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Abstract. We characterize linearly ordered sets, abelian groups and
fields that are symmetrically complete, meaning that the intersection
over any chain of closed bounded intervals is nonempty. Such ordered
abelian groups and fields are important because generalizations of Ba-
nach’s Fixed Point Theorem hold in them. We prove that symmet-
rically complete ordered abelian groups and fields are divisible Hahn
products and real closed power series fields, respectively. This gives us
a direct route to the construction of symmetrically complete ordered
abelian groups and fields, modulo an analogous construction at the level
of ordered sets; in particular, this gives an alternative approach to the
construction of symmetrically complete fields in [12].

1. Introduction

In the paper [12], the third author introduced the notion of “symmetri-
cally complete” ordered fields and proved that every ordered field can be
extended to a symmetrically complete ordered field (see Remark 2 below
for some background information). He also proved that an ordered field
K is symmetrically complete if and only if every nonempty chain of closed
bounded intervals in K (ordered by inclusion) has nonempty intersection.
It is this property that is particularly interesting as it allows fixed point
theorems to be proved for such fields that generalize Banach’s Fixed Point
Theorem, replacing the usual metric of the reals by the distance function
that is derived from the ordering. For theorems of this type it suffices to
consider the ordered additive group underlying the field. So we are led in
a natural way to working with ordered abelian groups. As an example for
a corresponding fixed point theorem, we cite the following result from [3],
where it is Theorem 21:
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Theorem 1. Take an ordered abelian group (G,<) and a function f : G→
G. Assume that every nonempty chain of closed bounded intervals in G has
nonempty intersection and that f has the following properties:

1) f is nonexpanding: |fx− fy| ≤ |x− y| for all x, y ∈ G,
2) f is contracting on orbits: there is a positive rational number m

n
< 1

with m,n ∈ N such that n|fx− f 2x| ≤ m|x− fx| for all x ∈ G.

Then f has a fixed point.

In [3] we used the notion “spherically complete w.r.t. the order balls”
if the condition on chains of intervals is met. This is because the notion
of spherical completeness can provide a general framework for fixed point
theorems in many applications; the respective theorems are then obtained
simply by choosing the right balls for every application (see [3], [4]). In
this paper, however, we will use the equivalent, but more elegant notion of
“symmetrically complete” which we will now define. But we will consider
spherical completeness later again, then with respect to ultrametric balls
when we work with the natural valuations of ordered abelian groups and
fields.

A cut in a linearly ordered set I is a pair

C = (D,E)

with a lower cut set D and an upper cut set E if I = D ∪E and d < e
for all d ∈ D, e ∈ E. Throughout this paper, when we talk of cuts we will
mean Dedekind cuts, that is, cuts with D and E nonempty. The cut C
is principal (also called realized) if either D has a maximal element or E
has a minimal element.

By the cofinality of the cut C we mean the pair (κ, λ) where κ is the
cofinality of D, denoted by cf(D), and λ is the coinitiality of E, denoted by
ci(E). Recall that the coinitiality of a linearly ordered set is the cofinality
of this set under the reversed ordering. Recall further that cofinalities and
coinitialities of ordered sets are regular cardinals.

The cut C is called symmetric if κ = λ, and asymmetric otherwise.
We will call a linearly ordered set (I,<) symmetrically complete if ev-
ery symmetric cut C in I is principal. Note that the principal symmetric
cuts are precisely the cuts with cofinality (1, 1). Therefore, in dense linear
orderings (and hence in ordered fields) there are no principal symmetric
cuts. Consequently, a dense linear ordering is symmetrically complete if
and only if all of its cuts are asymmetric. This shows that our definition is
a generalization of the definition given for fields in [12].

For example, Z and R are symmetrically complete, but Q is not. In Z
and R, every cut is principal; in Z all of them have cofinality (1, 1), and in
R they have cofinalities (1,ℵ0) and (ℵ0, 1). In contrast, in Q the cuts have
cofinalities (1,ℵ0), (ℵ0, 1) and (ℵ0,ℵ0).
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Remark 2. In [11] the third author proved that any nonstandard model
of Peano Arithmetic has a symmetric cut. The motivation was to answer
a question on the ideal structure of countable ultraproducts of Z posed in
[9]. In these rings, each prime ideal lies below a unique maximal ideal,
and the set of prime ideals below a given maximal ideal is linearly ordered
under inclusion. The existence result for symmetric cuts proves that below
each maximal ideal there is a prime ideal which is neither a union nor an
intersection of countably many principal ideals.

The existence of arbitrarily large symmetrically complete real closed fields
proved in [12] and again in the present paper stresses that Peano Arithmetic
and the theory of real closed fields are opposite in their behaviour when it
comes to the cofinalities of their cuts.

The following characterization of symmetrical completeness will be proved
in Section 2:

Proposition 3. A linearly ordered set I is symmetrically complete if and
only if every nonempty chain of nonempty closed bounded intervals in I has
nonempty intersection.

It may come as a surprise to the reader that symmetrically complete fields,
other than the reals themselves, do exist. Intuitively, one may believe at
first that one can “zoom in” on every cut by a decreasing chain of closed
intervals, showing that every symmetrically complete field is cut complete
and therefore isomorphic to the reals. But if the cut is asymmetric, then
on the side with the smaller cardinality, the endpoints of the intervals must
become stationary, so that the intersection over the intervals will contain
the stationary endpoint.

The main aim of this paper is to characterize the symmetrically complete
ordered abelian groups and fields. This characterization will then be very
useful for their construction.

We will make essential use of the fact that ordered abelian groups appear
as the value groups of ordered fields w.r.t. their natural field valuations,
and, one level lower, linear orderings appear as the value sets of ordered
abelian groups w.r.t. their natural group valuations. We will now define
natural valuations of ordered abelian groups and fields.

Take an ordered abelian group (G,<). Two elements a, b ∈ G are called
archimedean equivalent if there is some n ∈ N such that n|a| ≥ |b| and
n|b| ≥ |a|. The ordered abelian group (G,<) is archimedean ordered if all
nonzero elements are archimedean equivalent. If 0 ≤ a < b and na < b for
all n ∈ N, then we say that “a is infinitesimally smaller than b” and we will
write a� b. We denote by va the archimedean equivalence class of a. The
set of archimedean equivalence classes can be ordered by setting va > vb if
and only if |a| < |b| and a and b are not archimedean equivalent, that is, if
n|a| < |b| for all n ∈ N. We write ∞ := v0 ; this is the maximal element
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in the linearly ordered set of equivalence classes. The function a 7→ va is a
group valuation on G, i.e., it satisfies va =∞⇔ a = 0 and the ultrametric
triangle law

(UT) v(a− b) ≥ min{va, vb} ,

and by definition,

0 ≤ a ≤ b =⇒ va ≥ vb .

The set vG := {vg | 0 6= g ∈ G} is called the value set of the valued abelian
group (G, v). For every γ ∈ vG, the quotient Cγ := Oγ/Mγ, where Oγ :=
{g ∈ G | vg ≥ γ} and Mγ := {g ∈ G | vg > γ}, is an archimedean ordered
abelian group (hence embeddable in the ordered additive group of the reals,
by the Theorem of Hölder); it is called an archimedean component of G.
The natural valuation induces an ultrametric given by u(a, b) := v(a− b).

We define the smallest ultrametric ball Bu(a, b) containing the elements
a and b to be

Bu(a, b) := {g | v(a− g) ≥ v(a− b)} = {g | v(b− g) ≥ v(a− b)}

where the last equation holds because in an ultrametric ball, every ele-
ment is a center. For the basic facts on ultrametric spaces, see [6]. Note
that all ultrametric balls are cosets of convex subgroups in G (see [7]).
We say that an ordered abelian group (or an ordered field) is spherically
complete w.r.t. its natural valuation if every nonempty chain of ultra-
metric balls (ordered by inclusion) has nonempty intersection. The ordered
abelian groups that are spherically complete w.r.t. their natural valuation
are precisely the Hahn products; see Section 2.2 for the definition and basic
properties of Hahn products (cf. also [7] or [8]).

If (K,<) is an ordered field, then we consider the natural valuation on
its ordered additive group and define va + vb := v(ab). This turns the set
of archimedean classes into an ordered abelian group, with neutral element
0 := v1 and inverses −va = v(a−1) . In this way, v becomes a field valuation
(with additively written value group). It is the finest valuation on the field
K which is compatible with the ordering. The residue field, denoted by
Kv, is archimedean ordered, hence by the version of the Theorem of Hölder
for ordered fields, it can be embedded in the ordered field R. Via this
embedding, we will always identify it with a subfield of R.

