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Abstract

Let R be an o-minimal expansion of a group in a language in which
Th(R) eliminates quantifiers, and let C be a predicate for a valuational
cut in R. We identify a condition that implies quantifier elimination for
Th(R,C) in the language of R expanded by C and a small number of
constants, and which, in turn, is implied by Th(R,C) having quantifier
elimination and being universally axiomatizable. The condition applies
for example in the case when C is a convex subring of an o-minimal
field R and its residue field is o-minimal.

Keywords— o-minimality, valuational weakly o-minimal structure, quantifier
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1 Introduction

Throughout, we let R be an o-minimal expansion of a group in a language L0

in which Th(R) eliminates quantifiers. We expand our language with a unary
predicate C used to define a valuational cut in R.

The main result of this paper concerns cuts C that satisfy a condition we call
∗. We postpone a complete definition until Section 2 (Definition 2.3), but roughly
it says that forking is symmetric in Morley sequences in the cut C. We show that
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for such a cut, Th(R,C) eliminates quantifiers, is universally axiomatizable, and
has definable Skolem functions in the language L := L0 ∪{C} expanded by a small
number of constants.

Structures (R,C) as described above are instances of valuational weakly o-
minimal structures. Weakly o-minimal structures were first introduced by Dick-
mann [5]. In [11], Macpherson, Marker, Steinhorn proved a basic dichotomy: Ev-
ery weakly o-minimal structure is either valuational or non-valuational. While the
non-valuational ones are rather well-understood (see for example Bar-Yehuda, Has-
son, Peterzil [3]), and have been shown to share many desirable properties with
o-minimal structures, valuational weakly o-minimal structures have been, at least
at a certain level of generality, less well-explored.1

Examples of valuational weakly o-minimal structures include structures (R, V ),
where R is an o-minimal expansion of a real closed field and V is a predicate for a
convex subring (equivalently, for the cut of a convex subring). We shall denote the
class of all such (R, V ) by V. A particularly well-behaved subclass of V is the class
T of T-convex structures, in which our results have been known to hold for a long
time (see van den Dries, Lewenberg [7] and van den Dries [6]). While having proven
to be quite useful, T-convex structures do not include all the cases of interest. For
example, if C is the cut of the convex hull of Q in R, then (R,C) is in general not
T -convex. However, this case falls into the class O, the subclass of V consisting
of all (R, V ) with o-minimal residue field. While not being as well-behaved as T ,
O is known to be first-order axiomatizable (see Mař́ıková [13]) and the theories of
the structures in O are model-complete relative to quantifier elimination in R and
after expanding the language by a small number of constants (see Ealy, Mař́ıková
[9]). One has

T ⊊ O ⊊ V.

We show that all structures in O satisfy property ∗, and that in V \ O there are
both structures that satisfy ∗ and such that do not.

Our notation and set-up are as follows: Definable shall mean definable with pa-
rameters. If M is a structure, then we write M -definable to mean definable in
the structure M with parameters from M . Let M be an o-minimal structure. If
M ⪯ M and a ∈ M \ M , then we denote by M⟨a⟩ the structure generated by a
in M over M (so M⟨a⟩ is an abbreviation for dclM (a) and we use these notations
interchangeably). Note that M ⪯ M⟨a⟩ ⪯ M.

When M is o-minimal, we follow Marker, Steinhorn [12] (and many others) in
saying that a type q ∈ S1(M) is a cut if there are nonempty disjoint subsets C−

and C+ of M such that C− < C+, C− ∪ C+ = M , C− has no supremum in M ,
and q consists of the formulas c < x for all c ∈ C− and x < c for all c ∈ C+. (Thus,
cuts are precisely the nondefinable 1-types.) We call a cut in M valuational if there
is ϵ ∈ M>0 such that C− is closed under addition by ϵ.

1In [14], Laskowski, Shaw claim to prove the existence of definable Skolem functions
for structures (R,C), but there is a gap in the proof.
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As stated above, we let R be an o-minimal expansion of a group in a language
L0. We assume that L0 is such that T0 = Th(R) eliminates quantifiers in L0, and
that L0 and T0 have been expanded by definitions as follows: for each L0-formula
ϕ(x1, . . . , xn, y) such that

T0 ⊢ ∀x1 . . . ∀xn ∃!y ϕ(x1, . . . , xn, y)

we add a new function symbol f to L0 and the axiom

ϕ(x1, . . . , xn, f(x1, . . . , xn))

to the theory T0. Then T0 is universally axiomatizable.
By C we shall denote a unary predicate for a convex, downward closed set such

that the type
{x > r : r ∈ C} ∪ {x < r : r > C}

is a cut. In the special case when C is the downward closure of a valuation ring, we
shall also use C for the valuation ring itself. We write C(M) for the interpretation
of C in a structure M . We consider (R,C) in the language L = L0 ∪ {C}, and
we use T to denote the theory of (R,C) (in the language L). We work inside a
monster model (R, C) of T . In particular, if M ⪯ R, then in (M,C) the predicate
C is realized by the set C(R) ∩M .

For A ⊆ R, by S1(A) we mean the 1-types in the (o-minimal!) language L0

over A. Similarly, dcl shall always be dcl in the o-minimal language L0.
We will use the following properties of nondividing which hold in all theories

(see [1] Lemma 5.2 for a proof):

• (monotonicity) If A |⌣
d

C
B, A0 ⊆ A and B0 ⊆ B, then A0 |⌣

d

C
B0.

• (base monotonicity) Suppose D ⊆ C ⊆ B. If A |⌣
d

D
B, then A |⌣

d

C
B.

• (left transitivity) Suppose D ⊆ C ⊆ B. If B |⌣
d

C
A and C |⌣

d

D
A, then

B |⌣
d

D
A.

Furthermore, we will use that forking and dividing are the same in o-minimal
theories. (See the remarks preceding Proposition 2.8 together with Corollary 5.6 in
[4] for a proof that forking is the same as dividing in weakly o-minimal theories).
This allows us to also use the following:

• (extension) If A |⌣C
B and B̂ ⊇ B, then there is A′ ≡BC A such that

A′ |⌣C
B̂.

Finally, we note a useful observation about o-minimal structures.

Fact 1.1 Let p ∈ S1(R) be non-isolated. Then there is no L0-definable over R
decreasing function mapping the set of realizations of p in R to itself.

Proof: A decreasing function with the above property would have a fixed point
a realizing p. But then a ∈ dcl(R), a contradiction with p including {x ̸= r|r ∈ R}.
□
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2 The (non)-symmetry of forking in Morley se-
quences in invariant one-types in o-minimal struc-
tures

We wish to establish Theorem 3.1, an analogue of Theorem 3.3 [9], which gives a
sufficient and necessary condition for a superstructure (R⟨a⟩, C) of (R,C) to be an
elementary extension.

In [9], this theorem is proved with the help of Theorem 2.7 [9], which says that in
o-minimal expansions of groups, forking in Morley sequences in invariant one-types
is symmetric. Unfortunately, while working towards the results presented here, we
realized that the proof of Theorem 2.7 in [9] has a gap, and that the theorem does
not hold in the stated generality. While this does not pose a problem for the model
completeness result in [9] (Theorem 2.7 holds in the context of [9], namely, when
V is a convex subring of an o-minimal field R with o-minimal residue field – see
Appendix), here we need to bridge the gap in the proof of Theorem 3.3. We do this
by additionally assuming that the cut C has property ∗ (see Definition 2.3).

Definition 2.1 Given an A-invariant type p over R, and B ⊇ A, a Morley
sequence in p over B is any sequence t1, t2, . . . in R constructed as follows: let
t1 |= p|B and having defined t1, . . . , tn, let tn+1 |= p|Bt1...tn .

Note that in a Morley sequence over B, ti |⌣B
t1 . . . ti−1 and moreover the sequence

is indiscernible over B.

Proposition 2.2 Let p ∈ S1(R) be the global type C(R) < x and x < R>C(R),
and let t1, . . . , tn form a finite Morley sequence in p over R. Let q ∈ S1(R) be the
global type implied by r < x for all r ∈ R with r < R>C(R), and x < R>C(R) (i.e.
the R-invariant type at the opposite side of the cut from p). Then the following are
equivalent:

1. There is no function f , L0-definable over Rt2t3 . . . tn−1, which maps a cofinal
sequence in C(R) onto a coinitial sequence in the convex hull of R>C(R) in
R.

2. t1 |⌣R
t2 . . . tn.

3. tn, . . . , t1 is a finite Morley sequence in q ∈ S1(R) over R.

Proof: First note that for n = 2, (1) is always true by Fact 1.1, as an L0-definable
over R function mapping a cofinal segment of C(R) to a coinitial segment of the
convex hull of R>C(R) in R would be a decreasing L0-definable over R function
mapping a complete type over R to itself. Also, it is always the case that t1 |⌣R

t2
and t1 |= q|Rt2 , since if either of these failed to be true, there would be some L0-
definable over R function f with f(t2) > t1. As already noted, such a function
cannot be decreasing. But nor can it be increasing, as f−1(t1) would be less than
t2, contradicting the choice of t2.

So we will assume n > 2, and set t = t2, . . . , tn−1.
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3. =⇒ 2. Clearly, t1 |= q|Rttn implies t1 |⌣R
ttn.

2. =⇒ 1. Assume that ft maps a cofinal sequence in C(R) to a coinitial sequence

of the convex hull of R>C(R) in R. Then t1 < ft(tn) < R>C(R), and thus t1 is
contained in the interval (t2, ft(tn)). This witnesses t1 ̸ |⌣R

ttn.

