
ULTRAMETRIC DYNAMICS

SIBYLLA PRIESS-CRAMPE AND PAULO RIBENBOIM

Abstract. This paper is concerned with dynamics in general ultramet-

ric spaces. We prove the Fixed Point Theorem, the Stability Theorem,

the Common Point Theorem, the Local Fixed Point Theorem, the At-
tractor Theorem and we derive conditions for a mapping to be surjective.

We also discuss tightly continuous mappings and prove a theorem about

the transfer of the property of principal completeness by a mapping be-
tween ultrametric spaces.

1. Introduction

In short, Dynamics in mathematics is concerned with the effect on points
of iterating self-maps on a space. In this context important questions are
about the existence of fixed points, of common points to more than one self-
map, as well as the existence of stable domains, of attractor points, etc.. In
their full generality, ultrametric spaces are just sets endowed with a distance
mapping having values in an arbitrary ordered set Γ with a smallest element
and satisfying natural conditions (as indicated in the text). In our study,
the set Γ is not required to be totally ordered, a fortiori, Γ need not to be
contained in the set of non-negative real numbers.

a) The seminal examples of ultrametric spaces are the p-adic fields and their
finite degree extensions. The Dynamics in these fields has been studied by
numerous authors, see for example the books of Narkiewicz [6] and Silverman
[21].

b) Non-classical Functional Analysis started from studying spaces over the
p-adic fields. Then the p-adic fields were replaced by fields with valuations of
rank one, and now, since about ten years, also spaces with Krull valuations
of arbitrary rank are considered (see for example the books of Monna [5] and
van Rooij [23] as well as the papers by Ochsenius and Schikhof [7] and Priess-
Crampe [9]). For this new direction of non-classical Functional Analysis, it is
expected that general theorems of ultrametric spaces will play an important
role.
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c) Hardy fields are endowed with a natural valuation which is a Krull
valuation of arbitrary rank (see for example [18], [19]). The Fixed Point
Theorem is used to determine conditions for the existence of solutions of
polynomial differential equations of any order, or even of systems of such
equations, see Priess-Crampe and Ribenboim [16], [15].

d) Methods of ultrametric dynamics also find applications in the study of
differential equations over rings of power series, as in the work of van der
Hoeven, for example see his lecture notes [22].

e) A very different and unexpected application of ultrametric dynamics
is found in the determination of solutions of the famous Fermat equation in
square matrices with entries in a p-adic field, see [17].

f) Schörner used the Common Point Theorem in a construction involving
ternary fields, concerned with the existence of Hahn structures for valued
projective planes, see Schörner [20].

g) Programs with positive clauses were shown to have models by means of
the fixed point theorem of Knaster and Tarski about monotonic self-maps in
a complete lattice. More general programs, involving negation in clauses lead
to the ultrametric space of maps from the Herbrand base with values 0, 1;
in this space the values of the distance are the subsets of the Herbrand base.
The fixed point of the immediate consequence operator gives conditions for
the existence of models for the program, see Priess-Crampe and Ribenboim
[12], [13] and Hitzler and Seda [2], [1].

The variety of applications calls for a systematic study in full generality
of the main theorems of ultrametric dynamics as we do in this paper. The
fundamental theorem of arithmetics says already that besides the classical
distance associated to the ordinary absolute value, there are all the p-adic
distances. The examples mentioned above support our contention that in the
mathematical world the ultrametric facets are ubiquitous. It is our hope that
specialists in dynamical systems will benefit from an acquaintance with our
methods.

It is not superfluous to point out features in our treatment which cannot
be found in papers of any other authors.

i) We consider ultrametric spaces with set of values of the distance which
need not be totally ordered. Loosely speaking, this more embracing situa-
tion is intended to handle the multivariate spaces and ultrametric spaces of
functions, as quoted in (e) and (g). The difficulties in this general situation
require delicate arguments which are unnecessary in the case when the set of
values of the distance is totally ordered.

ii) Whereas in Dynamics one studies a space X and a self-mapping ϕ : X →
X, we work most often with configurations X = 〈X,X,X ′, ϕ, θ, ψ〉, where X
and X ′ are ultrametric spaces, and ϕ : X → X, ψ, θ : X → X ′ are mappings.
This richer situation allows to find applications in a wider variety of contexts,
for example the Attractor Theorem.
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In §2 we introduce the reader to ultrametric spaces, giving definitions of the
relevant concepts and illustrating with examples. These examples will allow
the reader to perceive the scope of the theory of such general ultrametric
spaces.

Even though we had proved in our earlier papers the Fixed Point Theorem,
and some companion theorems, in §3 we prove the Main Theorem for a ”con-
figuration” of ultrametric spaces. The Fixed Point Theorem, the Common
Point Theorem, the Stability Theorem, the Local Fixed Point Theorem are
immediate consequences of the Main Theorem.

And it does not take much work to obtain the Attractor Theorem and
consequences about surjective mappings – this is treated in §4.

In the next §5 we discuss what we call tightly continuous mappings. Finally
in §6 we prove a theorem of transfer of principal completeness. It is valid
without assuming that the set of values of the distance is totally ordered and
it requires a delicate and long proof.

2. Ultrametric Spaces

2.1. Definitions and Relevant Results. We give the definitions and results
which are required in the sequel. For more details, the reader may consult
the papers listed in the references.

2.1.1. Let (Γ,≤) be an ordered set with smallest element 0. Let X be a
non-empty set. A mapping d : X × X → Γ is called an ultrametric distance
function when the following properties are satisfied for all x, y, z ∈ X:

(d1) d(x, y) = 0 if and only if x = y.
(d2) d(x, y) = d(y, x).
(d3) If d(x, y) ≤ γ and d(y, z) ≤ γ then d(x, z) ≤ γ, for all γ ∈ Γ.
(X, d,Γ) is called an ultrametric space and d(x, y) is the ultrametric distance

between x and y. The ultrametric space is trivial, if there exists γ ∈ Γ such
that for all x, y ∈ X, x 6= y, d(x, y) = γ. The space X is said to be solid if
for every γ ∈ Γ and x ∈ X there exists y ∈ X such that d(x, y) = γ. If X is
solid then d(X ×X) = Γ.