Remark 4. In contrast to the notation for the natural valuation (in the
Baer tradition) that we used in [3], we use here the Krull notation because
it is more compatible with our constructions in Section 5. In this notation,
two elements in an (additively written) ordered abelian group or field are
close to each other when the value of their difference is large.

In [3], we have already proved that if an ordered abelian group (G,<) is
spherically complete w.r.t. the order balls, then it is spherically complete
w.r.t. its natural valuation v. Moreover, if G is an ordered field, then we
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proved that in addition, it has residue field R. Using Proposition 3, we can
reformulate these results as follows:

Proposition 5. If an ordered abelian group is symmetrically complete, then
it is spherically complete w.r.t. its natural valuation. If an ordered field is
symmetrically complete, then it is spherically complete w.r.t. its natural
valuation v and has residue field Kv = R.

In the present paper, we wish to extend these results. It turns out that for
an ordered abelian group G to be symmetrically complete, the same must
be true for the value set vG, and in fact, it must have an even stronger
property. We will call a cut with cofinality (κ, λ) in a linearly ordered set
(I,<) strongly asymmetric if κ 6= λ and at least one of κ, λ is uncount-
able. We call (I,<) strongly symmetrically complete if every cut in
I has cofinality (1, 1) or is strongly asymmetric, and we call it extremely
symmetrically complete if in addition, the coinitiality and cofinality of I
are both uncountable. Note that I is strongly symmetrically complete if and
only if it is symmetrically complete and does not admit cuts of cofinality
(1,ℵ0) or (ℵ0, 1). The reals are not strongly symmetrically complete.

In Section 4, we will prove the following results:

Theorem 6. A nontrivial densely ordered abelian group (G,<) is symmet-
rically complete if and only if it is spherically complete w.r.t. its natural
valuation v, has a dense strongly symmetrically complete value set vG, and
all archimedean components Cγ are isomorphic to R. It is strongly symmet-
rically complete if and only if in addition, vG has uncountable cofinality,
and it is extremely symmetrically complete if and only if in addition, vG is
extremely symmetrically complete.

Now we turn to ordered fields.

Theorem 7. An ordered field K is symmetrically complete if and only if
it is spherically complete w.r.t. its natural valuation v, has residue field R
and a dense strongly symmetrically complete value group vK. Further, the
following are equivalent:

a) K is strongly symmetrically complete,

b) K is extremely symmetrically complete,

c) K is spherically complete w.r.t. its natural valuation v, has residue field
R and a dense extremely symmetrically complete value group vK.

Note that the natural valuation of a symmetrically complete ordered field
K can be trivial, in which case K is isomorphic to R. But if K is strongly
symmetrically complete, then vK and hence also v must be nontrivial.

Every ordered field that is spherically complete w.r.t. its natural valua-
tion is maximal, in the sense of [2]. In that paper Kaplansky showed that
under certain conditions, which in particular hold when the residue field
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has characteristic 0, every such field is isomorphic to a power series field. In
general, a nontrivial factor system is needed on the power series field, but
it is not needed for instance when the residue field is R. From the previous
two theorems, we derive:

Corollary 8. Every dense symmetrically complete ordered abelian group is
divisible and isomorphic to a Hahn product. Every symmetrically complete
ordered field is real closed and isomorphic to a power series field with residue
field R and divisible value group.

These results give us a natural way to construct symmetrically complete
and extremely symmetrically complete ordered fields K, which is an al-
ternative to the construction given in [12]. For the former type of fields,
construct a strongly symmetrically complete linearly ordered set I with un-
countable coinitiality. Then take G to be the Hahn product with index set
I and all archimedean components equal to R. Finally, take K = R((G)),
the power series field with coefficients in R and exponents in G. To obtain
an extremely symmetrically complete ordered field K, construct I such that
in addition, also its cofinality is uncountable. See Section 5 for the detailed
construction of such orders I.

In Section 6, we will use our theorems to prove the following result, which
extends the corresponding result of [12] by a more direct method:

Theorem 9. Every ordered abelian group can be extended to an extremely
symmetrically complete ordered abelian group. Every ordered field can be
extended to an extremely symmetrically complete ordered field.

For the proof of this theorem, we need to extend any given ordered set
I to an extremely symmetrically complete ordered set J . We do this by
constructing suitable lexicographic products of ordered sets.

Remark 10. Already in the years 1906-8 Hausdorff has constructed ordered
sets with prescribed cofinalities for all of its cuts, see [1]. (This paper was
brought to our attention by Salma Kuhlmann after the completion of the
present paper.) However, he did not discuss how to embed arbitrary orders
I in such ordered sets. Moreover, the constructions we present in Section 5
leed more directly to the ordered sets we need.

Let us describe the most refined result that we achieve, which gives us the
best control of the cofinalities of cuts in the constructed ordered set J . We
denote by Reg the class of all infinite regular cardinals, and for any ordinal
λ, by

Reg<λ = {κ < λ | ℵ0 ≤ κ = cf(κ)}
the set of all infinite regular cardinals < λ. We define:

Coin(I) := {ci(S) | S ⊆ I such that ci(S) is infinite} ⊂ Reg ,

Cofin(I) := {cf(S) | S ⊆ I such that cf(S) is infinite} ⊂ Reg .
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We choose any µ, κ0, λ0 ∈ Reg. Then we set

Rleft := Cofin(I) ∪ Reg<κ0 ∪ Reg<µ ⊂ Reg ,

Rright := Coin(I) ∪ Reg<λ0 ∪ Reg<µ ⊂ Reg .

All of the subsets we have defined here are initial segments of Reg in the
sense that if they contain κ, then they also contain every infinite regular
cardinal < κ.

Further, we assume that functions

ϕleft : {1} ∪ Reg→ Reg and ϕright : {1} ∪ Reg→ Reg

are given. We prove in Section 5:

Theorem 11. Assume that µ is uncountable and that

(1) ϕleft({1} ∪Rright) ⊂ Rleft and ϕright({1} ∪Rleft) ⊂ Rright

with ϕleft(κ) 6= κ 6= ϕright(κ) for all κ ∈ Rleft ∪ Rright. Then I can be
extended to a strongly symmetrically complete ordered set J of cofinality κ0
and coinitiality λ0 , in which the cuts have the following cofinalities:

{(1, µ), (µ, 1)} ∪ {(κ, ϕ(κ)) | κ ∈ Rleft} ∪ {(ϕ(λ), λ) | λ ∈ Rright} .
If in addition κ0 and λ0 are uncountable, then J is extremely symmetrically
complete.

Among the value groups of valued fields, not only the dense, but also
the discretely ordered groups play an important role. The value groups
of formally p-adic fields are discretely ordered, and the value groups of p-
adically closed fields are Z-groups, that is, ordered abelian groups G that
admit (an isomorphic image of) Z as a convex subgroup such that G/Z is
divisible. We wish to prove a version of Theorem 6 for discretely ordered
abelian groups.

Theorem 12. Take a nontrivial discretely ordered abelian group (G,<).
Then the following are equivalent:

a) (G,<) is symmetrically complete,

b) (G,<) is strongly symmetrically complete,

c) (G,<) is a Z-group such that G/Z is strongly symmetrically complete.

Further, (G,<) is extremely symmetrically complete if and only if (G,<) is
a Z-group and G/Z is extremely symmetrically complete.

Again, this gives us a natural way for our construction. To obtain a
symmetrically complete discretely ordered abelian group G, construct a
divisible strongly symmetrically complete ordered abelian group H and then
take the lexicographic product H × Z. If in addition the cofinality of H is
uncountable, then G will even be extremely symmetrically complete.

Note that G is isomorphic to a Hahn product if and only if G/Z is.
Therefore, if G is symmetrically complete, then it is a Hahn product.
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2. Preliminaries and notations

2.1. Proof of Proposition 3. A quasicut in a linearly ordered set I is a
pair C = (D,E) of subsets D and E of I such that I = D ∪ E and d ≤ e
for all d ∈ D, e ∈ E. In this case, D ∩ E is empty or a singleton; if it is
empty, then (D,E) is a cut.