1. =⇒ 3. Assume that t1 ̸|= q|Rttn , and, without loss of generality, assume that n
is the least such. Then there is an element s ∈ R⟨ttn⟩ realizing q|R with t1 < s.
Write s = ft(tn) for some L0-definable over R function f . We claim that ft maps a

cofinal sequence in C(R) onto a coinitial sequence in in the convex hull of R>C(R)

in R.
We first show that ft is strictly decreasing on some interval I containing a

cofinal sequence in C(R) and that ft(I ∩ C(R)) is contained in the convex hull of

R>C(R) in R: By o-minimality of R⟨t⟩, ft is continuous and strictly monotone on
some interval I with endpoints in dcl(Rt) and containing tn. Since t, tn is a Morley
sequence in p over R, the left endpoint of I is contained in the convex hull of C(R)
in R⟨t⟩. For sufficiently big c ∈ C− we have t1 < ft(c), since tn ∈ {x : ft(x) > t1},
and {x : ft(x) > t1} is L0-definable over R⟨t1t⟩. Moreover, ft(c) < R>C(R) would
yield a contradiction with the minimality of n. So we have ft(tn) < ft(c), hence ft
is decreasing on I, and ft(I ∩ C(R)) is contained in the convex hull of R>C(R) in
R.

It remains to show that ft(C(R) ∩ I) is coinitial in the convex hull of R>C(R)

in R. Suppose not. Then there is c ∈ R>C(R) with c < ft(C(R) ∩ I). Then
f−1
t (c) < tn but realizes p|R. This contradicts the definition of tn.

□

Definition 2.3 Let p ∈ S1(R) be the global type C(R) < x and x < R>C(R).
We say that the cut defined by C in R has property ∗ (or (R,C) has property ∗)
if whenever t = t1, . . . , tn form a finite Morley sequence in p over R, then the
equivalent conditions of Proposition 2.2 hold.

We use C both for a predicate in the expanded language L and to denote a cut,
i.e. a non-definable 1-type in the the o-minimal language L0. Property ∗ is better
thought of as a property of an o-minimal 1-type rather than as a property of the
predicate C.

Proposition 2.4 Let p ∈ S1(R) be a global R-invariant type such that p|R is the
type corresponding to C(R) and assume further that (R,C) has property ∗. Let
t1, . . . , tn be a finite Morley sequence in p over R. Then

t1 . . . tk |⌣
R

tk+1 . . . tn and tk+1 . . . tn |⌣
R

t1 . . . tk.

for all k with 1 ≤ k < n.
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Proof: First note that p, q in Proposition 2.2 are the only global R-invariant
extensions of the type corresponding to C(R). Now use 2. of Proposition 2.2
and the fact that for any a, b1, b2, c, one has a |⌣c

b1b2 =⇒ a |⌣cb1
b2, and

a |⌣cb1
b2 and b1 |⌣c

b2 =⇒ ab1 |⌣c
b2. □

Proposition 2.5 (R,C) has property ∗ implies that C defines a valuational cut in
R.

Proof: Consider (R,C) with C non-valuational. We denote by p ∈ S1(R) the
type implied by C(R) < x and x < R>C(R). Let t1, t2, t3 be a finite Morley sequence
in p over R. In particular, t3 < t2 < t1.

Since C is non-valuational, 0 < t1 − t2 < R>0, so t2 − (t1 − t2) |= p|R and thus
t3 < t2 − (t1 − t2). That is, t1 < t2 + (t2 − t3). Likewise, 0 < t2 − t3 < R>0, so
t2+(t2− t3) |= p|R. Hence the formula t2 < x < t2+(t2− t3) witnesses t1 ̸ |⌣R

t2t3.
□

Proposition 2.5 cannot be strengthened to an equivalence, as the following example
shows.

Example 2.6 Let R be the field of the real algebraic numbers and let R′ = R⟨ϵ⟩,
the structure generated over the real algebraic numbers by a positive infinitesimal ϵ.
Let C be the cut of π. The cut of π is a non-valuational cut in R but a valuational
cut in R′. However, the same argument as in Proposition 2.5 shows t1 ̸ |⌣R′ t2t3.

Later, we shall see that if C is the cut of a convex subring whose residue field
is o-minimal, then (R,C) has property ∗ (Proposition 5.5). On the other hand,
if C = V is a convex subring of R, then the o-minimality of the residue field
is not a necessary condition for C to have property ∗, as the following example
demonstrates.

Example 2.7 Let R be a big elementary extension of the real exponential field,
and let a ∈ R>Q. We set V =

⋃
n(−an, an). The residue field of (R, V ) is not o-

minimal, since the inverse function of the exponential induces a map ln : k>0 → k,
where ln(k>0) ⊆ k is bounded above but does not have a supremum in k. However,
letting O be the convex hull of Q, we see that (R, V ) and (R,O) are interdefinable
via the L0-definable function f(x) = ln x

ln a . The residue field of (R,O) is R and is
thus o-minimal. (In fact, (R,O) is even T -convex.) Thus, the cut corresponding to
O has property ∗, and therefore so does the cut corresponding to V .

While Example 2.6 shows that (R,C) might not satisfy ∗, one might still hope that
∗ holds whenever C is a predicate for a valuation ring, but this is also not true.
Here is an example illustrating this.

Example 2.8 Set R0 = Rexp, the real exponential field, and let M be a countably
saturated elementary extension of R0. We pick a1 ∈ M>Q and set R1 = R0⟨a1⟩ and
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V1 =
⋃

n(−an1 , a
n
1 ) ⊆ R1. We define (Rk+1, Vk+1) inductively by letting ak+1 ∈ M

be such that Vk < ak+1 < R>Vk

k , Rk+1 = Rk⟨ak+1⟩, and Vk+1 =
⋃

n(−ank+1, a
n
k+1) ⊆

Rk+1. Finally we set R =
⋃

k Rk and V =
⋃

k Vk. Our aim is to show that V does
not have property ∗.

Lemma 2.9 Let f(x, y) = y
ln y
ln x , and let t3 < t2 < t1 be a finite Morley sequence

in p over R, where p ∈ S1(R) is the type V < x < R>V . Then

t1 < f(t3, t2) < R>V .

Proof: For each i, we let gi ∈ Ri+1 be such that agii = ai+1, i.e. gi =
ln ai+1

ln ai
.

Claim 1 : Q < gi < R>Q
i

By our choice of ai+1, gi > k for all k ∈ N. Moreover, if there was r ∈ R>Q
i

with r < gi, then Vi < ari < agii = ai+1. But since ari ∈ Ri, this would imply that
ari ∈ Vi, a contradiction.

Claim 2 : gi+1 < g
1
k
i for all k ∈ N.

By Claim 1, gi+1 < gi. For any k, f(x) = xk is increasing and f(O) ⊆ O, so
gki+1 ≥ gi is impossible.

Note that {agii+1}∞i=1 is a coinitial sequence in R>V : If not, then there would be

r ∈ R>V such that r < agii+1 for all i. But r ∈ R
>Vj

j for some j, hence a
gj
j+1 < r, a

contradiction. So Claim 3 will complete the proof.

Claim 3 : For i ∈ {1, 2}, we set hi :=
ln ti

ln ti+1
(so ti = thi

i+1). Then, for all i,

t1 < th2
2 < agii+1 = f(ai, ai+1).

To prove that th2
2 < agii+1 for all i, assume towards a contradiction that i is such

that th2
2 ≥ agii+1. Then

h2 ≥ gi ln ai+1

ln t2
≥ gi ln ai+1

gi+1 ln ai+2
=

gi
(gi+1)2

.

By Claim 2, we have gi
(gi+1)2

> g
1
2
i , so h2 > g

1
2
i . It follows that

t2 = th2
3 > a

(g
1
2
i )

i+1 ∈ R>V
i+1,

a contradiction with t2 realizing p|R.
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It is left to show that t1 < th2
2 . If not, then th1

2 > th2
2 , so h1 > h2. We would

then be able to find k such that t
1
h1
2 < ak, which is equivalent to t

ln t2
ln ak
2 < t1. On the

other hand, ln t2
ln ak

> ln ak+1

ln ak
= gk. So

t
ln t2
ln ak
2 > tgk2 > agkk+1 > V,

a contradiction with t
ln t2
ln ak
2 < t1. □

Lemma 2.9 shows that t1 ̸ |⌣R
t2t3, and hence V does not have property ∗.

We conclude this section with a lemma showing that property ∗ is preserved by
passing to certain superstructures.

Lemma 2.10 Suppose C defines a cut in R which has property ∗, and let p ∈ S(R)
be the invariant type implied by

{x > c|c ∈ C(R)} ∪ {x < r|r ∈ R and r > C(R)}.

and q ∈ S(R) the type implied by

{x < r|r ∈ R>C(R)} ∪ {x > r|r ∈ R and r < R>C(R)}.

Then any of the following conditions implies C defines a cut in R⟨(ai)i<κ⟩ which
has property ∗:

1. (ai)i<κ forms a Morley sequence in p over R and

dclR((ai)i<κ ∩ p|R) > C(R).

2. (ai)i<κ forms a Morley sequence in q over R and

dclR((ai)i<κ ∩ p|R) ⊆ C(R).

3. dclR((ai)i<κ ∩ p|R) = ∅.

