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Abstract. We continue the work of Kaplansky on immediate valued field

extensions and determine special properties of elements in such extensions.

In particular, we are interested in the question when an immediate valued
function field of transcendence degree 1 is henselian rational (i.e., generated,

modulo henselization, by one element). If so, then ramification can be elim-

inated in this valued function field. The results presented in this paper are
crucial for the first author’s proof of henselian rationality over tame fields,

which in turn is used in his work on local uniformization.

1. Introduction

This paper continues the work of Kaplansky [3] in which, based on earlier work
of Ostrowski [12], he laid the foundations for an understanding of immediate ex-
tensions of valued fields. Such an understanding has turned out to be essential for
many questions about the structure of valued fields, which vary from their model
theory and applications in real algebra to the very difficult task of elimination of
ramification in valued function fields (which we will define below). The latter plays
an essential role in the quest for local uniformization, which in turn is a local form
of resolution of singularities. These problems being still wide open in positive char-
acteristic, any refined valuation theoretical tools that can bring new insight are
very important.

The theory developed by Kaplansky and Ostrowski is very useful for valuations
with residue fields of characteristic 0, but its real strength (as well as its limitations)
become visible when the residue characteristic is positive.

While Kaplansky was mainly concerned with embeddings in power series fields
and the question when maximal immediate extensions are unique up to isomor-
phism, the above mentioned problems have added new questions to the spectrum.
In the present paper we develop Kaplansky’s tools further in order to answer various
questions about the structure of immediate function fields. Several results of this
paper are indispensable for the paper [10] on henselian rationality, which is central
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in the first author’s work on elimination of ramification and local uniformization
(see [4]), as well as the model theory of valued fields (see [9]).

By (L|K, v) we denote an extension of valued fields, i.e., L|K is a field extension,
v is a valuation on L, and K is endowed with the restriction of v (which we again
denote by v.) An extension (L|K, v) is said to be immediate if the canonical
embeddings vK ↪→ vL of the value groups and Kv ↪→ Lv of the residue fields are
onto. An important example for an immediate algebraic extension of a valued field
(K, v) is its henselization, denoted by (K, v)h or just Kh, which is a minimal
extension in which Hensel’s Lemma holds. A valued field is henselian if it is equal
to its henselization, or equivalently, if it admits a unique extension of its valuation
to every algebraic extension field.

An immediate function field (F |K, v) of transcendence degree 1 will be called
henselian rational if there exists an element x ∈ Fh such that Fh = K(x)h, that
is, Fh is the henselization of the rational function field K(x), and F ⊂ K(x)h. We
then call x a henselian generator of Fh.

The Henselian Rationality Theorem of [5, 10] states that every immediate func-
tion field (F |K, v) of transcendence degree 1 over a tame field (K, v) is henselian
rational and the henselian generator x can already be found in F . The field (K, v) is
called tame if it is henselian and the ramification field Kr of the normal extension
K

sep |K is algebraically closed, where K
sep

denotes the separable algebraic closure
of K. In particular, every tame field is perfect.

In the above definition, the henselian field K has a unique extension of its valu-
ation to K

sep

. For an arbitrary valued field (K, v), Kr is defined with respect to a
previously fixed extension of the valuation, and similarly, Ki is then defined to be
the inertia field of the extension (K

sep |K, v). Note that Kh ⊆ Ki ⊆ Kr.
For an arbitrary valued function field (F |K, v), elimination of ramification

is the task of finding a transcendence basis T of F |K such that F lies in K(T )i.
Since K(x)h ⊆ K(x)i, the Henselian Rationality Theorem eliminates ramification
from immediate function fields of transcendence degree 1 over tame fields.

For the proof of the Henselian Rationality Theorem, one first reduces the problem
to the case of valued fields of rank 1 (i.e., having archimedean ordered value groups),
and then starts with an arbitrary element x ∈ F transcendental over K; it can be
chosen such that F |K(x) is separable. If x is not a henselian generator, then
(Fh|K(x)h, v) is a proper finite immediate extension. Let us describe the further
steps of the proof in the important special case where charK = p > 0. If one replaces
(F |K, v) by the valued function field (F.Kr|Kr, v), which again is immediate, then
the extension ((F.Kr)h|Kr(x)h, v) becomes a tower of Artin-Schreier extensions.
The lowest of them is shown to be generated by a root y of a polynomial Xp −
X − f(x) where p is the residue characteristic and f(x) ∈ K[x]. We observe that
f(x) = yp−y ∈ K(y), hence if K(x)h = K(f(x))h, then K(x)h ⊂

6= K(y)h. Replacing

x by y, we have then reduced the degree of Fh|K(x)h by a factor of p. This shows
that it is crucial to determine the degree [K(x)h : K(f(x))h] for a given f(x) ∈ K[x]
and to choose f(x) in such a way that the degree becomes 1.

In order to gain insight on the degree [K(x)h : K(f(x))h], we study the elements
f(x) ∈ K[x] in (not necessarily transcendental) immediate extensions (K(x)|K, v),
through extending Kaplansky’s technical lemmas. After introducing approximation
types and their basic properties in Sections 3 and 4, this study is carried out in
Sections 5 to 8. In Section 7, we define the “relative approximation degree of f(x)
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in x” to be the integer h that appears in Kaplansky’s Lemma 8. We then show in
Theorem 9.1 that under suitable assumptions about the extension (K(x)|K, v) and
the element f(x), the degree [K(x)h : K(f(x))h] is smaller than or equal to the
relative approximation degree of f(x) in x.

Having proved (in [10]) that the immediate function field (F.Kr|Kr(x), v) is
henselian rational, one has to pull this property down to (F |K, v). Observe that if
(F.Kr|Kr(x), v) is henselian rational, then the same already holds for (F.L|L(x), v)
for a suitable finite subextension L|K of Kr|K. Moreover, L|K can be chosen to
be Galois since also Kr|K is Galois (we allow Galois extensions to be infinite). An
extension of a henselian field (K, v) is called tame if it lies in Kr. Consequently,
a Galois extension is tame if and only if its ramification group is trivial. So what
we need is a pull down principle for henselian rationality through tame extensions
of the base field. This is presented in Theorem 14.5. More precisely, we show in
Section 14 that if x is a henselian generator for (F.L|L, v), where (L|K, v) is a finite
tame Galois extension, then for a suitable element d ∈ L, the trace Tr(d · x) is a
henselian generator for (F |K, v). We use a valuation theoretical characterization of
the Galois groups of tame Galois extensions that is developed in Section 13.

Once a henselian generator x ∈ Fh is found, the question arises whether x can
already be chosen in F . We show in Theorem 11.1 that this can be done. In fact,
there is some γ ∈ vK such that K(x)h = K(y)h for every y ∈ F with v(x− y) ≥ γ.
This result is crucial for the proof given in [4] that local uniformization can always
be achieved after a finite Galois extension of the function field. In order to prove
Theorem 11.1, we generalize the relative approximation degree to other elements
y ∈ K(x)h in place of f(x) in Section 10. We then prove the corresponding gener-
alization of Theorem 9.1: Theorem 10.7 states that under suitable assumptions, we
again have that the degree [K(x)h : K(y)h] is smaller than or equal to the relative
approximation degree of y in x.

Theorem 11.1 can be seen as a special case of a “dehenselization” procedure
(analogous to the “decompletion” used by M. Temkin in [15]). If for a given valued
function field (F |K, v) there is a finite extension F ′ of F within its henselization
such that (F ′|K, v) admits local uniformization, one would like to deduce that also
(F |K, v) admits local uniformization. This can be done if Theorem 11.1 can be
generalized in a suitable way to the case of non-immediate valued function fields.
This problem will be investigated in a subsequent paper.

Our investigation of the properties of elements in immediate extensions is facil-
itated by the introduction of the notion of “approximation type”, which we use in
place of Kaplansky’s “pseudo-convergent sequences” (also called “pseudo-Cauchy
sequences” or “Ostrowski nets” in the literature). This new notion makes compu-
tations and the formulation of results easier. For instance, to every element x in
an immediate extension (L|K, v), we associate the unique approximation type of
x over K, while there are many pseudo-convergent sequences in K that have x as
a pseudo-limit, and in addition one needs to require maximality of such sequences
(for x /∈ K one asks that they do not have a pseudo limit in K). Furthermore, the
definition of approximation types is not restricted to immediate extensions only. In
fact, approximation types can be further enhanced to a tool for describing proper-
ties of elements in non-immediate extensions. In Section 6, we take the occasion
to show how Kaplansky’s fundamental Theorems 2 and 3 can be proved by using
approximation types in place of pseudo-convergent sequences.
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This paper is based on results that appeared in the first author’s doctoral the-
sis (cf. [5]) and presents updated, improved and extended versions of them, with
simplified proofs.

2. Some preliminaries

For basic facts from valuation theory, see [1], [2], [14], [16], [17].
Take a valued field (K, v). We denote its value group by vK, its residue field by

Kv, and its valuation ring by OK . For a ∈ K, we write va for its value and av for
its residue.

By K̃ we will denote the algebraic closure of K. For each extension of v to K̃,

we have that K̃v = K̃v, and vK̃ is the divisible hull of vK, which we denote by

ṽK.
Note that the extension (L|K, v) is immediate if and only if for all b ∈ L there

is c ∈ K such that v(b− c) > vb (as is implicitly shown in the proof of Lemma 4.1
below). This property can be used to define immediate extensions of other valued
structures, such as valued abelian groups and valued vector spaces.

An algebraic extension (L|K, v) of henselian fields is called defectless if every
finite subextension E|K satisfies the fundamental equality [E : K] = e · f, where
e = (vE : vK) is the ramification index and f = [Ev : Kv] is the inertia degree.
In this case, (E|K, v) admits a standard valuation basis, which we construct as
follows: we take a1, . . . , ae ∈ E such that va1 + vK, . . . , vae + vK are the cosets of
vK in vE, and b1, . . . , bf ∈ E such that b1v, . . . , bfv are a basis of Ev|Kv. Then
aibj , 1 ≤ i ≤ e, 1 ≤ j ≤ f, is a basis of E|K, and it has the following property: for
all choices of cij ∈ K,

v
∑
i,j

cijaibj = min
i,j

vcijaibj = min
i,j

vcijai .

Note that we can always choose a1 = b1 = 1 so that a1b1 = 1.
All tame extensions of henselian fields are defectless, see [9]. The following facts

are well known and easy to prove:

Lemma 2.1. Take a defectless extension (L|K, v) of henselian fields and a ∈ L.
Then the set {v(a − c) | c ∈ K} has a maximum. More precisely, if we choose a
standard valuation basis for E = K(a) as above with a1 = b1 = 1 and write

a =
∑
i,j

cijaibj ,

then v(a− c1 1) is the maximum of {v(a− c) | c ∈ K}.

Proof. For every c ∈ K,

v(a− c1 1) = v
∑

(i,j)6=(1,1)

cijaibj = min
(i,j)6=(1,1)

vcijaibj

≥ min{v(c1 1 − c) , vcijaibj | (i, j) 6= (1, 1)}

= v

c1 1 − c+
∑

(i,j)6=(1,1)

cijaibj

 = v(a− c) .

�

We will also need the following tool (cf. [7, Lemma 2.5]):
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Lemma 2.2. Take a henselian field (K, v), a valued field extension (K ′|K, v), an
immediate subextension (F |K, v), and a defectless algebraic subextension (L|K, v).
Then F |K and L|K are linearly disjoint, (F.L|F, v) is defectless, and (F.L|L, v) is
immediate.

3. Approximation types and distances

We will now introduce approximation types, which constitute a suitable structure
for dealing with immediate extensions of valued fields.