Assume that I is symmetrically complete, so every symmetric cut in I
is principal. Every nonempty chain of nonempty closed bounded intervals
has a cofinal subchain ([dν , eν ])ν<µ indexed by a regular cardinal µ, either
equal to 1 or infinite. We set D := {d ∈ I | d ≤ dν for some ν < µ} and
E := {e ∈ I | e ≥ eν for some ν < µ}. Then d ≤ e for all d ∈ D and e ∈ E.
If D∩E 6= ∅, then (D,E) is a quasicut and the unique element of D∩E lies
in the intersection of the chain. If (D,E) is a cut, then it must be principal
by our assumption on I since cf(D) = µ = ci(E). That is, µ = 1 and
{d0, e0} = [d0, e0] is contained in the intersection of the chain. If D∩E = ∅
but (D,E) is not a cut, then the set {c ∈ I | d < c < e for all d ∈ D, e ∈ E}
is nonempty and contained in the intersection of the chain. So in all cases,
the intersection of the chain is nonempty.

Now assume that every nonempty chain of nonempty closed bounded
intervals in I has nonempty intersection. Suppose that (D,E) is a cut
with κ := cf(D) = ci(E). Then we can choose a cofinal strictly increasing
sequence (dν)ν<κ in D and a coinitial strictly decreasing sequence (eν)ν<κ
in E. By assumption, the chain ([dν , eν ])ν<κ of intervals has nonempty
intersection. Take an element a in the intersection. Then dν ≤ a ≤ eν for
all ν. If a ∈ D, then the former inequalities imply that κ = 1 and d1 = a is
the largest element of D. If a ∈ E, then the latter inequalities imply that
κ = 1 and e1 = a is the smallest element of E. So we find that (D,E) is
principal. This proves that every symmetric cut in I is principal.

2.2. Hahn products. Given a linearly ordered index set I and for every
γ ∈ I an arbitrary abelian group Cγ , we define a group called the Hahn
product, denoted by Hγ∈I Cγ . Consider the product

∏
γ∈I Cγ and an

element c = (cγ)γ∈I of this group. Then the support of c is the set supp c :=
{γ ∈ I | cγ 6= 0}. As a set, the Hahn product is the subset of

∏
γ∈I Cγ

containing all elements whose support is a wellordered subset of I, that is,
every nonempty subset of the support has a minimal element. In particular,
the support of every nonzero element c in the Hahn product has a minimal
element γ0 , which enables us to define a group valuation by setting vc = γ0
and v0 =∞. The Hahn product is a subgroup of the product group. Indeed,
the support of the sum of two elements is contained in the union of their
supports, and the union of two wellordered sets is again wellordered.

We leave it to the reader to show that a Hahn product is divisible if and
only if all of its components are.
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If the components Cγ are (not necessarily archimedean) ordered abelian
groups, we obtain the ordered Hahn product, also called lexicographic
product, where the ordering is defined as follows. Given a nonzero element
c = (cγ)γ∈I , let γ0 be the minimal element of its support. Then we take
c > 0 if and only if cγ0 > 0. If all Cγ are archimedean ordered, then the
valuation v of the Hahn product coincides with the natural valuation of the
ordered Hahn product. Every ordered abelian group G can be embedded in
the Hahn product with its set of archimedean classes as index sets and its
archimedean components as components. Then G is spherically complete
w.r.t. the ultrametric balls if and only if the embedding is onto.

2.3. Some facts about cofinalities and coinitialities. Take a nontrivial
ordered abelian group G and define

G>0 := {g ∈ G | g > 0} and G<0 := {g ∈ G | g < 0} .

Since G 3 g 7→ −g ∈ G is an order inverting bijection,

ci(G) = cf(G) and cf(G<0) = ci(G>0) .

Further, we have:

Lemma 13. 1) The cofinality of G is equal to max{ℵ0, ci(vG)}. Hence it
is uncountable if and only if the coinitiality of vG is uncountable.

2) If G is discretely ordered, then ci(G>0) = cf(vG) = 1. Otherwise,
ci(G>0) = max{ℵ0, cf(vG)}.
3) Take γ ∈ vG, not the largest element of vG, and let κ be the coinitiality
of the set {δ ∈ vG | δ > γ}. Then cf(Mγ) = max{ℵ0, κ}.

Proof: 1): Since a nontrivial ordered abelian group has no maximal
element, its cofinality is at least ℵ0 . If vG has a smallest element, then take
a positive g ∈ G whose value is this smallest element. Then the sequence
(ng)n∈N is cofinal in G, so its cofinality is ℵ0 .

If κ := ci(vG) is infinite, then take a sequence (γν)ν<κ which is coinitial
in vG, and take positive elements gν ∈ G, ν < κ, with vgν = γν . Then
the sequence (gν)ν<κ is cofinal in G and therefore, cf(G) ≤ ci(vG). On the
other hand, for every sequence (gν)ν<λ cofinal in G, the sequence of values
(vgν)ν<λ must be coinitial in vG, which shows that cf(G) ≥ ci(vG).

2) If G is discretely ordered, then it has a smallest positive element g and
hence, ci(G>0) = 1. Further, vg must be the largest element of vG, so
cf(vG) = 1.

IfG is not discretely ordered, then it is densely ordered and the coinitiality
of G>0 is at least ℵ0 . If vG has a largest element γ, then we take a positive
g ∈ G with vg = γ. Then Mγ = {0} and Oγ is an archimedean ordered
convex subgroup of G. This implies that ℵ0 ≤ ci(G>0) = ci(O>0

γ ) ≤ ℵ0 ,
and we have equality everywhere.
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If κ := cf(vG) is infinite, then take a sequence (γν)ν<κ which is cofinal in
vG, and take positive elements gν ∈ G, ν < κ, with vgν = γν . Then the
sequence (gν)ν<κ is coinitial in G>0 and therefore, ci(G>0) ≤ cf(vG). On
the other hand, for every sequence (gν)ν<λ coinitial in G>0, the sequence of
values (vgν)ν<λ must be coinitial in vG, which shows that ci(G>0) ≥ cf(vG).

3): By our condition on γ,Mγ is a nontrivial subgroup of G and therefore,
its cofinality is at least ℵ0 . If vMγ = {δ ∈ vG | δ > γ} has a smallest
element, then take a positive g ∈ G whose value is this smallest element.
Then the sequence (ng)n∈N is cofinal in Mγ, so cf(Mγ) = ℵ0 .

Assume that κ = ci(vMγ) is infinite. Take a sequence (γν)ν<κ which is
coinitial in vMγ = {δ ∈ vG | δ > γ} and take positive elements gν ∈ G,
ν < κ, with vgν = γν . Then the sequence (gν)ν<κ is cofinal in Mγ and
therefore, cf(Mγ) ≤ κ. On the other hand, for every sequence (gν)ν<λ
cofinal in Mγ, the sequence of values (vgν)ν<λ must be coinitial in vMγ,
which shows that cf(Mγ) ≥ κ. 2

3. Analysis of cuts in ordered abelian groups

We will first discuss principal cuts.

Lemma 14. Take any ordered abelian group G. Every principal cut in G
is asymmetric if and only it G is densely ordered. Every principal cut in G
is strongly asymmetric if and only if cf(vG) is uncountable.

Proof: Take a principal cut C = (D,E) with cofinality (κ, λ) in the
ordered abelian group G. If D has largest element g, then the set g+G>0 is
coinitial in E, showing that C has cofinality (1, ci(G>0)). Symmetrically, if
E has smallest element g, then the set g+G<0 is cofinal in D, showing that
C has cofinality (ci(G>0), 1) since cf(G<0) = ci(G>0). This immediately
proves the second statement.

We will now apply part 2) of Lemma 13 repeatedly. If G is densely
ordered, then ci(G>0) > 1 and consequently, C is asymmetric. If G is not
densely ordered, then it is discretely ordered and admits symmetric principal
cuts; in fact, every principal cut has cofinality (1, 1). This proves the first
statement.

If cf(vG) is uncountable, then ci(G>0) = cf(vG) and consequently, C is
strongly asymmetric. If cf(vG) ≤ ℵ0 , then ci(G>0) ≤ ℵ0 and no principal
cut is strongly asymmetric. This proves the second statement. 2

From now on we will discuss nonprincipal cuts. We start with a simple
but useful observation. The only countable cardinality that can appear as
coinitiality or cofinality in a nonprincipal cut is ℵ0 . This shows:
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Lemma 15. If a nonprincipal cut is asymmetric, then it is strongly asym-
metric.