Proof: Assume (1) holds. Take a Morley sequence (ti)i<ω in p over R⟨(ai)i<κ⟩.
Then (ai)i<κ(ti)i<ω is also a Morley sequence in p overR. Note that t1(ai)i<κ |⌣R

t2 . . . tn,
because if not, there would be a finite subtuple ai0 , . . . , aik with

ai0 . . . aikt1 ̸ |⌣
R

t2 . . . tn,

and, by indiscernibility of the Morley sequence, we would have

t1t2 . . . tk+2 ̸ |⌣
R

tk+3 . . . tk+n+1,
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a contradiction with C having property ∗. From t1(ai)i<κ |⌣R
t2 . . . tn, it follows

that t1 |⌣R⟨(ai)i<κ⟩
t2 . . . tn.

If (2) holds, one carries out the analogous argument with the Morley sequence
(ti)i<ω in q.

Now assume (3). Suppose for a contradiction that C does not define a cut
in R⟨(ai)i<κ⟩ that has property ∗, and that this is witnessed by a finite Morley
sequence tk < tk−1 < · · · < t1 in p over R⟨(ai)i<κ⟩ and an R-definable function
f , i.e. t1 < fa(t), where a is a finite subsequence of (ai)i<κ, t = t2, . . . , tk and
fa(t) |= p|R⟨(ai)i<κ⟩. Then the cut defined by C in R⟨a⟩ does not have property
∗. Thus, if we could prove that C defining a cut in R with property ∗ implies
that C also defines a cut with property ∗ in R⟨a⟩, where a is a singleton and
dclR(a) ∩ p|R = ∅, then by applying this fact finitely many times, we could show
C defines a cut with property ∗ in R⟨a⟩. So towards a contradiction, we assume C
does not define a cut with property ∗ in R⟨a⟩.

Let tk < tk−1 < · · · < t1 be a finite Morley sequence in p over R⟨a⟩ and f an
R-definable function with t1 < fa(t), where t = t2, . . . , tk, and fa(t) |= p|R⟨a⟩.

Set t′1 = fa(t) and let t′k < · · · < t′2 < t′1 be a finite Morley sequence in p over
R⟨a⟩ so that t′2 < tk. Since tp(t/R⟨a⟩) = tp(t′/R⟨a⟩), we have

t′1 = fa(t) < fa(t
′) < R⟨a⟩>C(R⟨a⟩).

We now set t′′1 = fa(t
′).

Claim The sequence t′′1 , t
′
2, . . . , t

′
k is a finite Morley sequence in p over R.

Proof: This is proved by induction on k. We clearly have t′′1 |= p|R. Now
suppose that t′′1 , t

′
2, . . . , t

′
l is a finite Morley sequence in p over R. If t′′1 , t

′
2, . . . t

′
l+1

was not, then we would have C < h(t′′1 , t
′
2, . . . t

′
l) < t′l+1. Let H(x) = h(x, t′2, . . . , t

′
l)

and consider H(t′1). The function H is continuous and strictly monotone on some
interval, I, with left endpoint in dclR(t

′
2 . . . t

′
l) and realizing the type p|R, and right

endpoint in the convex hull of R>C(R) in R.
If H is increasing on that interval, then H(t′1) < r for some r ∈ C(R), since

otherwise t′1, . . . , t
′
l+1 would not be a Morley sequence in p over R. But if H(t′1) < r,

then any r′ > r, r′ ∈ C(R) would have to be such that t′1 < H−1(r′) < t′′1 , a
contradicting that C defines a cut with property ∗ in R.

If H is decreasing, then a coinitial segment of R>C(R) would have to be mapped
to a cofinal segment of C(R), since if there were any r ∈ R>C(R) with H(r) |=
p|R this would necessarily be less than t′l+1 (since H(r) < H(t′′1)), contradicting
t′1, . . . , t

′
l+1 being a Morley sequence in p over R. If, on the other hand, r ∈ C(R)

is such that H−1(I ∩R>C(R)) < r, then H−1(r) > t′′1 , hence H−1(r) cannot satisfy
p|R because the cut defined by C in R has property ∗. But H mapping a coinitial
segment of R>C to a cofinal segment of C(R) contradicts C defining a cut in R
with property ∗. □

Note that a ∈ dclR(t
′′
1 , t

′). Extend t′′1 , t
′ to a finite Morley sequence t′′1 , t

′, t′′ in
p over R. Then t′′1 < fa(t

′′) and fa(t
′′) |= p|R⟨a⟩. But fa(t

′′) = fg(t′′1 ,t′)(t
′′) for
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some R-definable function g. Hence the functionf(g(. . . ) . . . ) and the finite Morley
sequence t′′1 , t

′, t′′ in p over R witness the failure of ∗ in the cut defined by C in R,
a contradiction.

□

3 Elementary extensions

The theorem below is an analog of Theorem 3.3, p. 244 in [9]. The difference
between the two statements is that in [9], R is assumed to expand a field and C
(called “V ” in [9]) is assumed to be a proper convex subring of R. Moreover, as
already mentioned, Theorem 3.3 in [9] needs an additional assumption to be correct
– such as that the residue field of (R, V ) is o-minimal, or, more generally, that V
has property ∗.

Note that while Theorem 3.3 in [9] is stated as an implication, it is really
an equivalence. The easy direction (which went unstated in [9]) being if (R,C) ⪯
(R⟨a⟩, C), then we cannot have C(R) < a, f(a) < R>C(R), where f is anR-definable
function and a ∈ C(R⟨a⟩) and f(a) > C(R⟨a⟩). Else,

(R⟨a⟩, C) |= ∃x ∈ C f(x) > C,

hence
(R,C) |= ∃x ∈ C f(x) > C,

yielding a contradiction with f being increasing (see Fact 1.1).

Theorem 3.1 Suppose C is a cut in R with property ∗, and let a ∈ R \ R. Then
(R,C) fails to be an elementary submodel of (R⟨a⟩, C) if and only if there is an
element of C(R⟨a⟩) greater than any element of C(R) (WLOG, we may assume
this element is a) and an R-definable function, f , such that

C(R⟨a⟩) < f(a) < R>C(R).

Proof: This may be proved in an almost identical fashion to the proof of Theorem
3.3 [9] (which encompasses paragraphs 2 and 3), and below, for the reader familiar
with that proof, we outline the minor changes needed.

1. All instances of “V ” need to be replaced by “C”.

2. Replace Theorem 2.7, p. 239 [9] with Corollary 2.4.

3. Corollary 2.9, p. 241 [9] needs the additional assumption that p|R is the type
corresponding to C and C has property ∗.

4. The assumption that (R, V ) has property ∗ must be added to the hypotheses
of Lemma 3.1 and appeals to Corollary 2.9 are replaced by appeals to this
hypothesis.

5. Note that the cut of type p in R⟨a⟩ also has property ∗ by Lemma 2.10 of
this paper.
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6. In the proof of Lemma 3.1, p. 242, lines -18 to -15: The field assumption
is used to reduce 4 cases to 2. But the two remaining cases can simply be
proved in the same fashion as Case 2.

7. In the proof of Lemma 3.1, p. 243, lines 1 and 2: “Note that since V is a
group, ...” should be replaced with “Note that since (C,R>C) is a valuational
cut, ...” and on page 243, lines 4,5 “But 1

2β is also greater than every element
of V , ...” should be replaced with “But β−ϵ, where ϵ > 0 is such that r−c > ϵ
for all r ∈ R>C and all c ∈ C, is also greater than every element of C, ...”.

8. The hypothesis of satisfying property ∗ must be added to the hypotheses
of Lemma 3.2 and Theorem 3.3 and appeals to Lemma 2.10 (of this paper)
added as appropriate to their proofs.

□

For readers not already familiar with the proofs in [9], this may be a significant
amount of work, especially since the proofs in [9] themselves require one to go
through the proofs in [2] to confirm results implicit, but not stated, therein. We have
therefore included a new, simplified proof of Theorem 3.3 of [9] in the remainder
of this section which includes an easy proof of the results implicit in [2] that we
require. This new proof also contains a result that may be of independent interest,
namely Proposition 3.6, a characterization of the divide between valuational and
non-valuational cuts in neostability theoretic terms.

In order to prove Theorem 3.1, we will need a result on quantifier elimination
for traces (Proposition 3.7) together with a statement about the uniformity of this
quantifier elimination (Remark 3.8), both of which may be extracted from the proofs
of Baisalov and Poizat in [2].

We shall need the notion of separation which was introduced in [2]:

Definition 3.2 Let a ∈ Rm, b ∈ Rn, A ⊆ R, and let p ∈ S1(A). Then a and b are
separated in p over A if either

dcl(aA) ∩ p(R) < dcl(bA) ∩ p(R) or dcl(bA) ∩ p(R) < dcl(aA) ∩ p(R).

(Note that the above condition holds if dcl(aA) ∩ p(R) = ∅ or dcl(bA) ∩ p(R) = ∅.)
We say that a and b are A-separated if they are separated in all one-types over A.
Note that if a and b are separated in p and dcl(aA) ∩ p(R) ̸= ∅ then a and b are
A-separated.

We are able to provide short proofs by limiting ourselves to the case where the
externally definable set is a trace of a formula whose parameters form a Morley
sequence in a cut satisfying ∗, using our result (Proposition 2.4) on symmetry of
dividing in Morley sequences, thus easily obtaining separated tuples. (This is also
Corollary 2.9 of [9], although there it appeared (incorrectly) without the hypothesis
∗.)
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Corollary 3.3 Let p ∈ S1(R) be an R-invariant extension of the L0-type over R
which states that x realizes the cut C, and assume that latter type has property ∗.
If t1, . . . , tn is a finite Morley sequence in p over R and 1 ≤ k < n, then t1, . . . , tk
is R-separated from tk+1, . . . , tn.

Proof: This is simply Proposition 2.4 together with the definition of separation.
□

In addition, we shall use the following fact:

Fact 3.4 Let a1, . . . , ak be such that each ai realizes a cut in R⟨a1, . . . ai−1⟩. Then
every element of R⟨a1, . . . ak⟩ \R realizes a cut in R.

