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Abstract

Suppose F is a field with a nontrivial valuation v and valuation
ring Ov, E is a finite field extension and w is a quasi-valuation on E
extending v. We study the topology induced by w. We prove that the
quasi-valuation ring determines the topology, independent of the choice
of its quasi-valuation. Moreover, we prove the weak approximation
theorem for quasi-valuations.

1 Introduction

Recall that a valuation on a field F is a function v : F → Γ ∪ {∞}, where
Γ is a totally ordered abelian group and v satisfies the following conditions:

(A1) v(x) = ∞ iff x = 0;
(A2) v(xy) = v(x) + v(y) for all x, y ∈ F ;
(A3) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ F .
There has been considerable interest in recent years in generalizations of

valuations, in order to treat rings that are not integral domains, and also to
handle several valuations simultaneously. For example, pseudo-valuations
(see [Co],[Hu], and [MH]), Manis-valuations and PM-valuations (see [KZ]),
value functions (see [Mor]), and gauges (see [TW]). These related theories
are discussed briefly in the introduction of [Sa].

In this paper we continue our study from [Sa] of quasi-valuations. Recall
that a quasi-valuation on a ring A is a function w : A → M ∪ {∞}, where
M is a totally ordered abelian monoid, to which we adjoin an element ∞
greater than all elements of M , and w satisfies the following properties:

(B1) w(0) = ∞;
(B2) w(xy) ≥ w(x) + w(y) for all x, y ∈ A;
(B3) w(x+ y) ≥ min{w(x), w(y)} for all x, y ∈ A.
The minimum of a finite number of valuations with the same value group

is a quasi-valuation. For example, the n-adic quasi-valuation on Q (for any
positive n ∈ Z) already has been studied in [Ste]. (Stein calls it the n-adic
valuation.) It is defined as follows: for any 0 ̸= c

d ∈ Q there exists a unique
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e ∈ Z and integers a, b ∈ Z, with b positive, such that c
d = ne a

b with n - a,
(n, b) = 1 and (a, b) = 1. Define wn(

c
d) = e and wn(0) = ∞.

In [Sa] we develop the theory of quasi-valuations on finite dimensional
field extensions that extend a given valuation. For the reader’s convenience
we briefly overview some of the results from [Sa]. Let F be a field with
valuation v and valuation ring Ov, let E be a finite field extension and let w
be a quasi-valuation on E extending v with a corresponding quasi-valuation
ring Ow. We prove that Ow satisfies INC (incomparability), LO (lying over),
and GD (going down) over Ov; in particular, Ow and Ov have the same Krull
Dimension. We also prove that every such quasi-valuation is dominated by
some valuation extending v. Namely, there exists a valuation u extending v
on E so that ∀x ∈ E, w(x) ≤ u(x).

Under the assumption that the value monoid of the quasi-valuation is a
group we prove that Ow satisfies GU (going up) over Ov, and a bound on
the size of the prime spectrum is given. In addition, a 1:1 correspondence is
obtained between exponential quasi-valuations and integrally closed quasi-
valuation rings.

Given R, an algebra over Ov, we construct a quasi-valuation on R; we
also construct a quasi-valuation on R⊗Ov F , which helps us prove our main
Theorem. The main Theorem states that if R ⊆ E satisfies R∩F = Ov and
E is the field of fractions of R, then R and v induce a quasi-valuation w on
E such that R = Ow and w extends v; thus R satisfies the properties of a
quasi-valuation ring.

In this paper, we extend some fundamental results from valuation theory.
For example, we prove that the topology induced by a quasi-valuation is
Hausdorff and totally disconnected. We also prove a weak version of the
approximation theorem for quasi-valuations.

2 The topology induced by a quasi-valuation

In this section we introduce the topology induced by a quasi-valuation. We
show that this topology is close to the topology induced by a valuation in the
sense that they share some basic topological properties such as being both
Hausdorff and totally disconnected. In the main theorem of this section we
prove that the topology induced by the quasi-valuation is determined by the
corresponding quasi-valuation ring.

In this section F denotes a field with a nontrivial valuation v, a value
group Γ, and a valuation ring Ov. E denotes a finite dimensional field
extension with n = [E : F ], w : E → M ∪ {∞} is a quasi-valuation on E
with quasi-valuation ring Ow (namely, Ow = {x ∈ E | w(x) ≥ 0}), such that
w|F = v, and M is a totally ordered abelian monoid containing Γ.

