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1. Introduction

In this paper we consider birational properties of ramification of excellent local rings.
Suppose that K∗/K is a finite separable field extension, S is an excellent local ring of

K∗ (S has quotient field QF(S) = K∗) and R is an excellent local ring of K such that
dimS = dimR, S dominates R (R ⊂ S and the maximal ideals mS of S and mR of R
satisfy mS ∩R = mR) and ν∗ is a valuation of K∗ which dominates S (the valuation ring
Vν∗ of ν∗ dominates S). Let ν be the restriction of ν∗ to K.

The notation that we use in this paper is explained in more detail in Section 2.

1.1. Local Monomialization.

Definition 1.1. R → S is monomial if R and S are regular local rings of the same
dimension n and there exist regular systems of parameters x1, . . . , xn in R and y1, . . . , yn
in S, units δ1, . . . , δn in S and an n×n matrix A = (aij) of natural numbers with nonzero
determinant such that

(1) xi = δi

n∏
j=1

y
aij
j for 1 ≤ i ≤ n.

If R and S have equicharacteristic zero and algebraically closed residue fields, then
within the extension R̂→ Ŝ there are regular parameters giving a form (1) with all δi = 1.

More generally, we ask if a given extension R → S has a local monomialization along
the valuation ν∗.

Definition 1.2. A local monomialization of R→ S is a commutative diagram

R1 → S1 ⊂ Vν∗
↑ ↑
R → S

such that the vertical arrows are products of monoidal transforms (local rings of blowups
of regular primes) and R1 → S1 is monomial.

It is proven in Theorem 1.1 [10] that a local monomialization always exists when K∗/K
are algebraic function fields over a (not necessarily algebraically closed) field k of charac-
teristic 0, and R → S are algebraic local rings of K and K∗ respectively. (An algebraic
local ring is essentially of finite type over k.)

We can also define the weaker notion of a weak local monomialization by only requiring
that the conclusions of Definition 1.2 hold with the vertical arrows being required to be
birational (and not necessarily factorizable by products of monoidal transforms).

Partially supported by NSF.
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This leads to the following question for extensions R → S as defined in the beginning
of this paper: When does there exist a local monomialization (or at least a weak local
monomialization) of an extension R→ S of excellent local rings dominated by a valuation
ν∗ ?

As commented above, the question has a positive answer within algebraic function fields
over an arbitrary field of characteristic zero by Theorem 1.1 [10].

For the question to have a positive answer in positive characteristic or mixed charac-
teristic it is of course necessary that some form of resolution of singularities be true. This
is certainly true in equicharacteristic zero, and is known to be true very generally in di-
mension ≤ 2 ([2], [29], [7]) and in positive characteristic and dimension 3 ([4], [11], [8] and
[9]). A few recent papers going beyond dimension three are [18], [22], [6], [5], [23], [35],
[36], [24] and [37].

The case of two dimensional algebraic function fields over an algebraically closed field
of positive characteristic is considered in [14], where it is shown that monomialization is
true if R → S is a defectless extension of two dimensional algebraic local rings over an
algebraically closed field k of characteristic p > 0 (Theorem 7.3 and Theorem 7.35 [14]).
We will discuss the important concept of defect later on in this introduction.

In [12], we give an example showing that weak monomialization (and hence monomial-
ization) does not exist in general for extensions of algebraic local rings of dimension ≥ 2
over a field k of char p > 0. We prove the following theorem in [12]:

Theorem 1.3. (Theorem 1.4 [12], Counterexample to local and weak local monomializa-
tion) Let k be a field of characteristic p > 0 with at least 3 elements and let n ≥ 2. Then
there exists a finite separable extension K∗/K of n dimensional function fields over k,
a valuation ν∗ of K∗ with restriction ν to K and algebraic regular local rings A and B
of K and K∗ respectively, such that B dominates A, ν∗ dominates B and there do not
exist regular algebraic local rings A′ of K and B′ of K∗ such that ν∗ dominates B′, B′

dominates A′, A′ dominates A, B′ dominates B and A′ → B′ is monomial.

We have that the defect δ(ν∗/ν) = 2 in the example of Theorem 1.3 (with ν = ν∗|K).
In [10] and [14], a very strong form of local monomialization is established within

characteristic zero algebraic function fields which we call strong local monomialization
(Theorem 5.1 [10] and Theorem 48 [14]). This form is stable under appropriate sequences
of monoidal transforms and encodes the classical invariants of the extension of valuation
rings. In [14], we show that strong local monomialization is true for defectless extensions
of two dimensional algebraic function fields (Theorem 7.3 and Theorem 7.35 [14]). We
give an example in [14] (Theorem 7.38 [14]) showing that strong local monomialization is
not generally true for defect extensions of two dimensional algebraic function fields (over
a field of positive characteristic).

In this paper, we establish that local monomialization (and strong local monomializa-
tion) hold for defectless extensions of two dimensional excellent local rings. We will first
state our theorem (which is proven in Section 3), and then we will define and discuss the
defect.

Theorem 1.4. Suppose that R is a 2 dimensional excellent local domain with quotient
field QF(R) = K. Further suppose that K∗ is a finite separable extension of K and S
is a two dimensional excellent local domain with quotient field QF(S) = K∗ such that S
dominates R. Let ν∗ be a valuation of K∗ which dominates S and let ν be the restriction
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of ν∗ to K. Suppose that the defect δ(ν∗/ν) = 0. Then there exists a commutative diagram

(2)
R1 → S1 ⊂ Vν∗
↑ ↑
R → S

such that the vertical arrows are products of quadratic transforms along ν∗ and R1 → S1

is monomial.

The proof of the theorem actually produces stable strong monomialization.
We now define the defect of an extension of valuations. The role of this concept in local

uniformization was observed by Kuhlmann [26] and [27]. A good introduction to the role
of defect in valuation theory is given in [26]. A brief survey which is well suited to our
purposes is given in Section 7.1 of [14]. Suppose that K∗/K is a finite Galois extension
of fields of characteristic p > 0. The splitting field Ks(ν∗/ν) of ν is the smallest field
between K and K∗ with the property that ν∗ is the only extension to K∗ of ν∗|L. The
defect δ(ν∗/ν) is defined by the identity

[K∗ : Ks(ν∗/ν)] = f(ν∗/ν)e(ν∗/ν)pδ(ν
∗/ν)

(Corollary to Theorem 25 , Section 12, Chapter VI [40]). In the case when K∗/K is only
finite separable, we define the defect by

δ(ν∗/ν) = δ(ν ′/ν)− δ(ν ′/ν∗)
where ν ′ is an extension of ν∗ to a Galois closure K ′ of K∗ over K.

The defect is equal to zero if the residue field Vν/mν has characteristic zero (Theorem
24, Section 12, Chapter VI [40]) or if Vν is a DVR (Corollary to Theorem 21, Section 9,
Chapter V [39]).

1.2. Associated graded rings of valuations. The semigroup of R with respect to the
valuation ν is

SR(ν) = {ν(f) | f ∈ R \ {0}}.
The group generated by SR(ν) is the valuation group Γν of ν which is well understood
([30], [31], [40], [27]); the semigroup can however be extremely complicated and perverse
([17], [15]).

The associated graded ring of ν on R, as defined in [35] and [36], is

grν(R) =
⊕

γ∈SR(ν)

Pγ(R)/P+
γ (R).

Here Pγ(R) is the ideal in R of elements of value ≥ γ and P+
γ (R) is the ideal in R

of elements of value > γ. This ring plays an important role in Teissier’s approach to
resolution of singularity (it is completely realized for Abhyankar valuations in arbitrary
characteristic in [36]).

We always have that QF(grν(R)) = QF(grν(Vν) and

[QF(grν∗(S)) : QF(grν(R))] = f(ν∗/ν)e(ν∗/ν).

In [19] and [20] it is proven that there exists a strong local monomialization R1 → S1

for defectless extensions R→ S of two dimensional algebraic local rings in a two algebraic
function field over an algebraically closed field, which has the property that the induced
extension of associated graded rings along the valuation

(3) grν(R)→ grν∗(S)
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is of finite type and is even a “toric extension”. This result is extended in [16] to the
case of two dimensional algebraic function fields over an arbitrary field of characteristic
zero. These proofs all make use of the technique of generating sequences of a valuation
on a local ring, which is developed by Spivakovsky in [34] for two dimensional regular
local rings with algebraically closed residue fields, and is extended in [15] to arbitrary
regular local rings of dimension two. Unfortunately, this technique is special to dimension
two, and does not extend well to higher dimension local rings, or even to normal local
rings of dimension two (the examples of strange semigroups in [17] and [15] show this).
An interesting construction of generating sequences within a valuation ring which exhibits
the defect of an extension of valuations is given in [38], and a different general construction
of generating sequences is given in [32].

In general, the extension (3) is not of finite type, even for equicharacteristic zero alge-
braic regular local rings of dimension two (Example 9.4 [15]), so blowing up to reach a
good stable form is required to obtain that (3) has a good form.

It is not difficult to show that the extension (3) is of finite type and is toric when ν∗ is
an Abhyankar valuation (equality holds in Abhyankar’s inequality (Theorem 1 [1])

trdegS/mSVν∗/mν∗ + dimQ Γν∗ ⊗Q ≤ dimS.

