢y, ..., ¢, from t,,41,...,t2,
(which follows from Corollary : For either there is an element not in R common
to their definable closures, or else there is an element of the definable closure of one
contained in an interval defined over the other. d

Remark 3.8 It is easy to see, inspecting the proof of Proposition that the
construction of T, is uniform in the sense that it is independent of p, R, and R. To
be precise, let Ry = él (in the sense of L) with ﬁl sufficiently saturated, and let Sy
and §1 denote the realizations of 0(x1, ..., Tk, S1,...5,) in S1 and §1 respectively
with s1,...,8, € §1 a Morley sequence in p; over Ry, where py is a global 1-type
invariant over () such that pi|gr, has property x. Then given any v, the proof above
creates the same 7, for Ry and p1 as it does for R and p.
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Note that the uniformity observed in Remark translates easily into a fact
about elementary substructures. Namely, we have the following corollary.

Corollary 3.9 Consider R and Ry as in Remark [3.§ where in addition R C Ry,
R = Ry. Consider p = p1 invariant over R such that p|gr and p|gr, have property
x, and moreover $1,...,8, =t1,...,t,. Then R < Ry as L-structures.

PrOOF: We may add constants for R to £ to make p invariant over §) so that we
may apply Proposition Suppose that Ry | Jxp(z,7) where ¥ € R™. This
happens if and only if 7 € Tgw(ﬁ) N RY*, where 734, is the R-definable set whose
trace is Jzp(z, R™). But the set Jzp(x, R™) is also the trace of T3ze. Obviously

7 € Tazo(R) N R™. Thus R |= 3z¢(z,7), and we are done by the Tarski-Vaught
test. g

We may now use this corollary to prove a slightly strengthened version (in that
we only need to assume the cut is valuational, rather than an actual valuation ring)
of Theorem 3.3 of [9].

First note that if R{a) is a superstructure of R (as an L-structure) and there is
an element (which we may assume to be a) in C>f with f(a) in the same cut in R
as a but with f(a) greater than C, then we cannot hope to satisfy the hypotheses of
Corollary 3:9] In particular, the requirement that sy ...,s, = t1,...,t, can not be
satisfied. After all, C is the trace of < ¢ and ¢ must lie between a and f(a), but an
R-invariant global type whose restriction to R is the cut of a in R would produce a
Morley sequence either less than a or greater than f(a). Thus this Morley sequence
could not include t.

However, this is the only obstruction:

Lemma 3.10 [Lemma 3.2 [9]] There is an R-invariant global type q with q|r being
the cut in R given by C' and q|r(q) being the cut in R{a) given by C, and there is a
finite Morley sequence tq,...,t, in q over R{a) (and hence over R) in each of the
following cases:

a) a realizes the cut in R given by C and C(R(a)) is the convex hull of C(R) in
R{a).

b) a realizes the cut given by C' and C(R(a)) = {x € R{a) | < RZC(M)},
¢) a is such that R{a) does not realize the cut given by C (hence C(R{(a)) is the
convez hull of C in R(a) and C(R(a)) = {x € R{a) | z < RZCUI}, )
PRrROOF: In a), we may take ¢ to be the global type implied by
{z>r|reCR)}U{z<r|reRandr>C(R)}.
In b), we let ¢ be the global type implied by
{x<r|re Ry U{z>r|reRandr < RPCEY

In ¢) we may do either.
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Now we obtain our criterion for elementary extensions:

Theorem B [Theorem 3.3 [9]] Let a € R and assume that (R,C) has property
x. Then (R{a),C) fails to be an elementary extension of (R, C) if and only if there
are R-definable one-variable functions f and g with C(R) < f(a),g(a) < R>CF)
and f(a) € C and g(a) > C.

PROOF: First assume there are no functions f, g as in the statement of the theorem.
Then we may apply Lemma to obtain that (R{a),C) has property *. The
lack of such f,g also allows us to apply Lemma to find an R-invariant ¢
with ¢|r being the cut in R given by C and q|g, being the cut in R(a) given
by C. Now we have satisfied the hypotheses of Corollary and conclude that
(R,C) = (R(a),C).

Now assume that there are such functions f and g, and define h to be go f~1.
Note that since h maps f(a) to g(a), h maps the cut in R corresponding to C' to
itself. Thus h is increasing (see Fact on an R-definable interval containing this
cut. Thus

(R{a), C) [= for all sufficiently large x € C, h(x) > C,

hence
(R, C) = for all sufficiently large = € C, h(z) > C.