We will now classify cuts by considering the ultrametric balls Bu(d, e) for
all d ∈ D, e ∈ E. Any two of them have nonempty intersection since this
intersection will contain both a final segment of D and an initial segment
of E. Since two ultrametric balls with nonempty intersection are already
comparable by inclusion, it follows that these balls form a nonempty chain.
Now there are two cases:

(I) the chain contains a smallest ball,
(II) the chain does not contain a smallest ball.

First, we discuss cuts of type (I).

Lemma 16. Take any nontrivial ordered abelian group G. Then every non-
principal cut of type (I) is (strongly) asymmetric if and only if the following
conditions are satisfied:

a) Cγ ' R for all γ ∈ vG, or
Cγ ' Z if γ is the largest element of vG and Cγ ' R otherwise.

b) for every cut in vG of cofinality (1, λ), λ is uncountable.

Proof: Take a nonprincipal cut C = (D,E) of type (I) in G. We have
to start our proof with some preparations.

We choose d0 ∈ D, e0 ∈ E such that Bu(d0, e0) is the smallest ball. The
shifted cut

C − d0 := ({d− d0 | d ∈ D} , {e− d0 | e ∈ E})
has the same cofinality as C. Moreover,

Bu(d0, e0)− d0 := {b− d0 | b ∈ Bu(d0, e0)} = Bu(0, e0 − d0)
remains the smallest ball in the new situation. Therefore, we can assume
that d0 = 0. Set γ := ve0 and I := [0, e0]. Then vh ≥ γ for all h ∈ I, that
is, h ∈ Oγ. The images D′ of D ∩ I and E ′ of E ∩ I in Cγ = Oγ/Mγ are
convex and satisfy D′ ≤ E ′. If there were d′ ∈ D′∩E ′, then it would be the
image of elements d ∈ D ∩ I and e ∈ E ∩ I with γ < v(e− d), and Bu(d, e)
would be a ball properly contained in Bu(0, e0), contrary to our minimality
assumption. Hence, D′ < E ′. If there were an element strictly between D′

and E ′, then it would be the image of an element h strictly between D and
E, which is impossible. So we see that (D′, E ′) defines a cut C ′ in Cγ , with
D′ a final segment of the left cut set and E ′ an initial segment of the right
cut set.

Since Cγ is archimedean ordered, it can be embedded in R and therefore,
the cofinality of C ′ can only be (1, 1), (1,ℵ0), (ℵ0, 1), or (ℵ0,ℵ0). Lifting
cofinal sequences in D′ back into D, we see that if the cofinality of D′ is
ℵ0 , then so is the cofinality of D. Similarly, if the coinitiality of E ′ is ℵ0 ,
then so is the coinitiality of E. However, if D′ contains a last element a′,
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and if a ∈ D ∩ I is such that a has image a′ in Cγ , then the set of all
elements in G that are sent to a′ is exactly the coset a+Mγ. This set has
empty intersection with E since a′ /∈ E ′. This together with a′ being the
last element of D′ shows that a+Mγ is a final segment of D and therefore,
the cofinality of D is equal to that ofMγ. Similarly, if E ′ has a first element
b′ coming from an element b ∈ E ∩ I, then b +Mγ is an initial segment of
E and therefore, the coinitiality of E is equal to that ofMγ, which in turn
is equal to the cofinality of Mγ. We see that the cofinality of C is

α) (cf(Mγ), cf(Mγ)) if C ′ has cofinality (1, 1),
β) (cf(Mγ),ℵ0) or (ℵ0, cf(Mγ)) if C ′ has cofinality (1,ℵ0) or (ℵ0, 1), and
γ) (ℵ0,ℵ0) if C ′ has cofinality (ℵ0,ℵ0).
If γ is not the last element of vG, then by part 3) of Lemma 13, cf(Mγ) =
max{ℵ0, λ} where λ is the coinitiality of the set {δ ∈ vG | δ > γ}.

Assume first that conditions a) and b) of the lemma are satisfied. Then
by condition a), C ′ cannot have cofinality (ℵ0,ℵ0), so case γ) cannot appear.
Further, C ′ can have cofinality (1, 1) only if γ is the largest element of vG.
Hence in this case, which is case α), we have that Mγ = {0} and thus,
cf(Mγ) = 1. But as we have taken C to be nonprincipal, this case cannot
appear.

Finally, if we are in case β) then γ cannot be the largest element of vG
since otherwise, Mγ = {0} and as in case α), C would be principal. So
cf(Mγ) = λ is uncountable by condition b), which yields that C is strongly
asymmetric. We have now shown that conditions a) and b) together imply
that every nonprincipal cut of type (I) is strongly asymmetric and hence
also asymmetric.

We will prove the converse by contraposition. We will have to lift, for
any γ ∈ vG, a given cut C ′1 = (D′1, E

′
1) in Cγ to a cut in G. We set

D := {d ∈ G | d ≤ d1 for some d1 ∈ Oγ with d1 +Mγ ∈ D′1} ,
E := {e ∈ G | e ≥ e1 for some e1 ∈ Oγ with e1 +Mγ ∈ E ′1} .

This defines a cut C = (D,E) in G which is of type (I) since γ = min{v(e−
d) | d ∈ D, e ∈ E}. With the notation as above, we obtain that D′ = D′1
and E ′ = E ′1 .

Suppose that condition a) is violated. Then there is γ ∈ vG with Cγ not
isomorphic to R, and also not to Z if γ is the largest element of vG. If Cγ is
neither isomorphic to R nor to Z, then there is a cut C ′1 in Cγ of cofinality
(ℵ0,ℵ0). So we are in case γ) and C is nonprincipal and symmetric. If Cγ is
isomorphic to Z with γ not the largest element of vG, then we are in case
α) with cf(Mγ) = max{ℵ0, λ} ≥ ℵ0, which yields that C is nonprincipal
and symmetric.

Suppose that condition b) is violated. Then there is γ ∈ vG which is
not the largest element of vG such that the coinitiality λ of the set {δ ∈
vG | δ > γ} is countable. We then obtain that cf(Mγ) = max{ℵ0, λ} = ℵ0 .
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Since Cγ always admits cuts of cofinality (1, 1), (1,ℵ0) or (ℵ0, 1), case α) or
β) will appear, leading to a nonprincipal symmetric cut C with cofinality
(ℵ0,ℵ0).

In all cases where conditions a) or b) are violated, we have obtained a
nonprincipal symmetric cut of type (I). This completes our proof. 2

Now we discuss nonprincipal cuts C of type (II).

Lemma 17. Take any ordered abelian group G which is spherically complete
w.r.t. its natural valuation v. Then every nonprincipal cut of type (II) is
(strongly) asymmetric if and only if every cut in vG of cofinality (κ, λ) with
κ infinite is strongly asymmetric.

Proof: Take a nonprincipal cut C = (D,E) of type (II) in G. Since G
is assumed to be spherically complete w.r.t. its natural valuation v, there is
some g ∈ G such that

g ∈
⋂

d∈D, e∈E

Bu(d, e) .

Replacing the cut C by the shifted cut C − g as we have done in the last
proof, we can assume that g = 0. Since C is nonprincipal by asssumption,
there must be d0 ∈ D, e0 ∈ E such that d0 ≤ 0 ≤ e0 does not hold, and we
have two cases:

A) e0 < 0 ,
B) 0 < d0.

Again, we set I := [d0, e0]. We set D̃ = {vd | d ∈ D ∩ I} ⊆ vG and
Ẽ = {ve | e ∈ E ∩ I} ⊆ vG.

Let us first discuss case A). We claim that D̃ < Ẽ. We observe that “≤”
holds since d < e < 0 for d ∈ D∩ I and e ∈ E∩ I. Suppose that D̃∩ Ẽ 6= ∅,
that is, vd = ve for some d ∈ D∩I and e ∈ E∩I. Then v(e−d) ≥ vd by the
ultrametric triangle law, and since there is no smallest ball by assumption,
we can even choose d, e such that v(e− d) > vd. But then, 0 would not lie
in Bu(d, e), a contradiction. We have proved our claim. Now if there were
an element α stricly between the two sets, then there would be some a ∈ I
with va = α and a < 0. This would yield that d < a < e for all d ∈ D ∩ I
and e ∈ E ∩ I and thus, D < a < E, a contradiction.