From a special case of Theorem 5.1 [10] (recalled in Theorem 4.1 of this paper) we
give the precise statement of the stable strongly monomial forms R1 → S1 obtained by a
rational rank 1 valuation (dimQ Γν∗ ⊗Q = 1) in the case when R → S is an extension of
algebraic local rings in an extension of algebraic function fields over an arbitrary field of
characteristic zero. In this case, there are regular parameters x1, . . . , xn in R1 and regular
parameters y1, . . . , yn in S and a unit δ in S1 such that

x1 = δye1, x2 = y2, . . . , xn = yn

where e = e(ν∗/ν) = |Γν∗/Γν |. In this paper, we give a simple proof (Theorem 4.2) that in
the case when R → S is an extension of algebraic local rings in an extension of algebraic
function fields over an arbitrary field of characteristic zero, and ν has rational rank 1 a
strongly monomial extension R1 → S1 has the property that

(4) grν∗(S1) ∼=
(

grν(R1)⊗R1/mR1
S1/mS1

)
[Z]/(Ze − [δ]−1[x1]),

where [γ1], [x1] are the respective classes in grν(R1) ⊗R1/mR1
S1/mS1 . The degree of the

extension of quotient fields of grν(R)→ grν∗(S) is e(ν∗/ν)f(ν∗/ν), where

f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ].

In particular, the extension of associated graded rings along the valuation is finite and
“toric”.

We show in Theorem 4.3 of this paper that the stable strongly monomial forms found
in Theorem 1.4 of defectless extensions of two dimensional excellent local rings dominated
by a valuation ν∗ of rational rank 1 have an extension of associated graded rings along the
valuation of the form (4). Since stable forms of Abhyankar valuations have a finite type
“toric extension” as commented above, we conclude that stable strongly monomial forms
of a defectless extension of two dimensional excellent local rings always has a finite type
“toric” extension (3).

In contrast, we do not have such a nice stable form of the extension of associated
graded rings along a valuation which has positive defect, as is shown by the example of
Theorem 38 [14], analyzed in Section 5 of this paper. Using the notation of Section 7.4
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[14], explained in the following subsection on invariants of stable forms along a valuation,
it follows from Remark 7.44 [14] that the graded domains grν∗(Sn) are integral but not
finite over grν(Rn) for all n, in contrast to the situation when the defect δ(ν∗/ν) is zero in
Theorem 4.3. The quotient fields of grν(Rn) and grν∗(Sn) are equal under the extension
of Theorem 38 [14], so the degree is 1 = e(ν∗/ν)f(ν∗/ν) as in the conclusions of Theorem
4.3.

1.3. Invariants of stable forms along a valuation. Suppose that R → S is an in-
clusion of regular two dimensional algebraic local rings within function fields K and K∗

respectively, over an algebraically closed field k of positive characteristic p > 0, such that
K∗/K is finite separable, S dominates R, and there is a valuation ν∗ of K∗ with restriction
ν to K which dominates R and S, such that

1) ν∗ dominates S.
2) The residue field Vν∗/mν∗ of Vν∗ is algebraic over S/mS .
3) The value group Γν∗ of ν∗ has rational rank 1 (so it is isomorphic as an ordered

group to a subgroup of Q).

It is shown in Corollary 7.30 and Theorem 7.33 [14] that there are sequences of quadratic
transforms along ν∗ (each vertical arrow is a product of quadratic transforms) constructed
by the algorithm of Section 7.4 [14], where we have simplified notation, writing Rn for Rrn
and Sn for Ssn .

(5)

Vν → Vν∗
↑ ↑
...

...
↑ ↑
Rn → Sn
↑ ↑
...

...
↑ ↑
R2 → S2

↑ ↑
R → S

where each Rn is an algebraic regular local ring of K and Sn is an algebraic regular local
ring of K∗ such that Sn dominates Rn, and no quadratic transform of Rn factors through
Sn. For n � 0, Rn has regular parameters xn, yn and Sn has regular parameters un, vn
such that there are “stable forms”

(6) un = γnx
apαn
n , vn = xbnn fn

where γn is a unit in Sn, dn = νn(fn mod xn) = pβn , where νn is the natural valuation
of the DVR Sn/xnSn, with bn, αn, βn ≥ 0 and αn + βn does not depend on n, a does not
depend on n.

In Theorem 7.38 [14], an example is given where K∗/K is a tower of two Artin Schreier
extensions with δ(ν∗/ν) = 2, a = 1, αn = 1 for all n, βn = 1 for all n and bn = 0
for all n. In particular, this shows that “strong local monomialization” fails for this
extension. However, it is also shown in the example that local monomialization is true for
this extension (by considering different sequences of quadratic transforms above R and S).

5



In Corollary 7.30 and Theorem 7.33 of [14], it is shown that αn + βn is a constant for
n� 0, where αn and βn are the integers defined above which are associated to the stable
forms (5) of an extension of valued two dimensional algebraic function fields. If Γν is
not p-divisible, it is further shown that αn and βn are both constant for n � 0, and pβn

is the defect of the extension. However, if Γν is p-divisible, then it is only shown that
the sum αn + βn is constant for n � 0, and that pαn+βn is the defect of the extension.
In Remark 7.34 [14] it is asked if αn and βn (and some other numbers computed from
the stable forms) are eventually constant in the case when Γν is p-divisible. We give
examples in Section 5, equations (31) - (34), showing that this is not the case, even within
(defect) Artin Schreier extensions. The examples are found by considering a factorization
of the example of Theorem 3.8 [14] into a product of two Artin Schreier extensions, and
computing generating sequences on the intermediary rings.

2. Notation and Preliminaries

2.1. Local algebra. All rings will be commutative with identity. A ring S is essentially
of finite type over R if S is a local ring of a finitely generated R-algebra. We will denote
the maximal ideal of a local ring R by mR, and the quotient field of a domain R by QF(R).
(We do not require that a local ring be Noetherian). Suppose that R ⊂ S is an inclusion
of local rings. We will say that S dominates R if mS ∩ R = mR. If the local ring R is a
domain with QF(R) = K then we will say that R is a local ring of K. If K is an algebraic
function field over a field k (which we do not assume to be algebraically closed) and a
local ring R of K is essentially of finite type over k, then we say that R is an algebraic
local ring of k.

Suppose that K → K∗ is a finite field extension, R is a local ring of K and S is a local
ring of K∗. We will say that S lies over R if S is a localization of the integral closure T of
R in K∗. If R is a local ring, R̂ will denote the completion of R by its maximal ideal mR.

Suppose that R is a regular local ring. A monoidal transform R → R1 of R is a local
ring of the form R[Px ]m where P is a regular prime ideal in R (R/P is a regular local ring)

and m is a prime ideal of R[Px ] such that m∩R = mR. R1 is called a quadratic transform
if P = mR.

2.2. Valuation Theory. Suppose that ν is a valuation on a field K. We will denote by
Vν the valuation ring of ν:

Vν = {f ∈ K | ν(f) ≥ 0}.
We will denote the value group of ν by Γν . Good treatments of valuation theory are
Chapter VI of [40] and [3], which contain references to the original papers. If ν is a
valuation ring of an algebraic function field over a field k, we insist that ν vanishes on
k \ {0}, and say that ν is a k valuation.

If ν is a valuation of a field K and R is a local ring of K we will say that ν dominates R
if the valuation ring Vν dominates R. Suppose that ν dominates R. A monoidal transform
R→ R1 is called a monoidal transform along ν if ν dominates R1.

Suppose that K∗/K is a finite separable extension, ν∗ is a valuation of K∗ and ν is the
restriction of ν to K. The ramification index is

e(ν∗/ν) = |Γν∗/Γν |

and reduced degree is

f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ].
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The defect δ(ν∗/ν) is defined in the introduction to this paper. Its basic properties are
developed in Section 11, Chapter VI [40], [26] and Section 7.1 of [14].

We will call a ring a DVR if it is a valuation ring with value group Z.

2.3. Galois theory of local rings. Suppose that K∗/K is a finite Galois extension, R
is a local ring of K and S is a local ring of K∗ which lies over R. The splitting group
Gs(S/R), splitting field Ks(S/R) = (K∗)G

s(S/R) and inertia group Gi(S/R) are defined
and their basic properties developed in Section 7 of [3].

2.4. Galois theory of valuations. The Galois theory of valuation rings is developed in
Section 12 of Chapter VI of [40] and in Section 7 of [3]. Some of the basic results we need
are surveyed in Section 7.1 [14]. If we take S = Vν∗ and R = Vν where ν∗ is a valuation
of K∗ and ν is the restriction of ν to K, then we obtain the splitting group Gs(ν∗/ν), the
splitting field Ks(ν∗/ν) and the inertia group Gi(ν∗/ν). In Section 12 of Chapter VI of
[40], Gs(ν∗/ν) is written as GZ and called the decomposition group. Gi(ν∗/ν) is written
as GT . The ramification group GV of ν∗/ν is defined in Section 12 of Chapter VI of [40]
and is surveyed in Section 7.1 [14]. We will denote this group by Gr(ν∗/ν).

2.5. Semigroups and associated graded rings of a local ring with respect to a
valuation. Suppose that ν is a valuation of field K which dominates a local ring R of K.
We will denote the semigroup of values of ν on S by

SR(ν) = {ν(f) | f ∈ R \ {0}}.
Suppose that γ ∈ Γν . We define ideals in R

Pγ(R) = {f ∈ R | ν(f) ≥ 0}
and

P+
γ (R) = {f ∈ R | ν(f) > 0}

and define (as in [35]) the associated graded ring of R with respect to ν by

grν(R) =
⊕

γ∈SR(ν)

Pγ(R)/P+
γ .

2.6. Birational geometry of two dimensional regular local rings. We recall some
basic theorems which we will make frequent use of.

Theorem 2.1. (Theorem 3 [1]) Suppose that K is a field, and R is a regular local ring
of dimension two of K. Suppose that S is another 2 dimensional regular local ring of K
which dominates R. Then there exists a unique sequence of quadratic transforms of R

R→ R1 → · · · → Rn = S

of R which factor R→ S.