Proof: This is clear when k = 1. Suppose the statement is false, and consider
the minimal k for which it fails. Let b = f(a1, . . . , ak) witness its failure. Replacing
b with 1/b, if necessary, we may assume that there is a closest element of R to b.
Call this element r. Since b lies in a cut in R⟨a1, . . . ak−1⟩, there must be elements
of R⟨a1, . . . ak−1⟩ between b and r. But these elements must therefore realize a
definable type over R, contradicting the minimality of k. □

Finally, we will need to take a global type, p, invariant over a small model R
where both the invariant type and its restriction to R are non-definable, build a
Morley sequence t1, . . . , tn in p over R, and have that p|Rt1...tn is also nondefinable.
The following example shows that this is not always the case:

Example 3.5 Let A be the collection of rational numbers less than π and let p
be the global type implied by {x > a | a ∈ A} ∪ {x < r | r > A}. Clearly p is
invariant over the empty set and is valuational (as is any non-definable global type
invariant over a small set). If, however, R is archimedean, then p|R is either a
non-valuational cut or a non-cut. Let R be an archimedean model. If t1, t2, . . . is a
Morley sequence in p over R then the only realization of p|R in R⟨t1⟩ is t1 itself. If
p|R is a non-cut then, clearly, tp(t1/R) is definable, and if p|R is a non-valuational
cut, then tp(t2/Rt1) is definable.

On the other hand, if p|A is a valuational type and B ⊇ A, then p|B is also valu-
ational (witnessed by the same ϵ). In particular, t1, . . . , tk is a Morley sequence in p
over A, then p|At1...tk is also valuational, and we have the following characterization
of valuational cuts:

Proposition 3.6 If p is a global 1-type invariant over a small set A, and B ⊇ A,
then the following are equivalent

1. p|B is a valuational type.

2. p|B is a cut and whenever dcl(Bc) contains t |= p|B, then dcl(Bc) contains
more than one realization of p|B.
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3. For all k, if t1, . . . , tk is a Morley sequence in p over B then p|Bt1...tk is
nondefinable.

4. If t1, t2 is a Morley sequence in p over B, then tp(t1/B) and tp(t2/Bt1) are
nondefinable.

Proof: Since p is a 1-type invariant over B, we may assume, replacing B with
an appropriate subset of dcl(B), that either p is implied by {x > b | b ∈ B} ∪ {x <
r | r > B} or p is implied by {x < b | b ∈ B} ∪ {x > r | r < B}. For convenience,
we assume the former. The proof in the latter case is identical.

1. =⇒ 2. Let ϵ witness that p|B is valuational, and let t |= p|B . Then t− ϵ |= p|B .
2. =⇒ 1. Suppose p|B is a cut, and let c be such that t, t̃ ∈ dcl(Bc) both realize
p|B . Note that |t − t̃| cannot realize the right infinitesimal neighborhood of 0 in
dcl(B), since p|B is a cut. So let ϵ be a positive element of dcl(B) less than |t− t̃|.
This ϵ witnesses that p|B is valuational.

1. =⇒ 3. Since p|B is valuational, it is in particular a cut, and so p|Bt1...tk is not
the right infinitesimal neighborhood of some element in dcl(Bt1 . . . tk). On the
other hand, if ϵ witnesses that p|B is valuational and a ∈ dcl(Bt1 . . . tk) is such that
a |= p|B , then a−ϵ |= p|B . Thus there is no smallest element of p|B∩dcl(Bt1 . . . tk),
and so p|Bt1...tk cannot be the left infinitesimal neighborhood of some element in
dcl(Bt1 . . . tk).

3. =⇒ 4. Clear.

4. =⇒ 1. Let t1, t2 be a Morley sequence in p over B. Since t2 and t1 − t2 are
interdefinable over Bt1, and tp(t2/Bt1) is nondefinable, tp(t1− t2/Bt1) is also non-
definable. In particular, t1−t2 does not realize the right infinitesimal neighborhood
of 0 in dcl(Bt1), and one may choose positive ϵ̃ ∈ dcl(Bt1) such that t2 + ϵ̃ < t1.
Since tp(t1/B) is nondefinable, ϵ̃ does not realize the right infinitesimal neighbor-
hood of 0 in dcl(B), and one may choose positive ϵ ∈ dcl(B) with ϵ < ϵ̃. This ϵ
witnesses that p|B is valuational.

□

In the proposition below, we let p be a global 1-type which is invariant over
the empty set and is such that p|R has property ∗. Our aim is to prove that if
we expand the L0-structure R by a predicate for an externally definable set whose
parameters form a finite Morley sequence in p over R, then every set definable in
this trace expansion is itself the trace of an externally definable set with parameters
from a Morley sequence in p over R.

More precisely, let R̃ be an |R|+-saturated elementary extension of R. Let

S and S̃ be the realizations of θ(x1, . . . , xk, t1, . . . , tn) in R and R̃ respectively,
where θ is an L0-formula in which the parameters from R are suppressed, and the
t1, . . . , tn ∈ R̃ form a Morley sequence in p over R. Up until now, L had been
L0 expanded by C. For the remainder of this section we work in more generality:
Rather than expanding L0 by C, we expand by a predicate S, defining, in a slight
abuse of notation, the set S in R, and we denote the language L0 ∪ {S} by L.
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Proposition 3.7 Let φ be an L-formula with parameters from R. Then there is
an L0-formula, τφ, such that φ(R) = τφ(R̃) ∩ Rk, where the parameters of τφ are

in R̃ and form a Morley sequence in p over R.

Proof: Let x = (x1, . . . , xk). It suffices to show that if φ(x0, x) is the trace of
the L0-formula τφ(x0, x, t1, . . . , tn), then ∃x0φ(x0, x) is the trace of

τ∃x0φ = ∃x0(τφ(x0, x, t1, . . . , tn) ∧ τφ(x0, x, tn+1, . . . , t2n)),

where t1, . . . , t2n ∈ R̃ form a Morley sequence in p over R. Suppose r1, . . . , rk ∈ R
are such that there is r0 ∈ R with φ(r0, r1, . . . , rk). Then

R̃ |= τφ(r0, r1, . . . , rk, t1, . . . , tn),

and since t1, . . . , tn ≡R tn+1, . . . , t2n, one has

R̃ |= τφ(r0, r1, . . . , rk, tn+1, . . . , t2n)

as well.
Now suppose that there is no r0 ∈ R such that φ(r0, r1, . . . , rk) and assume for

a contradiction that there is r̃0 ∈ R̃ with

R̃ |= τφ(r̃0, r1, . . . , rk, t1, . . . , tn) ∧ τφ(r̃0, r1, . . . , rk, tn+1, . . . , t2n).

We consider tp(r̃0/Rt1, . . . , tn). Either r̃0 ∈ dcl(Rt1, . . . , tn) or there is an interval
(a, b) containing r̃0 with a, b ∈ dcl(Rt1, . . . tn) (possibly equal to −∞,∞) such that
any s ∈ (a, b) is such that τφ(s, r1, . . . , rk, t1, . . . , tn). Note that as we are supposing
that there is no element of R in that interval, the entire interval realizes a single
type q ∈ S1(R). Choose r̃1 ∈ (a, b) with r̃1 ∈ dcl(Rt1, . . . tn). As p|R is valuational,
tp(ti/Rt1 . . . ti−1) is a cut, by Proposition 3.6. This allows us to apply Proposition
3.4 to r̃1, showing that q is not a definable type. Thus neither a nor b can be in R
or equal to −∞,∞.

Likewise consider tp(r̃0/Rtn+1, . . . t2n). We obtain either r̃0 ∈ dcl(Rtn+1, . . . t2n)
or the existence of an interval (c, d) analogous to (a, b) above.

Now note that we have contradicted the separation of t1, . . . , tn from tn+1, . . . , t2n
(which follows from Corollary 3.3): For either there is an element not in R common
to their definable closures, or else there is an element of the definable closure of one
contained in an interval defined over the other. □

Remark 3.8 It is easy to see, inspecting the proof of Proposition 3.7, that the
construction of τφ is uniform in the sense that it is independent of p, R, and R̃. To

be precise, let R1 ⪯ R̃1 (in the sense of L0) with R̃1 sufficiently saturated, and let S1

and S̃1 denote the realizations of θ(x1, . . . , xk, s1, . . . sn) in S1 and S̃1 respectively

with s1, . . . , sn ∈ S̃1 a Morley sequence in p1 over R1, where p1 is a global 1-type
invariant over ∅ such that p1|R1 has property ∗. Then given any φ, the proof above
creates the same τφ for R1 and p1 as it does for R and p.
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Note that the uniformity observed in Remark 3.8 translates easily into a fact
about elementary substructures. Namely, we have the following corollary.

Corollary 3.9 Consider R and R1 as in Remark 3.8 where in addition R ⊆ R1,
R̃ = R̃1. Consider p = p1 invariant over R such that p|R and p|R1

have property
∗, and moreover s1, . . . , sn = t1, . . . , tn. Then R ⪯ R1 as L-structures.

Proof: We may add constants for R to L to make p invariant over ∅ so that we
may apply Proposition 3.7. Suppose that R1 |= ∃xφ(x, r⃗) where r⃗ ∈ Rm. This

happens if and only if r⃗ ∈ τ∃xφ(R̃) ∩ Rm
1 , where τ∃xφ is the R̃-definable set whose

trace is ∃xφ(x, R⃗m
1 ). But the set ∃xφ(x,Rm) is also the trace of τ∃xφ. Obviously

r⃗ ∈ τ∃xφ(R̃) ∩ Rm. Thus R |= ∃xφ(x, r⃗), and we are done by the Tarski-Vaught
test. □

We may now use this corollary to prove a slightly strengthened version (in that
we only need to assume the cut is valuational, rather than an actual valuation ring)
of Theorem 3.3 of [9].