We note that w(-1)=0 because w extends v. Thus, by [Sa, Lemma 1.3],
we have w(x) = w(−x) for all x ∈ E. Moreover, by [Sa, Lemma 1.4], for
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all x, y ∈ E such that w(x) ̸= w(y), we have w(x + y) = min{w(x), w(y)}.
Recall from [Sa, Definition 1.5] that an element c ∈ E is called stable with
respect to w if w(cx) = w(c) +w(x) for every x ∈ E. Thus, by [Sa, Lemma
1.6], every a ∈ F is stable with respect to w. We shall freely use these facts
throughout the paper.

Let x ∈ E and m ∈ M ; we denote

Uw
m(x) = {y ∈ E | w(y − x) > m};

we suppress w when it is understood.

Remark 2.1. Let x ∈ E and m ∈ M ; then x ∈ Um(x). Indeed,

w(x− x) = w(0) = ∞ > m.

We shall repeatedly use Remark 2.1 without reference.

Lemma 2.2. If y ∈ Um1(x1) ∩ Um2(x2) and m1 ≤ m2, then

y ∈ Um2(y) ⊆ Um1(x1) ∩ Um2(x2).

Proof. Since y ∈ Um1(x1) ∩ Um2(x2), we have w(y − x1) > m1 and
w(y − x2) > m2 ≥ m1. Let z ∈ Um2(y); then w(z − y) > m2. Thus,

w(z − x1) = w(z − y + y − x1)

≥ min{w(z − y), w(y − x1)} > m1

and
w(z − x2) = w(z − y + y − x2)

≥ min{w(z − y), w(y − x2)} > m2.

Thus z ∈ Um1(x1) ∩ Um2(x2)

We denote B = {Um(x) | x ∈ E, m ∈ M}.

Corollary 2.3. The set B is a base for a topology on E.

In view of Corollary 2.3 we define,

Definition 2.4. The topology whose base is B will be denoted by Tw. We
call Tw the topology induced by the quasi-valuation w.

We recall the following lemma from [Sa, Lemma 2.8]:

Lemma 2.5. Let E/F be a finite field extension and let w be a quasi-
valuation on E extending a valuation v on F . Then w(x) ̸= ∞ for all
0 ̸= x ∈ E. In fact, for all 0 ̸= x ∈ E, there exists α ∈ Γ such that
w(x) < α.
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We denote

MG = {m ∈ M | there exists 0 ̸= y ∈ E such that m ≤ w(y)}.

Remark 2.6. MG is a submonoid of M containing Γ.

Proof. Let m1,m2 ∈ MG; then there exist nonzero y1, y2 ∈ E such that
m1 ≤ w(y1) and m2 ≤ w(y2). Thus,

m1 +m2 ≤ w(y1) + w(y2) ≤ w(y1y2).

Note that y1y2 ̸= 0 and thus m1+m2 ∈ MG. It is easy to see that Γ ⊆ MG;
indeed, for every α ∈ Γ there exists a nonzero a ∈ F such that w(a) =
v(a) = α.

Remark 2.7. MG does not have a maximal element; in fact, for all m ∈ MG

there exists α ∈ Γ ∩MG such that m < α.

Proof. Let m ∈ MG. Then there exists 0 ̸= y ∈ E such that m ≤ w(y). By
Lemma 2.5 there exists α ∈ Γ such that w(y) < α. So, m < α. By Remark
2.6, α ∈ Γ ⊆ MG.

Proposition 2.8. Tw is discrete iff there exists an element m ∈ M \MG.

Proof. (⇐) Let m ∈ M \MG and let x ∈ E. Then for every y ̸= x we have
w(y − x) < m; thus Um(x) = {x}.

(⇒) We assume M = MG and we show that Tw is not discrete. It is
enough to show that every open set has infinitely many elements. Now,
since every open set contains some Um(x) (for m ∈ M , x ∈ E), it is enough
to show that every Um(x) has infinitely many elements. By our assumption
M = MG and thus for every m ∈ M there exists 0 ̸= z ∈ E such that
m ≤ w(z); also, by Lemma 2.5, for every such z there exists 0 < α ∈ Γ such
that w(z) < α. Take a ∈ Ov with v(a) = α. Then x+ an ∈ Um(x) for each
n ∈ N, proving the set Um(x) has infinitely many elements.