Lemma 2.2. (Lemma 12 [1]) Suppose that A is a two dimensional regular local ring of a
field K and ν is a valuation of K which dominates ν. Let

R→ R1 → R2 → · · ·
be the infinite sequence of quadratic transforms along ν. Then

Vν∗ = ∪∞i=1Ri.

We also make use of the fact that “embedded resolution of singularities ” is true within
a regular local ring of dimension 2 (Theorem 2 [1]), and the fact that resolution of singu-
larities is true for two dimensional excellent local rings ([29], [7]).
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3. Local monomialization of two dimensional defectless extensions

In this section we prove Theorem 1.4, establishing local monomialization for defectless
extensions of two dimensional excellent local domains. This extends the result for exten-
sions of two dimensional algebraic local rings in two dimensional algebraic function fields
over an algebraically closed field in Theorem 7.3 and 7.35 [14].

We indicate the differences between the proof in [14] of the analogue of Theorem 1.4
for algebraic local rings over an algebraically closed field, and the proof of Theorem 1.4
in this paper. The essential case is of rational rank 1 valuations (Theorem 3.3). An
essential ingredient in the proof is the computation of complexity in Proposition 3.1,
which generalizes Proposition 7.2 [14]. The steps of the proof are the same, but some of
the individual calculations require different methods, as we do not have coefficient fields
in general in the situation of this paper, and the completions of local rings are no longer
extensions of power series rings over a field. In [14], the analogue of Theorem 3.3 is deduced
as a consequence of a detailed analysis of stable forms (Theorem 7.33 [14]) which makes
essential use of the assumption that there is no residue field extension (the ground field is
algebraically closed). In this paper, we give a different, more direct argument to deduce
Theorem 3.3.

The proof of Theorem 1.4 actually produces stable strong monomialization. We first
establish strong monomialization in the two essential cases of the theorem, and give the
proof of Theorem 1.4 at the end of this section. We will make use of the list of good
properties of excellent rings given in Scholie 7.8.3 [21].

3.1. Degree formulas. In this subsection we generalize the formulas of Proposition 7.2
[14].

Proposition 3.1. Suppose that R and S are two dimensional regular excellent local rings
such that S dominates R and K∗ = QF(S) is a finite separable extension of K = QF(R),
R has a regular system of parameters u, v and S has a regular system of parameters x, y
such that there is an expression

u = γxa, v = xbf

where a > 0, b ≥ 0, γ is a unit in S, x 6 | f in S and f is not a unit in S. Then there exist
inclusions

R→ R0 → S

of local rings with the following properties: R0 is a two dimensional normal local ring of
K which is essentially of finite type over R such that S lies above R0. Let ν be the natural
valuation of the DVR S/xS. Then we have

[QF(Ŝ) : QF(R̂0)] = ad[S/mS : R/mR]

where d = ν(f mod x).

Proof. First suppose that b > 0. Let s = gcd(a, b), I be the ideal which is the integral

closure of (u
b
s , v

a
s ) in R. Let

ϕ =
v
a
s

u
b
s

and

R0 = R

[
1

u
b
s

I

]
mS∩R

[
1

u
b
s

I

] .
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R0 is normal since I is integrally closed. (Powers of I are integrally closed by Theorem
2’, Appendix 5 [40], so the ring

⊕
n≥0 I

n is integrally closed and R0 is a local ring of the

normal scheme Proj(
⊕

n≥0 I
n)). The elements xa, ϕ ∈ mR0S so mR0S is mS-primary.

By Lemma 9 [1], there exists a rank 2 valuation ν of K∗ which dominates S. Let A
be the integral closure of R0 in K∗ and let T = AmS∩A. By Theorem 1 [1], Vν/mν is
finite over T/mT so S/mS is finite over T/mT . T is normal of dimension two (since T is
excellent and normal). Since mTS is mS-primary, we have that T = S by the version of
Zariski’s main theorem in (10.7) [4]. Thus S lies over R0.

Let W ∗ be the DVR W ∗ = S(x). ϕ ∈ R0 is neither a unit nor divisable by x in S. Thus
the prime ideal p = xS ∩R0 has height one in R0. Thus

W = (R0)p = W ∗ ∩K

is a DVR.
Let t be a regular parameter in W . W is the valuation ring of the valuation ordt. Since

I is a monomial ideal, the value group Z of ordt is generated by ordtu and ordtv. Thus
gcd(ordtu, ordtv) = 1. Since ordtϕ = 0, we have that ordtu = a

s and ordtv = b
s .

We have that

IW = u
b
sW = (t

a
s
b
s ).

Since

IW ∗ = (x
ab
s ),

we have that tW ∗ = (xs), so the ramification index of W ∗/W is

e(W ∗/W ) = s.

The integrally closed ideal I is generated by all monomials umvn such that

m

b/s
+

n

a/s
≥ 1.

Since

gcd(
a

s
,
b

s
) = 1,

we have that

(7) ordx(umvn) = ma+ nb >
ab

s

for such a monomial provided

(m,n) 6∈ {( b
s
, 0), (0,

a

s
)}.

Thus for umvn ∈ I,
umvn

u
b
s

∈ p

unless

umvn = u
b
s or umvn = v

a
s .

Since ν(ϕ) = ad
s > 0, we have that

(8) R0/p ∼= (R/mR[ϕ])(ϕ)

where ϕ is the residue of ϕ in R0/p, and

(9) R0/mR0 = R/mR.
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By Corollary 1 of Section 2, Chapter II of Local Fields [33] and (ii) of Theorem 1,

Section 3 of Chapter II [33], and by (9) and the fact that ϕ is a regular parameter in R̂0/p
by (8), we have that the inclusion

R̂0/p→ Ŝ/xS

is a finite extension of complete DVRs, and

[QF(Ŝ/xS) : QF(R̂0/p)] = e(Ŝ/xS/R̂0/p)f(Ŝ/xS/R̂0/p)

= e(S/xS/R0/p)f(S/xS/R0/p) = ad
s [S/mS : R/mR].

We have that mRS ⊂ pS so xS is the only prime ideal of S lying over p. Further, pR̂0

and xŜ are prime ideals since R0/p and S/xS are regular local rings. R̂0 and Ŝ are normal

since R0 and S are normal and excellent. Also, Ŝ is a finite extension of R̂0 by (10.13) and

(10.2) of [4], since S lies over R0 . Thus QF(Ŝ) is a finite field extension of QF(R̂0) and

Ŝ is the integral closure of R̂0 in QF(Ŝ). We obtain that Ŵ ∗ = ŜxŜ is the unique DVR of

QF(Ŝ) which dominates Ŵ = (R̂0)pR̂0
.

Thus, by Theorem 20, page 60 [40],

[QF(Ŝ) : QF(R̂0)] = e(Ŵ ∗/Ŵ )f(Ŵ ∗/Ŵ ).

We have that

e(Ŵ ∗/Ŵ ) = e(W ∗/W ) = s

since R0 and S are analytically unramified (as they are excellent), and

f(Ŵ ∗/Ŵ ) = [QF(Ŝ/xŜ) : QF(R̂0/pR̂0)] =
ad

s
[S/mS : R/mR].

Thus

[QF(Ŝ) : QF(R̂0)] = ad[S/mS : R/mR].

Now suppose that b = 0. Then taking R0 = R, W = RuR and W ∗ = SxS , a simpler
variant of the above proof shows that e(Ŵ ∗/Ŵ ) = a, f(Ŵ ∗/Ŵ ) = d[S/mS : R/mR] and

[QF(Ŝ) : QF(R̂)] = ad[S/mS : R/mR].

�

Proposition 3.2. Suppose that R and S are two dimensional excellent regular local rings,
such that S dominates R and K∗ = QF(S) is a finite separable extension of K = QF(R),
R has a regular system of parameters u, v and S has a regular system of parameters x, y
such that there is an expression

u = γ1x
ayc, v = γ2x

byd

where γ1, γ2 are units in S and ad− bc 6= 0. Then there exist inclusions

R→ R0 → S

of local rings with the following properties: R0 is a two dimensional normal local ring of
K which is essentially of finite type over R such that S lies above R0 and

[QF(Ŝ) : QF(R̂0)] = |ad− bc|[S/mS : R/mR].

10



Proof. The conclusions of this proposition follow from Proposition 3.1 if one of a, b, c, d is
zero, so we may assume that a, b, c, d are all positive. After possibly interchanging x and
y, it can be assumed that ad− bc > 0. The proof of this proposition is a generalization of
the proof of Proposition 3.1, and we give an outline of the proof, indicating the essential
differences.

Let s = gcd(a, b) and s′ = gcd(c, d). Let I ⊂ R (respectively I ′ ⊂ R) be the integral

closure of the the ideal (u
b
s , v

a
s ) (respectively (u

d
s′ , v

c
s′ )). We have that

R0 = R

[
II ′

u
b
s v

c
s′

]
mS∩R

[
II′

u
b
s v

c
s′

]

is a normal local ring (products of integrally closed ideals in a 2-dimensional regular local
ring are integrally closed by Theorem 2’, Appendix 5 [40]).

Let p = xS ∩R0. Let W ∗ be the DVR W ∗ = S(x) and let W be the DVR W = (R0)p =
W ∗ ∩K. Let

p′ = (xS) ∩R
[
I

u
b
s

]
and let

ϕ =
v
a
s

u
b
s

.