If (Γ,≤) is totally ordered, (d3) becomes:

(d3’) d(x, z) ≤ max{d(x, y), d(y, z)} for all x, y, z ∈ X.

If Y is a subset of X, if d|Y is the restriction of d to Y × Y and ΓY ⊆ Γ
such that d(Y × Y ) ⊆ ΓY , we say that (Y, d|Y ,ΓY ) is a subspace of (X, d,Γ).

2.1.2. Let γ ∈ Γ, let Bγ(x) = {y ∈ X | d(y, x) ≤ γ}. If γ = 0 then
Bγ(x) = {x}. A set B ⊆ X is called a ball if there exists γ ∈ Γ• = Γ\{0}
and x ∈ X such that B = Bγ(x). In this situation x is a center of B and γ
is a radius of B. If x, y ∈ X, x 6= y, then B(x, y) = Bd(x,y)(x) is said to be a
principal ball. If X is solid, every ball is principal.
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A non-empty subset Y of X is said to be convex in X when for all y1, y2 ∈ Y
with y1 6= y2 the principal ball B(y1, y2) ⊆ Y . It follows that every principal
ball is convex in X and furthermore, if

⋂
i∈I
B(xi, yi) 6= ∅ then

⋂
i∈I
B(xi, yi) is

convex in X.

2.1.3. Let γ, δ ∈ Γ•.

(1) Let x, y ∈ X.
(a) If γ ≤ δ and Bγ(x) ∩Bδ(y) 6= ∅ then Bγ(x) ⊆ Bδ(y).
(b) If Bδ(y) ⊂ Bγ(x) then γ � δ.

(2) Concerning principal balls, if x, y, z, u ∈ X, x 6= z and y 6= u, then:
(a) B(x, z) ⊆ Bδ(y) if and only if d(x, z) ≤ δ and x ∈ Bδ(y).
(b) If B(x, z) ⊂ Bδ(y) then d(x, z) < δ.
(c) If B(x, z) = B(y, u) then d(x, z) = d(y, u).

(3) Let X be solid and x, y ∈ X.
(a) Bγ(x) ⊆ Bδ(y) if and only if γ ≤ δ and x ∈ Bδ(y).
(b) If Bγ(x) ⊂ Bδ(y) then γ < δ.
(c) If Bγ(x) = Bδ(y) then γ = δ.

(4) If Γ is totally ordered and Bδ(y) ⊂ Bγ(x) then δ < γ.

2.1.4. A set of balls which is totally ordered by inclusion is said to be a chain.
Let C be a chain of balls of X which does not have a smallest ball. Then there
exists a limit ordinal λ and a strictly decreasing family of balls (Bι)ι<λ such
that each Bι ∈ C and for every ball C ∈ C there exists Bι such that C ⊇ Bι .
Hence

⋂
C =

⋂
ι<λ

Bι .

2.1.5. An ultrametric space X is said to be spherically complete (respectively
principally complete) when every chain of balls of X (respectively principal
balls of X) has a non-empty intersection.

Every spherically complete ultrametric space is principally complete. The
converse is true when Γ is totally ordered or the space is solid.

2.1.6. An ultrametric space X is spherically complete (respectively princi-
pally complete) if and only if the following property is satisfied: for every
limit ordinal λ, every strictly decreasing family (Bι)ι∈λ of balls (respectively
principal balls) has a non-empty intersection.

2.1.7. If X is principally complete, every subset of X which is convex in X
is a principally complete subspace.

2.2. Examples of Ultrametric Spaces.
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2.2.1. Example when (Γ,≤) is totally ordered. Let ∆ be a totally ordered
abelian additive group, let ∞ be a symbol such that ∞ /∈ ∆, and δ +∞ =
∞+ δ = ∞, ∞+∞ = ∞, δ < ∞ for all δ ∈ ∆. We denote by 0 the neutral
element of ∆, that is 0 + δ = δ for every δ ∈ ∆. Let K be a commutative
field, let v : K → ∆ ∪ {∞} be a valuation of K, so we have:

(v1) v(x) =∞ if and only if x = 0,

(v2) v(xy) = v(x) + v(y),

(v3) v(x+ y) ≥ min{v(x), v(y)}.
Let Γ• be a totally ordered abelian multiplicative group with neutral ele-

ment 1, let 0 be a symbol such that 0 /∈ Γ•, 0γ = γ0 = 0, 0 · 0 = 0, 0 < γ for
every γ ∈ Γ•. Let θ : ∆∪{∞} → Γ = Γ• ∪{0} be an order reversing bijection
such that θ(∞) = 0, θ(δ + δ′) = θ(δ) · θ(δ′), so θ(0) = 1.

Let d : K ×K → Γ be defined by d(x, y) = θ(v(x− y)), then (K, d,Γ) is an
ultrametric space which is said to be associated to the valued field (K, v,∆ ∪
{∞}).

2.2.2. Another example where Γ is totally ordered. Let Γ be a totally ordered
set with smallest element 0, let Γ• = Γ\{0}. Let R be a non-empty set with
a distinguished element 0. For each f : Γ• → R let supp (f) = {γ ∈ Γ• |
f(γ) 6= 0} be the support of f . Let R[[Γ]] be the set of all f : Γ• → R with
support which is empty or anti-well ordered. Let d : R[[Γ]] × R[[Γ]] → Γ be
defined by d(f, f) = 0 and if f 6= g, d(f, g) is the largest element of the set
{γ ∈ Γ• | f(γ) 6= g(γ)}. Then (R[[Γ]], d,Γ) is an ultrametric space which is
solid and spherically complete.

2.2.3. Examples when Γ is not totally ordered. Let I be a set with at least
two elements, let (Xi)i∈I be a family of sets Xi , each one having at least two
elements. Let X =

∏
i∈I

Xi . Let P(I) be the set of all subsets of I, ordered by

inclusion. And let d : X ×X → P(I) be defined by d(f, g) = {i ∈ I | fi 6= gi},
where f = (fi)i∈I and g = (gi)i∈I . Then (X, d,P(I)) is a solid and spherically
complete ultrametric space. If each Xi = {0, 1}, we obtain the ultrametric
space (P(I), d,P(I)) with d(A,B) = (A ∪B)\(A ∩B) for all A,B ⊆ I.