We define Bα(c,K) = {a ∈ K | v(a− c) ≥ α} to be the “closed” ultrametric ball
in (K, v) of radius α ∈ vK∞ := vK ∪{∞} centered at c ∈ K. An approximation
type over (K, v) is a full nest of closed balls in (K, v), that is, a collection

A = {Bα(cα,K) | α ∈ S}
with S an initial segment of vK∞, cα ∈ K, and the balls Bα(cα,K) linearly ordered
by inclusion. We write Aα = Bα(cα,K) for α ∈ S, and Aα = ∅ otherwise. We call
S the support of A and denote it by suppA.

Note that if β < α ∈ suppA, then Aβ = Bβ(cβ ,K) = Bβ(cα,K), i.e., Aβ is
uniquely determined by Aα and β. Hence, A is uniquely determined by the balls
Aα where α runs through an arbitrary cofinal sequence in suppA.

Take any extension (L|K, v) and x ∈ L. For all α ∈ vK∞, we set

(3.1) appr(x,K)α := {c ∈ K | v(x− c) ≥ α} = Bα(x, L) ∩K .

It is easy to check that appr(x,K)α is empty or a closed ball of radius α. If
appr(x,K)α 6= ∅ and β < α, then also appr(x,K)β 6= ∅. This shows that the set

{α ∈ vK∞ | appr(x,K)α 6= ∅}
is an initial segment of vK∞ and therefore,

(3.2) appr(x,K) := {appr(x,K)α | α ∈ vK∞ and appr(x,K)α 6= ∅}
is an approximation type over (K, v). We call appr(x,K) the approximation
type of x over (K, v).

As the support S of appr(x,K) is an initial segment of vK∞, S∩vK = S \{∞}
is an initial segment of vK and thus induces a cut in vK with lower cut set S \{∞}.
Now this cut induces a cut in the divisible hull ṽK of vK, where the lower cut set

is the smallest initial segment of ṽK containing S \ {∞}. We call this cut the
distance of x from (K, v) and denote it by

dist(x,K) .

We write dist(x,K) =∞ if the lower cut set is ṽK, and dist(x,K) <∞ otherwise.
Note that dist(x,K) = ∞ if and only if S contains vK, which holds if and only if
x lies in the completion of (K, v).

For a subset A ⊂ K we define distK(x,A), the distance of x from A over K, to be

the cut in ṽK having as lower cut set the smallest initial segment in ṽK containing
the set {v(x− c) | c ∈ A} ∩ vK.

Note that if (L|K, v) is an algebraic extension of valued fields, then the divisible
hull of vK coincides with the divisible hull of vL and so for an element x in an
extension of K, we have that dist(x,K) and dist(x, L) are both cuts in the same
group. This allows us to compare these distances by set inclusion of the lower
cut sets. Another reason to take the distance in the divisible hull is that the
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classification of Artin–Schreier defect extensions through distances presented in
[7] does not work if they are taken in ordered abelian groups with archimedean
components which are not dense; this situation does not appear in divisible groups.

If n is a natural number and the lower cut set of dist(x,K) is D, then

n · dist(x,K)

will denote the cut with lower cut set nD := {nγ | γ ∈ D}; note that nD is again

an initial segment of ṽK because of divisibility.
If C and C ′ are two cuts in a linearly ordered set T defined by their lower cut sets

D and D′, respectively, then C = C ′ if D = D′, and we write C < C ′ if D ⊂
6= D′.

For an element α ∈ T we write α > C if α > β for all β ∈ D, and α ≥ C if α ≥ β
for all β ∈ D; note that if D has no last element, then α > C ⇔ α ≥ C. We write
α ≤ C if α ∈ D, and α < C if α ∈ D but is not the last element of D.

Lemma 3.1. Take an extension (L|K, v) of valued fields, and x, x′ ∈ L.

a) For every α in the support of appr(x,K), appr(x,K)α = appr(x′,K)α holds if
and only if v(x− x′) ≥ α.

b) Further,

appr(x,K) = appr(x′,K) =⇒ v(x− x′) ≥ dist(x,K) = dist(x′,K) ,(3.3)

v(x− x′) ≥ max{dist(x,K),dist(x′,K)} =⇒ appr(x,K) = appr(x′,K) .(3.4)

Proof. a): Take α ∈ vK∞. If v(x − x′) ≥ α, then Bα(x, L) = Bα(x′, L), which
yields that appr(x,K)α = Bα(x, L) ∩ K = Bα(x′, L) ∩ K = appr(x′,K)α . If
v(x−x′) < α, then Bα(x, L)∩Bα(x′, L) = ∅, whence appr(x,K)α∩appr(x′,K)α =
∅; for appr(x,K)α 6= ∅, this yields that appr(x,K)α 6= appr(x′,K)α.

b): If dist(x,K) 6= dist(x′,K), then appr(x,K) 6= appr(x′,K). If v(x − x′) ≥
dist(x,K) does not hold, then there is some α in the support of appr(x,K) such
that α > v(x − x′). By part a), it follows that appr(x,K)α 6= appr(x′,K)α. This
proves (3.3).

If v(x− x′) ≥ dist(x,K) holds, then v(x− x′) ≥ α for all α 6=∞ in the support
of appr(x,K). Again by part a), it follows that appr(x,K)α = appr(x′,K)α for all
α 6=∞ in the support of appr(x,K). Similarly, v(x−x′) ≥ dist(x′,K) implies that
appr(x,K)α = appr(x′,K)α for all α 6= ∞ in the support of appr(x′,K). If none
of the supports contains ∞, then we obtain that appr(x,K) = appr(x′,K). If on
the other hand, at least one support contains ∞, then the corresponding distance
is ∞, whence v(x− x′) =∞, i.e., x = x′ and again, appr(x,K) = appr(x′,K). We
have proved (3.4). �

If A is an approximation type over (K, v) and there exists an element x in some
valued extension field L such that A = appr(x,K), then we say that x realizes
A (in (L, v)). If A is realized by some c ∈ K, then A will be called trivial. This
holds if and only if A∞ 6= ∅, in which case A∞ = {c}. As A∞ can contain at most
one element, a trivial approximation type can be realized by only one element.

We leave the easy proof of the following lemma to the reader.

Lemma 3.2. Take an approximation type A over (K, v) and an extension (L|K, v)
of valued fields. The element x ∈ L realizes A if and only if the following conditions
hold:

1) if α ∈ suppA, then v(x− c) ≥ α for some c ∈ Aα,
2) if β /∈ suppA, then v(x− c) < β for all c ∈ K.
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For our work with approximation types, we introduce the following notation
which is particularly useful in the immediate case. We introduce it in connection
with valued fields, but its application to ultrametric spaces and other valued struc-
tures is similar. So take an arbitrary valued field (K, v) and an approximation type
A over (K, v). Further, take a formula ϕ with one free variable. Then the sentence

ϕ(c) for c↗ A

will denote the assertion

there is α ∈ vK such that Aα 6= ∅ and ϕ(c) holds for all c ∈ Aα .

Note that if ϕ1(c) for c ↗ A and ϕ2(c) for c ↗ A, then also ϕ1(c) ∧ ϕ2(c) for
c↗ A.

In the case of A = appr(x,K), we will also write “c↗ x” in place of “c↗ A”.
If γ = γ(c) ∈ vK is a value that depends on c ∈ K (e.g., the value vf(c) for

a polynomial f ∈ K[X]), then we will say that γ increases for c ↗ x if there
exists some α 6= ∞ in the support of appr(x,K) such that for every choice of
c′ ∈ appr(x,K)α with x 6= c′ ,

γ(c) > γ(c′) for c↗ x .

Note that the condition x 6= c′ is automatically satisfied if appr(x,K) is nontrivial.

4. Immediate approximation types

An approximation type A with support S will be called immediate if its inter-
section ⋂

A =
⋂
α∈S

Aα

is empty. If A is trivial, then
⋂

A = A∞ 6= ∅; therefore, an immediate approxi-
mation type is never trivial. However, a nontrivial approximation type is not nec-
essarily immediate; as we will see in the following lemma, in an extension (L|K, v)
that is not immediate there is always some x ∈ L \K for which appr(x,K) is not
immediate. As a trivial approximation type is relized by only one element, which
lies in K, we see that appr(x,K) is nontrivial.

Lemma 4.1. Let (L|K, v) be an extension of valued fields.

a) If x ∈ L, then appr(x,K) is immediate if and only if for every c ∈ K there is
some c′ ∈ K such that v(x− c′) > v(x− c), that is, the set

v(x−K) := {v(x− c) | c ∈ K}
has no maximal element.

b) The extension (L|K, v) is immediate if and only if for every x ∈ L \ K, its
approximation type appr(x,K) over (K, v) is immediate.

c) If appr(x,K) is immediate, then its support is equal to v(x−K).

Proof. a): Suppose that appr(x,K) is immediate and that c is an arbitrary element
of K. Then by definition there is some α such that c /∈ appr(x,K)α 6= ∅, so
v(x − c) < α. Choosing some c′ ∈ appr(x,K)α , we obtain that v(x − c) < α ≤
v(x− c′).

Now take x ∈ L \K and suppose that for every c ∈ K there is c′ ∈ K such that
v(x−c′) > v(x−c). Then there is also some c′′ ∈ K such that v(x−c′′) > v(x−c′).
By the ultrametric triangle law we obtain that v(c′ − c) = v(x − c) < v(x − c′) =
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v(c′′ − c′). Hence v(c′ − c) ∈ v(x −K) and c /∈ appr(x,K)v(c′′−c′) 6= ∅. As c ∈ K
was arbitrary, this shows that appr(x,K) is immediate.

b): Assume that (L|K, v) is immediate. Take x ∈ L \K and an arbitrary c ∈ K.
Then v(x − c) ∈ vL = vK, i.e., there is d ∈ K such that v(x − c) = vd so that
vd−1(x − c) = 0. Then d−1(x − c)v ∈ Lv = Kv, i.e., there is d′ ∈ K such that
d−1(x − c)v = d′v, which means that v(d−1(x − c) − d′) > 0. This implies that
v(x− c− dd′) > vd = v(x− c). Setting c′ = c+ dd′, we obtain v(x− c′) > v(x− c).
By part a) it now follows that appr(x,K) is immediate.

For the converse, assume that for every x ∈ L \ K, appr(x,K) is immediate.
By the proof of a), for every c ∈ K we have that v(x − c) ∈ vK, so in particular,
v(x− 0) ∈ vK; this shows that vL|vK is trivial. It remains to show that Lv|Kv is
trivial. Take any x ∈ L \K with vx = 0. Since appr(x,K) is immediate, there is
c′ ∈ K such that v(x−c′) > v(x−0) = vx. From this we obtain that xv = c′v ∈ Kv.
Hence Lv|Kv is trivial.

c): If α ∈ vK is an element of the support of appr(x,K), then appr(x,K)α 6= ∅,
and so by (3.1), there is c ∈ K such that v(x−c) ≥ α. In the case of v(x−c) = α, we
immediately see that α ∈ v(x−K). In the case of v(x− c) > α, choose some d ∈ K
with vd = α; then v(x− (c+ d)) = vd = α, which again shows that α ∈ v(x−K).

For the converse inclusion, take c ∈ K. By the proof of part a), there is c′ ∈ K
such that v(x − c) = v(c′ − c), which shows that v(x − c) ∈ vK. It follows from
(3.1) that c ∈ appr(x,K)v(x−c) , so v(x− c) is in the support of appr(x,K). �

For immediate approximation types, we can improve part b) of Lemma 3.1, and
Lemma 3.2.

Lemma 4.2. Take an extension (L|K, v) of valued fields, and x, x′ ∈ L. If
appr(x,K) is immediate, then

(4.1) appr(x,K) = appr(x′,K) ⇐⇒ v(x− x′) ≥ dist(x,K) .