Take r € C(R) with h(r) € R But r < f(a) while h(r) > h(f(a)), a
contradiction to h being increasing. O

4 Substructures of models of T and quantifier elim-
ination

In this section, we obtain our quantifier elimination, universal axiomatization and
definable Skolem function results (Theorem . Since most of the initial lemmas
are rather technical, here is a quick road map to how they fit together.

Start with (Ry, C) = (R, C), where (Ry, C) satisfies *, and consider a structure
(R1,C) so that (Ry,C) C (R1,C) C (R,C). Then clearly Ry = Ry = R (in Lo).
We would like to build up from (Ry, C) to (R1,C) and thence to (R, C'), one element
at a time, with each step along the way being an elementary extension. That will
establish model completeness in £ with constants added for Ry (and then our main
results will follow rather easily).

First we show in Lemma that given any a € R, (Ro,C) = (Ro{a),C).
However, as this uses (Rg, C) < (R, C) and we do not yet know (R{a),C') =< (R, C),
we cannot simply apply Lemma repeatedly to achieve our goal.

Next, we extend Lemma to any finitely generated extension (R,,C) of
(R, C) (working as usual inside (R, C)) and we show that as long as we build up
to R, by adding elements to Ry in a certain order (roughly, by adding only elements
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on the left side of the cut until C(R,,), for some m < n, is cofinal in C(R,,)) then
each step is an elementary extension. This is Lemma

Then we extend Lemma [4.2] by removing the finitely generated assumption.
This is Lemma 4.4

At that point we still have the restriction that we initially extend by adding
elements on the left side of the cut only. For example, choose ¢ € C(R) with
a > C(Rp) and b € R so that Ro(ab) contains no elements realizing the cut over
Ry{a). Then (Ry,C) = (Rp{a),C) = (Rp{ab),C), and also (Rg,C) = (Ro(b),C).
But we do not yet know that (Ro(b),C) =< (Ro{ab),C'). We establish this in Lemma
and then we use this in Lemma [£.7) to show (Ro(b),C) < (R,C).

Using this we see that given any a € R, (Ry, C) =< (Ro{a),C) and also (R{a),C) =
(Ro,C). We use this repeatedly to get the desired result (Proposition [£.9).

Lemma 4.1 Suppose (Rg,C) < (R,C), C defines a cut in Ry with property , and
a € R\ Ry. Then (Ry,C) < (Ro(a),C).

PRrROOF: If not, then, by Theorem we may assume that a realizes the type
C(Ry) < x < RZ T,

and there is an Lo-definable over Ry function f such that f(a) also realizes the
same type, and moreover a € C(Rp{a)) and f(a) > C(Ro(a)). Hence

(R,C) EJz € C f(z) > C.

By Fact f is increasing, and so f(C'(Ry)) € C(Rp) and f(R(?C(RO)) - R(?C(R”),
contradicting (Rp,C) = (R, C). O

Lemma 4.2 Suppose (Ro,C) < (R,C), and suppose C defines a cut in Ry with
property *. Let ai,...,a, € R and set R; = Ro(a1,...,a;) and C; = C(R) N R;,
forie{0,...,n}. Then (Ry,C) = (R,,C). Moreover, suppose ai,...,a, are dcl-
independent over Ry, and for some m < mn, a;41 € C’;g for each i < m, and Cp,
is cofinal in Cy,. Then for all i, (R;,C) = (Rix+1,C).
PrOOF: We may as well assume that ai,...,a, are as in the “Moreover, ...”
part of the statement of the lemma. Indeed, suppose Cj is not cofinal in C,,.
Pick b, € C>C. If C(Ro(b1)) is not cofinal in C,, then pick by € C; CFo)
so that by, by are dcl-independent over Ry. Continue in the same fashion until
C(R(b1,...bm)) is cofinal in C,,. This is bound to happen after m < n many
steps. Now choose by11,...,b, in such a way that Ro(by,...,b,) = R,. After
replacing aq, . ..,a, with b1, ..., b,, we find ourselves in the “Moreover, ...” part of
the lemma. Also note that then aq,...,a,, form a Morley sequence in q over Ry,
where ¢ is the global invariant type defined in Lemma [2.10]

We start by showing inductively for ¢ < m that (R;,C) = (Ri+1,C) and
(Rit1,C) has property .
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Base Step: That (Ry,C) = (R1,C), is Lemma Now by Theorem and 2.
of Lemma C defines a cut in Ry which has property .