2.2.4. Other examples. Let X be a topological space, let Y be a discrete
topological space, let C(X,Y ) denote the set of continuous functions from X
to Y and let C`(X) denote the set of clopen (i.e. closed and open) subsets of
X. The mapping d : C(X,Y )×C(X,Y )→ C`(X) is defined by d(f, g) = {x ∈
X | f(x) 6= g(x)}. Then (C(X,Y ), d, C`(X)) is a solid ultrametric space, and
it is spherically complete if C`(X) is a complete sub-Boolean-algebra of P(X).

3. The Main Theorem

Let X be a non-empty set, let ϕ : X → X be a mapping. The element
x ∈ X is said to be a fixed point of ϕ when ϕx = x.
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Let X, X ′ be non-empty sets, let ψ1, ψ2 : X → X ′ be mappings. The
element ψ1x = ψ2x is said to be a common point of ψ1, ψ2 .

We consider the set X 6= ∅, the ultrametric space (X ′, d′,Γ′) and the
following mappings ϕ : X → X, θ : X → X ′ and ψ : X → X ′ such that
θϕ(X) ⊆ ψ(X). This configuration is abbreviated as X = 〈X,X,X ′, ϕ, θ, ψ〉.

For simplicity we shall write d instead of d′.
Two types of configurations will be often considered:

XI = 〈X,X,X ′, id, θ, ψ〉

and

XII = 〈X,X,X,ϕ, id, id〉.
We shall deal with the properties listed below.
(C) d(θϕx, θϕy) ≤ d(ψx, ψy) for all x, y ∈ X.
(SC) If ψx 6= ψy then d(θϕx, θϕy) < d(ψx, ψy).

If ψx = ψy then θϕx = θϕy.
Clearly, if (SC) is satisfied, so is condition (C).
(SCO) If x, y ∈ X are such that θϕy = ψx and θϕy 6= ψy then

d(θϕx, ψx) < d(θϕy, ψy).

It is clear that condition (SC) implies condition (SCO).
In configuration XII the above conditions become:
(C) d(ϕx, ϕy) ≤ d(x, y) for all x, y ∈ X.
(SC) If x 6= y then d(ϕx, ϕy) < d(x, y).
(SCO) If ϕx 6= x then d(ϕ2x, ϕx) < d(ϕx, x).
We say: ϕ is a contracting mapping if it satisfies condition (C); ϕ is a strictly

contracting mapping if ϕ satisfies condition (SC); ϕ is strictly contracting on
orbits if ϕ satisfies condition (SCO).

For every x ∈ X let πx = d(θϕx, ψx) and let Bx = B′πx(ψx)∩ψ(X). (Here
B′ is used to refer to the ultrametric space X ′). If πx 6= 0 then Bx is a
ball of ψ(X) containing θϕx ∈ ψ(X). If πx = 0 then Bx = {ψx}. Similarly
Bϕx = B′(θϕ2x, ψϕx) ∩ ψ(X).

In configuration XII , if x ∈ X then πx = d(ϕx, x) and Bx = B(ϕx, x).
If x ∈ X and πx 6= 0, we say that the ball Bx is stable when the following

condition is satisfied:

(St) If x, y ∈ X, πx 6= 0 and ψy ∈ Bx then By = Bx .

The condition (St) may be written in the following equivalent form:

(St) If x, y ∈ X, πx 6= 0 and ψy ∈ Bx then πy = πx .

The equivalence of the two forms of (St) follows from (2.1.3), because
θϕ(X) ⊆ ψ(X), so Bx and By are principal balls of ψ(X).

From the above definition, it follows at once that a stable ball does not
contain any common point of ψ, θϕ.

We also consider the following condition:
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(D) If x, y ∈ X and ψx ∈ Bϕy then Bx ⊆ By .

Lemma 1.

(1) Assume that condition (D) is satisfied. If y ∈ X then Bϕy ⊆ By and
in configuration XII , ϕ(Bϕy) ⊆ By.

(2) Assume that condition (C) is satisfied. If x, y ∈ X and ψx ∈ By then
Bx ⊆ By .

(3) Assume that condition (C) is satisfied. For configurations XI and
XII , if y ∈ X then Bϕy ⊆ By and condition (D) is satisfied.

(4) If condition (SCO) is satisfied, there is no element t ∈ X such that
Bt is a stable ball.

Proof. (1): We have ϕy ∈ X and ψϕy ∈ Bϕy. By (D) Bϕy ⊆ By. In
configuration XII let x ∈ Bϕy, by (D) Bx ⊆ By. Then ϕx ∈ By and therefore
ϕ(Bϕy) ⊆ By.

(2): Let x, y ∈ X and assume that ψx ∈ By . It follows from (C) that
d(θϕx, θϕy) ≤ d(ψx, ψy) ≤ d(ψy, θϕy), hence πx = d(θϕx, ψx) ≤ d(θϕy, ψy) =
πy . Since ψx ∈ Bx ∩By , by (2.1.3) Bx ⊆ By .

(3): For configuration XI , we have Bϕy = By . For configuration XII ,
ψϕy ∈ By , hence by (1), Bϕy ⊆ By . For both configurations, if ψx ∈ Bϕy ,
by (1), Bx ⊆ Bϕy ⊆ By , which proves condition (D).

(4): Let y ∈ X and let By be a ball of ψ(X), so θϕy 6= ψy. There exists
x ∈ X such that θϕy = ψx, so ψx ∈ By . By (SCO) πx = d(θϕx, ψx) <
d(θϕy, ψy) = πy , so By is not stable. �

We prove the following Main Theorem.

Theorem 1. We assume that ψ(X) is a principally complete subspace of
X ′.

(1) If condition (D) is satisfied, there exists a common point θϕx = ψx,
or there exists t ∈ X such that Bt is a stable ball.

(2) If conditions (D) and (SCO) are satisfied, then there is no element
t ∈ X such that Bt is a stable ball, hence there exists a common point
θϕx = ψx.

(3) If condition (SC) is satisfied, there is no element t ∈ X such that
Bt is a stable ball and if ψ or θϕ is injective, there is at most one
common point θϕx = ψx. In configuration XI there is a common
point θx = ψx, in configuration XII there is a fixed point ϕx = x.