ϕ 6∈ p′, so p′ is a height one prime in R
[
I

u
b
s

]
. Thus

W ′′ = R

[
I

u
b
s

]
p′

is a DVR dominated by W ∗. Thus W = W ′′. As in the proof of Proposition 3.1, we
conclude that

e(W ∗/W ) = s

and that

R0/p ∼= (R/mR[ϕ])(ϕ)

where ϕ is the residue of ϕ in R0/p. We have that

ν(ϕ) =
ad− bc

s

where ν is the natural valuation of S/xS, and R0/mR0
∼= R/mR. We calculate (as in the

proof of Proposition 3.1) that

f(Ŵ ∗/Ŵ ) = [QF(Ŝ/xS) : QF(R̂0/p)] =
ad− bc

s
[S/mS : R/mR]

and that

[QF(Ŝ) : QF(R̂0)] = e(Ŵ ∗/Ŵ )f(Ŵ ∗/Ŵ ) = (ad− bc)[S/mS : R/mR].

�
11



3.2. Rational rank 1. Throughout this subsection we will have the following assump-
tions. Suppose that R is a 2 dimensional excellent local domain with quotient field
QF(R) = K. Further suppose that K∗ is a finite separable extension of K and S is a
2 dimensional local domain with quotient field QF(S) = K∗ such that S dominates R.

Suppose that ν∗ is a valuation of K∗ such that

1) ν∗ dominates S.
2) The residue field Vν∗/mν∗ of Vν∗ is algebraic over S/mS .
3) The value group Γν∗ of ν∗ has rational rank 1 (so it is isomorphic as an ordered

group to a subgroup of Q).

Let ν be the restriction of ν∗ to K.

Theorem 3.3. Suppose that the defect δ(ν∗/ν) = 0. Then there exists a commutative
diagram

(10)
R1 → S1 ⊂ Vν∗
↑ ↑
R → S

such that the vertical arrows are products of quadratic transforms along ν∗ and

1) R1 and S1 are two dimensional regular local rings.
2) R1 has a regular system of parameters u1, v1 and S1 has a regular system of pa-

rameters x1, y1 and there exists a unit γ1 ∈ S1 such that

u1 = γ1x
e
1 and v1 = y1

where e = e(ν∗/ν) = |Γν∗/Γν |, and the class of ν∗(x1) is a generator of the group
Γν∗/Γν ∼= Ze.

3) Vν∗/mν∗ is the join Vν∗/mν∗ = (Vν/mν)(S1/mS1) and [S1/mS1 : R1/mR1 ] =
f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ].

It will follow from our proof that there exists a diagram (10) such that the conditions
1), 2) and 3) of Theorem 3.3 are stable under further appropriate sequences of quadratic
transforms above R and S.

Proposition 3.4. There exists a local ring R′ of K which is essentially of finite type over
R, is dominated by ν and dominates R such that if we have a commutative diagram

(11)

Vν → Vν∗
↑ ↑
R1 → S1

↑
R′ ↑
↑
R → S

where R1 is a regular local ring of K which is essentially of finite type over R and dominates
R, S1 is a regular local ring of K∗ which is essentially of finite type over S and dominates
S, R1 has a regular system of parameters u, v and S1 has a regular system of parameters
x, y such that there is an expression

u = γxa, v = xbf
12



where a > 0, b ≥ 0, γ is a unit in S, x 6 | f in S1 and f is not a unit in S1, then

(12) ad[S1/mS1 : R1/mR1 ] = e(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν).

where d = ν(f mod x) with ν being the natural valuation of the DVR S/xS.

Proof. We first prove the proposition with the assumption that K∗/K is Galois with Galois
group G.

Let g be the number of extensions of ν toK∗. Writing f(ν∗/ν) = f0p
s where gcd(f0, p) =

1 and e(ν∗/ν) = e0p
t where gcd(e0, p) = 1, we have by the Corollary to Theorem 25, page

78 [40] that [G : Gs(ν∗/ν)] = g, [Gs(ν∗/ν) : Gi(ν∗/ν)] = f0, [Gi(ν∗/ν) : Gr(ν∗/ν)] = e0

and |Gr(ν∗/ν)| = ps+t+δ(ν
∗/ν), so that

[K∗ : K] = ge(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν).

Since [Ks(ν∗/ν) : K] = g, we have that

(13) [K∗ : Ks(ν∗/ν)] = e(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν).

By the argument at the top of page 86 in [3], there exists R′ as above such that for any
diagram

(14)

Vν → Vν∗
↑ ↑
R∗ → S∗

↑ ↑
R′

↑ ↑
R → S

where R∗ and S∗ are normal local rings of K and K∗ respectively such that R∗ is essentially
of finite type over R′ and dominates R′ and S∗ lies over R∗, we have that

(15) Gs(S∗/R∗) = Gs(ν∗/ν).

Now applying Proposition 3.1 to an extension R1 → S1 satisfying (11) (so that R1

dominates R′), we have a commutative diagram

Vν∗ → Vν
↑ ↑
R∗ → S1

↑ ↗
R1

such that R∗ and S1 are normal local rings such that S1 lies over R∗ and

(16) [QF(Ŝ1) : QF(R̂∗)] = ad[S1/mS1 : R1/mR1 ].

Let S′ = Ks(ν∗/ν∗) ∩ S1. Then R∗ → S′ is unramified with S′/mS′ = R∗/mR∗ by

Theorem 1.47 [3], since Ks(ν∗/ν∗) = Ks(S1/R
∗) by (15). Thus R̂∗ = Ŝ′ by (10.1) [4]. We

have that

(17) [K∗ : Ks(ν∗/ν)] = [QF(Ŝ′) : QF(R̂∗)]

by II of Proposition 1 (page 498) [2], since there is a unique local ring in K∗ lying over
S′. Now combining (13), (17) and (16), we obtain formula (12). (The proof in [2] is valid
in our more general situation since S′ is excellent.)

We will now establish the proposition in the general case, when K∗/K is only assumed
to be finite and separable. Let K ′ be a Galois closure of K∗/K, and let ν ′ be an extension

13



of ν∗ to K ′. By the Galois case, there exists a normal local ring R′ of K giving the property
of Proposition 3.4 within the extension K ′/K, and a normal local ring S′ of K∗ giving
the property of Proposition 3.4 within the extension K ′/K∗. We can choose R′ and S′ so
that S′ lies over R′.

Now suppose that we are given a diagram (11). We then have that S′ ⊂ S1. We have
by Proposition 3.1 local rings R0 of K and S1 of K∗ such that S1 lies over R0 and

(18) [QF(Ŝ1) : QF(R̂0)] = ad[S1/mS1 : R1/mR1 ].

Let T be the integral closure of S1 in K ′ and let T ′ = Tmν′∩T . By (13) and (17), we have
that

[QF(T̂ ′) : QF(R̂0)] = e(ν ′/ν)f(ν ′/ν)pδ(ν
′/ν)

and
[QF(T̂ ′) : QF(Ŝ1)] = e(ν ′/ν∗)f(ν ′/ν∗)pδ(ν

′/ν∗).

Thus

[QF(Ŝ1) : QF(R̂0)] =
[QF(T̂ ′) : QF(R̂0)]

[QF(T̂ ′) : QF(Ŝ1)]
= e(ν∗/ν)f(ν∗/ν)pδ(ν

∗/ν)

since e, f and pδ are multiplicative. Now formula (12) follows from (18). �

Proposition 3.5. There exists a local ring R′′ of K which is essentially of finite type over
R, is dominated by ν and dominates R such that if we have a commutative diagram

(19)

Vν → Vν∗
↑ ↑
R1 → S1

↑ ↑
R′′

↑ ↑
R → S

where R1 is a regular local ring of K which is essentially of finite type over R′′, S1 is a
regular local ring of K∗ which is essentially of finite type over S and dominates S, R1 has
a regular system of parameters u, v and S1 has a regular system of parameters x, y such
that there is an expression

u = γxa, v = xbf

where a > 0, b ≥ 0, γ is a unit in S, x 6 | f in S1 and f is not a unit in S1 and there exists
a unit τ ∈ S1 and n ∈ Z+ such that h = τxn, then

1) ν∗(x) is a generator of Γν∗/Γν ∼= Ze(ν∗/ν),
2) Vν∗/mν∗ = (Vν/mν)(S1/mS1),
3)

ad[S1/mS1 : R1/mR1 ] = e(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν)

where d = (f mod x) with ν being the natural valuation of the DVR S/xS.

Proof. Let R′ be the local ring of the conclusions of Proposition 3.4 and let g1, . . . , gs ∈ Vν∗
be such that the classes of g1, . . . , gs in Vν∗/mν∗ are a Vν/mν basis. Let R′′ be a regular
local ring of K which dominates R′ and is essentially of finite type over R′ such that
g1, . . . , gs are in the integral closure of R′′ in K∗.

Suppose that we have a diagram (19). Then g1, . . . , gs ∈ S1 so conclusion 2) holds.
Since ν∗(h) = nν∗(x) is a generator of Γν∗/Γν we have that ν∗(x) is a generator of

Γν∗/Γν .
14



Finally, 3) holds by Proposition 3.4, since R′′ dominates R′. �

Corollary 3.6. Let assumptions be as in Proposition 3.5, and further assume that δ(ν∗/ν) =
0. Let R′′ be the local ring of the conclusions of Proposition 3.5. Suppose that we have a
commutative diagram (19). Then

a = e(ν∗/ν), d = 1 and [S1/mS1 : R1/mR1 ] = f(ν∗/ν).

Proof. We have that aν∗(x) ∈ Γν and ν∗(x) is a generator of Γν∗/Γν ∼= Ze(ν∗/ν) by 1) of
Proposition 3.5 so e(ν∗/ν) divides a, and thus

(20) a ≥ e(ν∗/ν).