Proof. We only have to prove the implication “⇐”. As in the proof of (3.4), we de-
duce from v(x−x′) ≥ dist(x,K) that v(x−x′) ≥ α and appr(x,K)α = appr(x′,K)α
for all α 6=∞ in the support of appr(x,K). Since appr(x,K) is immediate, we also
know that∞ is not in its support. It remains to show that appr(x′,K)α = ∅ for ev-
ery α not in the support of appr(x,K). If this were not true, there would be c ∈ K
such that v(x′ − c) > suppappr(x,K). Since also v(x − x′) > suppappr(x,K),
we would obtain that v(x − c) > suppappr(x,K). But then c ∈

⋂
appr(x,K),

contradicting the assumption that appr(x,K) is immediate. �

Lemma 4.3. Take an immediate approximation type A over (K, v) and an exten-
sion (L|K, v). The element x ∈ L realizes A if and only if for every α ∈ suppA,
v(x− c) ≥ α for some c ∈ Aα.

Proof. We have to show that for every immediate approximation type A, condition
2) of Lemma 3.2 holds if condition 1) holds. Assume that β /∈ suppA. Since the
support is an initial segment of vK∞, this means that β > suppA. Take any c ∈ K.
Since A is immediate, there is some α ∈ suppA such that c /∈ Aα . By condition
1), there is some c′ ∈ Aα such that v(x− c′) ≥ α. Now v(x− c) ≥ α would imply
that v(c− c′) ≥ min{v(x− c), v(x− c′)} ≥ α, whence c ∈ Aα , a contradiction. It
follows that v(x− c) < α < β. Hence condition 2) holds. �
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Corollary 4.4. Take an immediate approximation type A over (K, v), an extension
(L|K, v) of valued fields, and x ∈ L. If v(x − c) is not fixed for c ↗ A, then
A = appr(x,K).

Proof. Our assumption means that for all α ∈ suppA there are c, c′ ∈ Aα such that
v(x− c′) > v(x− c). This implies that v(x− c′) > min{v(x− c), v(c− c′)}, whence
v(x− c) = v(c− c′) ≥ α. Now our assertion follows from the previous lemma. �

In the remainder of this section, we wish to explore how immediate approxima-
tion types behave under valued field extensions (L|K, v). Take x in some extension
of L such that x /∈ L and appr(x,K) is immediate. Obviously,

dist(x, L) ≥ dist(x,K)

and

(4.2) appr(x,K)α = Bα(cα,K) =⇒ appr(x, L)α = Bα(cα, L) .

If dist(x, L) = dist(x,K), then by (4.2), appr(x,K) fully determines appr(x, L).
But if dist(x, L) > dist(x,K), then appr(x,K) does not provide enough information
for those appr(x, L)β with β > dist(x, L).

Lemma 4.5. If in the above situation (L|K, v) is a defectless extension, then
dist(x, L) = dist(x,K) and by (4.2), appr(x,K) fully determines appr(x, L).

Proof. Suppose that dist(x, L) > dist(x,K). Then there is some a ∈ L such that
v(x− a) > dist(x,K), which by (3.4) implies that appr(a,K) = appr(x,K), which
is immediate. But by Lemma 2.1, {v(a − c) | c ∈ K} has a maximum. This
contradicts part a) of Lemma 4.1. �

5. Polynomials and immediate approximation types

Take an arbitrary polynomial f ∈ K[X] and an approximation type A over
(K, v). We will say that A fixes the value of f if there is some α ∈ vK such
that vf(c) = α for c ↗ A. We will call an immediate approximation type A a
transcendental approximation type if A fixes the value of every polynomial
f(X) ∈ K[X]. Otherwise, A is called an algebraic approximation type. If
there exists any polynomial f ∈ K[X] whose value is not fixed by A, then there
exists also a monic polynomial of the same degree having the same property (since
this property is not lost by multiplication with nonzero constants from K). If f(X)
is a monic polynomial of minimal degree d such that A does not fix the value of f ,
then it will be called an associated minimal polynomial for A, and A is said
to be of degree d. We define the degree of a transcendental approximation type
to be d = ∞. According to this terminology, an approximation type over K of
degree d fixes the value of every polynomial f ∈ K[X] with deg f < d. Note that
an associated minimal polynomial f for A is always irreducible over K. Indeed, if
the degree of g, h ∈ K[X] is smaller than deg f , then A fixes the value of g and h
and thus also of g · h. Since every polynomial g ∈ K[X] of degree d whose value is
not fixed by A is just a multiple cf of an associated minimal polynomial f for A
(with c ∈ K×), the irreducibility holds for every such polynomial as well.

If the support of A is bounded from above in vK, then associated minimal
polynomials are not uniquely determined. Indeed, if f is an associated minimal
polynomial and g is a polynomial of lower degree with coefficients of large enough
value, then f + g is again an associated minimal polynomial.
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We note that an immediate approximation type A fixes the value of every linear
polynomial in K[X]. Indeed, for every c ∈ K there is α ∈ suppA such that c /∈ Aα.
Hence for all c′, c′′ ∈ Aα, v(c′− c′′) > v(c− c′) and thus v(c′− c) = v(c′′− c). This
shows that A fixes the value of X − c. We conclude that the degree of an algebraic
approximation type is not less than 2.

We will now study the behaviour of polynomials with respect to immediate
approximation types appr(x,K). We need the following lemma for ordered abelian
groups, which is a reformulation of Lemma 4 of Kaplansky [3]. For archimedean
ordered groups, it was proved by Ostrowski [12].

Lemma 5.1. Take elements α1, . . . , αm of an ordered abelian group Γ and a subset
Υ ⊂ Γ without maximal element. Let t1, . . . , tm be distinct integers. Then there
exists an element β ∈ Υ and a permutation σ of the indices 1, . . . ,m such that for
all γ ∈ Υ, γ ≥ β,

ασ(1) + tσ(1)γ > ασ(2) + tσ(2)γ > . . . > ασ(m) + tσ(m)γ .

For an arbitrary polynomial f(X) = cnX
n + cn−1X

n−1 + . . .+ c0 , we call

(5.1) fi(X) :=

n∑
j=i

(
j

i

)
cjX

j−i =

n−i∑
j=0

(
j + i

i

)
cj+iX

j

the i-th formal derivative of f and

f(X) =

n∑
i=0

fi(c)(X − c)i(5.2)

fi(X) =

n∑
j=i

(
j

i

)
fj(c)(X − c)j−i(5.3)

the Taylor expansions of f and fi at c.

If the immediate approximation type A is of degree d and f ∈ K[X] is of degree
at most d, then A fixes the value of every formal derivative fi of f (1 ≤ i ≤ deg f),
since every such derivative has degree less than d. So we can define βi to be the
fixed value vfi(c) for c ↗ x. In certain cases, a derivative may be identically 0.
In this case, we have βi = ∞. However, the Taylor expansion of f shows that not
all derivatives vanish identically, and the vanishing ones will not play a role in our
computations.

By use of Lemma 5.1, we can now prove:

Lemma 5.2. Take an immediate approximation type A = appr(x,K) of degree d
over (K, v) and f ∈ K[X] a polynomial of degree at most d. Further, let βi denote
the fixed value vfi(c) for c ↗ x. Then there is a positive integer h ≤ deg f such
that

(5.4) βh + h · v(x− c) < βi + i · v(x− c)
whenever i 6= h, 1 ≤ i ≤ deg f and c↗ x. Hence,

(5.5) v(f(x)− f(c)) = βh + h · v(x− c) for c↗ x .

Consequently, if A fixes the value of f , then

v(f(x)− f(c)) > vf(x) = vf(c) for c↗ x ,
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and if A does not fix the value of f , then

vf(x) > vf(c) = βh + h · v(x− c) for c↗ x .

Proof. Set n = deg f . We consider the Taylor expansion

(5.6) f(x)− f(c) = f1(c)(x− c) + . . .+ fn(c)(x− c)n

with c ∈ K. We have that vfi(c)(x− c)i = βi + i · v(x− c) for c↗ x. So we apply
the foregoing lemma with αi = βi and ti = i, and with Υ equal to the support of
A (which has no maximal element since A is an immediate approximation type).
We find that there is an integer h ≤ deg f such that βh +hv(x− c) < βi+ iv(x− c)
for c↗ x and i 6= h. This is equation (5.4), which in turn implies equation (5.5).

If A fixes the value of f , then vf(x) 6= vf(c) is impossible for c ↗ x since
otherwise, the left hand side of (5.5) would be equal to min{vf(x), vf(c)} and thus
fixed while the right hand side of (5.5) increases for c ↗ x. This proves that
vf(x) = vf(c) and thus also v(f(x)− f(c)) ≥ vf(x) for c↗ x. But since the right
hand side increases, we find that v(f(x)− f(c)) > vf(x) for c↗ x.

If A does not fix the value of f , then vf(x) 6= vf(c) and thus v(f(x)− f(c)) =
min{vf(x), vf(c)} for c↗ x. Since v(f(x)− f(c)) increases for c↗ x and vf(x) is
a constant, the minimum must be vf(c), and vf(x) = vf(c) is impossible. �

If g ∈ K[X] has a degree smaller than the degree of A, then by the foregoing
lemma, the value of g(x) in (K(x), v) is given by vg(x) = vg(c) for c ↗ x. Since
g(c) ∈ K, that means that the value of g(x) is uniquely determined by A and the
restriction of v to K. If g is a nonzero polynomial, then g(c) 6= 0 for c ↗ x (since
there is a nonempty Aα which does not contain the finitely many zeros of g, as A is
immediate). Consequently, g(x) 6= 0, which shows that the elements 1, x, . . . , xd−1

are K-linearly independent.
We even know that v(g(x)− g(c)) > vg(x) for c↗ x. This means that (K, v) ⊂

(K + Kx + . . . + Kxd−1, v) is an immediate extension of valued vector spaces. If
d = [K(x) : K] < ∞, then K(x) = K[x] = K + Kx + . . . + Kxd−1, and so the
valued field extension (K(x)|K, v) is immediate. If d =∞, then (K, v) ⊂ (K[x], v)
is immediate. But then again it follows that the valued field extension (K(x)|K, v)
is immediate. Indeed, if v(g(x) − g(c)) > vg(x) and v(h(x) − h(c)) > vh(x), then
vg(x) = vg(c), vh(x) = vh(c) and

v

(
g(x)

h(x)
− g(c)

h(c)

)
= v [g(x)h(c)− g(c)h(x)]− vh(x)h(c)

= v [g(x)h(c)− g(c)h(c) + g(c)h(c)− g(c)h(x)]− vh(x)h(c)

= v [(g(x)− g(c))h(c) + g(c)(h(c)− h(x))]− vh(x)h(c)

> vg(x)h(x)− vh(x)h(x) = v
g(x)

h(x)
.

We have proved:

Lemma 5.3. Take an immediate approximation type A = appr(x,K) of degree d
over (K, v). Then the valuation on the valued (K, v)-vector subspace (K + Kx +
. . .+Kxd−1, v) of (K(x), v) is uniquely determined by A because

vg(x) = vg(c) for c↗ x

for every g(x) ∈ K+Kx+ . . .+Kxd−1. The elements 1, x, . . . , xd−1 are K-linearly
independent. In particular, x is transcendental over K if d =∞.
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Moreover, the extension (K, v) ⊂ (K + Kx + . . . + Kxd−1, v) of valued vector
spaces is immediate. In particular, if d = ∞ or if d = [K(x) : K] < ∞, then
(K[x]|K, v) is immediate and the same is consequently true for the valued field
extension (K(x)|K, v).

So far we have only considered polynomials of degree at most d; the next lemma
will cover the remaining case.

Lemma 5.4. Take an immediate algebraic approximation type A = appr(x,K)
over (K, v) and an associated minimal polynomial f ∈ K[X] for A. Further, take
an arbitrary polynomial g ∈ K[X] and write

(5.7) g(X) = ck(X)f(X)k + . . .+ c1(X)f(X) + c0(X)

with polynomials ci ∈ K[X] of degree less than deg f . Then there is some integer
m, 1 ≤ m ≤ k, and a value β ∈ vK such that with h as in Lemma 5.2,

(5.8) v(g(c)− c0(c)) = vcm(c) +m · vf(c) = β +m · h · v(x− c) for c↗ x .