In view of Proposition 2.8, we restrict our discussion to MG; namely we
denote B = {Um(x) | x ∈ E, m ∈ MG} as a base for Tw.

Lemma 2.9. Let x, y, z ∈ E and m ∈ MG. If z ∈ Um(x) ∩ Um(y) then
w(y − x) > m.

Proof. By definition, z ∈ Um(x)∩Um(y) implies w(z−x) > m and w(y−z) >
m. Thus,

w(y − x) ≥ min{w(y − z), w(z − x)} > m.
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Proposition 2.10. Tw is Hausdorff.

Proof. Let x, y ∈ E with x ̸= y, and write w(y−x) = m ∈ MG. By Lemma
2.9 we have,

Um(x) ∩ Um(y) = ∅.

Lemma 2.11. Let x ∈ E and m ∈ MG. Then Um(x) is closed as well as
open.

Proof. Let y /∈ Um(x); then w(y − x) ≤ m. By Lemma 2.9 we have,

Um(y) ∩ Um(x) = ∅;

obviously y ∈ Um(y). So, Um(y) is an open set containing y disjoint from
Um(x).

The following lemma shows that E is totally disconnected, in the follow-
ing sense.

Proposition 2.12. The only nonempty connected subsets of E are the sin-
gleton sets {x} for x ∈ E.

Proof. Let S ⊆ E be a nonempty set containing at least two elements, x ̸= y.
Write w(x− y) = m and U1 = Um(x). Let U2 denote the complement of U1

in E, which is open by Lemma 2.11. Note that x ∈ U1 and y ∈ U2 (since
w(y − x) = m ≯ m), and thus by definition S is disconnected.

Let x ∈ E and m ∈ MG; we denote Ũm(x) = {y ∈ E | w(y − x) ≥ m}.
Obviously, Um(x) ⊆ Ũm(x). Thus, as in Remark 2.1, we have x ∈ Ũm(x).

Lemma 2.13. Let x, y ∈ E and m ∈ MG. If y ∈ Ũm(x) then Ũm(y) ⊆
Ũm(x). If y /∈ Ũm(x) then Ũm(y) ⊆ (Ũm(x))c.

Proof. Suppose y ∈ Ũm(x); then w(y − x) ≥ m. Let z ∈ Ũm(y); then
w(z − y) ≥ m. Hence, w(z − x) ≥ min{w(z − y), w(y − x)} ≥ m. Thus,

Ũm(y) ⊆ Ũm(x).

Suppose y /∈ Ũm(x); then w(y−x) < m. Let z ∈ Ũm(y); then w(z−y) ≥
m. Hence, w(z − x) = min{w(z − y), w(y − x)} = w(y − x) < m. Thus,

Ũm(y) ⊆ (Ũm(x))c.
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Corollary 2.14. Ũm(x) is both open and closed, for any x ∈ E and m ∈
MG.

Proof. Let y ∈ Ũm(x); then by Lemma 2.13,

y ∈ Um(y) ⊆ Ũm(y) ⊆ Ũm(x).

Let y /∈ Ũm(x); then by Lemma 2.13,

y ∈ Um(y) ⊆ Ũm(y) ⊆ (Ũm(x))c.

Lemma 2.15. Let x ∈ E and let m,m′ ∈ MG such that m < m′. Then

Um(x) =
∪

y∈Um(x)

Ũm′(y).

Proof. (⊆) holds because every y ∈ Um(x) is obviously in Ũm′(y). To prove
(⊇), we need to show that Ũm′(y) ⊆ Um(x) for all y ∈ Um(x). So, let
y ∈ Um(x) and let z ∈ Ũm′(y). Then, w(y − x) > m and w(z − y) ≥ m′.
Thus, since m < m′,

w(z − x) ≥ min{w(z − y), w(y − x)} > m.

We denote B1 = {Ũm(x) | x ∈ E, m ∈ MG}.

Proposition 2.16. The set B1 is a base for Tw.

Proof. First, by Corollary 2.14, Ũm(x) is open for all x ∈ E and m ∈ MG.
Now, let x ∈ E and m ∈ MG. By Remark 2.7 there exists m < m′ ∈ MG.
By Lemma 2.15 we have, Um(x) =

∪
y∈Um(x) Ũm′(y). Thus, every open set

in Tw is a union of elements of B1.