We conclude that (D̃, Ẽ) defines a cut C̃ in vG, with D̃ a final segment
of the left cut set, and Ẽ an initial segment of the right cut set. Denote by
(κ̃, λ̃) its cofinality. We have that vd < ve and consequently vd = v(e− d)
for all d ∈ D ∩ I and e ∈ E ∩ I. Since by assumption there is no smallest
ball, there is no largest value v(e − d). This shows that D̃ has no largest
element and therefore, κ̃ is infinite. Lifting cofinal sequences in D̃ to coinitial
sequences in D, we see that κ = κ̃. By the same argument, if λ̃ is infinite,
then λ = λ̃. If on the other hand λ̃ = 1, then we take γ ∈ G to be the
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smallest element of Ẽ. The preimage of γ under the valuation is Oγ \Mγ,
and this set is coinitial in E. The cofinality of Oγ \ Mγ is equal to the
cofinality ofOγ, which in turn is equal to the cofinality ℵ0 of the archimedean

ordered group Cγ. Hence in this case, λ = ℵ0 . In all cases, λ = max{ℵ0, λ̃).

If the nonprincipal cut C is asymmetric, then κ 6= λ and one of them is
uncountable. If λ̃ is countable, then λ = ℵ0 and κ̃ = κ > λ ≥ λ̃, that is,
C̃ is strongly asymmetric. If λ̃ is uncountable, then λ̃ = λ 6= κ = κ̃, hence
again, C̃ is strongly asymmetric. Conversely, suppose that C̃ is strongly
asymmetric. If λ̃ is countable, then κ̃ is uncountable, so κ = κ̃ > ℵ0 = λ,
showing that C is asymmetric. If λ̃ is uncountable, then λ = λ̃ 6= κ̃ = κ,
hence again, C is asymmetric. We have now proved that C is asymmetric
if and only if C̃ is strongly asymmetric.

Now we consider case B). Since 0 < d < e for d ∈ D ∩ I and e ∈ E ∩ I,
we now obtain that Ẽ ≤ D̃. It is proven as in case A) that (Ẽ, D̃) defines a
cut C̃ in vG, and that Ẽ has no largest element. In this case the argument
is the same as before, but with D̃ and Ẽ interchanged, and the conclusion
is the same as in case A). We note that in both cases, the cofinality of the
left cut set of C̃ must be infinite.

Putting both cases together, we have now proved that if every cut in
vG of cofinality (κ̃, λ̃) with κ̃ infinite is strongly asymmetric, then every
nonprincipal cut of type (II) in G is asymmetric.

Let us prove the converse. If we have a cut C̃ = (D̃, Ẽ) in vG of cofinality

(κ̃, λ̃) with κ̃ infinite, then we can associate to it a nonprincipal cut of
type (II) as follows. We set D = {d ∈ G | d < 0 and vd ∈ D̃} and
E = {e ∈ G | e > 0 or ve ∈ Ẽ}. This is a cut in G, and it is nonprincipal:
D̃ and hence also D has no largest element, and E has no smallest element
because for every e ∈ E with e < 0 we have 2e < e with v(2e) = ve. Further,
it is of type (II) since for all d ∈ D and e ∈ E, e < 0, we have that vd < ve
and hence v(e−d) = vd ∈ D̃, which has no largest element. Now C induces
the cut C̃ in the way described under case A). From our previous discussion
we see that if C̃ is not strongly asymmetric, then C is not asymmetric. This
completes the proof of the converse and of our lemma. 2

4. Proofs of the main theorems

Proof of Theorem 6:
Take any densely ordered abelian group G. Assume first that G is symmet-
rically complete. Then by Proposition 5, G is spherically complete w.r.t.
its natural valuation. G cannot have an archimedean component Cγ ' Z
with γ the largest element of vG because otherwise, it would have a convex
subgroup isomorphic to Z and would then be discretely ordered. Hence by
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Lemma 16, every archimedean component of G is isomorphic to R and for
every cut in vG of cofinality (1, κ), κ is uncountable. Finally by Lemma 17,
every cut in vG of cofinality (λ, κ) with λ infinite is strongly asymmetric.
Altogether, every cut in vG is strongly asymmetric. This proves that vG is
dense and strongly symmetrically complete.

Conversely, if G is spherically complete w.r.t. its natural valuation, ev-
ery archimedean component of G is isomorphic to R and vG is dense and
strongly symmetrically complete, then it follows from Lemmas 14, 16 and 17
that G is symmetrically complete. This proves the first assertion of the the-
orem.

We have already remarked in the introduction that for a symmetrically
complete ordered gtoup G to be strongly symmetrically complete it suffices
that every principal cut is strongly asymmetric. By Lemma 14, this holds
if and only if in addition to the other conditions, the cofinality of vG is
uncountable. This proves the second assertion.

Finally, a strongly symmetrically complete ordered group G is extremely
symmetrically complete if and only if in addition, its cofinality (which is
equal to its coinitiality) is uncountable. By part 1) of Lemma 13, this holds
if and only if the coinitiality of vG is uncountable. Hence by what we have
just proved before, a symmetrically complete G is extremely symmetrically
complete if and only if in addition to the other conditions, vG is extremely
symmetrically complete. �

Proof of Theorem 7:
Considering the additive ordered abelian group of the ordered field K, which
is always dense, the first assertion of Theorem 7 follows readily from that
of Theorem 6 if one takes into account that through multiplication, all
archimedean components are isomorphic to the ordered additive group of
the residue field.

Similarly, the equivalence of b) and c) follows from the third case of
Theorem 6. Since vK is an ordered abelian group, its cofinality is equal to its
coinitiality, so the condition that it is strongly symmetrically complete with
uncountable cofinality already implies that it is extremely symmetrically
complete. Hence, by the second case of Theorem 6, a) is equivalent to
c). �

Proof of Corollary 8:
The assertion for ordered abelian groups follows from the facts that have
been mentioned before. For ordered fields, it remains to show that a power
series field with residue field R and divisible value group is real closed.
Since every power series field is henselian under its canonical valuation, this
follows from [10, Theorem (8.6)]. �

Proof of Theorem 12:
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Since G is discretely ordered, vG must have a largest element vg (where g
can be chosen to be the smallest positive element of G) with archimedean
component Ovg ' Cvg ' Z. We identify the convex subgroup Ovg with Z.

Take any cut (D,E) in G. Since the canonical epimorphism G → G/Z
preserves ≤, the image (D,E) of (D,E) in G/Z is a quasicut. If D and
E have a common element d, then there is d ∈ D and z ∈ Z such that
d+ z ∈ E. In this case, the cofinality of (D,E) is (1, 1). Now suppose that
D and E have no common element. Then for all d ∈ D and e ∈ E, we have
that d+ Z = {d+ z | d ∈ D, z ∈ Z} ⊂ D and e+ Z ⊂ E. Hence if D′ ⊂ D
is a set of representatives for D and E ′ ⊂ E is a set of representatives for
E, then D = D′+Z = {d+ z | d ∈ D′, z ∈ Z} and E = E ′+Z. This yields
that

(2)

{
cf(D) = max{cf(D′),ℵ0} = max{cf(D),ℵ0} ,
ci(E) = max{ci(E ′),ℵ0} = max{ci(E),ℵ0} .

We assume first that G is a Z-group and G/Z is strongly symmetri-
cally complete. We take a cut (D,E) in G of cofinality 6= (1, 1). Then
by what we have just shown, D and E have no common element, and
(cf(D), ci(E)) = (max{cf(D),ℵ0},max{ci(E),ℵ0}). By our assumption on
G/Z, (D,E) is strongly asymmetric, which yields that cf(D) and ci(E) are
not equal and at least one of them is uncountable. This proves that G is
strongly symmetrically complete, hence also symmetrically complete.

For the converse, we assume that G is symmetrically complete. We take
any cut (D,E) in G/Z. Then we pick a set D′ ⊂ G of representatives for D
and a set E ′ ⊂ E of representatives for E. With D = D′+Z and E = E ′+Z
we obtain a nonprincipal cut (D,E) in G with image (D,E) in G/Z. By
our assumption on G, the cut (D,E) is asymmetric. Now (2) yields that at
least one of cf(D) and ci(E) is uncountable and that if both are, then they
are not equal. This shows that (D,E) is strongly asymmetric, which proves
that G/Z is strongly symmetrically complete and does not admit any cuts
of cofinality (1, 1). Hence, G/Z is densely ordered, and Corollary 8 now
shows that it is divisible. This proves that G is a Z-group.