Consequently, if A fixes the value of g, then

vg(x) = vg(c) = vc0(c) = vc0(x) < v(g(c)− c0(c)) for c↗ x ,

and if A does not fix the value of g, then

vg(x) > vg(c) = β +m · h · v(x− c) for c↗ x .

Proof. Since deg ci(X) < deg f(X) = deg A, we have that A fixes the value of
ci(X), for 0 ≤ i ≤ k. We denote by γi the fixed value vci(c) for c ↗ x. Since f is
an associated minimal polynomial for A, we know that A does not fix the value of f .
From Lemma 5.2 we infer that the value of ci(c)f(c)i is equal to γi+iβh+ihv(x−c).
We apply Lemma 5.1 with αi = γi + iβh, ti = ih and Υ = suppA to deduce that
there is an integer m such that 1 ≤ m ≤ k and vcm(c)f(c)m < vci(c)f(c)i for c↗ x
and 1 ≤ i 6= m. Consequently,

(5.9) v(g(c)− c0(c)) = vcm(c)f(c)m = γm +m · βh +m · h · v(x− c) .
We set β := γm +mβh .

The value of the right hand side of (5.9) is not fixed for c ↗ x. Consequently,
if A fixes the value of g, then from our representation (5.7) of g we see that the
value vcm(c)f(c)m must be greater than the fixed value of c0(c) for c ↗ x, which
yields that vg(c) = vc0(c). From Lemma 5.2, we know that vc0(x) = vc0(c) and
vf(x) > vf(c) for c↗ x. Therefore,

(5.10) vci(x)f(x)i > vci(c)f(c)i > vc0(c) = vc0(x)

for 1 ≤ i ≤ k and c↗ x, whence vg(x) = vc0(x) = vc0(c) = vg(c).

If A does not fix the value of g, then vcm(c)f(c)m < vc0(c) and

vg(c) = vcm(c)f(c)m = β +m · h · v(x− c)
for c ↗ x. The inequality vg(x) > vg(c) for c ↗ x, is seen as follows. Using the
first inequality of (5.10) together with vcm(c)f(c)m < vc0(c), we obtain:

vg(x) ≥ min{v(ck(x)f(x)k) , . . . , v(c1(x)f(x)) , vc0(x)}
> min{v(ck(c)f(c)k) , . . . , v(c1(c)f(c)) , vc0(c)} = vg(c) .

This completes the proof of our lemma. �
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Corollary 5.5. Take an immediate approximation type appr(x,K) over (K, v). If
x is algebraic over K with minimal polynomial g ∈ K[X], then appr(x,K) does not
fix the value of g and is thus of degree d ≤ [K(x) : K].

Proof. Since appr(x,K) is immediate, it is nontrivial, so x /∈ K and g(c) 6= 0 for
all c ∈ K. But by hypothesis, g(x) = 0. Hence vg(x) > vg(c) for all c ∈ K. Now
the assertion follows by an application of Lemma 5.4. �

Unfortunately, d may be smaller than [K(x) : K], as the following example will
show:

Example 5.6. We choose (K, v) to be (Fp(t), vt) or (Fp((t)), vt) or any henselian
intermediate field (where Fp is the field with p elements). We take L to be the

perfect hull K(t1/p
i | i ∈ N) of K.

If ϑ is a root of the polynomial

Xp −X − 1

t

then the Artin–Schreier extension L(ϑ)|L is immediate with v(ϑ− L) = {α ∈ vL |
α < 0} (see [8, Example 3.12]). It follows from Proposition 6.5 below and the fact
that (L, v) is henselian (being an algebraic extension of the henselian field (K, v))
that deg appr(ϑ,L) = p = [L(ϑ) : L]. But an element x = ϑ+ y in some extension
of (L, v) has the same approximation type as ϑ over L if vy ≥ 0 (cf. Lemma 3.1).
We may take y of arbitrarily high degree over L. Indeed, we may even take y to be
transcendental over L to obtain that ϑ+y is transcendental over L. This shows that
a transcendental element may have an algebraic approximation type. Moreover, we
may choose y such that vy /∈ vL or yv /∈ Lv to obtain an extension which is not
immediate, although its generating element has an immediate approximation type.

6. Realization of immediate approximation types

In this section we will present the two basic theorems due to Kaplansky ([3])
which show that each immediate approximation type can be realized in a simple
immediate extension. Kaplansky proved these theorems to derive a characterization
of maximal fields, which we will also present here.

Theorem 6.1. (Theorem 2 of [3], approximation type version)
For every immediate transcendental approximation type A over (K, v) there exists
a simple immediate transcendental extension (K(x), v) such that appr(x,K) = A.

If (K(y), v) is another valued extension field of (K, v) such that appr(y,K) = A,
then y is also transcendental over K and the isomorphism between K(x) and K(y)
over K sending x to y is valuation preserving.

Proof. We take K(x)|K to be a transcendental extension and define the valuation
on K(x) as follows. In view of the rule v(g/h) = vg − vh, it suffices to define v
on K[x]. Take g ∈ K[X]. By assumption, A fixes the value of g, that is, there is
β ∈ vK such that vg(c) = β for c ↗ A. We set vg(x) = β. If g is a constant in
K, we just obtain the value given by the valuation v on K. Our definition implies
that vg 6=∞ for every nonzero g ∈ K[x].

Take g, h ∈ K[X]. Again by our definition, vg(x) = vg(c), vh(x) = vh(c), and
vg(x)h(x) = v(g · h)(x) = v(g · h)(c) = vg(c)h(c) for c ↗ A. Thus, vg(x)h(x) =
vg(c)h(c) = vg(c) + vh(c) = vg(x) + vh(x) and v(g(x) + h(x)) = v((g + h)(x)) =
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v((g+ h)(c)) = v(g(c) + h(c)) ≥ min{vg(c), vh(c)} = min{vg(x), vh(x)} for c↗ A.
So indeed, our definition yields a valuation v on K(x) which extends the valuation
v of K. Under this valuation, we have that A = appr(x,K). This is seen as follows.
In view of Lemma 4.3, it suffices to prove that for every α ∈ suppA, we have that
v(x − cα) ≥ α for each cα ∈ Aα. But this follows directly from our definition of
v(x− cα) because for c↗ A, c ∈ Aα and thus v(x− cα) = v(c− cα) ≥ α.

From Lemma 5.3, we now infer that (K(x)|K, v) is an immediate extension.
Given another element y in some valued field extension of (K, v) such that A =
appr(y,K), we want to show that the epimorphism from K[x] onto K[y] induced by
x 7→ y is valuation preserving. For this, we only have to show that vg(x) = vg(y)
for every g ∈ K[X]. By hypothesis, the degree of A is ∞. From Lemma 5.3
we can thus infer that vg(x) = vg(c) = vg(y) holds for c ↗ A; this proves the
desired equality. Again from Lemma 5.3, we deduce that y is transcendental over
K. Hence, the assignment x 7→ y induces an isomorphism from K(x) onto K(y).
Since the valuations of K(x) and K(y) are uniquely determined by its restriction
to K[x] and K[y] respectively, it follows from what we have already proved that
this isomorphism is valuation preserving. �

Corollary 6.2. Take an extension (L|K, v) of valued fields and y ∈ L. If appr(y,K)
is an immediate transcendental approximation type, then y is transcendental over
K and (K(y)|K, v) is immediate.

Proof. By the foregoing theorem, there is an immediate extension (K(x)|K, v) such
that appr(x,K) = appr(y,K), with x transcendental over K. By the same theorem,
there is a valuation preserving isomorphism of K(x) and K(y) over K. This proves
our assertions. �

The next lemma will show that every immediate algebraic approximation type
is of the form appr(y,K).

Lemma 6.3. Take an immediate algebraic approximation type A over (K, v), a
polynomial f ∈ K[X] whose value is not fixed by A, and a root y of f . Then there
is an extension of v from K to K(y) such that A = appr(y,K).

Proof. We choose some extension w of v from K to K(y). We write f(X) =

d
∏deg f
i=1 (X − ai) with d ∈ K and ai ∈ K̃. If for all i, the values w(c − ai) would

be fixed for c ↗ A, then A would fix the value of f , contrary to our assumption.
Hence there is a root a of f such that w(a− c) is not fixed for c↗ A. Take some

automorphism σ of K̃|K such that σy = a and set v := w ◦ σ. Then v extends the
valuation of K, and v(y− c) = w ◦ σ(y− c) = w(σy− c) = w(a− c) is not fixed for
c↗ A. By Corollary 4.4, A = appr(y,K). �

The following is the analogue of Theorem 6.1 for immediate algebraic approxi-
mation types.

Theorem 6.4. (Theorem 3 of [3], approximation type version)
For every immediate algebraic approximation type A over (K, v) of degree d with
associated minimal polynomial f(X) ∈ K[X] and y a root of f , there exists an
extension of v from K to K(y) such that (K(y)|K, v) is an immediate extension
and appr(y,K) = A.

If (K(z), v) is another valued extension field of (K, v) such that appr(z,K) = A,
then any field isomorphism between K(y) and K(z) over K sending y to z will
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preserve the valuation. (Note that there exists such an isomorphism if and only if
z is also a root of f .)

Proof. We take the valuation v of K(y) given by Lemma 6.3. Then appr(y,K) = A.
The fact that (K(y)|K, v) is immediate follows from Lemma 5.3.

The last assertion of our theorem is shown in the same way as the corresponding
assertion of Theorem 6.1: if appr(y,K) = appr(z,K) and g ∈ K[X] with deg g < d
then, again by Lemma 5.3, vg(y) = vg(c) = vg(z) for c↗ x. Hence an isomorphism
over K sending y to z will preserve the valuation. �

From this theorem, we can derive important information about the degree of
immediate algebraic approximation types.

Proposition 6.5. The degree of an immediate algebraic approximation type over
a henselian field (K, v) is a power of the characteristic of the residue field Kv.

Proof. Take an immediate algebraic approximation type A over a henselian field
(K, v) of degree d. Then by Theorem 6.4 there is an immediate extension (L|K, v)
of degree d. As (K, v) is henselian, the extension of v from K to L is unique. Hence
by the Lemma of Ostrowski (cf. [1], [14]),

d = [L : K] = pν · (vL : vK) · [Lv : Kv] = pν ,

where ν ∈ N ∪ {0} and p = charKv. Note that ν > 0 because the degree of A is
not less than 2. �

Theorem 6.1 and Theorem 6.4 together imply:

Proposition 6.6. Every immediate approximation type is realized in some imme-
diate simple valued field extension.

We say that a valued field (K, v) is maximal if it admits no proper immediate
extensions. In this case, by the two theorems, it admits no immediate approxima-
tion types. On the other hand, if (K, v) admits no immediate approximation types,
then by part b) of Lemma 4.1, it admits no proper immediate extensions. This
proves:

Theorem 6.7. (Theorem 4 of [3], approximation type version)
A valued field (K, v) is maximal if and only if it does not admit immediate approx-
imation types.

Similarly, we say that a valued field (K, v) is algebraically maximal if it
does not admit proper immediate algebraic extensions. In this case, Theorem 6.4
shows that it does not admit immediate algebraic approximation types. On the
other hand, if (K, v) admits a proper immediate algebraic extension (L|K, v), and
x ∈ L\K, then by part b) of Lemma 4.1, appr(x,K) is an immediate approximation
type, and by Corollary 5.5, it is algebraic. This proves:

Theorem 6.8. A valued field (K, v) is algebraically maximal if and only if it does
not admit immediate algebraic approximation types.

7. The relative approximation degree of polynomials

In view of Proposition 6.6, we can from now on assume that every immediate
approximation type A is of the form A = appr(x,K). For the integer h that appears
in Lemma 5.2, where deg f ≤ deg A, we will write hK(x : f) or just h(x : f). We
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call h(x : f) the relative approximation degree of f(x) in x (over K). From
Lemma 5.2 we know that

1 ≤ hK(x : f) ≤ deg f .