In fact, we can describe the topology in terms of Γ (the value group of
the valuation) as the following proposition shows.

First, we denote B2 = {Ũα(x) | x ∈ E, α ∈ Γ}.

Proposition 2.17. The set B2 is a base for Tw.

Proof. First, by Remark 2.6, B2 ⊆ B1. So every element of B2 is open in
Tw. Now, let x ∈ E and m ∈ MG. By Remark 2.7, there exists α ∈ Γ∩MG

such that m < α. By Lemma 2.15,

Um(x) =
∪

y∈Um(x)

Ũα(y).
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Recall from [Sa, Section 10] that for every ring R ⊆ E satisfying R∩F =
Ov, we denote

WR = {w | w is a quasi-valuation on E extending v with Ow = R}.

Also recall that WR is not empty, by [Sa, Theorem 9.35].

Lemma 2.18. Let w ∈ WR, x ∈ E and 0 ̸= a ∈ F . The following are
equivalent:

(a) w(x) ≥ v(a);

(b) w(x)− v(a) ≥ 0;

(c) w(xa−1) ≥ 0;

(d) xa−1 ∈ R.

Proof. (a)⇔(b). Because v(a) ∈ Γ. (b)⇔(c). v is a valuation and 0 ̸= a ∈ F ;
thus −v(a) = v(a−1). Therefore, w(x) − v(a) = w(x) + v(a−1). Since w
extends v and a is stable with respect to w, we get

w(x) + v(a−1) = w(x) + w(a−1) = w(xa−1).

(c)⇔(d). By assumption, w ∈ WR; thus Ow = R.

Lemma 2.19. Let w1, w2 ∈ WR and let α ∈ Γ; then

w1(x) ≥ α iff w2(x) ≥ α.

Proof. By assumption, Ow1 = Ow2 = R. Let a ∈ F such that v(a) = α;
clearly, a ̸= 0 (since α ∈ Γ). Thus, using Lemma 2.18 twice, we get

w1(x) ≥ α iff xa−1 ∈ Ow1 = Ow2 iff w2(x) ≥ α.

We are ready to prove the main theorem of this section.

Theorem 2.20. If w1, w2 ∈ WR, then Tw1 = Tw2. In other words, the
quasi-valuation ring determines the topology, independent of the choice of
its quasi-valuation.

Proof. By Proposition 2.17, the set C = {Ũw1
α (x) | x ∈ E, α ∈ Γ} is a base

for Tw1 and the setD = {Ũw2
α (x) | x ∈ E, α ∈ Γ} is a base for Tw2 . However,

for every x ∈ E and α ∈ Γ we have, by Lemma 2.19, Ũw1
α (x) = Ũw2

α (x).
Thus, C = D and the theorem is proved.
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3 Weak Approximation Theorem

In this section we prove a weak version of the approximation theorem for
quasi-valuations. We call it the weak approximation theorem since it relies
on the independence of the valuation rings in F and not on the independence
of the quasi-valuations in E. (The independence of the valuation rings in
F implies the independence of the quasi-valuation rings in E but not vice
versa).

In this section F denotes a field and E denotes a finite dimensional field
extension with [E : F ] = n.

Definition 3.1. Let A and B be two subrings of F . A and B are called
independent if AB = F . Two valuations are called independent, if their
rings are independent; likewise, two valuations are called dependent, if their
rings are dependent.

We recall the Approximation Theorem for valuations.

Theorem 3.2. (Approximation Theorem for valuations) ([Bo, Section 7.2,
Thm. 1]) Let {vi}1≤i≤k be a set of valuations on a field F which are inde-
pendent in pairs and let Γi be the value group of vi. Let xi ∈ F and αi ∈ Γi

for 1 ≤ i ≤ k. Then there exists an x ∈ F such that vi(x− xi) ≥ αi for all
i.

Let {Ovi}1≤i≤k be a finite set of valuation rings of F . We denote by B
their intersection, i.e.,

B =
∩

1≤i≤k

Ovi .