Proof. (1): We assume that ψx 6= θϕx for all x ∈ X, so Bx is a principal ball
of ψ(X), because θϕx ∈ ψ(X).

The set B of principal balls B = {Bz | z ∈ X} is ordered by inclusion. Let
F be the set of chains C in B satisfying the following condition:

if Bz ∈ C then Bϕz ∈ C.
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We note that for every z ∈ X there is a chain Cz ∈ F which is defined as
follows:

Cz : B0 ⊇ B1 ⊇ B2 ⊇ . . .
where

B0 = Bz, B1 = Bϕz , B2 = Bϕ2z , etc... .

Indeed, by (D) Cz is a chain of balls. So F 6= ∅. The set F is ordered as follows:
C ≤ C′, when C ⊆ C′ (as subsets of B). With this order, it is immediate that
F is inductive. By Zorn’s Lemma, F has a maximal element, denoted by C.
Since ψ(X) is principally complete, there exists y ∈ X such that ψy ∈

⋂
C.

We show that By ⊆ Bx for every Bx ∈ C. If Bx ∈ C then Bϕx ∈ C, and by
assumption ψy ∈ Bϕx . By (D) ψy ∈ By ⊆ Bx ; so By is contained in each
ball of C. Hence C ∪ Cy is a chain which belongs to F. By the maximality of
C, Cy ⊆ C, hence By , Bϕy ∈ C. Therefore, By is the smallest ball in C. By
(D), Bϕy ⊆ By and from Bϕy ∈ C then Bϕy = By . We show that By is a
stable ball. Let z ∈ X be such that ψz ∈ Bϕy . By (D), Bz ⊆ By . Therefore
the chain of balls C ∪ Cz belongs to F. Since C is maximal, then Cz ⊆ C. In
particular Bz ∈ C and necessarily Bz = By , because By is the smallest ball
in C. This proves that By is a stable ball.

(2): By Lemma 1 ψ(X) does not contain any stable ball. By (1) there must
exist x ∈ X such that θϕx = ψx.

(3): Now we assume that condition (SC) is satisfied. Hence both conditions
(C) and (SCO) are satisfied. By Lemma 1 there is no element t ∈ X such
that Bt is a stable ball.

We observe that if θϕ is injective then ψ is injective. Indeed, if x 6= y by
(C) 0 < d(θϕx, θϕy) ≤ d(ψx, ψy). So it suffices to assume that ψ is injective.
Let x 6= y be such that θϕx = ψx and θϕy = ψy. From ψx 6= ψy it follows
by (SC) that d(θϕx, θϕy) < d(ψx, ψy) = d(θϕx, θϕy), which is absurd. By
Lemma 1, in both configurations XI and XII , (C) implies condition (D). By
(1) for XI there exists x ∈ X such θx = ψx, and for configuration XII there
exists x ∈ X such that ψϕx = ψx. �

The Original Common Point Theorem is a special case of the Main Theo-
rem.

Theorem 2. Let θ, ψ be mappings from X to X ′ such that θ(X) ⊆ ψ(X)
and assume that ψ(X) is principally complete.

(1) If conditions (C) and (SCO) are satisfied, then θ and ψ have a com-
mon point θx = ψx.

(2) If condition (SC) is satisfied and θ or ψ is injective, then θ and ψ
have a unique common point.

Proof. We are in configuration XI . By Lemma 1, (C) implies (D), hence the
result follows at once from the Main Theorem. �
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The Original Fixed Point Theorem combined with the Stability Theorem
is also a special case of the Main Theorem.

Theorem 3. Let ϕ : X → X be a mapping and assume that X is principally
complete.

(1) If condition (C) is satisfied, then ϕ has a fixed point x ∈ X or there
exists y ∈ X such that By is a stable ball.

(2) If conditions (C) and (SCO) are satisfied, then ϕ has a fixed point
x ∈ X, and X does not contain any stable ball By (with y ∈ X).

(3) If condition (SC) is satisfied, then ϕ has a unique fixed point and there
is no element y ∈ X such that By is a stable ball.

Proof. We are in configuration XII . As seen in Lemma 1, (C) implies (D),
so the theorem follows from the Main Theorem. �

The following corollary contains a statement which deserves to be called
the Local Fixed Point Theorem.

Theorem 4. Let X be an ultrametric space and let ϕ : X → X.

(1) Assume that ϕ satisfies conditions (C) and (SCO).
(a) If z ∈ X, z 6= ϕz and if Bz is pincipally complete, then Bz

contains a fixed point x = ϕx.
(b) If X is principally complete, for every z ∈ X such that z 6= ϕz,

Bz contains a fixed point of ϕ.
(2) Assume that ϕ satisfies the condition (SC) and that X is principally

complete.
(a) ϕ has a unique fixed point and it belongs to every ball Bz (with

z 6= ϕz).
(b) If z, t ∈ X and d(z, ϕz) = d(t, ϕt) 6= 0 then Bz = Bt .

Proof. (1) (a): From condition (C) it follows by Lemma 1 that ϕ(Bz) ⊆ Bz .
The restriction ϕ|Bz satisfies condition (C) and (SCO). Since Bz is principally
complete, by the Fixed Point Theorem, there exists x ∈ Bz such that ϕx = x.

(b): By assumption, X is principally complete. By (2.1.7) each principal
ball Bz is principally complete, so (b) follows from (a).

(2) (a): By the Fixed Point Theorem ϕ has a unique fixed point x = ϕx.
Since (SC) implies (C) and (SCO), by (1)(b), x ∈ Bz for every z such that
z 6= ϕz.

(b): By (a) above, the balls Bz and Bt contain the unique fixed point x
of ϕ. Since d(t, ϕt) = d(z, ϕz) 6= 0 then Bt = Bz , by (2.1.3). �

Special case when Γ is totally ordered
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Lemma 2. Let (X, d,Γ) be an ultrametric space with Γ totally ordered. The
following conditions are equivalent:

(a) X is principally complete.
(b) Every strictly contracting mapping ϕ : X → X has a fixed point.