First note that if R⟨a⟩ is a superstructure of R (as an L-structure) and there is
an element (which we may assume to be a) in C>R with f(a) in the same cut in R
as a but with f(a) greater than C, then we cannot hope to satisfy the hypotheses of
Corollary 3.9. In particular, the requirement that s1 . . . , sn = t1, . . . , tn can not be
satisfied. After all, C is the trace of x < t and t must lie between a and f(a), but an
R-invariant global type whose restriction to R is the cut of a in R would produce a
Morley sequence either less than a or greater than f(a). Thus this Morley sequence
could not include t.

However, this is the only obstruction:

Lemma 3.10 [Lemma 3.2 [9]] There is an R-invariant global type q with q|R being
the cut in R given by C and q|R⟨a⟩ being the cut in R⟨a⟩ given by C, and there is a
finite Morley sequence t1, . . . , tn in q over R⟨a⟩ (and hence over R) in each of the
following cases:

a) a realizes the cut in R given by C and C(R⟨a⟩) is the convex hull of C(R) in
R⟨a⟩.

b) a realizes the cut given by C and C(R⟨a⟩) = {x ∈ R⟨a⟩ | x < R>C(R)}.
c) a is such that R⟨a⟩ does not realize the cut given by C (hence C(R⟨a⟩) is the

convex hull of C in R⟨a⟩ and C(R⟨a⟩) = {x ∈ R⟨a⟩ | x < R>C(R)}. )

Proof: In a), we may take q to be the global type implied by

{x > r | r ∈ C(R)} ∪ {x < r | r ∈ R and r > C(R)}.

In b), we let q be the global type implied by

{x < r | r ∈ R>C(R)} ∪ {x > r | r ∈ R and r < R>C(R)}.

In c) we may do either.
□
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Now we obtain our criterion for elementary extensions:

Theorem 3.1 [Theorem 3.3 [9]] Let a ∈ R and assume that (R,C) has property
∗. Then (R⟨a⟩, C) fails to be an elementary extension of (R,C) if and only if there
are R-definable one-variable functions f and g with C(R) < f(a), g(a) < R>C(R)

and f(a) ∈ C and g(a) > C.

Proof: First assume there are no functions f, g as in the statement of the theorem.
Then we may apply Lemma 2.10 to obtain that (R⟨a⟩, C) has property ∗. The
lack of such f, g also allows us to apply Lemma 3.10 to find an R-invariant q
with q|R being the cut in R given by C and q|R⟨a⟩ being the cut in R⟨a⟩ given
by C. Now we have satisfied the hypotheses of Corollary 3.9, and conclude that
(R,C) ⪯ (R⟨a⟩, C).

Now assume that there are such functions f and g, and define h to be g ◦ f−1.
Note that since h maps f(a) to g(a), h maps the cut in R corresponding to C to
itself. Thus h is increasing (see Fact 1.1) on an R-definable interval containing this
cut. Thus

(R⟨a⟩, C) |= for all sufficiently large x ∈ C, h(x) > C,

hence
(R,C) |= for all sufficiently large x ∈ C, h(x) > C.

Take r ∈ C(R) with h(r) ∈ R>C(R). But r < f(a) while h(r) > h(f(a)), a
contradiction to h being increasing. □

4 Substructures of models of T and quantifier elim-
ination

In this section, we obtain our quantifier elimination, universal axiomatization and
definable Skolem function results (Theorem 4.12). Since most of the initial lemmas
are rather technical, here is a quick road map to how they fit together.

Start with (R0, C) ⪯ (R,C), where (R0, C) satisfies ∗, and consider a structure
(R1, C) so that (R0, C) ⊆ (R1, C) ⊆ (R,C). Then clearly R0 ⪯ R1 ⪯ R (in L0).
We would like to build up from (R0, C) to (R1, C) and thence to (R,C), one element
at a time, with each step along the way being an elementary extension. That will
establish model completeness in L with constants added for R0 (and then our main
results will follow rather easily).

First we show in Lemma 4.1 that given any a ∈ R, (R0, C) ⪯ (R0⟨a⟩, C).
However, as this uses (R0, C) ⪯ (R,C) and we do not yet know (R⟨a⟩, C) ⪯ (R0, C),
we cannot simply apply Lemma 4.1 repeatedly to achieve our goal.

Next, we extend Lemma 4.1 to any finitely generated extension (Rn, C) of
(R0, C) (working as usual inside (R,C)) and we show that as long as we build up
to Rn by adding elements to R0 in a certain order (roughly, by adding only elements
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on the left side of the cut until C(Rm), for some m ≤ n, is cofinal in C(Rn)) then
each step is an elementary extension. This is Lemma 4.2.

Then we extend Lemma 4.2 by removing the finitely generated assumption.
This is Lemma 4.4.

At that point we still have the restriction that we initially extend by adding
elements on the left side of the cut only. For example, choose a ∈ C(R) with
a > C(R0) and b ∈ R so that R0⟨ab⟩ contains no elements realizing the cut over
R0⟨a⟩. Then (R0, C) ⪯ (R0⟨a⟩, C) ⪯ (R0⟨ab⟩, C), and also (R0, C) ⪯ (R0⟨b⟩, C).
But we do not yet know that (R0⟨b⟩, C) ⪯ (R0⟨ab⟩, C). We establish this in Lemma
4.6 and then we use this in Lemma 4.7 to show (R0⟨b⟩, C) ⪯ (R,C).

Using this we see that given any a ∈ R, (R0, C) ⪯ (R0⟨a⟩, C) and also (R⟨a⟩, C) ⪯
(R0, C). We use this repeatedly to get the desired result (Proposition 4.9).

Lemma 4.1 Suppose (R0, C) ⪯ (R,C), C defines a cut in R0 with property ∗, and
a ∈ R \R0. Then (R0, C) ⪯ (R0⟨a⟩, C).

Proof: If not, then, by Theorem 3.1, we may assume that a realizes the type

C(R0) < x < R
>C(R0)
0 ,

and there is an L0-definable over R0 function f such that f(a) also realizes the
same type, and moreover a ∈ C(R0⟨a⟩) and f(a) > C(R0⟨a⟩). Hence

(R,C) |= ∃x ∈ C f(x) > C.

By Fact 1.1, f is increasing, and so f(C(R0)) ⊆ C(R0) and f(R
>C(R0)
0 ) ⊆ R

>C(R0)
0 ,

contradicting (R0, C) ⪯ (R,C). □

Lemma 4.2 Suppose (R0, C) ⪯ (R,C), and suppose C defines a cut in R0 with
property ∗. Let a1, . . . , an ∈ R and set Ri = R0⟨a1, . . . , ai⟩ and Ci = C(R) ∩ Ri,
for i ∈ {0, . . . , n}. Then (R0, C) ⪯ (Rn, C). Moreover, suppose a1, . . . , an are dcl-
independent over R0, and for some m ≤ n, ai+1 ∈ C>Ci

i+1 for each i ≤ m, and Cm

is cofinal in Cn. Then for all i, (Ri, C) ⪯ (Ri+1, C).

Proof: We may as well assume that a1, . . . , an are as in the “Moreover, ...”
part of the statement of the lemma. Indeed, suppose C0 is not cofinal in Cn.

Pick b1 ∈ C>C0
n . If C(R0⟨b1⟩) is not cofinal in Cn, then pick b2 ∈ C

>C(R0⟨b1⟩)
n

so that b1, b2 are dcl-independent over R0. Continue in the same fashion until
C(R⟨b1, . . . bm⟩) is cofinal in Cn. This is bound to happen after m ≤ n many
steps. Now choose bm+1, . . . , bn in such a way that R0⟨b1, . . . , bn⟩ = Rn. After
replacing a1, . . . , an with b1, . . . , bn, we find ourselves in the “Moreover, ...” part of
the lemma. Also note that then a1, . . . , am form a Morley sequence in q over R0,
where q is the global invariant type defined in Lemma 2.10.

We start by showing inductively for i < m that (Ri, C) ⪯ (Ri+1, C) and
(Ri+1, C) has property ∗.
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Base Step: That (R0, C) ⪯ (R1, C), is Lemma 4.1. Now by Theorem 3.1 and 2.
of Lemma 2.10, C defines a cut in R1 which has property ∗.
Inductive Step: We assume towards a contradiction that 0 < i < m is such that
(Rj , C) ⪯ (Rj+1, C) and (Rj+1, C) has property ∗ for all j < i, and that there is an
R0-definable function f such that f(a1, . . . , ai, xi+1) maps the set of realizations of
the type

Ci < x < R>Ci
i

to itself and f(a1, . . . , ai, ai+1) is greater than Ci+1. Since each aj+1 > Cj for j < i,

we have, by Theorem 3.1, that R>C0
0 is coinitial in R>Ci

i .
Note that we cannot repeat the argument of Lemma 4.1 exactly, for while

(R0, C) ⪯ (Ri, C), we do not know (Ri, C) ⪯ (R,C). But as (R0, C) ⪯ (R,C), we
have that for any r01, . . . , r0i ∈ C0,

(R,C) |= ∃x1 ∈ C>r01 . . . ∃xi ∈ C>r0i x1 < · · · < xi

∃y ∈ C>xi ∀xi+1 ∈ C>yf(x1, . . . , xi, xi+1) > C
and f is increasing as a function of xi+1 on C>y.