Further,

(21) [S1/mS1 : R1/mR1 ] ≥ f(ν∗/ν)

since Vν∗/mν∗ = (Vν/mν)(S1/mS1) by 2) of Proposition 3.5, so S1/mS1 contains a basis
of Vν∗/mν∗ over Vν/mν . Further, we have that

(22) ad[S1/mS1 : R1/mR1 ] = e(ν∗/ν)f(ν∗/ν)

by 3) of Proposition 3.5 since δ(ν∗/ν) = 0. Thus by equations (20), (21) and (22), we have

a[S1/mS1 : R1/mR1 ] ≥ e(ν∗/ν)f(ν∗/ν) = ad[S1/mS1 : R1/mR1 ]

giving the conclusions of the corollary. �

We now give the proof of Theorem 3.3. Let R′′ be the ring of the conclusions of
Proposition 3.5. We may assume, after replacing R and S with appropriate sequences of
quadratic transforms of R and S, that R and S are regular, R dominates R′′ and R has
regular parameters u, v and S has regular parameters x, y such that

(23) u = γxa, v = xby

and h = τxn where h ∈ Vν∗ is such that ν∗(h) is a generator of Γν∗/Γν and τ is a unit in S.
(We have that d = 1 by Corollary 3.6). Let S → S1 be the smallest sequence of quadratic
transforms along ν∗ such that

√
xyS1 is a prime ideal (this is possible since ν∗ has rational

rnak 1 so ν∗(x) and ν∗(y) are rationally dependent), and let R → R1 be the smallest
sequence of quadratic transforms along ν such that

√
uvR1 is a prime ideal. We will show

that S1 dominates R1 and we have regular parameters u1, Q in R1 and x1, Q in S1 and

a unit γ′ in S1 such that u1 = γ′x
e(ν∗/ν)
1 . Since these conclusions will then hold under

further sequences of quadratic transforms, we will then have established the conclusions
of the theorem, and the remark on stability following the statement of Theorem 3.3.

We have that

S1 = S[x1, y1]mν∗∩S[x1,y1]

where

(24) x = xm1
1 y

m′1
1 , y = xn1

1 y
n′1
1

with m1n
′
1 − n1m

′
1 = ±1, ν∗(x1) > 0 and ν∗(y1) = 0.

S[x1, y1]/x1S[x1, y1] ∼= S/mS [y1]

is a polynomial ring over S/mS . Let f ∈ S/mS [y1] be the monic generator of

(mν∗ ∩ S[x1, y1])/x1S[x1, y1].
15



There exists P ∈ S[x1, y1] such that the residue of P in S[x1, y1]/x1S[x1, y1] is f . Then
x1, P are regular parameters in S1.

Now substitute (24) into (23), to obtain

u = γxm1a
1 y

m′1a
1

v = xm1b+n1
1 y

m′1b+n
′
1

1 .

Let s = gcd(m1a,m1b+ n1). By a sequence of substitutions û0 = u, v̂0 = v, and

ûi = ûi+1, v̂i = ûi+1v̂i+1

or

ûi = ûi+1v̂i+1, v̂i = v̂i+1

for 0 ≤ i ≤ λ we obtain an expression

ûλ = γc1xs1y
t1
1

v̂λ = γc2xs1y
t2
1 .

We have that

s|t1 − t2| =
∣∣∣∣Det

(
s t1
s t2

)∣∣∣∣ =

∣∣∣∣( m1a m′1a
(m1b+ n1) (m′1b+ n′1)

)∣∣∣∣ = a

∣∣∣∣( m1 m′1
n1 n′1

)∣∣∣∣ = a.

We thus have that t2 − t1 6= 0. Set

u1 = ûλ, v1 =
v̂λ
ûλ

if t2 − t1 > 0,

u1 =
ûλ
v̂λ
, v1 = v̂λ if t2 − t1 < 0.

Without loss of generality, we may assume that t2 − t1 > 0. We then have an expression

u = um2
1 v

m′2
1 , v = un2

1 v
n′2
1

with m2n
′
2 − n2m

′
2 = ±1, ν(u1) > 0 and ν(v1) = 0. Now

R1 = R[u1, v1]mν∩R[u1,v1].

We have that R[u1, v1]/u1R[u1, v1] ∼= R/mR[v1] is a polynomial ring over R/mR. Let
g ∈ R/mR[v1] be the monic generator of

(mν ∩R[u1, v1])/u1R[u1, v1].

There exists Q ∈ R[u1, v1] such that the residue of Q in R[u1, v1]/u1R[u1, v1] is g. u1, Q
are regular parameters in R1. We have an expression

u1 = (γc1yt11 )xs1, v1 = γc2−c1yt2−t11 .

The inclusion R→ S induces a natural homomorphism

R/mR[v1] ∼= R[u1, v1]/u1R[u1, v1]→ S[x1, y1]/x1S[x1, y1] ∼= S/mS [y1].

Let 0 6= γ0 be the residue of γ in S/mS . Then γ0 is the residue of γ in S/mS [y1] and
γc2−c10 yt2−t11 is the residue of v1 in S/mS [y1]. The residue of Q in S/mS [y1] is g(γ0y

t2−t1
1 )

which is nonzero. Thus b(S1/R1) = 0. We further have that a(S1/R1) = e(ν∗/ν),
d(S1/R1) = 1 and [S1/mS1 : R1/mR1 ] = f(ν∗/ν) by Proposition 3.5. This completes
the proof of Theorem 3.3.
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3.3. Rational rank 2. We have the following Theorem 3.7 for rational rank 2 valuations
dominating a two dimensional excellent local domain, most of whose simple proof is as on
page 40 of [14]. The statement that the extension is defectless follows from the argument
of Proposition 3.4 which establishes (12), replacing references to Proposition 3.1 with
Proposition 3.2. We obtain the formula

|ad− bc|[S1/mS1 : R1/mR1 ] = e(ν∗/ν)f(ν∗/ν)pδ(ν
∗/ν)

instead of (12). Since e(ν∗/ν) = |ad− bc|, we obtain that δ(ν∗/ν) = 0. Related results are
proven for valuations of maximal rational rank in algebraic function fields in Theorem 3.1
[25]

Theorem 3.7. Suppose that R is a 2 dimensional excellent local domain with quotient
field QF(R) = K. Further suppose that K∗ is a finite separable extension of K and S is
a 2-dimensional local domain with quotient field QF(S) = K∗ such that S dominates R.

Suppose that ν∗ is a valuation of K∗ such that

1) ν∗ dominates S.
2) The residue field Vν∗/mν∗ of Vν∗ is algebraic over S/mS.
3) The value group Γν∗ of ν∗ has rational rank 2.

Let ν be the restriction of ν∗ to K. Then the defect δ(ν∗/ν) = 0, and there exists a
commutative diagram

(25)
R1 → S1 ⊂ Vν∗
↑ ↑
R → S

such that the vertical arrows are products of quadratic transforms along ν∗ and

1) R1 and S1 are two dimensional regular local rings.
2) R1 has a regular system of parameters u1, v1 and S1 has a regular system of pa-

rameters x1, y1 and there exist units γ1, τ1 ∈ S1 such that

u1 = γ1x
a
1y
b
1 and v1 = τ1x

c
1y
d
1

where

e = e(ν∗/ν) = |Γν∗/Γν | =
∣∣∣∣Det

(
a b
c d

)∣∣∣∣
and the classes of ν∗(x1), ν∗(y1) are generators of the group Γν∗/Γν ∼= Z2/AZ2.

3) Vν∗/mν∗ is the join Vν∗/mν∗ = (Vν/mν)(S1/mS1) and [S1/mS1 : R1/mR1 ] =
f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ].

There exists a diagram (25) such that the conditions 1), 2) and 3) of Theorem 3.7 are
stable under further appropriate sequences of quadratic transforms above R and S.

3.4. Proof of Theorem 1.4. We now give the proof of Theorem 1.4.

trdegS/mSVν∗/mν∗ + dimQ Γν∗ ⊗Q ≤ 2

by Abhyankar’s inequality (Theorem 1 [1]).
If trdegR/mRS/mS = 1, then Vν∗ and Vν are DVRs and algebraic local rings of K∗

and K respectively, so that Vν → Vν∗ is a monomial mapping, which is obtained from R,
respectively S by a sequence of quadratic transforms along ν∗ (there exists a sequence of
quadratic transforms R → R∗ along ν such that Vν/mν is algebraic over R/mR. Thus
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R∗ = Vν be Zariski’s Main Theorem, (10.7) [4]). (For this type of valuation we must have
that δ(ν∗/ν) = 0 by Theorem 20, Section 11, Chapter VI [40]).

Suppose that dimQ Γν∗ ⊗Q = 2. Then Vν∗/mν∗ is algebraic over S/mS by Abhyankar’s
inequality. In this case there exists a monomialization by Theorem 3.7 (we also always
have that δ(ν∗/ν) = 0 for this type of valuation by Theorem 3.7).

The remaining case is when Vν∗/mν∗ is algebraic over S/mS , dimQ Γν∗ ⊗ Q = 1 and
δ(ν∗/ν) = 0. The existence of a monomialization in this case follows from Theorem 3.3.

4. Extensions of Associated Graded Rings of Valuations

In this section, we extend the results of [19] and [20] calculating the extension of as-
sociated graded rings of a valuation for defectless extensions of 2 dimensional algebraic
function fields over an algebraically closed field, and of [15] for 2 dimensional algebraic
function fields over a (not necessarily closed) characteristic zero field. We refer to the
introduction of this paper for a discussion of this problem.

We recall the following theorem on strong monomialization of rational rank 1 valuations
in an extension of characteristic zero function fields from [10].