Inductive Step: We assume towards a contradiction that 0 < ¢ < m is such that
(R;,C) = (Rj4+1,C) and (Rj4+1,C) has property * for all j < 4, and that there is an
Ry-definable function f such that f(ay,...,a;,x;+1) maps the set of realizations of
the type

C; <z <R

to itself and f(aa,...,a;, aj+1) is greater than Cjyq. Since each a1 > C; for j < 1,
we have, by Theorem that Ry “° is coinitial in R7 <,

Note that we cannot repeat the argument of Lemma exactly, for while
(Ro,C) = (R;,C), we do not know (R;,C) < (R,C). But as (Ry,C) < (R, (), we
have that for any rg1,...,7r9 € Co,

(R,C) ’:3$1€C>T01...3$i€C>TOi <<
Jy € Cc>i V41 € C>yf(l‘1, .. 7$i7$i+1) >C
and f is increasing as a function of ;11 on C~Y.

Since (Ro,C) =< (R,C), (Ro,C) satisfies the same Lpg,-formulas. Thus it also
satisfies

(Ro,C) |=VZ1 €eC.. Vg, €CIx €C>* .. g, € C7%xy < -+~ < oy
E|y € C>zi Vl‘H_l S C>yf(1,‘1, . ,.131',.131‘+1) >C
and f is increasing as a function of ;41 on C~Y.

Now since (Ro, C) = (R1,C), (R1, C) satisfies the same sentence. So we may choose
al € CZ™ (and thus tpe, (a1 /Ro) = tp,,(a1/Ro)) such that

(R1,C) EVzme(C..VzeCIraeC”® .. Az, € C7%a) <my < -+ <y
Eiy e >z VJCH_l S C>yf(a’1,x2, . ,xi,xﬂ_l) >C
and f is increasing as a function of z;,1 on C~Y.

Similarly, we may find a}, € C5* (and thus tps, (ajab/Ro) = tpy, (a1a2/Rp)) such
that

(R2,C) EVzeC..Vz;€CIrzeC”® .. . Iz, € C7%a) <ah < - <y
Ely cCom vxi-’rl € C>yf(a/17al27$3a s axiaxi-‘rl) >C
and f is increasing as a function of z;,1 on C~Y.

Continuing in this fashion, we find that

(R;,C) =3y e C>% V€ C™Y f(d),...,ad,xi1) > C
and f is increasing as a function of x; 11 on C~Y.
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Note that tp, (a’'/Ro) = tp,,(a/Ro), where ¢’ = (ai,...,a;) and a = (a1, ...,a;).
Furthermore, the above sentence is witnessed by y = h(a’) for some Ry-definable
function h.

Let g be another Ry-definable function such that h(a') < g(da’) and g(da’) € C;
(so f is increasing at g(a’)). Since f(d',g(a’)) > Ci, f(a',9(a’)) > ro for some
o € Ry by coinitiality of Ry in R, Then g(a) < a;11 (again by coinitiality
of R7 in R7Y) but f(a,a;41) < ro < f(a, g(a)), a contradiction with f being
increasing in x;41 on an interval containing g(a) and a;y1. So (R;,C) = (Ri+1,C),
and by a use of Theorem [3.Iand 2. of Lemma [2.10] we get that C' defines a cut in
R; 1 with property *. This finishes the inductive argument.

Having shown that (R;,C') < (R;4+1,C) for i < m, we complete the proof of the
lemma by noting that (R;,C) < (Rit+1,C) whenever m < i < n, by Theorem 3.1
O

Remark 4.3 Note that instead of choosing ai,...,a, € C, successively larger
realizations of the type Cyp < x < R§ Co until Cy, was cofinal in C,,, we could just as
easily have chosen successively smaller realizations ay,...,a of Cy < x < R(?C",
until R;C’“ was coinitial in R.C". Then the inductive argument above is easily
modified to yield (R;,C) 2 (Ri41,C) for i < k, and Lemma [3.1] shows (Ry,,C) =
(R,,C).