Let {Ri}1≤i≤k be a finite set of subrings of E such that E is the field of
fractions of each Ri and Ri ∩ F = Ovi for every 1 ≤ i ≤ k. Recall that by
[Sa, Theorem 9.35], for every 1 ≤ i ≤ k there exists a filter quasi-valuation wi

on E corresponding to Ri and such that wi extends vi (so the collections of
quasi-valuations corresponding to the Ri’s are not empty.) We shall prove
our theorem for every quasi-valuation wi on E corresponding to Ri (not
necessarily filter quasi-valuations). Note that for every 1 ≤ i ≤ k, RiF is
an integral domain finite dimensional over F and thus a field containing Ri;
hence RiF = E. Moreover, by [Bo, Section 7, Proposition 1], the field of
fractions of B is F .

We denote R =
∩

1≤i≤k Ri.

The next observation is well known.

Remark 3.3. Let C be an integral domain, S a multiplicative closed subset of
C with 0 /∈ S, and R an algebra over C. We claim that every x ∈ R⊗CCS−1

is of the form r ⊗ 1
β for r ∈ R and β ∈ S. Indeed, write x =

∑t
i=1(ri ⊗

αi
βi
)

where ri ∈ R, αi ∈ C and βi ∈ S. Let β = Πt
i=1βi and α′

i = αiββ
−1
i ∈ C.
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Thus,
t∑

i=1

(ri ⊗
αi

βi
) =

t∑
i=1

(ri ⊗
α′
i

β
) =

t∑
i=1

(α′
iri ⊗

1

β
) = r ⊗ 1

β
.

Where r =
∑t

i=1 α
′
iri.

Proposition 3.4. E = S−1R ∼= R⊗B F , where S = B \ {0}.

Proof. S−1R is an integral domain finite dimensional over F , so is a field.
It remains to show that any x ∈ E has the form r/b where r ∈ R and b ∈ S.
By the previous Remark, x can be written in the form ri/bi where ri ∈ Ri

and bi ∈ B \ {0}. Write b =
∏

1≤i≤k bi and get

bx = ri
∏
l ̸=i

bl ∈ RiB = Ri

for every 1 ≤ i ≤ k, and thus x = bx/b has the desired form.

We are ready for the main theorem of this section: the weak approxima-
tion theorem for quasi-valuations.

Theorem 3.5. Let E/F be a finite field extension and let {Ovi}1≤i≤k be
a finite set of valuation rings of F which are pairwise independent. Let
{Ri}1≤i≤k be a finite set of subrings of E such that the field of fractions of
each Ri is E and Ri ∩ F = Ovi for every 1 ≤ i ≤ k. Let R =

∩
1≤i≤k Ri

and let {wi | wi : E → Mi ∪ {∞}, 1 ≤ i ≤ k} be a set of quasi-valuations
on E such that for every 1 ≤ i ≤ k, wi ∈ WRi. Let {xi}1≤i≤k ⊆ E and let
{mi}1≤i≤k be a set of elements such that, for every 1 ≤ i ≤ k, mi ∈ MG

i .
Then there exists an element x ∈ E such that

wi(x− xi) ≥ mi.

for all 1 ≤ i ≤ k.

Proof. Since mi ∈ MG
i for every 1 ≤ i ≤ k, we get by Remark 2.7 that there

exist αi ∈ Γi such that mi < αi for all 1 ≤ i ≤ k. We shall prove that
wi(x− xi) ≥ αi for every 1 ≤ i ≤ k. By Proposition 3.4, R contains a basis
{r1, r2, ..., rn} of E over F . Write, for every 1 ≤ i ≤ k,

xi =
∑

1≤j≤n

cijrj

where cij ∈ F . The approximation theorem for valuations gives d1, ..., dn ∈ F
such that

vi(dj − cij) ≥ αi,

for 1 ≤ i ≤ k, 1 ≤ j ≤ n.
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Define x =
∑

1≤j≤n djrj and get, for every 1 ≤ i ≤ k,

wi(x− xi) = wi(
∑

1≤j≤n

djrj −
∑

1≤j≤n

cijrj)

= wi(
∑

1≤j≤n

(dj − cij)rj).

Note that, for every 1 ≤ j ≤ n and 1 ≤ i ≤ k,

wi(dj − cij) = vi(dj − cij) ≥ αi

and wi(rj) ≥ 0 (since rj ∈ R). Thus,

wi(
∑

1≤j≤n

(dj − cij)rj) ≥ min
1≤j≤n

wi((dj − cij)rj) ≥ αi.
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