Since (R0, C) ⪯ (R,C), (R0, C) satisfies the same LR0
-formulas. Thus it also

satisfies

(R0, C) |= ∀z1 ∈ C . . . ∀zi ∈ C ∃x1 ∈ C>z1 . . . ∃xi ∈ C>zix1 < · · · < xi

∃y ∈ C>xi ∀xi+1 ∈ C>yf(x1, . . . , xi, xi+1) > C
and f is increasing as a function of xi+1 on C>y.

Now since (R0, C) ⪯ (R1, C), (R1, C) satisfies the same sentence. So we may choose

a′1 ∈ C≥a1

1 (and thus tpL0
(a′1/R0) = tpL0

(a1/R0)) such that

(R1, C) |= ∀z2 ∈ C . . .∀zi ∈ C ∃x2 ∈ C>z2 . . . ∃xi ∈ C>zia′1 < x2 < · · · < xi

∃y ∈ C>xi ∀xi+1 ∈ C>yf(a′1, x2, . . . , xi, xi+1) > C
and f is increasing as a function of xi+1 on C>y.

Similarly, we may find a′2 ∈ C≥a2

2 (and thus tpL0
(a′1a

′
2/R0) = tpL0

(a1a2/R0)) such
that

(R2, C) |= ∀z3 ∈ C . . . ∀zi ∈ C ∃x3 ∈ C>z3 . . . ∃xi ∈ C>zia′1 < a′2 < · · · < xi

∃y ∈ C>xi ∀xi+1 ∈ C>yf(a′1, a
′
2, x3, . . . , xi, xi+1) > C

and f is increasing as a function of xi+1 on C>y.

Continuing in this fashion, we find that

(Ri, C) |= ∃y ∈ C>a′
i ∀xi+1 ∈ C>y f(a′1, . . . , a

′
i, xi+1) > C

and f is increasing as a function of xi+1 on C>y.
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Note that tpL0
(a′/R0) = tpL0

(a/R0), where a′ = (a′1, . . . , a
′
i) and a = (a1, . . . , ai).

Furthermore, the above sentence is witnessed by y = h(a′) for some R0-definable
function h.

Let g be another R0-definable function such that h(a′) < g(a′) and g(a′) ∈ Ci

(so f is increasing at g(a′)). Since f(a′, g(a′)) > Ci, f(a
′, g(a′)) > r0 for some

r0 ∈ R>C0
0 by coinitiality of R>C0

0 in R>Ci
i . Then g(a) < ai+1 (again by coinitiality

of R>C0
0 in R>Ci

i ) but f(a, ai+1) < r0 < f(a, g(a)), a contradiction with f being
increasing in xi+1 on an interval containing g(a) and ai+1. So (Ri, C) ⪯ (Ri+1, C),
and by a use of Theorem 3.1 and 2. of Lemma 2.10, we get that C defines a cut in
Ri+1 with property ∗. This finishes the inductive argument.

Having shown that (Ri, C) ⪯ (Ri+1, C) for i < m, we complete the proof of the
lemma by noting that (Ri, C) ⪯ (Ri+1, C) whenever m ≤ i < n, by Theorem 3.1.
□

Remark 4.3 Note that instead of choosing a1, . . . , am ∈ Cn successively larger
realizations of the type C0 < x < R>C0

0 until Cm was cofinal in Cn, we could just as
easily have chosen successively smaller realizations a1, . . . , ak of C0 < x < R>C0

0 ,
until R>Ck

k was coinitial in R>Cn
n . Then the inductive argument above is easily

modified to yield (Ri, C) ⪯ (Ri+1, C) for i < k, and Lemma 3.1 shows (Rk, C) ⪯
(Rn, C).

We will use the above lemma to show that if one builds up from (R0, C) to (R,C)
by taking successively larger elements of C(R), each realizing the cut determined by
C in the previous model, until one has a cofinal subset of C(R) and then builds the
rest of the way to R in any fashion, then each step from R0 to R is an elementary
extension. More precisely:

Lemma 4.4 Suppose (R0, C) ⪯ (R,C) and suppose C defines a cut in R0 with
property ∗. Let (aα)α<κ be such that R = R0⟨(aα)α<κ⟩, and set Rα = R0⟨(aβ)β<α⟩
and Cα = Rα ∩ C(R). Assume further that

1. there is γ ≤ κ such that aα ∈ C>Cα
α+1 for all α < γ, and Cγ is cofinal in C(R).

2. there is δ ≤ κ such that R>Cδ

δ is coinitial in R>C(R) and for all α with

γ ≤ α < δ, aα ∈ R
>Cα+1

α+1 but aα < R>Cα
α .

Then
(Rα, C) ⪯ (Rα+1, C) ⪯ (R,C)

for each α < κ.

Proof: Let γ be as indicated in the lemma. Note that (aα)α<γ is a Morley
sequence in q (in the sense of Lemma 2.10 with R0 playing the role of R ).

By Lemma 4.1, (R0, C) ⪯ (R1, C). Then by Lemma 2.10, C defines a cut in
R1 with property ∗. Suppose α0 < γ is the first ordinal such that (Rα0

, C) ⪯̸
(Rα0+1, C).
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By applying Lemma 4.1 and then Theorem 3.1 at successor ordinals less than
α0, we see that (aα)α<α0

satisfies condition (2) of Lemma 2.10. Thus in (Rα0
, C),

one has that Cα0 satisfies property ∗ and we may apply Theorem 3.1 to obtain

f(aα0
) not in Cα0+1 but smaller than R

>Cα0
α0 . Suppose the parameters in f are

aβ0
, . . . , aβn

, where each βi < α0. Then

R0⟨aβ0
, . . . aβn

⟩ ⪯̸ R0⟨aβ0
, . . . aβn

, aα0
⟩,

contradicting Lemma 4.2.
Note (aα)γ≤α<δ is a Morley sequence in p (in the sense of Lemma 2.10) over

Rγ , showing that the cut Cα in Rα has property ∗ for each γ < α < δ, by condition
(1) of Lemma 2.10. Also note that (aα)δ≤α satisfies condition (3) of Lemma 2.10
(where Rδ plays the role of R in Lemma 2.10), showing that property ∗ holds for
the cut Cα in Rα for each δ < α.

For any α ≥ γ, the fact that Cγ is cofinal in C(R) means that Theorem 3.1
implies (Rα, C) ⪯ (Rα+1, C). Taking unions at limit ordinals yields (Rβ , C) ⪯
(R,C) for any β < κ. □

Remark 4.5 Suppose instead of having the sequence (aα)α<κ in the order described
in the hypotheses of Lemma 4.4, one has

1. γ ≤ κ such that R
>Cγ
γ is coinitial in R>C(R) and for all α with α < γ,

aα ∈ R
>Cα+1

α+1 but aα < R>Cα
α , and

2. δ ≤ κ such that aα ∈ C>Cα
α+1 for all γ ≤ α < δ, and Cγ is cofinal in C(R).

then one can see that the conclusion of Lemma 4.4 still holds using the same proof
except flipping the use of condition (1) and condition (2) of Lemma 2.10 and ob-
taining a contradiction with Remark 4.3 instead of Lemma 4.2.

Lemma 4.6 Suppose (R1, C) ⪯ (R2, C) and suppose that (R1, C) has property
∗. Let C1 = C(R1). Suppose that a ∈ R2 with C1 < a < R>C1 and C(a).
Suppose that b ∈ R2 \ R1 and there is no b̃ ∈ dclR1(b) with C1 < b̃ < R>C1 . Then
(R1⟨b⟩, C) ⪯ (R1⟨ab⟩, C).

Proof: First note that by Lemma 4.1, (R1, C) ⪯ (R1⟨a⟩, C) and (R1, C) ⪯
(R1⟨b⟩, C), and applying Lemma 2.10, we see that (R1⟨a⟩, C) and (R1⟨b⟩, C) have
property ∗. Also note that a can be taken to be the beginning of a sequence as in the
hypotheses of Lemma 4.4, and so, applying that lemma, we see that (R1⟨a⟩, C) ⪯
(R2, C). Thus applying Lemma 4.1, we see that (R1⟨a⟩, C) ⪯ (R1⟨ab⟩, C).

Applying Theorem 3.1 to (R1⟨a⟩, C) ⪯ (R1⟨ab⟩, C), we see that, a priori, there
are three possibilities:

1. dclR1⟨a⟩(b) contains no elements greater than C(R1⟨a⟩) and less thanR1⟨a⟩>C(R1⟨a⟩),

2. The elements of dclR1⟨a⟩(b) that are greater than C(R1⟨a⟩) and less than

R1⟨a⟩>C(R1⟨a⟩) are all in C,
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3. The elements of dclR1⟨a⟩(b) that are greater than C(R1⟨a⟩) and less than

R1⟨a⟩>C(R1⟨a⟩) are all greater than C.

In the first two cases, Theorem 3.1 implies that (R1⟨b⟩, C) ⪯ (R1⟨ab⟩), while in the
third case it implies that (R1⟨b⟩, C) ⪯̸ (R1⟨ab⟩).