Theorem 4.1. (The rational rank 1 case of Theorem 5.1 [10], Theorem 6.1 [14] and
Theorem 6.5 [13]) Let K an algebraic function field over a field k of characteristic zero,
K∗ a finite algebraic extension of K and ν∗ a rational rank 1 k valuation of K∗. Suppose
that S∗ is an algebraic local ring with quotient field K∗ which is dominated by ν∗ and R∗

is an algebraic local ring with quotient field K which is dominated by S∗. Let ν be the
restriction of ν∗ to K. Then there exists a commutative diagram

(26)
R → S ⊂ Vν∗
↑ ↑
R∗ → S∗

such that the vertical arrow are product of monoidal transforms along ν∗ and

1) R and S are regular local rings of dimension equal to n = trdegkVν∗/mν∗.
2) R has a regular system of parameters x1, . . . , xn and S has a regular system of

parameters y1, . . . , yn and there exists a unit δ ∈ S such that

x1 = δye1 and xi = yi for i ≥ 2

where e = e(ν∗/ν) = |Γν∗/Γν |.
3) The class of ν(y1) is a generator of the group Γν∗/Γν .
4) Vν∗/mν∗ = (Vν/mν)(S/mS).
5) [S/mS : R/mR] = f = f(ν∗/ν) = [Vν∗/mν∗ : Vν/mν ]
6) The conclusions of 1) and 3) - 5) of the theorem continue to hold for R1 → S1

whenever there exists a commutative diagram

(27)
R1 → S1 ⊂ Vν∗
↑ ↑
R → S

such that the vertical arrow are product of monoidal transforms along ν∗ and 2)
holds for R1 → S1.

We now show that with the assumptions of the conclusions of Theorem 4.1, we further
have a very simple description of the extension of associated graded rings of the valuations.
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Theorem 4.2. Let assumptions be as in Theorem 4.1, and let R → S be as in the
conclusions of Theorem 4.1. Then we have a natural isomorphism of graded rings

grν∗(S) ∼=
(
grν(R)⊗R/mR S/mS

)
[Z]/(Ze − [δ]−1[x1]),

where [γ1], [x1] are the respective classes in grν(R1) ⊗R1/mR1
S1/mS1. The degree of the

extension of quotient fields of grν(R)→ grν∗(S) is e(ν∗/ν)f(ν∗/ν).

Proof. Let γ1, . . . , γf ∈ S be such that their residues γ1, . . . , γf in S/mS are a basis of
S/mS over R/mR. We now establish the following formula:

(28) Suppose that h1, . . . , hf ∈ R. Then ν∗(
∑f

i=1 γihi) = min{ν(hi)}.

Without loss of generality, we may suppose that ν(h1) is this minimum. Then hi
h1
∈ Vν for

all i so we have classes

[
hi
h1

] ∈ Vν/mν ⊂ Vν∗/mν∗ .

If ν∗(
∑f

i=1 γihi) > ν∗(h1), then∑
γi[

hi
h1

] = 0 in Vν∗/mν∗ ,

which is impossible since γ1, . . . , γf are a basis of Vν∗/mν∗ over Vν/mν , by the assumptions
of the theorem. We have thus established formula (28).

Suppose that z ∈ S. Let t be a positive integer such that tν∗(mS) > ν∗(z). We have
an expression

z =

e−1∑
j=0

f∑
i=1

gijγiy
j
1

+ w

where gij ∈ R for all i, j and w ∈ mt
S .

We will next establish the following formula:

(29) ν∗(z) = min{ν(gij) + jν∗(y1)}.

With our assumption on t,

ν∗(z) = ν∗

e−1∑
j=0

f∑
i=1

gijγiy
j
1

 .

Set

hj =

f∑
i=1

gijγi for 0 ≤ j ≤ e− 1.

By (28), ν∗(hj) ∈ Γν for all j. For 0 ≤ j ≤ e− 1, we have

ν∗(hky
k
1 )− ν∗(hjyj1) = (k − j)ν∗(y1) + ν∗(hk)− ν∗(hj).

Since the class of ν∗(y1) has order e in Γν∗/Γν , we have that

(30) ν∗(hky
k
1 ) 6= ν∗(hjy

j
1) for j 6= k.

Formula (29) now follows from (30) and (28).
For γ ∈ Γν , we have a homomorphism

Pγ(R)/P+
γ (R)⊗R/mR S/mS → Pγ(S)/P+

γ (S)
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defined by gi ⊗ γi 7→ giγi. This map is 1-1 by the proof of (28). Thus⊕
γ∈Γν

Pγ(R)/P+
γ (R)

⊗R/mR S/mS

is a graded subalgebra of ⊕
τ∈Γν∗

Pτ (S)/P+
τ (S).

Suppose that h ∈ S. Let τ = ν∗(h). By (30), there exists a unique i with 0 ≤ i ≤ e − 1
and γ ∈ Γν such that τ = γ + iν∗(y1). Further,

h =

 f∑
j=1

γjgj

 yi1 + h2

where gj ∈ R with ν(gj) = γ for 1 ≤ j ≤ f and h2 ∈ S satisfies ν∗(h2) > τ . Thus

Pτ (S)/P+
τ (S) =

(
Pγ(R)/P+

γ (R)⊗R/mR S/mS

)
[y1]

where y1 is the class of y1. We have that

(y1)e − [δ]−1[x1] = 0

where [δ], [x1] are the classes of δ and x1. All other relations on y1 are divisible by this
relation by (29).

�

Theorem 4.3. Let assumptions be as in Theorem 3.3, and let R1 → S1 be as in the
conclusions of Theorem 3.3. Then we have a natural isomorphism of graded rings

grν∗(S1) ∼=
(

grν(R1)⊗R1/mR1
S1/mS1

)
[Z]/(Ze − [γ1]−1[u1]),

where [γ1], [u1] are the respective classes in grν(R1) ⊗R1/mR1
S1/mS1. The degree of the

extension of quotient fields of grν(R1)→ grν∗(S1) is e(ν∗/ν)f(ν∗/ν).

Proof. The proof is exactly the same as the proof of Theorem 4.2. �

We also obtain from Theorem 3.7 the following result, showing that even in positive
and mixed characteristic, the associated graded rings of Abhyankar valuations dominating
a stable extension of two dimensional excellent regular local rings have a nice form.

Theorem 4.4. Let assumptions be as in Theorem 3.7, and let R1 → S1 be as in the
conclusions of Theorem 3.7. Then we have a natural isomorphism of graded rings

grν∗(S1) ∼=
(

grν(R1)⊗R1/mR1
S1/mS1

)
[X,Y ]/(XaY b − [γ1]−1[u1], XcY d − [τ1]−1[v1]),

where [γ1], [τ1], [u1], [v1] are the respective classes in grν(R1)⊗R1/mR1
S1/mS1. The degree

of the extension of quotient fields of grν(R1)→ grν∗(S1) is e(ν∗/ν)f(ν∗/ν).
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5. Non constancy of αn and βn

In Corollary 7.30 and Theorem 7.33 of [14], it is shown that αn + βn is a constant for
n� 0, where αn and βn are the integers defined in (6) which are associated to the stable
forms (5) of an extension of valued two dimensional algebraic function fields. If Γν is not
p-divisible, it is further shown that αn and βn are both constant for n� 0, and pβn is the
defect of the extension. However, if Γν is p-divisible, then it is only shown that the sum
αn + βn is constant for n� 0, and that pαn+βn is the defect of the extension. In Remark
7.34 [14] it is asked if αn and βn (and some other numbers computed from the stable
forms) are eventually constant in the case when Γν is p-divisible. We give examples (31) -
(34) here showing that this is not the case, even within defect Artin Schreier extensions.

The example in Theorem 7.38 [14] is a tower K∗/K of two Artin Schreier extensions,

K → K1 → K∗,

where K = k(u, v), K1 = k(x, v) and K∗ = k(x, y), over an algebraically closed field k of
characteristic p > 0, with

u =
xp

1− xp−1
, v = yp − xcy

where p − 1 divides c. R and S are defined to be R = k[u, v](u,v) and S = k[x, y](x,y).
The valuation ν∗ on K∗ is defined by the generating sequence (41) in S and the valuation
ν = ν∗|K is defined by the generating sequence (46) in R. In Theorem 7.38 [14], it is shown
that Γν∗ = Γν = 1

p∞Z, δ(ν∗/ν) = 2, and in the stable forms Rn → Sn above R → S, we

have αn = 1 and βn = 1 for all n.
Let ν1 = ν∗|K1. We define A = k[x, v](x,v), a local ring of K1. We will show in this

section that δ(ν∗/ν1) = δ(ν1/ν) = 1 and we have stable forms Rj → Aj of K1/K (Theorem
5.7) and Aj → Sj of K∗/K1 (Theorem 5.6) such that by the conclusions of Theorem 5.6,

(31) αj(Sj/Aj) =

{
1 if j is even
0 if j is odd

and

(32) βj(Sj/Aj) =

{
0 if j is even
1 if j is odd

for Aj → Sj , and by Theorem 5.7, we have

(33) αj(Aj/Rj) =

{
0 if j is even
1 if j is odd

and

(34) βj(Aj/Rj) =

{
1 if j is even
0 if j is odd

for Rj → Aj .

We now prove these statements. We make use of the notation introduced in Section 7.11
[14] in the construction of the example of Theorem 7.38 [14]. The proof makes essential
use of the theory of generating sequences of a valuation dominating a two dimensional
regular local ring, as developed in [34] and extended in [15].

We define a k-valuation ν1 of K1 by prescribing a generating sequence in A, starting
with

(35) U0 = x, U1 = v, U2 = vp − x
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and for j ≥ 2,

(36)
Uj+1 = Upj − xp

2j−2
Uj−1 if j is odd

Uj+1 = Up
3

j − xp
2j−1

Uj−1 if j is even.