One can extend the definition of the relative approximation degree to polynomials
of arbitrary degree as follows. Take any polynomial g ∈ K[X]. Suppose that there
exist β ∈ vK and a positive integer k such that

v(g(x)− g(c)) = β + k · v(x− c)

for c ↗ x. Note that β and k are uniquely determined because as appr(x,K)
is immediate, there are infinitely many values v(x − c) for c ↗ x. We will call
k the relative approximation degree of g(x) in x, denoted by hK(x : g) as
before. Further, we will call β the relative approximation constant of g(x) in
x, denoted by

βK(x : g) .

By virtue of equation (5.5) of Lemma 5.2, our new definition of the relative ap-
proximation degree coincides with the definition as given for polynomials of degree
at most d. On the other hand, our new definition assigns a relative approxima-
tion degree to every polynomial of arbitrary degree whose value is not fixed, as
Lemma 5.4 shows because in this case, v(g(x)− g(c)) = vg(c) for c↗ x. However,
for polynomials of degree bigger than d, the relative approximation degree may not
be a power of p. Unfortunately, Lemma 5.4 does not give information about the
value v(g(x)− g(c)) if A fixes the value of g; this is an open problem.

From Lemma 5.4 we derive:

Corollary 7.1. The value of g is fixed by A if and only if vg(x) = vg(c) for c↗ x.
On the other hand, A does not fix the value of g if and only if vg(x) > vg(c) for
c↗ x, and this holds if and only if

(7.1) v(g(x)− g(c)) = vg(c) = βh(x : g) + hK(x : g) · v(x− c)

for c↗ x.

For the distances associated with g(x), the following inequalities will hold in all
cases where βK(x : g) and hK(x : g) are defined:

(7.2) dist(g(x),K) ≥ distK(g(x), g(K)) ≥ βK(x : g) + hK(x : g) · dist(x,K)

(the first inequality is trivial and the second follows directly from the definition of
relative approximation degree and relative approximation constant). In the next
section, we will consider various cases where equalities hold.

We will now investigate the relative approximation degree more closely for the
case of deg f ≤ deg A. We will first consider the relation between hK(x : f) and the
approximation type appr(f(x),K). Then we show that hK(x : f) is a power of the
characteristic exponent of the residue field, where the characteristic exponent of
a field is defined to be its characteristic if this is positive, and 1 otherwise. Finally
we will give some hints for the computation of hK(x : f).
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Throughout this and the next two sections, we will assume the follow-
ing situation:

(7.3)



A = appr(x,K) an immediate approximation type over (K, v)
p the characteristic exponent of Kv,
d the degree of appr(x,K),
f ∈ K[X] a nonconstant polynomial of degree n ≤ d ,
h = hK(x : f)
βi the fixed value vfi(c) for c↗ x.

Lemma 7.2. Take another polynomial g ∈ K[X] of degree at most d such that
appr(x,K) fixes the value of f − g. If appr(f(x),K) = appr(g(x),K), then hK(x :
f) = hK(x : g) and βK(x : f) = βK(x : g).

Proof. By part b) of Lemma 3.1, appr(f(x),K) = appr(g(x),K) implies that

v(f(x)− g(x)) ≥ dist(f(x),K) .

By hypothesis, appr(x,K) fixes the value of f − g, hence by Lemma 5.2,

v(f(c)− g(c)) = v(f(x)− g(x)) ≥ dist(f(x),K) ≥ v(f(x)− f(c)) for c↗ x .

As (5.5) shows that the values v(f(x) − f(c)) are increasing for c ↗ x, the last
inequality can be replaced by a strict inequality. So we obtain that

v(g(x)− g(c)) = min{v(g(x)− f(x)) , v(f(x)− f(c)) , v(f(c)− g(c))}
= v(f(x)− f(c)) = βK(x : f) + hK(x : f) · v(x− c)

for c↗ x. This implies our assertion. �

To achieve our second goal, we need the following lemma:

Lemma 7.3. If p is prime and r is a positive integer prime to p, r > 1, then(
ptr

pt

)
is prime to p, for every integer t ≥ 0.

Proof. Consider (
ptr

pt

)
=
ptr(ptr − 1) · . . . · (ptr − pt + 1)

pt(pt − 1) · . . . · 1
.

In the numerator of this fraction, the first factor ptr is divisible by precisely pt,
while the remaining factors ptr − m, 1 ≤ m ≤ pt − 1, are not divisible by pt.
Hence, for every such factor occurring in the numerator, the corresponding factor
pt −m = ptr −m− pt(r − 1) which occurs in the denominator will be divisible by
p to precisely the same power. This gives the desired result. �

Now we are able to prove:

Proposition 7.4. If i = pt, j = ptr ≤ n with r > 1, (r, p) = 1, and if βi 6= ∞,
then for c↗ x,

βi + i · v(x− c) < βj + j · v(x− c) .
Consequently, hK(x : f) is a power of p (including the case of hK(x : f) = 1 = p0).
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Proof. We consider the Taylor expansion (5.3) for fi(x):

fi(x)− fi(c) =

(i+ 1)fi+1(c)(x− c) + . . .+
(
j
i

)
fj(c)(x− c)j−i + . . .+

(
n
i

)
fn(c)(x− c)n−i .

For c↗ x, the values vfi+1(c) , . . . , vfn(c) will be equal to βi+1, . . . , βn as defined
in (7.3). We apply Lemma 5.1 with m = n− i, tk = k for 1 ≤ k ≤ m, and

α1 = v(i+ 1) + βi+1 , . . . , αj−i = v

(
j

i

)
+ βj , . . . , αm = v

(
n

i

)
+ βn .

We find that among the terms on the right hand side of the Taylor expansion, there
will be precisely one which has least value for c↗ x. The value of this term must
then equal the value of the left hand side of the Taylor expansion, which yields
that the latter increases for c↗ x. But both values vfi(x) and vfi(c) are fixed for
c↗ x. Hence, v(fi(x)− fi(c)) > vfi(x) = vfi(c) = βi for c↗ x. It follows that in
particular, the term (

j

i

)
fj(c)(x− c)j−i

on the right hand side of the Taylor expansion will also have value > βi for c↗ x.
But v

(
j
i

)
= 0: if p > 0, this is shown in Lemma 7.3, and if p = 1, then charKv = 0

which means that charK = 0 and v is trivial on the subfield Q of K. Therefore,

βi < βj + (j − i) · v(x− c)

for c↗ x. This yields our assertion. �

The following lemma will give more detailed information on the computation of
hK(x : f).

Lemma 7.5. Assume that v(x − c) ≥ 0 for c ↗ x. If i is an integer such that βi
is minimal among all βj, j > 0, then hK(x : f) ≤ i.

Proof. By assumption, we have that βj − βi ≥ 0 for all j > 0. Further,

βh + h · v(x− c) < βj + j · v(x− c)

for j > 0, j 6= h, and c↗ x. Thus,

0 ≤ βh − βi ≤ (i− h) · v(x− c)

for c ↗ x, which in view of v(x − c) ≥ 0 for c ↗ x yields that i − h ≥ 0, which is
the assertion. �

Lemma 7.6. Assume that p ≥ 2, and write f(X) = cnX
n+ . . .+ c0 . Suppose that

there exists i > 0 such that vci < vck for all k > 0, k 6= i, and write i = ptr with r
prime to p. Then vfj(c) ≥ vci holds for all j > 0 and every c with vc = 0. And if
vx = 0, then

hK(x : f) ≤ pt .

Proof. For vc = 0 and j > 0, by the definition (5.1) of the j-th formal derivative,

vfj(c) = v

n∑
k=j

(
k

j

)
ckc

k−j ≥ min
j≤k≤n

v

(
k

j

)
ckc

k−j ≥ vci .
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By Lemma 7.3, the binomial coefficient
(
ptr
pt

)
is not divisible by p. This shows that

v
(
ptr
pt

)
= 0 and thus,

vfpt(c) = vci .

Now assume in addition that vx = 0. Then vc = 0 for c↗ x. This yields that

βpt = vci ≤ βj
for all j > 0. The foregoing lemma now gives our assertion. �

Corollary 7.7. Assume that vx = 0, and take an integer e ≥ 1. Suppose that all
nonzero coefficients ci of f , i > 0, have different values and that for all i with pe|i,
the coefficient ci is equal to zero. Then hK(x : f) < pe.

8. Approximation types and distances of polynomials

Recall that throughout this section, we assume the situation of (7.3).

Lemma 8.1. The following holds:

(8.1) c ∈ appr(x,K)γ ⇐⇒ f(c) ∈ appr(f(x),K)βh+h·γ for c↗ x .

In particular,

(8.2) dist(f(x),K) ≥ distK(f(x), f(K)) = βh + h · dist(x,K) .

Proof. Equation (5.5) of Lemma 5.2 yields (8.1), while the inequality dist(f(x),K) ≥
distK(f(x), f(K)) was already stated in (7.2). It remains to prove that

distK(f(x), f(K)) = βh + h · dist(x,K) .

If dist(x,K) = ∞, this equality follows immediately from (7.2). So let us assume
from now on that dist(x,K) <∞. In order to deduce a contradiction, assume that
there exists an element c0 ∈ K such that

v(f(x)− f(c0)) > βh + h · dist(x,K) ,

or equivalently,

v(f(x)− f(c0)) > v(f(x)− f(c))

for c↗ x. Hence

v(f(c0)− f(c)) = min{v(f(x)− f(c)), v(f(x)− f(c0))}
= v(f(x)− f(c)) = βh + h · v(x− c)

for c↗ x. Replacing x by c0 in the Taylor expansion (5.6), we find

v(f1(c0) · (c− c0) + . . .+ fn(c0) · (c− c0)n) = v(f(c0)− f(c))

= βh + h · v(x− c)
for c ↗ x. As noted already at the beginning of Section 4, an immediate approx-
imation type fixes the value of every linear polynomial. Hence, v(c − c0) will be
fixed for c ↗ x. On the other hand, the value βh + h · v(x − c) is not fixed for
c↗ x, so we conclude that the value

v( f1(c0) + f2(c0) · (c− c0) + . . .+ fn(c0) · (c− c0)n−1 )

is not fixed for c ↗ x. This proves the existence of a polynomial of degree n − 1
whose value is not fixed by appr(x,K). But n−1 = deg f −1 < d, a contradiction.
This proves the desired equality. �
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Lemma 8.2. Assume that deg f < d. Then appr(f(x),K) is an immediate ap-
proximation type over K with

(8.3) dist(f(x),K) = distK(f(x), f(K)) = βh + h · dist(x,K),

and appr(f(x),K) is determined by (8.1).

Proof. In view of (8.2), to prove the first equality in (8.3) we have to show that for
every b ∈ K there exists an element c ∈ K such that v(f(x)− f(c)) ≥ v(f(x)− b).
Since deg(f − b) = deg f < d, it follows that appr(x,K) fixes the value of f − b.
Applying Lemma 5.2 to f−b in place of f , we deduce that v(f(x)−b) = v(f(c)−b)
for c↗ x. Consequently, for such an element c ∈ K we get that

v(f(x)− f(c)) ≥ min{v(f(x)− b), v(f(c)− b)} = v(f(x)− b) ,

as desired.
By the second equality of (8.3), which has already been proved in Lemma 8.1,

we know that there exists c′ ∈ K such that v(f(x) − f(c′)) > v(f(x) − f(c)) ≥
v(f(x)− b). We have proved that for every b ∈ K there is b′ = f(c′) ∈ K such that
v(f(x)− b′) > v(f(x)− b). Part a) of Lemma 4.1 now shows that appr(f(x),K) is
immediate.