We will use the above lemma to show that if one builds up from (R, C) to (R, C)
by taking successively larger elements of C'(R), each realizing the cut determined by
C' in the previous model, until one has a cofinal subset of C(R) and then builds the
rest of the way to R in any fashion, then each step from Ry to R is an elementary
extension. More precisely:

Lemma 4.4 Suppose (Ry,C) = (R,C) and suppose C defines a cut in Ry with
property x. Let (aq)a<x be such that R = Ro{(aa)a<x), and set Ry = Ro{(ag)s<a)
and Co, = Ry, NC(R). Assume further that

1. there is v < Kk such that a, € C’;ff for all o« <y, and C, is cofinal in C(R).
2. there is § < Kk such that R;C“ is coinitial in RSB and for all o with
y<a<0,aq € R;ff“ but an < RZC.

Then
(Rouc) = (Ra+170) = (R’ C)

for each a < k.

PROOF: Let v be as indicated in the lemma. Note that (aq)a<y is a Morley
sequence in ¢ (in the sense of Lemma with Ry playing the role of R ).

By Lemma (Ro,C) = (Ry,C). Then by Lemma C defines a cut in
Ry with property *. Suppose ag < « is the first ordinal such that (R,,,C) A
(Ra0+17 C)
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By applying Lemma and then Theorem at successor ordinals less than
ap, we see that (aq)a<a, satisfies condition (2) of Lemma Thus in (R4, C),
one has that C,, satisfies property * and we may apply Theorem [B.1] to obtain

. Ca .
f(an,) not in Cyy41 but smaller than Ray ®°. Suppose the parameters in f are
agy, - - -, 08, , where each f; < ag. Then

R0<a30’ - 'a5n> ﬁ R0<a507 - 'aﬁnvaao>7

contradicting Lemma,

Note (aq)y<a<s is a Morley sequence in p (in the sense of Lemma over
R, showing that the cut C, in R, has property  for each v < a < 4, by condition
(1) of Lemma Also note that (aq)s<o satisfies condition (3) of Lemma
(where Rj plays the role of R in Lemma , showing that property * holds for
the cut C, in R, for each § < a.

For any « > 7, the fact that C is cofinal in C'(R) means that Theorem
implies (Rq,C) = (Ra41,C). Taking unions at limit ordinals yields (Rg,C) <
(R,C) for any 8 < k. O

Remark 4.5 Suppose instead of having the sequence (aq)a<x @0 the order described
in the hypotheses of Lemmal[{.4}, one has

1. v < Kk such that Ricw is coinitial in RZCU) and for all o with o < ~,

(o € Rz_ff“ but aq < RZ%, and

2. § <k such that a, € C’(fff for ally < a <4, and Cy is cofinal in C(R).

then one can see that the conclusion of Lemmal[{.]] still holds using the same proof
except flipping the use of condition (1) and condition (2) of Lemma and ob-
taining a contradiction with Remark[{.3 instead of Lemma [{.3

Lemma 4.6 Suppose (R1,C) =< (R2,C) and suppose that (Ry,C) has property
x. Let C; = C(Ry). Suppose that a € Ry with C; < a < R>* and C(a).
Suppose that b € Ra \ Ry and there is no be dclg, (b) with Cy < b < R>C1. Then
(R1(), C) = (Ru(ab), C).

ProOOF: First note that by Lemma (R1,C) =% (R1{a),C) and (Ry,C) =
(R1(b),C), and applying Lemma [2.10} we see that (Ri(a),C) and (R;(b),C) have
property . Also note that a can be taken to be the beginning of a sequence as in the
hypotheses of Lemma and so, applying that lemma, we see that (R1(a),C) =
(R2,C). Thus applying Lemma [4.1] we see that (R;(a),C) = (R {ab),C).

Applying Theorem 3.1 to (R1(a),C) = (R1{ab),C), we see that, a priori, there
are three possibilities:

1. dclg, (q)(b) contains no elements greater than C'(R;(a)) and less than R (a)

2. The elements of dclg, (4)(b) that are greater than C(Ri(a)) and less than
Ry (a)>CF1(a)) are all in C,
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3. The elements of dclg, (q)(b) that are greater than C'(R;(a)) and less than
Ry (a)>C¢(F1{a) are all greater than C.

In the first two cases, Theorem [3.1] implies that (R1(b), C') = (R1{ab)), while in the
third case it implies that (Ry(b),C) £ (R1(ab)).