Proof.
(a) ⇒ (b): This was proved in Theorem 3.
(b) ⇒ (a): We assume that X is not principally complete, so there exists

a chain C of principal balls such that
⋂
C = ∅. Hence C does not have a

smallest ball and therefore the coinitial type λ of C is a limit ordinal. Then
there exists a strictly decreasing family (Bι)ι<λ of balls Bι ∈ C such that⋂
ι<λ

Bι =
⋂
C = ∅. We write Bι = Bγι(aι) and we define ϕ : X → X. If

x ∈ X there exists the smallest κ = κ(x) < λ such that x /∈ Bκ ; we define
ϕx = aκ .

We show that ϕ is strictly contracting. Let x, y ∈ X, x 6= y. If κ(x) = κ(y)
then 0 = d(ϕx, ϕy) < d(x, y). If κ(x) 6= κ(y), say κ(x) < κ(y), from Bκ(x) ⊃
Bκ(y) and x /∈ Bκ(x) , y ∈ Bκ(x) we get d(x, y) > γκ(x) ≥ d(ϕx, ϕy). So ϕ is
strictly contracting.

From the definition of ϕ it is obvious that ϕ does not have a fixed point. �

4. Attractors and Surjective Mappings

Let ψ : X → X ′ be a mapping between ultrametric spaces.
The mapping ϕ : X → X is called an approximator of z′ ∈ X ′ along ψ

when the following condition is satisfied:

(At1) (i) If ψx = z′ then ϕx = x.
(ii) If ψx 6= z′ then d(ψϕx, z′) < d(ψx, z′).

We note that for the configuration XII = 〈X,X,X,ϕ, id, id〉, if t ∈ X then
Bt = Bd(t,ϕt)(t) and the conditions (SCO) and (D) are expressed as follows:

(SCO) If x ∈ X and x 6= ϕx then d(ϕ2x, ϕx) < d(ϕx, x).

(D) If x, z ∈ X and x ∈ Bϕz then Bx ⊆ Bz .
We say that z′ ∈ X ′ is an attractor of X along ψ if there is an approximator

ϕ : X → X of z′ along ψ such that the conditions (SCO) and (D) are satisfied
in the configuration XII .

We remark that if z′ ∈ ψ(X) then z′ is an attractor of X along ψ. Indeed,
let Z = {z ∈ X | ψz = z′}, so Z 6= ∅; let z0 ∈ Z. Let ϕ : X → X be defined
as follows. For every z ∈ Z, ϕz = z, for every x ∈ X\Z let ϕx = z0 . We
observe that ϕ2x = ϕx for all x ∈ X. It is very easy to verify that ϕ satisfies
the conditions (At1), (SCO) and (D), so z′ is an attractor of X along ψ.

Now we prove the Attractor Theorem:

Theorem 5. Let ψ : X → X ′ and assume that X is principally complete. If
z′ ∈ X ′ is an attractor of X along ψ, then z′ ∈ ψ(X).
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Proof. Let ϕ : X → X be an approximator attached to the attractor z′,
such that the conditions (SCO) and (D) are satisfied by the configuration
XII = 〈X,X,X,ϕ, id, id〉. By the Main Theorem 1, there exists x ∈ X such
that ϕx = x. By (At1), z′ = ψx ∈ ψ(X). �

Corollary 1. Let ψ : X → X ′ and assume that X is principally complete.
If every x′ ∈ X ′ is an attractor of X along ψ, then ψ is surjective.

Proof. The corollary follows at once from the Attractor Theorem. �

Corollary 2. Let Y be a principally complete subspace of X. If x ∈ X is an
attractor of Y along the inclusion mapping Y → X, then x ∈ Y .

Proof. This is just a special case of the Attractor Theorem. �

Corollary 3. Let ψ : X → X ′ and assume that z′ is an attractor of X along
ψ, with approximator ϕ : X → X. If X is principally complete, for every
x ∈ X there exists z ∈ Bx = B(x, ϕx) such that ψz = z′.

Proof. Since z′ is an attractor of X along ψ, with approximator ϕ, then the
condition (D) holds in the configuration XII . By Lemma 1, Bϕx ⊆ Bx. Then
(Bϕnx)n≥1 is a decreasing chain of subsets of Bx. If there exists n ≥ 1 such
that ϕn+1x = ϕnx then ψ(ϕnx) = z′ with z = ϕnx ∈ Bx. If ϕn+1x 6=
ϕnx for every n ≥ 1, then Bϕnx is a principal ball, hence a convex sub-
set of X. Since X is principally complete, then C =

⋂
n≥1

Bϕnx 6= ∅ and

C is convex, hence by 2.1.2, C is a principally complete subset of Bx. By
Lemma 1 ϕ(Bϕn+1x) ⊆ Bϕnx, hence ϕ(C) = ϕ(

⋂
n≥1

Bϕnx) = ϕ(
⋂
n≥1

Bϕn+1x) ⊆⋂
n≥1

ϕ(Bϕn+1x) ⊆
⋂
n≥1

Bϕnx = C.

Let ϕ∗, respectively ψ∗, be the restriction of ϕ, respectively ψ, to C. Then
ϕ∗ is an approximator of z′ along ψ∗, and conditions (D) and (SCO) hold in
the configuration 〈C,C,C, ϕ∗, id, id〉. So z′ is an attractor of C along ψ∗. By
Theorem 5 there exists z ∈ C ⊆ Bx such that ψz = z′. �

In the next lemma, we give sufficient conditions for z′ ∈ X ′ to be an
attractor of X along ψ.

Lemma 3. Let ψ : X → X ′ be a mapping, let z′ ∈ X ′ and assume that z′

has an approximator ϕ : X → X along ψ satisfying the following conditions:
(At2) ψ(B(x, ϕx)) ⊆ B′(ψx, z′).
(At3) If x, t ∈ X, if d(ψt, z′) < d(ψx, z′) and B(t, ϕt) ∩ B(x, ϕx) 6= ∅,

then d(t, ϕt) < d(x, ϕx).
Then z′ is an attractor of X along ψ.