By (8.3), the values βh + h · v(x− c) are cofinal in supp appr(f(x),K) for c↗ x.
Therefore, appr(f(x),K) is determined by the balls appr(f(x),K)βh+h·v(x−c) for
those c, which in turn are determined by (8.1). �

Corollary 8.3. Assume that deg f < d, and let d′ ≥ 1 be a natural number such
that d′ · deg f ≤ d. Then

deg appr(f(x),K) ≥ d′ .

In particular, if appr(x,K) is transcendental, then so is appr(f(x),K).

Proof. Take a polynomial g of degree smaller than d′ ≤ d. Suppose that
appr(f(x),K) does not fix the value of g. Then by Lemma 5.2,

vg(f(x)) > vg(a)

for a ↗ f(x). Since deg f < d, Lemma 8.2 shows that distK(f(x), f(K)) =
dist(f(x),K), so

vg(f(x)) > vg(f(c))

for c ↗ x. But then by Lemma 5.2, appr(x,K) does not fix the value of the
polynomial g(f(X)). This contradicts the fact that its degree is smaller than d. �

Lemma 8.4. Assume that appr(x,K) does not fix the value of f (hence deg f = d).
Then

vf(x) > βh + h · v(x− c) for c↗ x.

Proof. We rewrite (5.6) as follows:

−f(c) = f1(c) · (x− c) + . . .+ fn(c) · (x− c)n − f(x) .

Suppose that vf(x) < βh+h ·v(x−c) for c↗ x. This in turn implies that the value
of the right hand side is equal to vf(x) and hence the value vf(c) is fixed for for
c↗ x, which contradicts our assumption. This proves that vf(x) ≥ βh+h·v(x−c),
and since v(x − K) has no maximal element, also vf(x) > βh + h · v(x − c) for
c↗ x. �
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Note that in the case of deg f = d we can only say that “appr(f(x),K) is
determined by (8.1) up to distK(f(x), f(K))”. But it may happen that

dist(f(x),K) > distK(f(x), f(K)) .

This will usually be the case when f is the minimal polynomial of x, which yields
that f(x) = 0 and hence dist(f(x),K) = dist(0,K) =∞.

Example 8.5. Take (L, v) and f(X) = Xp−X−t−1 with root ϑ as in Example 5.6.

As noted there, v(ϑ − L) = {α ∈ vL | α < 0}, so dist(ϑ,L) is the cut in ṽL
whose lower cut set consists of all negative elements. This implies that dist(ϑ,L) =
p · dist(ϑ,L).

We have that f(X) − f(c) = Xp − X − (cp − c) = (X − c)p − (X − c). Since
v(ϑ − c) < 0, it follows that v(ϑ − c)p = p · v(ϑ − c) < v(ϑ − c) and therefore,
v(f(ϑ) − f(c)) = v((ϑ − c)p − (ϑ − c)) = min{v(ϑ − c)p, v(ϑ − c)} = p · v(ϑ − c).
This shows that hL(x : f) = p and βL(x : f) = 0. We obtain that

dist(f(ϑ), L) = ∞ > dist(ϑ,L) = p · dist(ϑ,L) = distL(f(ϑ), f(L)) ,

where the last equality holds by Lemma 8.1.

9. The degree [K(x)h : K(f(x))h]

In the situation of (7.3), we ask for the degree

[K(x)h : K(f(x))h] .

This can indeed be calculated by means of hK(x : f). Inequality (9.1) below will
explain the origin of the notation “hK(x : f)”. Note that [K(x) : K(f(x))] = deg f ,
while in general, we may have that [K(x)h : K(f(x))h] < deg f .

Theorem 9.1. Assume (7.3). Then

(9.1) [K(x)h : K(f(x))h] ≤ hK(x : f) .

Proof. We consider the Taylor expansion (5.2) of f for an arbitrary c ∈ K. From
Lemma 5.2, we know that (5.4) holds for 1 ≤ i ≤ deg f , i 6= h = hK(x : f)
and c ↗ x. We choose such an element c ∈ K and also an element d ∈ K with
vd = −v(x − c). We set x0 = d · (x − c); hence vx0 = 0 and K(x) = K(x0). Now
(5.4) takes the form

(9.2) v(fi(c)d
−i) > v(fh(c)d−h) for i 6= h, 1 ≤ i ≤ deg f ,

and (5.5) reads as

(9.3) v(f(x)− f(c)) = vfh(c)d−h .

Further, from (5.2), (9.2) and (9.3) we obtain:(
dh

fh(c)
· (f(c)− f(x))

)
v =

(
− dh

fh(c)
·
degf∑
i=1

fi(c)(x− c)i
)
v(9.4)

=

(
−

degf∑
i=1

fi(c)d
−i

fh(c)d−h
xi0

)
v = −(x0v)h .

Now we set

f̃(Z) =

degf∑
i=0

fi(c)d
−iZi ;
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hence f̃(x0) = f(x). Let us consider the polynomial

F (Z) =
dh

fh(c)
· (f̃(Z)− f̃(x0))

whose coefficients lie in K(f̃(x0)) = K(f(x)) and for which x0 is a zero. Using
(9.2) and (9.3), we compute

F (Z) =
dh

fh(c)
· (f(c)− f(x)) +

degf∑
i=1

fi(c)d
−i

fh(c)d−h
Zi ∈ OK(f(x))[Z]

and, using also (9.4),

F (Z)v = Zh − (x0v)h = (Z − x0v)h

(where the latter equation holds because by Proposition 7.4, h is a power of p).
Using the strong Hensel’s Lemma, that is, property 3) of Theorem 4.1.3 in [2], we
deduce that there is a factorization

F (Z) = G(Z)H(Z)

over K(f(x))h with

G(Z)v = Zh − (x0v)h

and

degG(Z) = degG(Z)v = h .

A zero of F (Z) which has residue x0v cannot be a zero of H(Z) since H(Z)v = 1,
hence it must appear as a zero of G(Z). In particular, G(x0) = 0. Since G(Z) ∈
K(f(x))h[Z] and degG(Z) = h, and since K(x0)h = K(f(x))h(x0), this shows that

[K(x)h : K(f(x))h] = [K(x0)h : K(f(x))h] ≤ h = hK(x : f) .

�

Corollary 9.2. In addition to (7.3), assume that (K, v) is henselian and x is
algebraic over K. If d = [K(x) : K] and f is the minimal polynomial of x over K,
then p ≥ 2 and

[K(x) : K] = hK(x : f) = pt

for some integer t ≥ 1.

Proof. By hypothesis, we have d = [K(x) : K] = deg f . Since K is henselian and
x is algebraic over K, we have that K(x) is henselian as well. In view of f(x) = 0,
an application of the foregoing theorem shows that

deg f = [K(x) : K] ≤ hK(x : f) ≤ deg f .

Consequently, equality holds everywhere.
Since appr(x,K) is immediate by assumption, it is nontrivial, hence x /∈ K and

hK(x : f) = [K(x) : K] > 1. Proposition 7.4 yields that p ≥ 2 and hK(x : f) = pt

with t ≥ 1. �
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10. The degree [K(x)h : K(y)h]

Throughout this section, we will work with the following situation. By Kc we
will denote the completion of (K, v).

(10.1)


(K, v) a valued field of rank 1
(K(x)|K, v) an immediate extension such that x /∈ Kc

and appr(x,K) is transcendental
y ∈ K(x)h transcendental over K.

Note that by Corollary 6.1, the assumption that appr(x,K) is transcendental im-
plies that x is transcendental over K. Furthermore, if (K, v) is algebraically maxi-
mal, then appr(x,K) is always transcendental, provided that (K(x)|K, v) is imme-
diate and nontrivial.

We ask for the degree
[K(x)h : K(y)h] .

To treat this question and in particular to define the relative approximation degree
of x over y, we look for a polynomial f ∈ K[X] such that

(10.2) v(y − f(x)) ≥ dist(y,K) .

We need some preparation.

Lemma 10.1. If K is of rank 1 and K(x)|K is immediate, then K[x] is dense in
K(x)h.

Proof. Since any valued field of rank 1 is dense in its henselization, it suffices to
show that K[x] is dense in K(x). For this we only have to show that for every
f(x) ∈ K[x] and every α ∈ vK there exists an element g(x) ∈ K[x] such that
v(g(x) − 1/f(x)) > α. Since K(x)|K is immediate there is an element c ∈ K
satisfying v(c − f(x)) > vf(x) = vc, which yields that v(1 − f(x)/c) > 0. By our
hypothesis on the rank which means that the value group vK is archimedian, there
exists j ∈ N such that j · v(1− f(x)/c) > α+ vc. Now we put h(x) = 1− f(x)/c ∈
K[x] and compute

v

(
1

f(x)
− c−1

j−1∑
i=0

h(x)i

)
= v

(
1

c(1− h(x))
− c−1

j−1∑
i=0

h(x)i

)

= vc−1h(x)j = j · v(1− f(x)/c)− vc > α .

As the sum is an element of K[x], this proves our lemma. �

By K[x]c we denote the completion of K[x] within K(x)c.

Lemma 10.2. Assume (10.1). Then y ∈ K[x]c \Kc and there exists a polynomial
f ∈ K[X] such that (10.2) holds.

Proof. From Lemma 10.1, we infer that y ∈ K[x]c. Suppose that y ∈ Kc. Then K
is dense in K(y) and also in K(y)h since K(y) is dense in its henselization, being of
rank 1 like K. Let g(X) ∈ K(y)h[X] be the minimal polynomial of x over K(y)h.
We can choose polynomials g̃(X) ∈ K[X] with coefficients arbitrarily close to the
corresponding coefficients of g. By the continuity of roots (cf. Theorem 4.5 of [PZ])
and our assumption that x /∈ Kc, i.e., dist(x,K) < ∞, we can find a suitable

polynomial g̃ with a suitable root x̃ ∈ K̃ such that

v(x− x̃) ≥ dist(x,K) .
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By Lemma 3.1 b), this implies that

appr(x,K) = appr(x̃,K) .

Since x̃ is algebraic over K, it follows by Corollary 5.5 that appr(x̃,K) and hence
appr(x,K) is an algebraic approximation type over K, a contradiction to hypothesis
(10.1). This shows that y /∈ Kc, i.e., dist(y,K) <∞. As y ∈ K[x]c, this shows the
existence of a polynomial f ∈ K[X] such that v(y − f(x)) ≥ dist(y,K). �

With f as in this lemma, we define

hK(x : y) := hK(x : f) and βK(x : y) := βK(x : f)

and call hK(x : y) the relative approximation degree of y in x (over K).

Lemma 10.3. The integers hK(x : y) and βK(x : y) are well-defined, i.e., they do
not depend on the choice of f(x) as long as v(y − f(x)) ≥ dist(y,K) is satisfied.

Proof. If g(x) is another polynomial in K[x] such that v(y − g(x)) ≥ dist(y,K),
then by Lemma 3.1, we have that

appr(g(x),K) = appr(y,K) = appr(f(x),K) ,

whence hK(x : g) = hK(x : f) and βK(x : g) = βK(x : f) by Lemma 7.2 since
appr(x,K) is transcendental. �

In the situation described in (10.1), we can prove Theorem 9.1 also for y in place
of f(x) provided that the extension K(x)h|K(y)h is separable. For the proof, we
need the following lemma:

Lemma 10.4. Assume (10.1) and let v(y − f(x)) ≥ dist(y,K). Then there exists

an element z in the algebraic closure K̃(y) of K(y) such that

[K(y, z)h : K(y)h] ≤ h = hK(x : y)

and

v(x− z) ≥ 1

h
(v(y − f(x))− βK(x : f)) .

Proof. Recall that h = hK(x : y) = hK(x : f). We put r := y − f(x). We choose
c, d ∈ K, x0 and F (Z) as in the proof of Theorem 9.1. Then

vr ≥ dist(y,K) > v(y − f(c)) = v(f(x)− f(c))

= v(fh(c)(x− c)h) = v(fh(c)d−h) .