Thus, for a contradiction, we assume that there is a R;-definable function
f(e,y) with C(Ry(a)) < f(a,b) < Ry(a)* @), Let B, = {y|f(z,y) > C}.
Suppose first that f(a,y) is increasing as a function of y. Then B,, realized as
a subset of Rp(a), includes everything to the right of the cut of b in Ry(a), since
fla,b) > C(Ry{a)). (And note that tp(b/Ri(a)) is a cut since f(a,y) maps this
type to the cut corresponding to C' in R;{a).) B, cannot include any d € R; to the
left of the cut of b, since then

C(Ri(a)) < fla,d) < f(a,b) < Ry(a)>C@E1 ()

which is impossible as f(a,d) € Ry{(a). And since R;(b) contains nothing realizing
tp(a/R1), Ri(a) can contain no points realizing tp(b/R;). Thus if B, included
anything to the left of the cut of b in Ry(a), it would contain a element of R;.
Similarly if f(a,y) is decreasing, B, contains everything to the left of the cut of b
and contains nothing to its right.

Note that f(z,b) maps tp(a/R;) to itself. Thus f(x,b) is increasing on an
definable neighborhood of a. So there is an interval I defined over R; and including
b so that for all y € I, f(x,y) is increasing in x. We restrict ourselves to such an I.

Since f(x,y) is increasing as a function of z, x1 < x5 implies that By, C By,.
Choose @ € C(R1(a)) with @ > a. B, C B; so B; also includes everything on one
side of the cut of b, and we claim that B; also cannot contain any d on the other
side of the cut of b. If it did contain a d on the other side of b, then we could
choose such a d in R;. Then (R;{a),C) would satisfy the sentence “there is x in
C such that B, contains d”, and (R1,C), being an elementary submodel, would
satisfy the same sentence. Thus R; would contain an r in C' such that d € B,.
Thus f(r,d) > C, but f(r,d) < f(a,d) < f(a,b), so f(r,d) € Ry would realize the
cut of ¢ in R;.

So for any @ > a in C(R1(a)), Bz = B,. Thus

(R1<a>aC) ): dxg U B, = Bmo-

zeC

Since (Ry,C) =% (Ri(a), C), we see that (Ry,C) = 3x0U,co B = Ba,-

Say ag € Ry is such an 2. (Ry, C) satisfies |J, . Bz = Ba,, so (R1{a), C) does
as well. Thus (Ry{a),C) E B, = B,,. Since (R1{a),C) X (R1{ab),C), B, = By,
holds in (Ry{ab),C) as well. In particular, f(ag,b) > C. Since f(agp,b) > C is
quantifier free, it holds in (Ry(b), C) as well. As we also have f(ag,b) < f(a,b), we
see that C; < f(ag,b) < R>1, contradicting our choice of b.

0

Lemma 4.7 Suppose (Ry,C
)

( =< (R,C), C defines a cut in Ry with property %, and
bER\Ro. Then (R0<b>, )

)
= (R,
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PROOF:

Case 1: There is an element of dclg,(b) in C(R)>¢(%0); We may assume that this
element is b. We may find (a4 )a<s as in the hypotheses of Lemmawith ag=>
to obtain (Ry(b),C) < (R, C).

>C(Ro).

Case 2: There is an element of dclg, (b) greater than C(Ro(b)) but less than R
As in Case 1, but using Remark

Case 3: No element of dclg, (b) is greater than C'(Rg) but less than R§C(R°). Choose
(aa)a<w as in the hypotheses of Lemma (and let R, and 7 be as in the proof
of Lemma as well) with the additional requirement that if at any stage « there
is an element of dclg, (b(ag)s<q) that could be chosen as a, then one chooses such
an element. If this happens at some stage prior to v, let 8 denote that stage.
Otherwise, let 8 = ~. Thus one has:

(Ro(b),C) <2 (R (b),C) <2 ... <224 (R3(b),C) —2— (R,C)

o -]
(Ry, C) —"— (R1,C) —2— ... = (Rs,C)

where each 7; is an elementary embedding by Lemma [£.4] each o; is an elementary
embedding by Lemma and p is an elementary embedding since either § < ~
and p continues the chain of elementary embeddings (R, C) = (Rat1,C), or 8 =1
and C(Rg(by) is cofinal in C(R).