Thus, for a contradiction, we assume that there is a R1-definable function
f(x, y) with C(R1⟨a⟩) < f(a, b) < R1⟨a⟩>C(R1⟨a⟩). Let Bx = {y|f(x, y) > C}.
Suppose first that f(a, y) is increasing as a function of y. Then Ba, realized as
a subset of R1⟨a⟩, includes everything to the right of the cut of b in R1⟨a⟩, since
f(a, b) > C(R1⟨a⟩). (And note that tp(b/R1⟨a⟩) is a cut since f(a, y) maps this
type to the cut corresponding to C in R1⟨a⟩.) Ba cannot include any d ∈ R1 to the
left of the cut of b, since then

C(R1⟨a⟩) < f(a, d) < f(a, b) < R1⟨a⟩>C(R1⟨a⟩),

which is impossible as f(a, d) ∈ R1⟨a⟩. And since R1⟨b⟩ contains nothing realizing
tp(a/R1), R1⟨a⟩ can contain no points realizing tp(b/R1). Thus if Ba included
anything to the left of the cut of b in R1⟨a⟩, it would contain a element of R1.
Similarly if f(a, y) is decreasing, Ba contains everything to the left of the cut of b
and contains nothing to its right.

Note that f(x, b) maps tp(a/R1) to itself. Thus f(x, b) is increasing on an
definable neighborhood of a. So there is an interval I defined over R1 and including
b so that for all y ∈ I, f(x, y) is increasing in x. We restrict ourselves to such an I.

Since f(x, y) is increasing as a function of x, x1 < x2 implies that Bx1 ⊆ Bx2 .
Choose ã ∈ C(R1⟨a⟩) with ã > a. Ba ⊆ Bã so Bã also includes everything on one
side of the cut of b, and we claim that Bã also cannot contain any d on the other
side of the cut of b. If it did contain a d on the other side of b, then we could
choose such a d in R1. Then (R1⟨a⟩, C) would satisfy the sentence “there is x in
C such that Bx contains d”, and (R1, C), being an elementary submodel, would
satisfy the same sentence. Thus R1 would contain an r in C such that d ∈ Br.
Thus f(r, d) > C, but f(r, d) < f(a, d) < f(a, b), so f(r, d) ∈ R1 would realize the
cut of a in R1.

So for any ã > a in C(R1⟨a⟩), Bã = Ba. Thus

(R1⟨a⟩, C) |= ∃x0

⋃
x∈C

Bx = Bx0
.

Since (R1, C) ⪯ (R1⟨a⟩, C), we see that (R1, C) |= ∃x0

⋃
x∈C Bx = Bx0

.
Say a0 ∈ R1 is such an x0. (R1, C) satisfies

⋃
x∈C Bx = Ba0

, so (R1⟨a⟩, C) does
as well. Thus (R1⟨a⟩, C) |= Ba = Ba0

. Since (R1⟨a⟩, C) ⪯ (R1⟨ab⟩, C), Ba = Ba0

holds in (R1⟨ab⟩, C) as well. In particular, f(a0, b) > C. Since f(a0, b) > C is
quantifier free, it holds in (R1⟨b⟩, C) as well. As we also have f(a0, b) < f(a, b), we
see that C1 < f(a0, b) < R>C1 , contradicting our choice of b.

□

Lemma 4.7 Suppose (R0, C) ⪯ (R,C), C defines a cut in R0 with property ∗, and
b ∈ R \R0. Then (R0⟨b⟩, C) ⪯ (R,C).
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Proof:

Case 1: There is an element of dclR0(b) in C(R)>C(R0): We may assume that this
element is b. We may find (aα)α<κ as in the hypotheses of Lemma 4.4 with a0 = b
to obtain (R0⟨b⟩, C) ⪯ (R,C).

Case 2: There is an element of dclR0(b) greater than C(R0⟨b⟩) but less than R
>C(R0)
0 :

As in Case 1, but using Remark 4.5.

Case 3: No element of dclR0
(b) is greater than C(R0) but less than R

>C(R0)
0 . Choose

(aα)α<κ as in the hypotheses of Lemma 4.4 (and let Rα and γ be as in the proof
of Lemma 4.4 as well) with the additional requirement that if at any stage α there
is an element of dclR0

(b(aβ)β<α) that could be chosen as aα then one chooses such
an element. If this happens at some stage prior to γ, let β denote that stage.
Otherwise, let β = γ. Thus one has:

(R0⟨b⟩, C) (R1⟨b⟩, C) . . . (Rβ⟨b⟩, C) (R,C)

(R0, C) (R1, C) . . . (Rβ , C)

ρ1 ρ2 ρβ ρ

τ1

σ0

τ2

σ1

τβ

σβ

where each τi is an elementary embedding by Lemma 4.4, each σi is an elementary
embedding by Lemma 4.1, and ρ is an elementary embedding since either β < γ
and ρ continues the chain of elementary embeddings (Rα, C) ⪯ (Rα+1, C), or β = γ
and C(Rβ⟨b⟩) is cofinal in C(R).

Note that R0⟨b⟩ contains no x with C(R0) < x < R
C(R0)
0 , so Lemma 4.6 shows

that ρ1 is an elementary embedding. Inductively, except for possibly i = β, Ri⟨b⟩
contains no x with C(Ri) < x < R

C(Ri)
i , so Lemma 4.6 shows that ρi+1 is an

elementary embedding. Thus composing the ρi and ρ, one sees that (R0⟨b⟩, C) ⪯
(R,C).

□

Remark 4.8 Up to now, we have worked inside a fixed monster model of Th(R,C),
and so we have treated property ∗ as a property of a particular substructure even
though its definition depends on parameters from outside the structure. In what
follows, we will take a substructure of (R,C) and embed it into a model of a poten-
tially different theory, raising the question of whether this could potentially change
whether the substructure satisfies ∗.

But it is easy to see that this will not happen. For if a substructure (R0, C) ⊆
(R,C) does not satisfy ∗ as a substructure of (R, C), then there is a tuple t and
a function f(x, t) mapping a cofinal sequence in C(R0) to a sequence coinitial in

R
>C(R0)
0 , and this can be seen to be a property of the L0-type of t over R0. If (R0, C)

is also a substructure of a sufficiently saturated (R1, C), then as the L0-theories of
R1 and R are the same, this type is also realized in R1, and (R0, C) also fails to
satisfy ∗ as a substructure of R1.
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Proposition 4.9 Suppose (R0, C) is a substructure of (R,C) such that (R,C) can

be embedded over R0 into an elementary extension (R̃, C) of (R0, C), and suppose

C defines a cut in R0 with property ∗. Then (R0, C) ⪯ (R,C) ⪯ (R̃, C).

Proof: This follows from Lemmas 4.1 and 4.7 by transfinite induction. □

The above shows that, after adding constants for an elementary submodel of
(R,C) where the cut C has property ∗, any substructure of (R,C) is an elementary
submodel. This easily leads to quantifier elimination in the language with the new
constants.

One may ask whether these constants are really necessary. Certainly one can-
not obtain the final goal of quantifier elimination, universal axiomitization, and
definable Skolem functions without adding any constants. Consider a simple ex-
ample: Let R = R⟨t⟩ where t > Q, C is the convex hull of Q in R, and let L0 be
the language of ordered rings. Here one needs to add at least one constant, e.g. t.
Otherwise the reals form a substructure of R and hence Th(R,C) is not universally
axiomatizable. On the other hand, once one adds t, one has both terms which are
cofinal in C, as well as terms coinitial in R>C . We show that in our case, having
such terms is all that is needed.

We use the following fact, found for example in Hodges [10], p. 294, Theorem
6.5.1 (where his B and ā are both A below).

Fact 4.10 Let A be a substructure of C, and assume that every existential formula
with parameters from A that is true in C is also true in A. Then there is an
embedding of C into an elementary extension, D, of A, and this embedding can be
chosen to be the identity on A.

Lemma 4.11 Fix a model (R,C) where the cut C has property ∗. Choose a se-
quence (ci)i∈I cofinal in C and a sequence (dj)j∈J coinitial in R>C . Let R0 be
dcl((ci)i∈I(dj)j∈J). Then (R0, C) has property ∗, and (R,C) can be embedded over

R0 into an elementary extension (R̃, C) of (R0, C).

Proof: Note that by Proposition 2.2 (1), (R0, C) clearly satisfies ∗. By Fact 4.10,
it suffices to show that any existential statement with parameters from R0 true in
(R,C) is also true in (R0, C). Note that any quantifier free formula in LC is a finite
disjunction of formulas of the form

θ(x) ∧ C(f1(x)) ∧ · · · ∧ C(fn(x)) ∧ · · · ∧ ¬C(g1(x)) ∧ · · · ∧ ¬C(gm(x))

where θ, each fi, and each gj are L0-definable over R0, and where x may be a tuple.
By setting

f(x) = max(f1(x), . . . , fn(x)) and g(x) = min(g1(x), . . . , gm(x)),

we see that every quantifier free formula is a finite disjunction of formulas

φ(x) = θ(x) ∧ C(f(x)) ∧ ¬C(g(x)).

23



Note that in (R,C), C(x) iff
∨

i∈I x < ci, and ¬C(x) iff
∨

j∈J x > dj . Thus,

φ(R) = θ(R) ∩
⋃
i∈I

f−1(R<ci) ∩
⋃
j∈J

g−1(R>dj ).

Now assume that (R,C) |= ∃xφ(x) is witnessed by r. In particular, there are i, j
such that r satisfies the formula θ(x) ∧ f(x) < ci ∧ g(x) > dj . As this set is L0-
definable over R0, and as R0 considered as an L0-structure has definable Skolem
functions, there is r0 ∈ dcl(R0(ci)i∈I(dj)j∈J) also contained in this set, and thus
(R0, C) |= ∃xφ(x). □

Theorem 4.12 Fix a model (R,C) where the cut C has property ∗. Choose a set
∆ consisting of the elements of a sequence (ci)i∈I cofinal in C and the elements of
a sequence (dj)j∈J coinitial in R>C . Let R0 be dcl(∆) and let L∆ be the language
L with constant symbols for ∆. We let T∆ be the theory of (R,C) in L∆. Then
T∆ is universally axiomatizable, has quantifier elimination and definable Skolem
functions.