This shows that

F ◦(Z) := F (Z)− dh

fh(c)
· r =

dh

fh(c)
· (f̃(Z)− y) ∈ OK(y)[Z]

has the same reduction as F (Z). We find, as for F (Z), that F ◦(Z) admits a
factorization

F ◦(Z) = G◦(Z)H◦(Z)

over K(y)h with G◦(Z)v = Zh − (x0v)h, G◦ monic, degG◦(Z) = degG◦(Z)v = h
and H◦(Z)v = 1. Note that vF ◦(x0) = vG◦(x0) since x0 ∈ OK(x). Recall that
F (x0) = 0. Consequently, from

F ◦(x0) = − dh

fh(c)
· r
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it follows that, with βh = vfh(c) = βK(x : f),

v(dhr)− βh = vF ◦(x0) = vG◦(x0) .

Hence there must exist a root zj0 of

G◦(Z) =
∏

1≤j≤h

(Z − zj) , zj ∈ K̃(y)

with

v(x0 − zj0) ≥ 1

h

(
v(dhr)− βh

)
,

which is equivalent to

v(x− (d−1zj0 + c)) ≥ 1

h
(vr − βh) =

1

h
(v(y − f(x))− βK(x : f)) .

Now z := d−1zj0 + c is the element of our assertion, since it satisfies K(y, z) =
K(y, zj0) and thus [K(y, z)h : K(y)h] ≤ h. �

Proposition 10.5. Assume (10.1). If K(x)h|K(y)h is separable, then

[K(x)h : K(y)h] ≤ hK(x : y) .

Proof. Set

α := max{v(σx− x) | σ ∈ Gal(K̃(y)|K(y)h) with σx 6= x} .
Then α <∞ since K(x)h|K(y)h is separable. Now, by Lemma 10.2 we can choose
f(x) ∈ K[x] such that v(y − f(x)) ≥ dist(y,K) = dist(f(x),K) as well as

v(y − f(x)) > βK(x : y) + hα = βK(x : f) + hα ,

where h = hK(x : y). Using the foregoing lemma, we choose z ∈ K̃(y) such that

v(x− z) ≥ 1

h
(v(y − f(x))− βK(x : f)) > α ,

and [K(y, z)h : K(y)h] ≤ h. In view of our separability condition, we can deduce
by Krasner’s Lemma (see [2], Theorem 4.1.7) that x ∈ K(y)h(z). This yields that
[K(x, y)h : K(y)h] ≤ [K(y, z)h : K(y)h] ≤ h. Since y ∈ K(x)h by assumption,
K(x, y)h = K(x)h and thus [K(x)h : K(y)h] ≤ h, as asserted. �

In order to prove the assertion of the proposition without the separability con-
dition, we need the following tool.

Lemma 10.6. Assume that (10.1) holds. Then it also holds for y in place of x. So
if z ∈ K(y)h is transcendental over K, then hK(y : z) is defined. In this situation,
hK(x : z) = hK(x : y) · hK(y : z).

Proof. Recall that from Lemma 10.2 we have that y /∈ Kc. Moreover, as K(y)|K
is a subextension of the immediate extension K(x)h|K, it is also immediate. For
the definition of hK(x : y) we have already used the fact that there exists some
polynomial f(x) such that appr(y,K) = appr(f(x),K); by Corollary 8.3, this ap-
proximation type is transcendental since appr(x,K) is. We have proved that (10.1)
holds for y in place of x.

Let us now prove the multiplicativity. Since hK(y : z) = hK(y : g(y)) whenever
v(z − g(y)) ≥ dist(z,K), it suffices to show our assertion under the additional
assumption z = g(y) ∈ K[y]. Furthermore, because of y ∈ K[x]c\Kc we may choose
f(x) ∈ K[x] so that v(y−f(x)) ≥ dist(y,K) and v(g(y)−g(f(x))) ≥ dist(g(y),K);
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hence it suffices to show our assertion under the assumption that y = f(x) ∈ K[x]
and z = g(f(x)) ∈ K[x]. Since by hypothesis, appr(x,K) is transcendental, it fixes
the value of every polynomial over K, and thus we know from Lemma 8.2 that
f(c) ↗ f(x) whenever c ↗ x. Also since appr(f(x),K) is transcendental, it fixes
the value of every polynomial over K, and thus for f(c)↗ f(x),

v(g(f(x))− g(f(c))) = vgh1(f(c)) + h1 · v(f(x)− f(c))

= vgh1(f(c)) + h1 · (vfh2(c) + h2 · v(x− c))
= β + h1 · h2 · v(x− c)

where h1 = hK(f(x) : g(f(x))), h2 = hK(x : f) and β = vgh1
(f(c)) + h1 · vfh2

(c).
This shows that

hK(x : g(f(x))) = h1 · h2 = h2 · h1 = hK(x : f) · hK(f(x) : g(f(x))) ,

as asserted. �

Theorem 10.7. Assume (10.1). Then

[K(x)h : K(y)h] ≤ hK(x : y) .

Proof. Take pn to be the inseparable degree of K(x)h|K(y)h and L|K(y)h to be
the maximal separable subextension of K(x)h|K(y)h. Then [K(x)h : L] = pn.
Further, xp

n

is separable over K(y)h, so xp
n ∈ L and K(xp

n

)h ⊆ L. As K(x)h =
K(xp

n

)h(x), we find that

pn ≥ [K(x)h : K(xp
n

)h] = [K(x)h : L] · [L : K(xp
n

)h] = pn · [L : K(xp
n

)h] ,

which shows that [L : K(xp
n

)h] = 1 and in particular, y ∈ K(xp
n

)h. So we are
able to apply Lemma 10.6 to obtain that hK(x : y) = hK(x : xp

n

) · hK(xp
n

: y) =
pn · hK(xp

n

: y).
As xp

n

is separable overK(y)h, we can infer from Proposition 10.5 that [K(xp
n

)h :
K(y)h] ≤ hK(xp

n

: y). On the other hand, [K(x)h : K(xp
n

)h] = [K(x)h : L] = pn.
So we get

[K(x)h : K(y)h] = pn · [K(xp
n

)h : K(y)h] ≤ pn · hK(xp
n

: y) = hK(x : y) ,

as desired. �

Corollary 10.8. Assume that (10.1) holds. Then

K(x)h = K(y)h ⇐⇒ hK(x : y) = 1 .

Proof. If K(x)h = K(y)h, then x ∈ K(y)h and y ∈ K(x)h, and by Lemma 10.6 we
have that

hK(x : y) · hK(y : x) = hK(x : x) = 1 ,

which yields hK(x : y) = 1. The reverse implication follows from Theorem 10.7. �

11. An application to henselian rationality

In this section we will apply Theorem 10.7 to immediate valued function fields
which are the henselization of a rational function field.

Theorem 11.1. Take a valued field (K, v) of rank 1 and an immediate function
field (F |K, v) of transcendence degree 1. Suppose there is some x ∈ Fh \Kc with
transcendental approximation type over K such that Fh = K(x)h. Then there is
already some y ∈ F such that Fh = K(y)h. In fact, there is some γ ∈ vK such
that K(x)h = K(y)h holds for every y ∈ F with v(x− y) ≥ γ.
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Proof. Since x /∈ Kc there is γ ∈ vK such that γ > dist(x,K). By assumption, the
rank of (K, v) is 1, and since (F |K, v) is immediate, also (F, v) has rank 1. Thus,
the element x lies in the completion of F . So we may take some y ∈ F such that
v(x− y) ≥ γ > dist(x,K). For every such y, [K(x)h : K(y)h] ≤ hK(x : y) holds by
Theorem 10.7, and hK(x : y) = hK(x : x) = 1 holds by Lemma 10.3. This yields
that K(x)h = K(y)h. �

12. Approximation coefficients

Throughout this section, we will assume the situation as described in (10.1). As
before, take f(x) ∈ K[x] such that v(y − f(x)) ≥ dist(y,K). An element d ∈ K
will be called an approximation coefficient of y in x (over K), if

(12.1) v(f(x)− f(c)) < v(f(x)− f(c)− d · (x− c)h)

for c↗ x, where h = hK(x : y).

Lemma 12.1. If d satisfies (12.1) for some f(x) with v(y−f(x)) ≥ dist(y,K), then
it satisfies (12.1) for every such f(x); in other words: approximation coefficients
are independent of the choice of f(x). If d satisfies (12.1), then it satisfies

(12.2) v(y − f(c)) < v(y − f(c)− d · (x− c)h) for c↗ x .

Proof. If g(x) is another element of K[x] with v(y − g(x)) ≥ dist(y,K), then

v(f(x)− g(x)) ≥ dist(y,K) = dist(f(x),K) > v(f(x)− f(c))

for all c ∈ K. Since appr(x,K) is transcendental, it fixes the value of the polynomial
f − g, whence

v(f(c)− g(c)) = v(f(x)− g(x)) > v(f(x)− f(c)) for c↗ x .

Hence by the ultrametric triangle law,

v(g(x)− g(c)) = min{v(g(x)− f(x)), v(f(x)− f(c)), v(f(c)− g(c))}
= v(f(x)− f(c))

and

v(g(x)− g(c)− d · (x− c)h)

≥ min{v(f(x)− f(c)− d · (x− c)h) , v(f(x)− g(x)) , v(f(c)− g(c))}
> v(f(x)− f(c)) = v(g(x)− g(c))

for c ↗ x , which shows that d fulfills equation (12.1) also with g in place of f .
Replacing g(x) by y and g(c) by f(c) in the above deduction, one obtains a proof
of (12.2). �

The following lemma proves the existence of approximation coefficients:

Lemma 12.2. The element d ∈ K is an approximation coefficient of y in x if and
only if

vd = vfh(c) < v(fh(c)− d) for c↗ x .

In particular, there exists an approximation coefficient of y in x. Furthermore,

(12.3) dist(y,K) = vd+ h · dist(x,K)
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Proof. By definition of h = hK(x : y) = hK(x : f), we have that

v(f(x)− f(c)− fh(c)(x− c)h) > v(f(x)− f(c)) = v(fh(c)(x− c)h)

for c↗ x. Hence (12.1) holds for c↗ x if and only if

v(fh(c)(x− c)h − d · (x− c)h) > v(fh(c)(x− c)h) ,

which is equivalent to

vfh(c) < v(fh(c)− d) for c↗ x .

Since K(x)|K is assumed to be an immediate extension, by Lemma 4.1 a) there
exists some d ∈ K such that v(fh(x)− d) > vfh(x). Since appr(x,K) is transcen-
dental, for c ↗ x we have that v(fh(c) − d) = v(fh(x) − d) and vfh(c) = vfh(x)
and thus,

v(fh(c)− d) = v(fh(x)− d) > vfh(x) = vfh(c) = vd .

Hence d is an approximation coefficient for y in x by the first part of our proof.
In view of the hypothesis that appr(x,K) is transcendental, f(x) satisfies equa-

tion (8.3) of Lemma 8.2. From this we obtain:

dist(y,K) = dist(f(x),K) = vfh(c) + h · dist(x,K)

= vd+ h · dist(x,K) .

�

Lemma 12.3. Take elements yi ∈ K[x]c \Kc with common approximation degree
h = hK(x : yi), 1 ≤ i ≤ m. Assume that di ∈ K is an approximation coefficient of
yi in x and let ki be elements in K such that

(12.4) v

m∑
i=1

kidi = min
1≤i≤m

vkidi <∞ .

Then the following will hold:

hK

(
x :

m∑
i=1

kiyi

)
= h .