Note that Ro(b) contains no = with C'(Rp) < = < RS o Lemma shows

0 0 0 ;

that p; is an elementary embedding. Inductively, except for possibly i = 8, R;(b)
contains no z with C(R;) < x < RZ-C(R"), so Lemma shows that p;11 is an

elementary embedding. Thus composing the p; and p, one sees that (Ry(b),C) =
(R,C).

O

Remark 4.8 Up to now, we have worked inside a fized monster model of Th(R, C'),
and so we have treated property x as a property of a particular substructure even
though its definition depends on parameters from outside the structure. In what
follows, we will take a substructure of (R,C) and embed it into a model of a poten-
tially different theory, raising the question of whether this could potentially change
whether the substructure satisfies .

But it is easy to see that this will not happen. For if a substructure (Ry,C) C
(R,C) does not satisfy x as a substructure of (R,C), then there is a tuple t and
a function f(x,t) mapping a cofinal sequence in C(Rg) to a sequence coinitial in
R(?C(RO), and this can be seen to be a property of the Lo-type of t over Ry. If (Ro, C)
is also a substructure of a sufficiently saturated (R1,C'), then as the Lo-theories of
R1 and R are the same, this type is also realized in Ry, and (Ry,C) also fails to
satisfy * as a substructure of R.
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Proposition 4.9 Suppose (Ro,C) is a substructure of (R, C) such that (R,C) can
be embedded over Ry into an elementary extension (R,C) of (Ry,C), and suppose

C' defines a cut in Ry with property *. Then (Ry,C) < (R,C) 2 (R, C).
Proor: This follows from Lemmas [£.1] and [£.7] by transfinite induction. O

The above shows that, after adding constants for an elementary submodel of
(R, C) where the cut C has property x, any substructure of (R, C) is an elementary
submodel. This easily leads to quantifier elimination in the language with the new
constants.

One may ask whether these constants are really necessary. Certainly one can-
not obtain the final goal of quantifier elimination, universal axiomitization, and
definable Skolem functions without adding any constants. Consider a simple ex-
ample: Let R = R(t) where t > Q, C' is the convex hull of Q in R, and let £y be
the language of ordered rings. Here one needs to add at least one constant, e.g. t.
Otherwise the reals form a substructure of R and hence Th(R, C) is not universally
axiomatizable. On the other hand, once one adds t, one has both terms which are
cofinal in C, as well as terms coinitial in R>¢. We show that in our case, having
such terms is all that is needed.

We use the following fact, found for example in Hodges [10], p. 294, Theorem
6.5.1 (where his B and a are both A below).

Fact 4.10 Let A be a substructure of C', and assume that every existential formula
with parameters from A that is true in C is also true in A. Then there is an
embedding of C into an elementary extension, D, of A, and this embedding can be
chosen to be the identity on A.

Lemma 4.11 Fiz a model (R,C) where the cut C has property x. Choose a se-
quence (c;)ier cofinal in C and a sequence (d;)jcs coinitial in R>C. Let Ry be
del((¢i)ier(dj)jes). Then (Ro,C) has property *, and (R, C) can be embedded over

Ry into an elementary extension (}NB, C) of (Ro,C).

ProoOF: Note that by Proposition (1), (Ro, C) clearly satisfies x. By Fact
it suffices to show that any existential statement with parameters from Ry true in
(R, C) is also true in (R, C). Note that any quantifier free formula in L is a finite
disjunction of formulas of the form

0(x) NC(fr(@)) A= ANC(fa(x)) A== A=C(ga(@)) A== A =C(gm ()

where 0, each f;, and each g; are Ly-definable over Ry, and where x may be a tuple.
By setting

f(@) = max(fi(z), ..., fo(z)) and g(z) = min(gi(x), . .., gm(2)),

we see that every quantifier free formula is a finite disjunction of formulas

p(x) = 0(x) AC(f(x)) A =C(g(x))-
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Note that in (R,C), C(x) iff V,c; 2 < ¢, and =C(z) #f ;. ;2 > d;. Thus,

pR)=0R) N J (RN g (BY).

iel jed

Now assume that (R,C) | Jzep(x) is witnessed by r. In particular, there are i, j
such that r satisfies the formula 6(z) A f(z) < ¢; A g(z) > d;. As this set is Lo-
definable over Ry, and as Ry considered as an Lg-structure has definable Skolem
functions, there is 79 € dcl(Ro(c;)ier(d;);es) also contained in this set, and thus

(Ro, C) |= 3zep(x). O

Theorem 4.12 Fiz a model (R, C) where the cut C has property x. Choose a set
A consisting of the elements of a sequence (¢;)icr cofinal in C' and the elements of
a sequence (d;)jc; coinitial in R>C. Let Ry be dcl(A) and let La be the language
L with constant symbols for A. We let Ta be the theory of (R,C) in La. Then
Th is universally axiomatizable, has quantifier elimination and definable Skolem
functions.