Proof: By Lemma 4.11, (R0, C) has property ∗. So we may apply Lemma 4.11

to embed a copy of (R,C) into an elementary extension (R̃, C) of (R0, C). Then
we apply Proposition 4.9 to see that (R0, C) is an elementary substructure of the
copy of (R,C), showing that the L∆-theory of (R0, C) is T∆.

By choosing a sufficiently saturated (R̃, C), universal axiomatizability follows

from showing that every substructure of (R̃, C) is a submodel, and model complete-

ness follows from showing every submodel of (R̃, C) is an elementary submodel.
Since any L∆-substructure contains R0, both of these follow from Proposition 4.9.

A model complete theory eliminates quantifiers precisely when T ∀ has the amal-
gamation property. Thus, model completeness together with universal axiomatiz-
ability implies quantifier elimination. Furthermore, quantifier elimination together
with uniform axiomatizability implies the existence of definable Skolem functions.
□

Corollary 4.13 If f : R → R is (R,C)-definable, then there are R-definable func-
tions f1, . . . , fk : R → R such that for each a ∈ R, f(a) = fi(a) for some i ∈
{1, . . . , k}.

Proof: This is a consequence of T∆ having definable Skolem functions and a
universal axiomatization, where ∆ is chosen as in the previous theorem. □

Finally, we have a partial converse to Theorem 4.12.

Proposition 4.14 Suppose that the theory of (R,C) has quantifier elimination and
is universally axiomatizable. Then any sufficiently saturated elementary extension
(R̃, C) has property ∗.
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Proof: Consider R ⪯ R but without choosing an interpretation of the predicate C
in R. Choose a ∈ R realizing the cut corresponding to C(R) and define C(R⟨a⟩) to
be the convex hull of C(R) in R⟨a⟩. Repeat this process until one has built (R1, C)

with the coinitiality of R
>C(R1)
1 greater than the cofinality of C(R1) (which stay

equal to the cofinality of C(R)). (Or if the coinitiality of R>C(R) was uncountable,

repeat only countably many times to obtain (R1, C) with the coinitiality of R
>C(R1)
1

countable.)

Since the cofinality of C(R1) and the cointiality of R
>C(R1)
1 differ, Proposition

2.3 implies that (R1, C) has property ∗. (R,C) is a substructure of (R1, C), and thus
by quantifier elimination and universal axiomatizabilty, (R,C) ⪯ (R1, C). More-

over, (R1, C) embeds into any sufficiently saturated elementary extension (R̃, C)

of (R,C), and we may build up to (R̃, C) from (R1, C) with each step preserving
property ∗. □

5 Appendix – convex valuations with o-minimal
residue field

Here we show that if C is a predicate for a convex subring (hence valuation ring)
of R with o-minimal residue field, then the cut defined by C has property ∗.

In this section, we assume that C = V is realized as a proper convex subring of
its ambient o-minimal field. For an o-minimal field S we denote by x the residue
of x ∈ V (S), and we let

IS = {x ∈ S : 0 ≤ x ≤ 1}.

For X ⊆ S1+n, we set

X(a) := {(x) ∈ Sn : (a, x) ∈ X},

where x = (x1 . . . , xn). We assume that p ∈ S1(R) is the global R-invariant type

{r < x : r ∈ V (R)} ∪ {x < r : r ∈ R>V (R)}.

Definition 5.1 Let S be an o-minimal field. We say that (S, V ) |= Σ(n) if for
every X ⊆ I1+n

S definable in S (considered as an o-minimal field) there is ϵ0 in
m>0, the maximal ideal of V (S), such that for each ϵ ∈ m>ϵ0 ,

X(ϵ0) = X(ϵ).

Observe that then by cell decomposition, Σ(1) is equivalent to: For every
f : IS → IS definable in the o-minimal field S there is ϵ0 ∈ m>0 such that for
all ϵ ∈ m≥ϵ0 ,

f(ϵ) = f(ϵ0).

We shall use the following two facts.
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Fact 5.2 ([13], Theorem 1.2) The residue field with structure induced from R
(equivalently, from (R, V ) – see [9], Theorem 4.6) is o-minimal iff (R, V ) |= Σ(1).

Fact 5.3 (M., van den Dries [8], Theorem 1.2) For any n,

(R, V ) |= Σ(1) ⇒ Σ(n).

Lemma 5.4 Suppose (R, V ) |= Σ(1), t realizes p|R, and let Rt = R⟨t⟩. Suppose
that for each a ∈ Rt with V (R) < a < R>V (R) one has V (a). Then (Rt, V ) |= Σ(1).

Proof: We shall denote by m and mt the maximal ideal of V (R) and of V (Rt)
respectively, and note that mt is the convex hull of m in Rt. Assume to the contrary
(Rt, V ) |= ¬Σ(1). Then there is an R-definable function f : I2Rt

→ IRt
such that

for all ϵ ∈ mt there is δϵ ∈ m>ϵ
t with

f(
1

t
, ϵ) ̸= f(

1

t
, δϵ).

By Fact 5.3, we can find ϵ0 ∈ m>0 such that(
Γf ∩ (IR × {ϵ} × IR)

)
=

(
Γf ∩ (IR × {ϵ0} × IR)

)
∈ V (R)/m (1)

for all ϵ ∈ m>ϵ0 . We shall show that then f( 1t , ϵ0) = f( 1t , ϵ) ∈ V (Rt)/mt for all
ϵ ∈ m>ϵ0

t .

Fix ϵ ∈ m>ϵ0
t such that f( 1t , ϵ0) ̸= f( 1t , ϵ) (where both residues are elements of

V (Rt)/mt). Since mt is the convex hull of m in Rt, we may assume that ϵ ∈ m.
Since (R, V ) |= Σ(1), there are a ∈ m>0 and b ∈ I>m

R such that

Γf ∩ ([a, b]× {ϵ} × IR) and Γf ∩ ([a, b]× {ϵ0} × IR)

are graphs of functions [0, b] → V (R)/m.
(2)

Define g(x) = |f(x, ϵ) − f(x, ϵ0)| for x ∈ [a, b] ⊆ Rt. By 1 and 2, g(x) ∈ m for all
x ∈ [a, b] ⊆ R. After possibly shrinking [a, b] ⊆ R subject to the condition that
a < 1

t < b, we may moreover assume that g is continuous and monotone on (a, b),
contradicting g( 1t ) > m. □

Proposition 5.5 If (R, V ) |= Σ(1), then the cut corresponding to V has property
∗.

Proof: Assume to the contrary that t = t1, . . . , tn is a finite Morley sequence
in p over R and f : Rn+1 → R is L0-definable over R such that ft takes a cofinal

segment of V (R) to a coinitial segment of the convex hull of R>V (R) in R. Note
that we may replace t with any other tuple satisfying the same o-minimal type over
R, and thus we may assume that, letting Rt = R⟨t⟩, one has V (a) for each a ∈ Rt

with V (R) < a < R>V (R). Thus by Lemma 5.4, (Rt, V ) |= Σ(1).
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After replacing ft (restricted to a suitable interval) with 1
f−1
t

◦ 1
x , we obtain a

function that maps a cofinal segment of m to a coinitial segment of V (R)>m, where
m is the maximal ideal of V (R). The function ft is definable over Rt, decreasing,
and maps a cofinal segment of mt (the maximal ideal of V (Rt)) to a proper convex
subset of V (Rt)

>mt and, after composition with the residue map, we obtain a
function definable in Rt whose image is not eventually constant on mt, contradicting
(Rt, V ) |= Σ(1).

□

By Theorem 6.3, p. 5470 [11], there is a canonical way in which (R,C) defines a
valuation ring. In Example 2.6, this valuation ring is the convex hull of Q in R′,
so its residue field is o-minimal by Corollary 2.4, p. 244 [9]. Example 2.6 therefore
shows that it is not possible to weaken the assumption in Proposition 5.5 to: “the
residue field of the canonical valuation associated to (R,C) is o-minimal”.

We now turn to Corollary 3.4 [9] in which we claim that (R, V ) |= Σ(1) whenever
V is the convex hull of Q. Our proof of this now requires property ∗.

Theorem 5.6 [Corollary 3.4 [9]] Consider (R, V ) where V is the convex hull of
Q. If (R, V ) has property ∗, then (R, V ) |= Σ(1).

Proof: Work in a sufficiently saturated elementary extension (R, V ). Note that
each cut in Q is realized in R. Take an element a ∈ R realizing such a cut. If R⟨a⟩
contains no element ã with V (R) < ã < R>V (R) then note that in (R⟨a⟩, V ), V is
again the convex hull of Q. If R⟨a⟩ contains ã with V (R) < ã < R>V (R) then there
is an R-definable function, f , mapping the cut of a to the cut in R corresponding to
V . If f(a) > V , then note that V (R⟨a⟩) is again the convex hull of Q (by Theorem
3.1 and Lemma 4.1). If V (f(a)), choose b ∈ R with V (R) < b < R>V (R), and
replace a with f−1(b). Again, V (R⟨a⟩) is the convex hull of Q.

By Lemma 4.7, (R⟨a⟩, V ) ⪯ (R, V ). Thus we may repeatedly add realizations
of cuts in Q while keeping V the convex hull of Q until we have built a model
(R1, V ) which is an elementary extension of (R, V ) and which has R as a residue
field. This residue field is necessarily o-minimal, and hence (R1, V ) |= Σ(1), as does
(R, V ). □
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