Proof. We choose polynomials f [i](X) ∈ K[X] with v(yi − f [i](x)) ≥ dist(yi,K).
Then by Lemma 3.1 b), we have that dist(f [i](x),K) = dist(yi,K). We set

g(X) :=

m∑
i=1

kif
[i](X) ∈ K[X]

and show that hK(x : g) = h.
First, we observe that by the previous lemma together with (12.4),

vgh(c) = v

m∑
i=1

kif
[i]
h (c) = min

{
v

m∑
i=1

kidi , v

(
m∑
i=1

(kif
[i]
h (c)− kidi)

)}

= v

m∑
i=1

kidi = min
1≤i≤m

vkidi = min
1≤i≤m

v kif
[i]
h (c)
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for c ↗ x (in particular, vgh(c) < ∞ which implies that g is nonconstant); with
1 ≤ j 6= h we obtain:

v gh(c)(x− c)h = vgh(c) + h · v(x− c) =

(
min

1≤i≤m
v kif

[i]
h (c)

)
+ h · v(x− c)

= min
1≤i≤m

v kif
[i]
h (c)(x− c)h

< min
1≤i≤m

v kif
[i]
j (c)(x− c)j

≤ v

m∑
i=1

kif
[i]
j (c)(x− c)j = v gj(c)(x− c)j .

This proves that hK(x : g) = h. It also follows that

dist(g(x),K) = vgh(c) + h · dist(x,K) =

(
min

1≤i≤m
vkif

[i]
h (c)

)
+ h · dist(x,K)

= min
1≤i≤m

v kif
[i]
h (c) + h · dist(x,K)

= min
1≤i≤m

vki + vf
[i]
h (c) + h · dist(x,K)

= min
1≤i≤m

vki + dist(f [i](x),K) = min
1≤i≤m

vki + dist(yi,K)

≤ min
1≤i≤m

vki + v(yi − f [i](x)) ≤ min
1≤i≤m

v(kiyi − kif [i](x))

≤ v

m∑
i=1

(kiyi − kif [i](x)) = v

(
m∑
i=1

kiyi − g(x)

)
,

where the first equality follows from Lemma 8.2 as appr(x,K) is transcendental.
By Lemma 3.1 b), this shows that

dist

(
m∑
i=1

kiyi,K

)
= dist(g(x),K) ≤ v

(
m∑
i=1

kiyi − g(x)

)
.

Consequently,

hK(x :

m∑
i=1

kiyi) = hK(x : g) = h .

�

13. Valuation independence of Galois groups

In this section, we will introduce a valuation theoretical property that char-
acterizes the Galois groups of tame Galois extensions. Take a Galois extension
(L|K, v) of henselian fields. Its Galois group GalL|K will be called valuation

independent if for every choice of elements d1, . . . , dn ∈ L̃ and automorphisms
σ1, . . . , σn ∈ GalL|K there exists an element d ∈ L such that (for the unique

extension of the valuation v from L to L̃):

(13.1) v

n∑
i=1

σi(d) di = min
1≤i≤n

v σi(d) di .
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Since (K, v) is assumed to be henselian, we have that vσ(d) = vd for all σ ∈
GalL|K and therefore, vσi(d) di = vd + vdi. Suppose that vdi0 = mini vdi ; then
(13.1) will hold if and only if

v

n∑
i=1

σi(d)

d

di
di0

= 0 .

In this sum, the terms with v(di/di0) > 0 have no influence, and we can delete the
corresponding σi from the list. So we see:

Lemma 13.1. Assume that (L|K, v) is a Galois extension of henselian fields. Then

GalL|K is valuation independent if and only if for every choice of elements di ∈ L̃
with vdi = 0 for 1 ≤ i ≤ n, and automorphisms σ1, . . . , σn ∈ GalL|K, there exists
an element d ∈ L such that

(13.2) v

n∑
i=1

σi(d)

d
di = 0 .

Theorem 13.2. A Galois extension of henselian fields is tame if and only if its
Galois group is valuation independent.

Proof. Take a Galois extension (L|K, v) of henselian fields, elements di ∈ L̃ with
vdi = 0 for 1 ≤ i ≤ n, and automorphisms σ1, . . . , σn ∈ GalL|K. For σ ∈ GalL|K
and d ∈ L×, we set

χσ(d) :=
σ(d)

d
v .

Since vσ(d) = vd, the right hand side is a nonzero element in Lv. Now equation
(13.2) is equivalent to

(13.3)

n∑
i=1

div · χσi(d) 6= 0 ;

note that div 6= 0 since vdi = 0.

We extend the homomorphism

Gi(L|K, v) 3 σ 7→ χσ ∈ Hom(L×, (Lv)×) ,

which is well known from ramification theory (see [2], Lemma 5.2.6), to a crossed
homomorphism from GalL|K to Hom(L×, (Lv)×). For the definition and an ap-
plication of crossed homomorphisms, see [6, §6]. As in the case of σ ∈ Gi(L|K, v),

it is shown that χσ ∈ Hom(L×, L
×

). This group is a right GalL|K-module under
the scalar multiplication

χρ := χ ◦ ρ .
We compute:

χστ (d) =
στ(d)

d
v =

στ(d)

τ(d)
v · τ(d)

d
v = (χσ ◦ τ)(d) · χτ (d) .

Thus,

χστ = χτσ · χτ .
In other words, the map

(13.4) GalL|K 3 σ 7→ χσ ∈ Hom(L×, (Lv)×)
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is a crossed homomorphism. Hence, it is injective if and only if its kernel is trivial.

This kernel consists of all σ ∈ GalL|K for which σ(d)
d v = 1 for all d ∈ L×. So the

kernel is the ramification group Gr(L|K, v).
The theorem of Artin on linear independence of characters (see [11], VI, §4,

Theorem 4.1) tells us that if the χσi
are distinct characters, then an element d

satisfying (13.3) will exist. This shows that G is valuation independent if the map
in (13.4) is injective. The converse is also true: if σ1 6= σ2 but χσ1

= χσ2
, then

with n = 2 and d1 = −d2 = 1, (13.2) does not hold for any d.
Since the kernel is the ramification group of (L|K, v), we conclude that GalL|K

is valuation independent if and only if the ramification group is trivial. This is
equivalent to (L|K, v) being a tame extension. �

Note that we could give the above definition and the result of the theorem
also for extensions which are not Galois, replacing automorphisms by embeddings;
however, the normal hull of an algebraic extension L|K of a henselian field K is a
tame extension of K if and only if L|K is a tame extension, so there is no loss of
generality in restricting our scope to Galois extensions.

14. A pull down principle for henselian rationality through tame
extensions

Take a tame extension (L|K, v) of fields of rank 1 and an immediate function field
(F |K, v) of transcendence degree 1 with F not contained in Kc. By Lemma 2.2, the
extension (Fh.L|L, v) is again immediate. Since L|K is algebraic, so is Fh.L|Fh
and therefore, Fh.L is henselian, so Fh.L = (F.L)h. We consider the following
question:

If Fh.L|L is a henselian rational function field, does this imply the same for Fh|K?

To start with, we observe that w.l.o.g. we may assume the extension L|K to be
finite and Galois. Indeed, if x ∈ Fh.L such that Fh.L = L(x)h, then x lies already
in Fh.L1 for some finite subextension L1|K of L|K. Since x must be transcendental
over L1 , the extension Fh.L1|L1(x)h is finite, generated by finitely many elements
that lie in L(x)h. So we can choose a finite subextension L2|L1 of L|L1 such that
these elements already lie in L2(x)h. Since the normal hull of a tame extension is
a tame extension as well, we may replace L2 by its normal hull L3 over K because
also L3(x)h will contain these elements.

From now on we assume that L|K is a finite tame Galois extension and that
Fh.L = L(x)h for some x ∈ Fh.L. In addition, we assume that appr(x, L) is
transcendental.

We show that hypothesis (10.1) holds with K replaced by L. First, since
(F.L|L, v) is an immediate function field, so is (L(x)|L, v). Second, appr(x, L)
is transcendental by assumption. Third, we have:

Lemma 14.1. The condition F 6⊂ Kc implies that F.L 6⊂ Lc, hence x /∈ Lc.
Proof. Since F 6⊂ Kc, there exists some z ∈ F with z /∈ Kc. By assumption,
(L|K, v) is a tame extension, and as remarked in Section 2, is therefore defectless.
Hence by Lemma 4.5, dist(z, L) = dist(z,K) < ∞. Consequently, F.L 6⊂ Lc, as
asserted.

Furthermore, x ∈ Lc would imply that L(x) ⊂ Lc; since the rank of (K, v) is 1
by assumption, the same is true for (L(x), v) and L(x) is thus dense in L(x)h, so
we would get that F.L ⊂ Fh.L = L(x)h ⊂ Lc, a contradiction. �
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Lemma 14.2. If there exists an element y ∈ Fh such that L(y)h = L(x)h, then
Fh = K(y)h.

Proof. Since (Fh|K, v) and hence also its subextension (K(y)h|K, v) are immediate
and (L|K, v) is defectless and finite, we obtain from Lemma 2.2 that [Fh.L : Fh] =
[L : K] = [K(y)h.L : K(y)h]. On the other hand, Fh.L = L(x)h = L(y)h =
K(y)h.L, so Fh = K(y)h must hold, because by assumption on y, K(y)h ⊆ Fh. �

Since L|K is a finite tame Galois extension, also the extension Fh.L|Fh is a finite
tame Galois extension. As shown in the preceding proof, it is of degree n := [L : K].
We write

Gal (Fh.L|Fh) = {ρi | 1 ≤ i ≤ n} .
Then Gal (L|K) = {ρi|L | 1 ≤ i ≤ n}.

The next lemma will help us to determine the relative approximation degrees of
the conjugates ρi(x).

Lemma 14.3. Assume that ρ is a valuation preserving automorphism of L(x)h

such that ρ(L) = L. Then

L(x)h = L(ρx)h .

Proof. Since ρx ∈ ρ(L(x)h) = L(x)h, we have that L(ρx)h ⊆ L(x)h. Further,
L ⊆ ρ−1(L(ρx)h) ⊆ L(x)h and x ∈ ρ−1(L(ρx)h). Thus, L(x) ⊆ ρ−1(L(ρx)h).
Since ρ is valuation preserving and induces an isomorphism from ρ−1(L(ρx)h) to
the henselian field L(ρx)h, also ρ−1(L(ρx)h) is henselian; it is therefore equal to
L(x)h. This shows that its image L(ρx)h under the automorphism ρ is also equal
to L(x)h. �

The following lemma and theorem make essential use of the valuation indepen-
dence of Galois groups of tame Galois extensions. Let Tr denote the trace.

Lemma 14.4. There is an element d ∈ L such that

hK(x : TrFh.L|Fh(d · x)) = 1 .

Proof. From the preceding lemma it follows that every ρi(x) is transcendental over
L and hence over K. Hence by Lemma 12.2 we can choose approximation coef-
ficients di of ρi(x) in x over K for 1 ≤ i ≤ n. By Theorem 13.2, we have that
Gal (L|K) is valuation independent. This means we can choose an element d ∈ L
such that (13.1) holds with σi = ρi|L . Then for ki := σi(d) = ρi(d), the hypothesis
(12.4) of Lemma 12.3 holds. In view of the previous lemma and Corollary 10.8 we
have that hK(x : ρi(x)) = 1. From Lemma 12.3 we can now infer that

hK

(
x : TrFh.L|Fh(d · x)

)
= hK

(
x :
∑
i

ρi(d · x)

)

= hK

(
x :
∑
i

ρi(d) · ρi(x)

)
= 1 .

�

Now we are able to answer our question:
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Theorem 14.5. Let (K, v) be an algebraically maximal field of rank 1, and let
(F, v) be an immediate function field of transcendence degree 1 over (K, v), with
F 6⊂ Kc. If Fh.L is a henselian rational function field over L for some tame
extension (L|K, v), then Fh is a henselian rational function field over K.

Proof. As shown in the beginning of this section, we may assume that L|K is finite
and Galois. Now the foregoing lemma shows that there is some d ∈ L such that
for y := TrFh.L|Fh(d · x) ∈ Fh we have hK(x : y) = 1. By virtue of Corollary 10.8,

L(y)h = L(x)h. From Lemma 14.2, we can now infer that Fh is henselian rational
over K, as asserted. �
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