PRrROOF: By Lemma (Ro, C) has property *. So we may apply Lemma
to embed a copy of (R,C) into an elementary extension (R, C) of (Rg,C). Then
we apply Proposition to see that (Rp,C) is an elementary substructure of the
copy of (R, C), showing that the La-theory of (Ry,C) is Ta.

By choosing a sufficiently saturated (E, ('), universal axiomatizability follows
from showing that every substructure of (E, () is a submodel, and model complete-
ness follows from showing every submodel of (fi, () is an elementary submodel.
Since any £a-substructure contains Ry, both of these follow from Proposition [.9]

A model complete theory eliminates quantifiers precisely when T has the amal-
gamation property. Thus, model completeness together with universal axiomatiz-
ability implies quantifier elimination. Furthermore, quantifier elimination together

with uniform axiomatizability implies the existence of definable Skolem functions.
O

Corollary 4.13 If f: R — R is (R,C)-definable, then there are R-definable func-
tions fi,...,fx: R — R such that for each a € R, f(a) = fi(a) for some i €

(,... k).

Proor: This is a consequence of Ta having definable Skolem functions and a
universal axiomatization, where A is chosen as in the previous theorem. O

Finally, we have a partial converse to Theorem
Proposition 4.14 Suppose that the theory of (R, C) has quantifier elimination and

is_universally aviomatizable. Then any sufficiently saturated elementary extension
(R,C) has property .
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PrOOF: Consider R < R but without choosing an interpretation of the predicate C
in R. Choose a € R realizing the cut corresponding to C(R) and define C'(R{a)) to
be the convex hull of C'(R) in R(a). Repeat this process until one has built (R, C)

with the coinitiality of R1>C(R1) greater than the cofinality of C(R;) (which stay
equal to the cofinality of C(R)). (Or if the coinitiality of R~¢(?) was uncountable,

repeat only countably many times to obtain (R, C) with the coinitiality of R1> C(R)

countable.)

Since the cofinality of C(R;) and the cointiality of R; O Qiffer, Proposition
implies that (Ry, C) has property *. (R, C) is a substructure of (R, C'), and thus
by quantifier elimination and universal axiomatizabilty, (R,C) < (R;,C). More-
over, (R1,C) embeds into any sufficiently saturated elementary extension (E, )
of (R,C), and we may build up to (E, C) from (R;,C) with each step preserving
property . g

5 Appendix — convex valuations with o-minimal
residue field

Here we show that if C' is a predicate for a convex subring (hence valuation ring)
of R with o-minimal residue field, then the cut defined by C has property .

In this section, we assume that C' =V is realized as a proper convex subring of
its ambient o-minimal field. For an o-minimal field S we denote by T the residue
of z € V(S), and we let

Is={zeS:0<z<1}.

For X C S, we set
X(a):={(z) € ": (a,z) € X},
where z = (x1...,2,). We assume that p € S1(R) is the global R-invariant type

{r<z:reV(R}IU{z<r reRr>VBY

Definition 5.1 Let S be an o-minimal field. We say that (S,V) E X(n) if for
every X C Ié+" definable in S (considered as an o-minimal field) there is €y in
m>0, the mazimal ideal of V(S), such that for each e € m><,

X(eo) = X (e).

Observe that then by cell decomposition, (1) is equivalent to: For every
f: Is — Ig definable in the o-minimal field S there is ¢¢ € m>° such that for

all € € m2,

F(e) = feo).

We shall use the following two facts.
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Fact 5.2 ([13], Theorem 1.2) The residue field with structure induced from R
(equivalently, from (R,V) — see [9], Theorem 4.6) is o-minimal iff (R, V) = 3(1).

Fact 5.3 (M., van den Dries [8], Theorem 1.2) For any n,
(R, V) EX(1) = X(n).