Proof. We show that conditions (SCO) and (D) in XII are satisfied.
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Proof of (SCO): Let ϕx 6= x. If ϕ2x = ϕx then d(ϕ2x, ϕx) = 0 < d(ϕx, x).
Let ϕ2x 6= ϕx. Since ϕx 6= x, by (At1) d(ψϕx, z′) < d(ψx, z′). B(ϕx, ϕ2x) is
a ball and ϕx ∈ B(ϕx, ϕ2x) ∩B(x, ϕx). By (At3) d(ϕ2x, ϕx) < d(ϕx, x).
Proof of (D): Let x ∈ Bϕz . If ϕ2z = ϕz then x = ϕz, so ϕx = ϕ2z =
ϕz = x, hence Bx = {x} = {ϕz} ⊆ Bz. Now let ϕ2z 6= ϕz, so ϕz 6= z.
By (SCO) d(ϕ2z, ϕz) < d(ϕz, z). From ϕz ∈ B(z, ϕz) ∩ B(ϕz, ϕ2z), then
by (2.1.3) B(ϕz, ϕ2z) ⊆ B(z, ϕz). From x ∈ B(ϕz, ϕ2z), by (At2) ψx ∈
ψ(B(ϕz, ϕ2z)) ⊆ B′(ψϕz, z′). Hence d(ψx, z′) ≤ d(ψϕz, z′) < d(ψz, z′), the
latter inequality by (At1), because ϕz 6= z. From x ∈ B(x, ϕx)∩B(ϕz, ϕ2z) ⊆
B(x, ϕx)∩B(z, ϕz), by (At3) d(x, ϕx) < d(z, ϕz), hence by (2.1.3) B(x, ϕx) ⊆
B(z, ϕz). �

We remark that if X = X ′, if ψ is the identity mapping, if condition (At1)
is satisfied by ϕ : X → X for z = z′ ∈ X, then condition (At2) is also satisfied.
Indeed, if x = z then by (At1) ϕx = x, hence condition (At2) holds trivially.
If x 6= z then d(ϕx, z) < d(x, z), hence d(x, ϕx) ≤ d(x, z) and this means that
B(x, ϕx) ⊆ B(x, z).

Special case when Γ is totally ordered

Now we shall assume that Γ is totally ordered.

Lemma 4. Let ψ : X → X ′, z′ ∈ X ′ and let ϕ : X → X be an approximator
of z′ along ψ satisfying the condition (At2). If Γ is totally ordered, then ϕ
satisfies also condition (At3), hence z′ is an attractor of ψ.

Proof. We show that z′ satisfies the condition (At3). Let x, t ∈ X be such that
d(ψt, z′) < d(ψx, z′) and B(t, ϕt) ∩ B(x, ϕx) 6= ∅. If d(x, ϕx) ≤ d(t, ϕt) then
B(x, ϕx) ⊆ B(t, ϕt) by (2.1.3). By (At2) ψx ∈ ψ(B(x, ϕx)) ⊆ ψ(B(t, ϕt)) ⊆
B′(ψt, z′), soB′(ψx, z′) ⊆ B′(ψt, z′). Therefore by (2.1.3) d(ψx, z′) ≤ d(ψt, z′),
which is a contradiction.

Since Γ is totally ordered, then d(t, ϕt) < d(x, ϕx). This proves (At3). By
Lemma 3 z′ is an attractor of X along ψ. �

Corollary 4. Let ψ : X → X ′, assume that Γ is totally ordered and X is
principally complete. Assume also that every x′ ∈ X ′ has an approximator
ϕx′ satisfying the condition (At2). Then ψ(X) = X ′.

Proof. By Lemma 4 each x′ ∈ X ′ is an attractor of X. By Corollary 1 each
element x′ ∈ X ′ belongs to ψ(X), so ψ(X) = X ′. �

Corollary 5. Let X be a subspace of X ′. Assume that Γ is totally ordered
and X is principally complete. Assume also that for every x′ ∈ X ′ there exists
an approximator ϕx′ : X → X along the inclusion mapping X → X ′. Then
X = X ′.
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Proof. It is easy to verify that condition (At2) is satisfied by every approxi-
mator along the inclusion mapping. By Lemma 4 each x′ ∈ X ′ is an attractor
of X along the inclusion mapping ψ. By Corollary 2, ψ is surjective, that is
X = X ′. �

5. Continuity of Mappings

The notion of continuity for mappings between ultrametric spaces may be
conceived in different ways. We have chosen the definitions below. For each
x ∈ X we denote by B(x) the set of balls Bγ(x). If there exists γ ∈ Γ• such
that Bγ(x) = {x} we say that x is an isolated point of X.

We say that ψ : X → X ′ is continuous at x when for every principal ball
B′(ψx, z′) there exists a ball B ∈ B(x) such that ψ(B) ⊆ B′(ψx, z′).

Clearly, if x is an isolated point of X, then ψ is continuous at x.
If ψ is continuous at every x ∈ X, we say that ψ is a continuous mapping.
We introduce the more useful related concept: the mapping ψ : X → X ′ is

said to be tightly continuous at x when the following condition holds:
For every principal ball P ′ = B′(ψx, z′) there exists B ∈ B(x) satisfying:
i) ψ(B) ⊆ P ′ and
ii) for every y′ ∈ P ′ there exists y ∈ B such that d(ψy, y′) < d(ψx, z′).
Thus if ψ is tightly continuous at x then ψ is continuous at x.
We say that ψ : X → X ′ is tightly continous if ψ is tightly continuous at

every x ∈ X; then ψ is continuous.

Lemma 5. Let ψ : X → X ′ be a tightly continuous mapping. Then every
z′ ∈ X ′ has an approximator ϕz′ : X → X satisfying the condition (At2)
ψ(B(x, ϕz′ x)) ⊆ B′(ψx, z′) for all x ∈ X.

Proof. Let z′ ∈ X ′, we shall define a mapping ϕz′ : X → X. Let x ∈ X, if
ψx = z′, we define ϕz′x = x. Now let ψx 6= z′. By assumption there exists
B ∈ B(x) such that ψ(B) ⊆ B′(ψx, z′), and moreover there exists x̄ ∈ B such
that d(ψx̄, z′) < d(ψx, z′). We choose an element x̄ with the above property
and define ϕz′x = x̄. Thus d(ψϕz′x, z

′) < d(ψx, z′), so ϕz′ is an approximator.
Proof of (At2): From ϕz′ x ∈ B it follows that B(x, ϕz′ x) ⊆ B. Hence if

t ∈ B(x, ϕz′ x), then ψt ∈ ψ(B) ⊆ B′(ψx, z′). �

Special case when Γ is totally ordered

Now we consider the special case when Γ is totally ordered.