The last equivalence in the theorem is seen as follows. If G is extremely
symmetrically complete, then it cannot be isomorphic to Z and hence, G/Z
is nontrivial. But then, the cofinality of G is equal to that of G/Z. �

5. Construction of symmetrically complete linearly ordered
sets

In this section, we will use “+” in a different way than before. If I and J
are ordered sets, then I+J denotes the sum of I and J in the sense of order
theory, that is, the disjoint union I ∪̇ J with the extension of the orderings
of I and J given by i < j for all i ∈ I, j ∈ J .
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For any linearly ordered set I = (I,<), we denote by Ic its completion.
Note that Coin(Ic) = Coin(I) and Cofin(Ic) = Cofin(I). Further, we denote
by I∗ the set I endowed with the inverted ordering<∗, where i <∗ j ⇔ j < i.

We choose some ordered set I (where I = ∅ is allowed) and infinite regular
cardinals µ and κν , λν for all ν < µ. We define

I0 := λ∗0 + Ic + κ0 and Iν := λ∗ν + κν for 0 < ν < µ.

Note that all Iν , ν < µ, are cut complete. Note further that if C is a cut in I0
with cofinality (κ, λ), then κ ∈ Cofin(I)∪Reg<κ0 and λ ∈ Coin(I)∪Reg<λ0 .

We define J to be the lexicographic product over the Iν with index set
µ; that is, J is the set of all sequences (αν)ν<µ with αν ∈ Iν for all ν < µ,
endowed with the following ordering: if (αν)ν<µ and (βν)ν<µ are two different
sequences, then there is a smallest ν0 < µ such that αν0 6= βν0 and we set
(αν)ν<µ < (βν)ν<µ if αν0 < βν0 .

Theorem 18. The cofinalities of the cuts of J are:

(1, µ) , (µ, 1),
(κ1, λ) , (κ, λ1) for λ ∈ Coin(I) ∪ Reg<λ0 , κ ∈ Cofin(I) ∪ Reg<κ0,
(κν+1, λ) , (κ, λν+1) for 0 < ν < µ and κ < κν, λ < λν regular cardinals,
(κν , λν) for ν < µ a successor ordinal, and
(κν , µ

′) , (µ′, λν) for ν < µ a limit ordinal and µ′ < µ its cofinality.

Further, the cofinality of J is κ0 and its coinitiality is λ0 .

Proof: Take any cut (D,E) in J . Assume first that D has a maximal
element (αν)ν<µ . By our choice of the linearly ordered sets Iν we can choose,
for every ν < µ, some βν ∈ Iν such that βν > αν . For ρ < µ we define
βρρ := βρ and βρν := αν for ν 6= ρ. Then the elements (βρν)ν<µ, ρ < µ, form a
strictly decreasing coinitial sequence of elements in E. Since µ was chosen
to be regular, this shows that the cofinality of (D,E) is (1, µ). Similarly, it
is shown that if E has a minimal element, then the cofinality of (D,E) is
(µ, 1).

Now assume that (D,E) is nonprincipal. Take S to be the set of all
ν ′ < µ for which there exist aν′ = (αν′,ν)ν<µ ∈ D and bν′ = (βν′,ν)ν<µ ∈ E
such that αν′,ν = βν′,ν for all ν ≤ ν ′. Note that S is a proper initial segment
of the set µ. We claim that ν1 < ν2 ∈ S implies that

αν1,ν = αν2,ν for all ν ≤ ν1 ,

or in other words, (αν1,ν)ν≤ν1 is a truncation of aν2 . Indeed, suppose that
this were not the case. Then there would be some ν0 < ν1 such that

βν1,ν0 = αν1,ν0 6= αν2,ν0 = βν2,ν0 .

Suppose that ν0 is minimal with this property and that the left hand side
is smaller. But then, (βν1,ν)ν<µ < (αν2,ν)ν<µ , so bν1 ∈ D, a contradiction.
A similar contradiction is obtained if the right hand side is smaller.
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Now take µ0 to be the minimum of µ \ S; in fact, S is is equal to the set
µ0 . We define

Dµ0 := {α ∈ Iµ0 | ∃ (αν)ν<µ ∈ D : αµ0 = α and αν = αν,ν for ν < µ0} ,
Eµ0 := {β ∈ Iµ0 | ∃(βν)ν<µ ∈ E : βµ0 = β and βν = αν,ν for ν < µ0} .

By our definition of µ0 , these two sets are disjoint, and it is clear that
their union is Iµ0 and every element in Dµ0 is smaller than every element
in Eµ0 . However, one of the sets may be empty, and we will first consider
this case. Suppose that Eµ0 = ∅. Then Dµ0 = Iµ0 and since this has no
last element, the cofinality of D is the same as that of Iµ0 , which is κµ0 . In
order to determine the coinitiality of E, we proceed as in the beginning of
this proof. Observe that since Eµ0 = ∅, for an element (βρν)ν<µ to lie in E
it is necessary that βρν > αν,ν for some ν < µ0 . For all ν < µ0, we choose
some βν ∈ Iν such that βν > αν,ν ; then for all ρ < µ0 we define βρρ := βρ,
βρν := αν,ν for ν < ρ, and choose βρν arbitrarily for ρ < ν < µ. Then the
elements (βρν)ν<µ, ρ < µ0 , form a strictly decreasing coinitial sequence in E.
If µ′ denotes the cofinality of µ0 , this shows that the coinitiality of E is µ′,
and the cofinality of (D,E) is (κµ0 , µ

′). Since µ was chosen to be regular,
we have that µ′ < µ.

Similarly, it is shown that if Dµ0 = ∅, then the cofinality of (D,E) is
(µ′, λµ0) for some regular cardinal µ′ < µ. Note that Dµ0 or Eµ0 can only
be empty if µ0 is a limit ordinal. Indeed, if µ0 = 0 and (αν)ν<µ ∈ D,
(βν)ν<µ ∈ E, then α0 ∈ D0 and β0 ∈ E0 ; if µ0 = µ′ + 1, then with
(αµ′,ν)ν<µ ∈ D and (βµ′,ν)ν<µ ∈ E chosen as before, it follows that αµ′,µ0 ∈
Dµ0 and βµ′,µ0 ∈ Eµ0 .

From now on we assume that both Dµ0 and Eµ0 are nonempty. Since Iµ0
is complete, Dµ0 has a maximal element or Eµ0 has a minimal element.

Suppose that Dµ0 has a maximal element α̃. Then for all ρ ∈ κµ0+1 ⊂
Iµ0+1 , we define αρν = αν,ν for ν < µ0 , αρµ0 = α̃, αρµ0+1 = ρ, and choose an
arbitrary element of Iν for αρν when µ0 + 1 < ν < µ . Then the elements
(αρν)ν<µ, ρ ∈ κµ0+1 , form a strictly increasing cofinal sequence in D. Since
κµ0+1 was chosen to be a regular cardinal, this shows that the cofinality of
D is κµ0+1.

Suppose that Eµ0 has a minimal element β̃. Then for every σ ∈ λ∗µ0+1 ⊂
Iµ0+1 , we define βσν = αν,ν for ν ≤ µ0 , βσµ0 = β̃, βσµ0+1 = σ, and choose an
arbitrary element of Iν for βσν when µ0 + 1 < ν < µ . Then the elements
(βσν )ν<µ, σ ∈ λ∗µ0+1 , form a strictly decreasing coinitial sequence in E. Since
λµ0+1 was chosen to be a regular cardinal, this shows that the coinitiality
of E is λµ0+1.

If Dµ0 has a maximal element and Eµ0 has a minimal element, then we
obtain that the cofinality of (D,E) is (κµ0+1, λµ0+1).