Lemma 5.4 Suppose (R,V) = (1), t realizes p|g, and let Ry = R(t). Suppose
that for each a € Ry with V(R) < a < R”VI one has V(a). Then (R, V) = X(1).

PrROOF: We shall denote by m and m, the maximal ideal of V(R) and of V(R;)
respectively, and note that m; is the convex hull of m in R;. Assume to the contrary
(R, V) = =X(1). Then there is an R-definable function f: I — Ig, such that
for all € € m; there is 6. € my ¢ with

F(5:0) # £(5.50)

By Fact we can find ey € m”? such that

(TfN(Ig x {e} x Ir)) = (Tf N (Ig x {e0} x Ir)) € V(R)/m (1)
for all € € m>. We shall show that then f(},e) = f(},€) € V(R;)/my for all
€e€m; .

Fix € € m{“ such that f(},€0) # f(1,¢) (where both residues are elements of
V(R;)/m;). Since m; is the convex hull of m in R;, we may assume that € € m.
Since (R, V) | £(1), there are a € m>? and b € Iz™ such that

T'fN([a,b] x {e} x Ig) andﬁI‘fﬂ ([a,b] x {e0} x IR) @)

are graphs of functions [0,b] — V(R)/m.
Define g(z) = | f(z,€) — f(z,€0)| for z € [a,b] C R;. By[l]and [2] g(z) € m for all
x € [a,b] € R. After possibly shrinking [a,b] C R subject to the condition that

a < % < b, we may moreover assume that ¢ is continuous and monotone on (a,b),
contradicting g(1) > m. O

Proposition 5.5 If (R,V) E X(1), then the cut corresponding to V has property
*.

PRrROOF: Assume to the contrary that ¢ = ¢1,...,t, is a finite Morley sequence
in p over R and f: R"™' — R is Ly-definable over R such that f; takes a cofinal
segment of V(R) to a coinitial segment of the convex hull of R~V in R. Note
that we may replace ¢ with any other tuple satisfying the same o-minimal type over
R, and thus we may assume that, letting R; = R(t), one has V(a) for each a € R,
with V(R) < a < RZV(E), Thus by Lemma (R, V) = 2(1).
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After replacing f; (restricted to a suitable interval) with fll o %,

t

we obtain a

function that maps a cofinal segment of m to a coinitial segment of V(R)>™, where
m is the maximal ideal of V(R). The function f; is definable over R;, decreasing,
and maps a cofinal segment of m; (the maximal ideal of V(R;)) to a proper convex
subset of V(R;)”™t and, after composition with the residue map, we obtain a
function definable in R; whose image is not eventually constant on m;, contradicting
(V) E ().

O

By Theorem 6.3, p. 5470 [I1]], there is a canonical way in which (R, C) defines a
valuation ring. In Example this valuation ring is the convex hull of Q in R/,
so its residue field is o-minimal by Corollary 2.4, p. 244 [9]. Example therefore
shows that it is not possible to weaken the assumption in Proposition to: “the
residue field of the canonical valuation associated to (R, C') is o-minimal”.

We now turn to Corollary 3.4 [9] in which we claim that (R, V) = 3(1) whenever
V is the convex hull of Q. Our proof of this now requires property x.

Theorem 5.6 [Corollary 3.4 [9]] Consider (R,V) where V is the convexr hull of
Q. If (R,V) has property *, then (R,V) = X(1).

Proor: Work in a sufficiently saturated elementary extension (R, V). Note that
each cut in Q is realized in R. Take an element a € R realizing such a cut. If R{a)
contains no element @ with V(R) < @ < R>Y(® then note that in (R{a), V), V is
again the convex hull of Q. If R(a) contains @ with V(R) < @ < B>V then there
is an R-definable function, f, mapping the cut of a to the cut in R corresponding to
V. If f(a) > V, then note that V(R(a)) is again the convex hull of Q (by Theorem
and Lemma . If V(f(a)), choose b € R with V(R) < b < RZV)  and
replace a with f~1(b). Again, V(R(a)) is the convex hull of Q.

By Lemma (R{a),V) = (R,V). Thus we may repeatedly add realizations
of cuts in Q while keeping V' the convex hull of Q until we have built a model
(R1,V) which is an elementary extension of (R, V) and which has R as a residue
field. This residue field is necessarily o-minimal, and hence (R1, V) = (1), as does
(R, V). O
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