Theorem 6. Let ψ : X → X ′ be tightly continuous and assume that Γ is
totally ordered.

(1) Every z′ ∈ X ′ is an attractor.
(2) If X is principally complete, then ψ is surjective.
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Proof. By Lemma 5, every z′ ∈ X ′ has an approximator satisfying condition
(At2); so by Lemma 4, since Γ is totally ordered, z′ is an attractor. If moreover
X is principally complete, by Corollary 4 ψ(X) = X ′. �

6. Transfer of Principal Completeness

Let ψ : X → X ′. Our main result indicates a sufficient condition on ψ
which insures that if X is principally complete then X ′ is also principally
complete.

Let ψ : X → X ′. We say that X ′ attracts X along ψ when every z′ ∈ X ′
has an approximator ϕz′ : X → X and the following conditions are satisfied
for all x, t ∈ X and z′, y′ ∈ X ′.

(At2)ψ(B(x, ϕz′ x)) ⊆ B′(ψx, z′).

(At4) If d(ψt, y′) < d(ψx, z′) andB(t, ϕy′ t)∩B(x, ϕz′ x) 6= ∅ then d(t, ϕy′ t) <
d(x, ϕz′ x).

Taking y′ = z′ in (At4) we see that condition (At3) is satisfied. So every
z′ ∈ X ′ is an attractor.

Theorem 7. Let ψ : X → X ′. If X ′ attracts X along ψ and X is principally
complete, then ψ(X) = X ′ and X ′ is principally complete.

Proof. By Corollary 1 ψ(X) = X ′ because every element of X ′ is an attractor
of X.

To prove that X ′ is principally complete, by (2.1.6) it suffices to show that
if λ is a limit ordinal and (B′ι)ι<λ is a strictly decreasing family of principal
balls of X, then

⋂
ι<λ

B′ι 6= ∅. For this purpose it suffices to show that for every

ι < λ there exists a principal ball Bι of X such that ψ(Bι) ⊆ B′ι and that
(Bι)ι<λ is a decreasing family of balls of X. If this is shown, by assumption
there exists y ∈

⋂
ι<λ

Bι . Hence ψy ∈ ψ
( ⋂
ι<λ

Bι
)
⊆
⋂
ι<λ

ψ(Bι) ⊆
⋂
ι<λ

B′ι and the

proof would be complete.
Let B′ι = B′(x′ι, z̄

′
ι) and B′ι+1 = B′(x′ι+1, z̄

′
ι+1). Since B′ι ⊃ B′ι+1 then

x′ι /∈ B′ι+1 or z̄′ι /∈ B′ι+1. By exchanging notation, if necessary, we may
assume that x′ι /∈ B′ι+1, hence x′ι 6= x′ι+1.

If d(x′ι+1, x
′
ι) < d(x′ι, z̄

′
ι) let z′ι = z̄′ι . If d(x′ι+1, x

′
ι) = d(x′ι, z̄

′
ι) let z′ι = x′ι+1 .

In both cases B′ι = B′(x′ι, z
′
ι).

The following fact will be crucial in the proof.
(?) Let x′, x′∗, z

′, z′∗ ∈ X ′ be such that x′ 6= x′∗, x
′ 6= z′, x′∗ 6= z′∗ and if

d(x′, x′∗) = d(x′, z′) then x′∗ = z′. Let B′ = B′(x′, z′), B′∗ = B′(x′∗, z
′
∗) and

assume thatB′∗ ⊂ B′. Let x ∈ X be such that ψx = x′ and letB = B(x, ϕz′x).
Then we have:

(i) There exists x∗ ∈ B such that ψx∗ = x′∗.
(ii) B∗ = B(x∗, ϕz′∗x∗) ⊆ B.
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(iii) ψ(B) ⊆ B′ and ψ(B∗) ⊆ B′∗.
Proof of (?).(i): By Corollary 3 there exists x∗ ∈ B(x, ϕx′∗x) such that

ψx∗ = x′∗. From x′∗ ∈ B′∗ ⊂ B′ then d(x′, x′∗) ≤ d(x′, z′). If d(x′, x′∗) =
d(x′, z′) then x′∗ = z′, so x∗ ∈ B(x, ϕz′x) = B. If d(x′, x′∗) < d(x′, z′)
from x ∈ B(x, ϕx′∗x) ∩ B, by (At4) d(x, ϕx′∗x) < d(x, ϕz′x). Hence x∗ ∈
B(x, ϕx′∗x) ⊂ B.

(ii): We have d(x′∗, z
′
∗) < d(x′, z′) and x∗ ∈ B∗∩B. By (At4), d(x∗, ϕz′∗x∗) <

d(x, ϕz′x). Hence B∗ ⊆ B.
(iii): By (At2) ψ(B) ⊆ B′ and ψ(B∗) ⊆ B′∗.
This concludes the proof of (?).
Let F denote the set of decreasing chains C = (Bι)ι<κ of balls Bι =

B(xι, ϕz′ι xι) such that ψxι = x′ι for all ι < κ and κ ≤ λ. F is not empty:
Indeed, B′0 = B′(x′0, z

′
0) is a ball in X ′. Since x′0 is an attractor of X along ψ,

there exists an approximator ϕx′0 , and from X principally complete, it follows
by the Attractor Theorem that there exists x0 ∈ X such that ψx0 = x′0 . Since
x′0 6= z′0 then x0 6= ϕz′0 x0. Let B0 = B(x0, ϕz′0 x0). The family with κ = 1,
consisting only of B0, belongs to F.

The set F is ordered as follows. Let C = (Bι)ι<κ with Bι = B(xι, ϕz′ι xι)

for all ι < κ. Let C̃ = (B̃ι)ι<κ̃ with B̃ι = B(x̃ι, ϕz′ι x̃ι) for all ι < κ̃. We define

C ≤ C̃ when κ ≤ κ̃ and for every ι < κ we have xι = x̃ι. With this order, F is
inductive and by Zorn’s Lemma there exists a maximal C = (Bι)ι<κ in F. We
need to show that κ = λ and we assume that κ < λ to derive a contradiction.