Now we deal with the case where Dµ0 does not have a maximal element.
Since Iµ0 is complete, Eµ0 must then have a smallest element, and by what
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we have already shown, we find that E has coinitiality λµ0+1. Denote the
cofinality of Dµ0 by κ. We choose a sequence of elements αρµ0 , ρ < κ, cofinal
in Dµ0 . For all ρ < κ, we define αρν = αν,ν for ν < µ0 and choose an
arbitrary element of Iν for αρν when µ0 + 1 < ν < µ . Then the elements
(αρν)ν<µ, ρ < κ, form a strictly increasing cofinal sequence in D. Hence,
(D,E) has cofinality (κ, λµ0+1) with κ the cofinality of a lower cut set in
Iµ0 , i.e., κ ∈ Cofin(I) ∪ Reg<κ0 if µ0 = 0, and κ ∈ Reg<κµ0 otherwise.

If Eµ0 does not have a minimal element, then a symmetrical argument
shows that the cofinality of (D,E) is (κµ0+1, λ) for some λ the coinitiality of
an upper cut set in Iµ0 , i.e., λ ∈ Coin(I)∪Reg<λ0 if µ0 = 0, and λ ∈ Reg<λµ0
otherwise.

We have now proved that the cofinalities of the cuts in J are all among
those listed in the statement of the theorem. By our arguments it is also
clear that all listed cofinalities do indeed appear.

Finally, the easy proof of the last statement of the theorem is left to the
reader. 2

The following result is an immediate consequence of the theorem:

Corollary 19. Assume that

a) κ1 /∈ Coin(I) ∪ Reg<λ0 and λ1 /∈ Cofin(I) ∪ Reg<κ0,
b) κν+1 ≥ λν and λν+1 ≥ κν for all ν < µ,
c) κν 6= λν for ν < µ a successor ordinal, and
d) κν ≥ µ and λν ≥ µ for ν < µ a limit ordinal.

Then J is symmetrically complete. If in addition µ is uncountable, then J
is strongly symmetrically complete, and if also κ0 and λ0 are uncountable,
then J is extremely symmetrically complete.

It is easy to choose our cardinals by transfinite induction in such a way
that all conditions of this corollary are satisfied. We choose

• κ0 and λ0 to be arbitrary uncountable regular cardinals,
• µ > max{κ0, λ0, card(I)},
• κν = µ and λν = µ+ for ν = 1 or ν < µ a limit ordinal,
• κν+1 = κ++

ν and λν+1 = λ++
ν for 0 < ν < µ.

Sending an element α ∈ I to an arbitrary element (αν)ν<µ ∈ J with
α0 = α induces an order preserving embedding of I in J . So we obtain the
following result:

Corollary 20. Every linearly ordered set I can be embedded in an extremely
symmetrically complete ordered set J .

Our above construction can be seen as a “brute force” approach. We
will now present a construction that offers more choice for the prescribed
cofinalities.
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If an index set I is not well ordered, then the lexicographic product
of ordered abelian groups Gi , i ∈ I, is defined to be the subset of the
product consisting of all elements (gi)i∈I with well ordered support {i ∈
I | gi 6= 0}. Likewise, the lexicographic sum is defined to be the subset
consisting of all elements (gi)i∈I with finite support {i ∈ I | gi 6= 0}. The
problem with ordered sets is that they ususally do not have distinguished
elements (like neutral elements for an operation). The remedy used in [5]
is to fix distinguished elements in all linear orderings we wish to use for
our lexicographic sum. Hausdorff ([1]) does this in quite an elegant way:
he observes that the full product is still partially ordered. Singling out one
element in the product then determines the distinguished elements in the
ordered sets (being the corresponding components of the chosen element),
and in this manner one obtains an associated maximal linearly ordered
subset of the full product.

While the index sets we use here are ordinals and hence well ordered,
which makes a condition on the support unnecessary for the work with
lexicographic products, we will use the idea (as apparent in the definition of
the lexicographic sum) that certain elements can be singled out by means
of their support.

We choose infinite regular cardinals µ, κ0 and λ0 . Further, we denote by
On the class of all ordinals and set

I0 := λ∗0 + Ic + κ0 and Iν := On∗ + µ+ {0}+ µ∗ + On for 0 < ν < µ,

assuming that 0 does not appear in Ic or any ordinal or reversed ordinal.
Note that On can be replaced by a large enough cardinal; its minimal size
depends on the choice of I, µ, κ0 and λ0 . But the details are not essential
for our construction, so we skip them.

We define J◦ to consist of all elements of the lexicographic product over
the Iν with index set µ whose support

supp (αν)ν<µ = {ν | ν < µ and αν 6= 0}

is an initial segment of µ (i.e., an ordinal ≤ µ).
A further refinement of our construction uses the idea to define suitable

subsets of J◦ by restricting the choice of the coefficient αν in dependence
on the truncated sequence (αρ)ρ<ν .

For every ν < µ we consider the following set of truncations:

J◦ν := {(αρ)ρ≤ν | (αρ)ρ<µ ∈ J◦} .

By induction on ν < µ we define subsets

Jν ⊂ J◦ν

as follows:

(J1) J0 := I0 .
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(J2) If ν > 0 and Jν′ for all ν ′ < ν are already constructed, then we first
define the auxiliary set

J<ν := {(αρ)ρ<ν | (αρ)ρ≤ν ∈ J◦ν and (αρ)ρ≤ν′ ∈ Jν′ for all ν ′ < ν} .
For a = (αρ)ρ<ν ∈ J<ν we set

κa := cf({b ∈ J<ν | b < a}) and λa := ci({b ∈ J<ν | b > a}) ,
and

(3) Iν(a) := ϕright(κa)
∗ + µ+ {0}+ µ∗ + ϕleft(λa) ⊂ Iν .

Now we let (αρ)ρ≤ν ∈ J◦ν be an element of Jν if and only if a = (αρ)ρ<ν ∈
J<ν and αν ∈ Iν(a). Note that by our definition, each (αρ)ρ≤ν ∈ Jν is a
truncation of an element in J◦, hence its support must be an initial segment
of µ. Thus if αρ = 0 for some ρ < ν, then we must have αν = 0; otherwise,
αν can be any element of Iν(a).

After having defined Jν for all ν < µ, we set

J := {(αρ)ρ<µ ∈ J◦ | (αρ)ρ≤ν ∈ Jν for all ν < µ} .

The following is our first step towards the proof of Theorem 11:

Theorem 21. With the sets Rleft and Rright defined as in the introduction,
assume that (1) holds. Then the cofinalities of the cuts of J are:

{(1, µ), (µ, 1)} ∪ {(κ, ϕright(κ)) | κ ∈ Rleft} ∪ {(ϕleft(λ), λ) | λ ∈ Rright} .
Further, the cofinality of J is κ0 and its coinitiality is λ0 .

Proof: First, we observe that for each ν < µ we obtain an embedding

ιν : Jν ↪→ J

by sending (αρ)ρ≤ν to (βρ)ρ≤µ, where βρ = αρ for ρ ≤ ν and βρ = 0 for
ν < ρ < µ.

We start by proving that the principal cuts in J have cofinalities (1, µ)
and (µ, 1). Take (αρ)ρ≤µ ∈ J and assume first that its support is smaller
than µ. Set ν := min{ρ < µ | αρ = 0} ≥ 1. Then by our definition of J ,
αν can be any element of Iν(a). Since the cofinalities of the principal cuts
generated by 0 in Iν are (1, µ) and (µ, 1), the cofinalities of the principal
cuts generated by (αρ)ρ≤ν in Jν are also (1, µ) and (µ, 1). By means of the
embeddings ιν it follows that the cofinalities of the principal cuts generated
by (αρ)ρ<µ in J are again (1, µ) and (µ, 1).

Now assume that the support of a := (αρ)ρ<µ is µ. For each ν < µ there
are elements βν , γν ∈ Iν((αρ)ρ<ν) with βν < αν < γν . We set βρ := γρ := αρ
for ρ < ν, and define

bν := ιν((βρ)ρ≤ν) and cν := ιν((γρ)ρ≤ν) .

Whenever ν < ν ′ < µ, it follows that

bν < bν′ < a < aν′ < aν .



22 KATARZYNA & FRANZ-VIKTOR KUHLMANN, SAHARON SHELAH

This proves that again, the cofinalities of the principal cuts generated by
(αρ)ρ<µ in J are (1, µ) and (µ, 1).

Now take any nonprincipal cut (D,E) in J . By restricting the elements
to index set ν+ 1 = {ρ | ρ ≤ ν}, this cut induces a quasicut (Dν , Eν) in Jν .