We now establish that {Ui} determines a unique valuation ν1 on K1 such that ν1(x) = 1.
Define γj by

γ0 = 1, γ1 =
1

p

and for j ≥ 2,

(37) γj =

{
1
p(p2j−2 + γj−1) if j is odd
1
p3

(p2j−1 + γj−1) if j is even

By induction on j ≥ 0, we have that

(38) γj+1 =

{
p2j−2(

∑j
j′=0

1
p4j′

) if j is odd

p2j−1(
∑j

j′=0
1
p4j′

) if j is even

Let

ni =

{
p if j is odd
p3 if j is even

Let Γj be the group generated by γ0, . . . , γj . By Remark 7.171 [14] or Theorem 1.1 [15]
and its proof, {Ui} is a generating sequence of a unique valuation ν1 on K1 such that
ν1(Ui) = γi for all i if

(39) ni = [Γi : Γi−1]

for i ≥ 1 and

(40) γi+1 > niγi

for i ≥ 1.
By (37), niγi ∈ Γi−1, so [Γi : Γi−1] = ni if γi has order precisely ni in Γi/Γi−1.
By (38), we have that

Γi−1 =

{
1

p2i−2Z if i is odd
1

p2i−3Z if i is even

for i ≥ 1, so that by (38), γi has order ni in Γi/Γi−1. Since (40) holds by (38), we have
that {Ui} is a generating sequence in A which determines a valuation ν1 of K1.

The following Propositions 5.1 and 5.2 are a little stronger than Proposition 7.40 [14].

Proposition 5.1. Let

S1 = S → S2 → · · ·
be the sequence of quadratic transforms such that Si = Sr′i in the notation of Definition

7.11 [14] so that Vν∗ = ∪Si. Let Qi be the generating sequence of S of (71) of [14]
determining ν∗ (Proposition 7.40 [14])

(41)

Q0 = x
Q1 = y

Q2 = yp
2 − x

Qj+1 = Qp
2

j = xp
2j−2

Qj−1 for j ≥ 2.
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Then there exist generating sequences {Q(k)i} in Sk such that

xS2 = Q(2)0 = Q1 = y, yS2 = Q(2)1 =
Q2

Q0
=
Q2

x

are regular parameters in S2 such that Q(2)0 = 0 is a local equation of the exceptional
locus of Spec(S2)→ Spec(S) and for k ≥ 2,

xSk+1
= Q(k + 1)0 = Q(k)1, ySk+1

= Q(k + 1)1 =
Qk+1

xp2k−2Qk−1

are regular parameters in Sk+1, such that Q(k+1)0 = 0 is a local equation of the exceptional
locus of Spec(Sk+1)→ Spec(S).

In S2, the generating sequence {Q(2)i} is defined by

(42) Q(2)0 = Q1, Q(2)i =
Qi+1

xp
2(i−1)

for i ≥ 1, and for k ≥ 3, the generating sequence {Q(k)j} in Sk is defined by

(43) Q(k)0 = Q(k − 1)1 =
Qk−1

xp
2(k−3)

Qk−3

and

(44) Q(k)i =
Qi+k−1

xp
2(i+k−3)

Qp
2(i−1)

k−2

for i ≥ 1.

It follows from Proposition 5.1 that ν∗(Q(k)0) = p2ν∗(Q(k)1), so we have regular pa-
rameters xSk+1

, ySk+1
in Sk+1 defined by

(45) Q(k)0 = xp
2

Sk+1
(ySk+1

+ 1), Q(k)1 = xSk+1
.

Proposition 5.2. Let
R1 = R→ R2 → · · ·

be the sequence of quadratic transforms such that Ri = Rr′i in the notation of Defini-

tion 7.11 [14] so that Vν = ∪Ri. Let Pi be the generating sequence of R of (76) of [14]
determining ν (Corollary 7.41 [14])

(46)

P0 = u
P1 = v

P2 = vp
2 − u

Pi+1 = P p
2

i − up
2i−2

Pi−1 for i ≥ 2.

Then there exist generating sequences {P (k)i} in Rk determining ν such that

uR2 = P (2)0 = P1 = v, vR2 = P (2)1 =
P2

P0
=
P2

u

are regular parameters in R2 such that uR2 = 0 is a local equation of the exceptional locus
of Spec(S2)→ Spec(S) and for k ≥ 2,

uRk+1
= P (k + 1)0 = P (k)1, vRk+1

= P (k + 1)1 =
Pk+1

up2k−2Pk−1

are regular parameters in Rk+1, such that P (k+1)0 = 0 is a local equation of the exceptional
locus of Spec(Rk+1)→ Spec(R).
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In R2, the generating sequence {P (2)j} is defined by

(47) P (2)0 = P1, P (2)i =
Pi+1

up
2(i−1)

for i ≥ 1, and for k ≥ 3, the generating sequence {P (k)j} in Rk is defined by

(48) P (k)0 = P (k − 1)1 =
Pk−1

up
2(k−3)

Pk−3

and

(49) P (k)i =
Pi+k−1

up
2(i+k−3)

P p
2(i−1)

k−2

for i ≥ 1.

It follows from Proposition 5.2 that we have regular parameters uRk+1
, vRk+1

in Rk+1

defined by

(50) P (k)0 = up
2

Rk+1
(vRk+1

+ 1), P (k)1 = uRk+1
.

Proposition 5.3. The sequence {Uj} is a generating sequence in A of a unique k-valuation
ν1 of K1 such that ν1(x) = 1. Let

A1 = A→ A2 → · · ·

be the sequence where Ai = Aa′i in the notation of Definition 7.11 [14], so that Vν1 = ∪Ai.
Then there exist generating sequences {U(k)i} in Ak determining ν1 such that

xA2 = U(2)0 = U1 = v, vA2 = U(2)1 =
U2

U0
=
U2

x

are regular parameters in A2 such that U(2)0 = 0 is a local equation of the exceptional
locus of Spec(A2)→ Spec(A). For j ≥ 2,

(51) xAj+1 = U(j + 1)0 = U(j)1, vAj+1 = U(j + 1)1 =


Uj+1

xp
2j−2

Uj−1
if j is odd

Uj+1

xp
2j−1

Uj−1
if j is even

are regular parameters in Aj+1, such that U(j+1)0 = 0 is a local equation of the exceptional
locus of Spec(Aj+1)→ Spec(A).

In A2, the generating sequence {U(2)j} is defined by

(52) U(2)0 = U1

and for j ≥ 1,

(53) U(2)j =

{
Uj+1

xp
2j−2 if j is odd
Uj+1

xp
2j−1 if j is even

and for k ≥ 3, the generating sequence {U(k)j} in Ak is defined by

(54) U(k)0 = U(k − 1)1 =


Uk−1

xp2k−6Uk−3
if k is odd

Uk−1

xp2k−5Uk−3
if k is even

and for k odd, j ≥ 1,
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(55) U(k)j =


Uj+k−1

xp
2(j+k)−5

Up
2j−2

k−2

if j is odd

Uj+k−1

xp
2(j+k)−6

Up
2j−3

k−2

if j is even

and for k even, j ≥ 1,

(56) U(k)j =


Uj+k−1

xp
2(j+k)−6

Up
2j−2

k−2

if j is odd

Uj+k−1

xp
2(j+k)−5

Up
2j−1

k−2

if j is even

Further, there exist units δ(k)j in Ak with δ(k)j ≡ 1 mod mAk such that if k is odd,
then

(57) U(k)2 = U(k)p1 − δ(k)0U(k)0

and for j ≥ 2,

(58) U(k)j+1 =

{
U(k)pj − δ(k)j+1U(k)p

2j−2

0 U(k)j−1 if j is odd

U(k)p
3

j − δ(k)j+1U(k)p
2j−1

0 U(k)j−1 if j is even

and if k is even, then

(59) U(k)2 = U(k)p
3

1 − δ(k)0U(k)0

and for j ≥ 2,

(60) U(k)j+1 =

{
U(k)p

3

j − δ(k)j+1U(k)p
2j−2

0 U(k)j−1 if j is odd

U(k)pj − δ(k)j+1U(k)p
2j−3

0 U(k)j−1 if j is even

Proof. The fact that the sequence {Uj} is a generating sequence of a unique k-valuation
ν1 of K1 was shown before Proposition 5.1.

The remainder of the proposition is proved by induction on k. By (35) and (36) if
k = 1 and (57) - (60) if k > 1 and by Theorem 7.1 [15], there exists a generating sequence

{Ũ(k + 1)} in Ak+1 defined if k is odd by

(61) Ũ(k + 1)0 = U(k)1, Ũ(k + 1)1 =
U(k)2

U(k)p1

and for j ≥ 2,

(62) Ũ(k + 1)j =


U(k)j+1

U(k)p
2j−1

1

if j is odd

U(k)j+1

U(k)p
2j

1

if j is even

and if k is even, then

(63) Ũ(k + 1)0 = U(k)1, Ũ(k + 1)1 =
U(k)2

U(k)p
3

1
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and for j ≥ 2,

(64) Ũ(k + 1)j =


U(k)j+1

U(k)p
2j+1

1

if j is odd

U(k)j+1

U(k)p
2j

1

if j is even

To prove that the conclusions of the proposition hold for {U(k + 1)i}, we use the
induction assumption and the appropriate equations (66), (68) or (69) which are stated
below to first verify that there are units λ(k+ 1)j in Ak+1 with λ(k+ 1)j ≡ 1 mod mAk+1

such that

(65) U(k + 1)j = λ(k + 1)jŨ(k + 1)j

for all j, verifying that {U(k+ 1)j} is a generating sequence in Ak+1 for ν1, and then that
the appropriate equations (57) - (60) hold and finally that the appropriate equations (52)
and (53), or (54) - (56) hold.

We now state and prove the equations (66), (68) and (69).
There exists a unit ε(2) in A2 with ε(2) ≡ 1 mod mA2 such that

(66) Up1 = ε(2)x.