Case 1: κ = µ+ 1.
Let B′µ = B′(x′µ, z

′
µ), B′κ = B′(x′κ, z

′
κ), Bµ = B(xµ, ϕz′µ xµ) where ψ xµ =

x′µ. By (?) there exists xκ ∈ Bµ such that ψxκ = x′κ andBκ = B(xκ, ϕz′κxκ) ⊆
Bµ. Let C̃ = (B̃ι)ι<κ+1 where B̃ι = Bι for all ι < κ and B̃κ = Bκ as defined

above. Then C < C̃. But this is contrary to the maximality of C.
Case 2: κ is a limit ordinal.
Since X is principally complete, there exists y ∈

⋂
C =

⋂
ι<κ

Bι . Hence

ψy ∈
⋂
ι<κ

ψ(Bι) ⊆
⋂
ι<κ

B′ι . Thus for every ι < κ we have ψy, x′κ ∈ B′ι+1, hence

d(x′κ, ψy) ≤ d(x′ι+1, z
′
ι+1) < d(x′ι, z

′
ι). By the assumption κ < λ we have the

ball B′κ = B′(x′κ, z
′
κ). We shall define xκ ∈ X. If ψy = x′κ let xκ = y.

If ψy 6= x′κ then for every ι < κ we have y ∈ B(y, ϕx′κ y) ∩ Bι, hence by
(At4) d(y, ϕx′κ y) < d(xι, ϕz′ι xι), so B(y, ϕx′κ y) ⊆ Bι. By Corollary 3 there
exists xκ ∈ B(y, ϕx′κ y) such that ψxκ = x′κ . So xκ ∈ Bι for all ι < κ. We
have xκ 6= ϕz′κ xκ because ψxκ = x′κ 6= z′κ. Let Bκ = B(xκ, ϕz′κ xκ), by (At2)
ψ(Bκ) ⊆ B′κ. Now we show that Bκ ⊆ Bι for every ι < κ. Indeed d(ψxκ, z

′
κ) <

d(ψxι, z
′
ι) and xκ ∈ Bκ ∩ Bι, by (At4) d(xκ, ϕz′κ xκ) < d(xι, ϕz′ι xι), hence

Bκ ⊆ Bι for all ι < κ. Let B̃ι = Bι for all ι < κ and B̃κ = Bκ. Then
C̃ = (B̃ι)ι<κ+1 ∈ F and C < C̃, which is contrary to the maximality of C.
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We conclude that κ < λ is impossible. This suffices to prove the theorem.
�

Since a solid and principally complete ultrametric space is spherically com-
plete, we deduce from Theorem 7 that if X is principally complete, if X ′ is
solid, if ψ : X → X ′ and X ′ attracts X, then X ′ is spherically complete.

Special case when Γ is totally ordered

Corollary 6. Let ψ : X → X ′, assume that Γ is totally ordered and that X
is principally complete. Assume also that every z′ ∈ X ′ has an approximator
ϕz′ such that condition (At2) is satisfied for every x ∈ X. Then:

(1) X ′ attracts X along ψ.
(2) ψ(X) = X ′ and X ′ is principally complete.

Proof. (1): Since Γ is totally ordered and z′ has an approximator ϕz′ satisfying
(At2), by Lemma 4 ϕz′ also satisfies (At3), so z′ is an attractor of X along
ψ. We need to show that condition (At4) is satisfied. Let t, x ∈ X, y′, z′ ∈ X ′
and assume that d(ψt, y′) < d(ψx, z′) and B(t, ϕy′ t) ∩ B(x, ϕz′ x) 6= ∅. We
note that ψx 6= z′, so x 6= ϕz′ x. To obtain a contradiction, we assume
that d(x, ϕz′ x) ≤ d(t, ϕy′ t), then B(x, ϕz′ x) ⊆ B(t, ϕy′ t). By (At2), ψx ∈
ψ(B(x, ϕz′ x)) ⊆ ψ(B(t, ϕy′ t)) ⊆ B′(ψt, y′). By Corollary 3 there exists z ∈
B(x, ϕz′ x) such that z′ = ψz ∈ ψ(B(x, ϕz′ x)) ⊆ ψ(B(t, ϕy′ t)) ⊆ B′(ψt, y′).
It follows that d(ψx, z′) ≤ d(ψt, y′) and this is a contradiction. So condition
(At4) is satisfied, that is, X ′ attracts X along ψ.

(2): By Theorem 7 ψ(X) = X ′ and X ′ is principally complete. �

7. Notes

Part 2 of the Main Theorem, for the special case of a fixed point and for
spherically complete ultrametric spaces, was proved in [14]. A special case of
the Common Point Theorem was proved in [11]. Lemma 2 was proved in [8].

Part 1 of the combined Fixed Point and Stability Theorem was proved for
spherically complete spaces in [10]. The notion of an attractor in this paper,
which is weaker than in [14], allows to show that every element of the image
ψ(X) is an attractor of X along ψ. Theorem 6 was proved by Kuhlmann [3]
under the additional assumption that the sets of values of the distance of X
and X ′ are totally ordered. In the general form, the content of §6 has not
appeared earlier in the literature. However, when Γ and Γ′ are totally ordered
the result of Theorem 7 was already proved by Kuhlmann and circulated in
preprints, dated 1997, 1999, 2002, now accepted for publication [4].



ULTRAMETRIC DYNAMICS 17

References

[1] Hitzler, P. and Seda, A., Multivalued mappings, fixed point theorems and disjunctive
databases, in: Third Irish Workshop on Formal Methods in Computing, British Com-

puter Society, 1999, 18 pages.

[2] Hitzler, P. and Seda, A., The fixed-point theorems of Priess-Crampe and Ribenboim in
logic programming. Valuation theory and its applications, Vol.I (Saskatoon,SK,1999),

219-235, Fields Inst. Commun. 32, AMS, Providence, RI,2002.

[3] Kuhlmann, F.-V., A theorem about mappings on spherically complete ultrametric
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