Assume that ν < µ is such that ιν(Dν) is not a cofinal subset of D and
ιν(Eν) is not a coinitial subset of E. Then we have one of the following
cases:

• ιν(Dν) ∩ E 6= ∅ or ιν(Eν) ∩D 6= ∅,
• there are dν ∈ D and eν ∈ E such that ιν(Dν) < dν < eν < ιν(Eν), which
yields that the restrictions of dν and eν to index set ν + 1 are equal and lie
in Dν ∩ Eν .
In both cases, Dν ∩ Eν 6= ∅. This implies that also Dν′ ∩ Eν′ 6= ∅ for all
ν ′ < ν, with the element in Dν′ ∩Eν′ being the restriction of the element in
Dν ∩ Eν .

Now we show that there is some ν < µ such that ιν(Dν) is cofinal in
D or ιν(Eν) is coinitial in E. Suppose that the contrary is true. Then
Dν ∩ Eν 6= ∅ for all ν < µ and there is a unique element a ∈ J whose
restriction to index set ν + 1 lies in Dν ∩ Eν , for all ν < µ. It follows that
a is either the largest element of D or the smallest element in E. But this
contradicts our assumption that (D,E) is nonprincipal.

We take ν to be minimal with the property that ιν(Dν) is cofinal in D
or ιν(Eν) is coinitial in E. From what we have shown above, it follows that
Dν′ ∩ Eν′ 6= ∅ for all ν ′ < ν and there is (αρ)ρ<ν ∈ J<ν whose restriction to
ν ′ + 1 lies in Dν′ ∩Eν′ , for all ν ′ < ν. Therefore, there must be elements in
both Dν and Eν whose restrictions to ν are equal to (αρ)ρ<ν . Consequently,
with

Dν := {αν ∈ Iν((αρ)ρ<ν) | (αρ)ρ≤ν ∈ Dν} and
Eν := {αν ∈ Iν((αρ)ρ<ν) | (αρ)ρ≤ν ∈ Eν},

(Dν , Eν) is a cut in Iν((αρ)ρ<ν) . But Iν((αρ)ρ<ν) is cut complete, and so
there is some αν ∈ Iν((αρ)ρ<ν) such that a = (αρ)ρ≤ν is either the largest
element of Dν or the smallest element of Eν . We note that αν 6= 0 ; other-
wise, the element (αρ)ρ<µ with αρ = 0 for ν ≤ ρ < µ, which is the unique
element in J whose restriction to ν + 1 is a, would be the largest element
of D or the smallest element of E in contradiction to our assumption on
(D,E). Hence by construction, for every

α ∈ Iν+1((αρ)ρ≤ν) = ϕright(κa)
∗ + µ+ {0}+ µ∗ + ϕleft(λa)

there is an element (αρ)ρ<µ with αν+1 = α whose restriction to ν + 1 is a.

We assume first that ιν(Dν) is cofinal in D. Since (D,E) is nonprincipal,
D and hence also Dν has no largest element. So a is the smallest element
of Eν . Consequently,

ιν+1({(αρ)ρ≤ν+1 | αν+1 ∈ Iν+1((αρ)ρ≤ν)})
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is coinitial in E. We observe that κa = cf(Dν) = cf(D) 6= 1. By con-
struction, the coinitiality of Iν+1((αρ)ρ≤ν) is ϕright(κa). This proves that the
cofinality of (D,E) is (κa, ϕright(κa)).

If on the other hand, ιν(Eν) is coinitial in E, then a is the largest element
of Dν and one shows along the same lines as above that the cofinality of
(D,E) is (ϕleft(λa), λa) with λa = ci(Eν) = ci(E) 6= 1.

We have to prove that the cardinals κa and λa that appear in the con-
struction, i.e., in definition (3), are elements of {1}∪Rleft and {1}∪Rright, re-
spectively. We observe that κa and λa appear above only if a = (αρ)ρ≤ν ∈ Jν
is such that αρ 6= 0 for all ρ ≤ ν. We show our assertion by induction on
1 ≤ ν ≤ µ. We do this for κa ; for λa the proof is similar. First, we consider
the successor case ν = σ + 1. We set a = (αρ)ρ≤σ . If σ ≥ 1, then our
induction hypothesis states that our assertion is true for κa and λa . We
observe that

κa = cf({(βρ)ρ≤ν ∈ Jν | βρ = αρ for ρ < ν and βν < αν})
= cf({β ∈ Iν(a) | β < αν}) .

This is the cofinality of a lower cut set of a cut in Iσ(a), which is equal to
I0 if σ = 0, and to

ϕright(κa)
∗ + µ+ {0}+ µ∗ + ϕleft(λa)

otherwise. Therefore, if κa is infinite, it is an element of Cofin(I)∪Reg<κ0∪
Reg<µ = Rleft if σ = 0, and of Reg<ϕleft(λa) ∪Reg<µ otherwise. In the latter

case, λa ∈ Rright by induction hypothesis, hence ϕleft(λa) ∈ Rleft by (1),
which yields that Reg<ϕleft(λa) ∪Reg<µ ⊆ Rleft. Altogether, we have proved

that κa ∈ {1} ∪Rleft.

Now we consider the case of ν a limit ordinal. Let µ′ be its cofinality.
Then µ′ ∈ Reg<µ . With a similar construction as in the beginning of the
proof one shows that the principal cuts generated by elements in J<ν have
cofinalities (µ′, 1) and (1, µ′). This yields that κa ∈ Rleft and λa ∈ Rright.

It remains to prove that all cofinalities listed in the assertion of our the-
orem actually appear as cofinalities of cuts in J . Since for all cardinals
κ ∈ Cofin(I) ∪ Reg<κ0 , there is a cut in I0 with cofinality (κ, 1), our con-
struction at level ν = 1 shows that (κ, ϕright(κ)) appears as the cofinality of
a cut in J . Similarly, one shows that (ϕleft(λ), λ) appears as the cofinality
of a cut in J for every λ ∈ Coin(I) ∪ Reg<λ0 .

Now take any regular cardinal µ′ < µ. For an arbitrary a = (α0) ∈ J0 we
see that there is a cut in I1(a) with cofinality (µ′, 1). Our construction at
level ν = 2 then shows that (µ′, ϕright(µ

′)) appears as the cofinality of a cut
in J . Similarly, one shows that (ϕleft(µ

′), µ′) appears as the cofinality of a
cut in J .
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Finally, the cuts (1, µ) and (µ, 1) appear as the cofinalities of all principal
cuts, as shown at the beginning of the proof.

The proof of the last statement of the theorem is again left to the reader.
2

The following result is an immediate consequence of Theorem 21, and it
proves Theorem 11:

Corollary 22. Assume in addition to the previous assumptions that

ϕleft(κ) 6= κ 6= ϕright(κ) for all κ ∈ Rleft ∪Rright .

Then J is a symmetrically complete extension of I. If in addition µ is
uncountable, then J is strongly symmetrically complete.

Remark 23. In both constructions that we have given in this section, every
element in the constructed ordered set has, in the terminology of Hausdorff,
character (µ, µ).

6. Construction of symmetrically complete ordered
extensions

Take any ordered abelian group G. We wish to extend it to an extremely
symmetrically complete ordered abelian group. We use the well known
fact that G can be embedded in a suitable Hahn product H0 = HI R, for
some ordered index set I. By Corollary 20, there is an embedding ι of
I in an extremely symmetrically complete linearly ordered set J . We set
H = HJ R and note that there is a canonical order preserving embedding
ϕ of H0 = HI R in H = HJ R which lifts ι by sending an element (rγ)γ∈I
to the element (r′δ)δ∈J where r′δ = rγ if δ = ι(γ) and r′δ = 0 if δ is not in
the image of ι. By Theorem 6, H is an extremely symmetrically complete
ordered abelian group. We have now proved the first part of Theorem 9.

Take any ordered field K. We wish to extend it to an extremely symmet-
rically complete ordered field. First, we extend K to its real closure Krc.
From [Ka] we know that Krc can be embedded in the power series field
R((G)) where G is the value group of Krc under the natural valuation. By
what we have already shown, G admits an embedding ψ in an extremely
symmetrically complete ordered abelian group H. By a definition analogous
to the one of ϕ above, one lifts ψ to an order preserving embedding of the
power series field R((G)) in the power series field R((H)). By Theorem 7,
R((H)) is an extremely symmetrically complete ordered field. We have thus
proved the second part of Theorem 9.
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