Equation (66) follows from (35) and the fact (Theorem 7.1 [15]) that A2 has regular
parameters xA2 and vA2 defined by

(67) U(1)0 = x = xpA2
(vA2 + 1), U(1)1 = v = xA2

There exists a unit ε(k + 1) ∈ Ak+1 with ε(k + 1) ≡ 1 mod mAk+1
such that

(68) U(k)p1 = ε(k + 1)
Uk−1

Upk−2

if k ≥ 2 is odd and

(69) U(k)p
3

1 = ε(k + 1)
Uk−1

Up
3

k−2

if k ≥ 2 is even.
We now simultaneously verify the equations (68) and (69). We first verify that Ak+1

has regular parameters xAk+1
and vAk+1

defined if k is odd by

(70) U(k)0 = xpAk+1
(vAk+1

+ 1), U(k)1 = xAk+1

and if k is even by

(71) U(k)0 = xp
3

Ak+1
(vAk+1

+ 1), U(k)1 = xAk+1
.

If k is odd, we have that pν1(U(k)1) = ν1(U(k)0) by (57) and if k is even we have that
p3ν1(U(k)1) = ν1(U(k)0) by (59), so (70) and (71) follow from (57), (59) and Theorem
7.1 [15]. Thus for j ≤ k, Uj is a power of U(k + 1)0 times a unit in Ak+1 which is
equivalent to 1 mod mAk+1

. Thus by (36), there exists a unit ε(k + 1) in Ak+1 with
ε(k + 1) ≡ 1 mod mAk+1

such that

Upk = ε(k + 1)xp
2k−2

Uk−1 if k is odd

and

Up
3

k = ε(k + 1)xp
2k−1

Uk−1 if k is even.
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Thus if k is odd,

U(k)p1 =

(
Uk

xp2k−3Uk−2

)p
=

Upk
xp2k−2Upk−2

=
ε(k+1)xp

2k−2
Uk−1

xp2k−2Upk−2

= ε(k + 1)
Uk−1

Upk−2
.

if k is even,

U(k)p
3

1 =

(
Uk

xp2k−4Uk−2

)p3
=

Up
3

k

xp2k−1Up
3

k−2

=
ε(k+1)xp

2k−1
Uk−1

xp2k−1Up
3

k−2

= ε(k + 1)
Uk−1

Up
3

k−2

.

�

Lemma 5.4. We have that

(72) U0 = x = Q0, U1 = Qp1 − x
cy,

and for j ≥ 1, if j is odd, then

(73) Uj+1 = Qj+1 + x
p2j−2(

∑ j−1
2

j′=0
1

p4j
′ )
fj+1(x, y)

where fj+1 ∈ k[[x]][y], x divides fj+1 in k[[x]][y], and degyfj+1 = p2j−1.
If j is even, then

(74) Uj+1 = Qpj+1 + x
p2j−1(

∑ j
2−1

j′=0
1

p4j
′ )
fj+1(x, y)

where fj+1 ∈ k[[x]][y], x divides fj+1 in k[[x]][y], and degyfj+1 = p2j.

Proof. We have that

U1 = v = yp − xcy = Qp1 − x
cy,

U2 = vp − x = Q2 − xcpyp,
verifying (73) for j = 1 and

U3 = Up
3

2 − x
p3U1 = Qp3 − x

cp4yp + xp
3+cy

verifying (74) for j = 2.
We prove the equations (73) and (74) for j ≥ 3 by induction. First assume that j is

odd. We have that

Uj+1 = Upj − xp
2j−2

Uj−1

= Qj+1 + x
p2j−2(

∑ j−3
2

j′=0
1

p4j
′ )
fpj − x

p2j−2+p2j−6(
∑ j−3

2
j′=0

1

p4j
′ )
fj−1.

The formula (73) then follows since

p2j−2(

j−1
2∑

j′=0

1

p4j′
) = p2j−2(

j−3
2∑

j′=0

1

p4j′
) + 1

and

p2j−2 + p2j−6(

j−3
2∑

j′=0

1

p4j′
) = p2j−2(

j−1
2∑

j′=0

1

p4j′
).
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Now assume that j ≥ 3 is even. We have that

Uj+1 = Up
3

j − xp
2j−1

Uj−1

= Qpj+1 + x
p2j−1(

∑ j
2−1

j′=0
1

p4j
′ )
fp

3

j − x
p2j−1+p2j−5(

∑ j
2−2

j′=0
1

p4j
′ )
fj−1.

The formula (74) then follows since

p2j−1 + p2j−5(

j
2
−2∑

j′=0

1

p4j′
) = p2j−1(

j
2
−1∑

j′=0

1

p4j′
).

�

Proposition 5.5. We have Vν1 = Vν∗ ∩ K1 and ν∗|K1 = ν1. Further, ν∗ is the unique
extension of ν1 to K∗.

Proof. Since ν1(x) = ν∗(x) = 1, it suffices to show that Vν1 ⊂ Vν∗ . From (51) and the fact
that Vν1 = ∪Aj , we need only show that vAj+1 ∈ Vν∗ for all j. From equation (72) of [14],
we obtain that

(75) ν∗(Qj+1) = βj+1 < p2j−2(

j−1
2∑

j′=0

1

p4j′
) + 1

if j is odd, and

(76) ν∗(Qpj+1) = pβj+1 < p2j−1(

j
2
−1∑

j′=0

1

p4j′
) + 1

if j is even. Thus by Lemma 5.4,

(77) ν∗(Uj+1) =

{
ν∗(Qj+1) if j is odd
pν∗(Qj+1) if j is even

Thus by (51) and Proposition 7.40 [14],

ν∗(vAj+1) =

{
ν∗(ySj+1) if j odd
pν∗(ySj+1) if j even

The fact that ν∗ is the unique extension of ν to K∗ follows since ν1|K = ν∗|K = ν by
Proposition 7.40 [14], and ν∗ is the unique extension of ν to K∗ by (1) of Theorem 7.38
[14]. �

Theorem 5.6. For all j, Sj is a finite extension of Aj. If j is odd, we have expressions

(78) xAj+1 = τj+1x
p
Sj+1

, vAj+1 = γj+1ysj+1 + xSj+1Ωj+1

where τj+1, γj+1 are units in Sj+1 and Ωj+1 ∈ Sj+1.
If j is even, we have expressions

(79) xAj+1 = τj+1xSj+1 , vAj+1 = γj+1y
p
Sj+1

+ xSj+1Ωj+1

where τj+1, γj+1 are units in Sj+1 and Ωj+1 ∈ Sj+1.
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Proof. For i ≤ j, Qi are units in Sj+1 times a power of xSj+1 . By (73), (74) and (75) and
(76), we then have that Ui are units in Sj+1 times a power of xSj+1 and for i ≤ j,

(80) Ui =

{
αQpi where α ∈ Sj+1 is a unit if i is odd
αQi where α ∈ Sj+1 is a unit if i is even.

We have from (75) that
(81)

ν∗(Qj−1) = βj−1 = p2j−6(

j−2∑
j′=0

1

p4j′
) < p2j−6(

j−1
2
−1∑

j′=0

1

p4j′
) + 1 = p2j−2(

j−1
2∑

j′=0

1

p4j′
) + 1− p2j−2

if j is odd and by (76),
(82)

pν∗(Qj−1) = pβj−1 = p2j−5(

j−2∑
j′=0

1

p4j′
) < p2j−5(

j
2
−2∑

j′=0

1

p4j′
) + 1 = p2j−1(

j
2
−1∑

j′=0

1

p4j′
) + 1− p2j−1

if j is even.
If j is odd, by equations (51), (73), (80) and (81) and Proposition 5.1, we have an

expression

vAj+1 =
Uj+1

xp2j−2Uj−1
=
Qj+1 + x

p2j−2(
∑ j−1

2
j′=0

1

p4j
′ )
fj+1

αxp2j−2Qj−1
= γySj+1 + xSj+1Ω

for some unit γ ∈ Sj+1 and Ω ∈ Sj+1.
If j is even, by equations (51), (74), (80) and (82) and Proposition 5.1, we have an

expression

vAj+1 =
Uj+1

xp2j−1Uj−1
=
Qpj+1 + x

p2j−1(
∑ j

2−1

j′=0
1

p4j
′ )
fj+1

αxp2j−1Qpj−1

= γypSj+1
+ xSj+1Ω

for some unit γ ∈ Sj+1 and Ω ∈ Sj+1.
By (80), we have that

xAj+1 =
Uj

xp2j−3Uj−2
=

αQpj

xp2j−3Qpj−2

= αxpSj+1

for some unit α ∈ Sj+1 if j is odd and

xAj+1 =
Uj

xp2j−4Uj−2
=

αQj

xp2j−4Qj−2
= αxSj+1

for some unit α ∈ Sj+1 if j is even.
The extension Aj → Sj is finite for all j since each Aj → Sj is quasi finite and ν∗ is the

unique extension of ν to K∗.
�

Theorem 5.7. For all j, Aj is a finite extension of Rj. If j is odd, we have expressions

(83) uRj+1 = σj+1xAj+1 , vRj+1 = λj+1v
p
Aj+1

+ xAj+1Λj+1

where σj+1, λj+1 are units in Aj+1 and Λj+1 ∈ Aj+1.
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If j is even, we have expressions

(84) uRj+1 = σj+1x
p
Aj+1

, vRj+1 = λj+1vAj+1 + xAj+1Λj+1

where σj+1, λj+1 are units in Aj+1 and Λj+1 ∈ Aj+1.

Proof. We have that Rj+1 ⊂ Aj+1 and Rj+1 → Aj+1 is finite since Rj+1 → Sj+1 and
Aj+1 → Sj+1 are finite, Aj+1 is normal and QF(Rj+1) ⊂ QF(Aj+1). The expressions (83)
and (84) follow from (2) of Theorem 7.38 [14] and Theorem 5.6. �
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