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Abstract. The theory of valued difference fields (K,σ, v) depends on how the

valuation v interacts with the automorphism σ. Two special cases have already
been worked out - the isometric case, where v(σ(x)) = v(x) for all x ∈ K, has

been worked out by Luc Belair, Angus Macintyre and Thomas Scanlon; and

the contractive case, where v(σ(x)) > nv(x) for all x ∈ K× with v(x) > 0 and
n ∈ N, has been worked out by Salih Azgin. In this paper we deal with a more

general version, the multiplicative case, where v(σ(x)) = ρ·v(x), where ρ (> 0)

is interpreted as an element of a real-closed field. We give an axiomatization
and prove a relative quantifier elimination theorem for this theory.

1. Introduction

A valued field is a structure K = (K,Γ, k; v, π), where K is the underlying
field, Γ is an ordered abelian group (called the value group), and k is a field;
v : K → Γ ∪ {∞} is the (surjective) valuation map, with the valuation ring (also
called the ring of integers) given by OK := {a ∈ K : v(a) ≥ 0}, with a unique
maximal ideal given by mK := {a ∈ K : v(a) > 0}; and π : OK → k is a surjective
ring morphism. Then π induces an isomorphism of fields

a+ mK 7→ π(a) : OK/mK → k,

and we identify the residue field OK/mK with k via this isomorphism. Accordingly
k is called the residue field. When K is clear from the context, we denote OK and
mK by O and m respectively.

A valued difference field is a valued field K as above with a distinguished auto-
morphism (denoted by σ) of the base field K, which also satisfies σ(OK) = OK . It
then follows that σ induces an automorphism of the residue field:

π(a) 7→ π(σ(a)) : k → k, a ∈ OK .

We denote this automorphism by σ̄; and k equipped with σ̄ is called the residue
difference field of K. Likewise, σ induces an automorphism of the value group as
well:

γ 7→ σ(γ) := v(σ(a)), where γ = v(a).
We denote this automorphism also by σ, and construe the value group as an ordered
abelian group equipped with this special automorphism. Such a structure is called
a valued difference group.

Depending on how the automorphism interacts with the valuation, we get dif-
ferent structures and hence different theories. For example, σ is called isometric if
v(σ(x)) = v(x) for all x ∈ K; and is called contractive if v(σ(x)) > nv(x) for all
x ∈ K× with v(x) > 0, and all n ∈ N. The existence of model companions of both
these theories have been worked out in detail [1], [2], [3], [4]. A recent work by
Françoise Point [11] on valued ordered difference fields and rings is also somewhat
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related, although in her case the valued field itself is ordered, which, at least on the
face of it, makes this theory quite different from the others mentioned.

No matter how the automorphism interacts with the valuation, if we want any
hope of having a model companion of the theory of a valued difference field, we
better have a model companion of the theory of the valued difference group at least.
Unfortunately, by Kikyo and Shelah’s theorem [5], the theory of a structure with
the strict order property (e.g., an ordered abelian group) and a distinguished auto-
morphism does not have a model companion. So we need to put some restriction
on the automorphism. In the isometric case, σ induces the identity automorphism
on the value group; and so in this case, the value group has just the structure of
an ordered abelian group, whose model companion is the theory of the ordered
divisible abelian groups (ODAG). However, in the case when the induced auto-
morphism is not the identity, the model companion (if it exists) should be able to
decide how to extend the order between linear difference operators. In particular,
for any L(γ) =

∑n
i=0 aiσ

i(γ), where ai ∈ Z, an 6= 0 and γ > 0, the model compan-
ion should be able to decide when L(γ) > 0. In the contractive case, it is easily
decided by the following rule:

L(γ) > 0 ⇐⇒ an > 0.

However, in more general cases, the decision criteria are not so simple. For
example, it is not known whether the theory of an ordered abelian group Γ with
a strictly increasing automorphism (σ(γ) > γ for all 0 < γ ∈ Γ) has a model
companion. So we restrict ourselves to a more specific case, where we impose that
the induced automorphism σ on the value group should satisfy the following axiom
(scheme): for each a0, . . . , an ∈ Z and L(γ) =

∑n
i=0 aiσ

i(γ),(
∀γ > 0(L(γ) > 0)

)∨(
∀γ > 0(L(γ) = 0)

)∨(
∀γ > 0(L(γ) < 0)

)
.

This axiom, called Axiom OM (short for Ordered Module), induces a quasi-order
on the ring Z[σ]. Equivalently, as shown in Section 2, we can also represent σ as

σ(γ) = ρ · γ

for all γ ∈ Γ, where ρ > 0 is interpreted as an element of a real-closed field. For

example, ρ = 2, or ρ =
5
3

, or ρ =
√

2, or ρ = π, or ρ = 3 + δ where δ is an

infinitesimal, etc. Z[ρ] then turns out to be an ordered ring, and Γ is construed as
an ordered module over that ordered ring. We call such a Γ a multiplicative ordered
difference abelian group (henceforth, MODAG). We will show in Section 2 that the
theory of such a Γ has a model companion, the theory of divisible multiplicative
ordered difference abelian group (henceforth, div-MODAG).

In this paper we are thus interested in dealing with this more general case. We
call σ multiplicative if σ induces the structure of a MODAG on Γ via the rule

v(σ(x)) = ρ · v(x) for all x ∈ K,

where ρ > 0 (as interpreted in an ordered ring). The induced automorphism σ on
the value group Γ then satisfies σ(γ) = ρ · γ for all γ ∈ Γ.

Three quick points should be noted here. First, we construe a MODAG Γ as
an ordered Z[σ, σ−1]-module. To be able to extend Γ to a model of div-MODAG,
we would then want divisibility by “non-zero” linear difference operators, which
typically look like L =

∑n
l=1 alσ

l +
∑m
l=1 blσ

−l, with an 6= 0 or bm 6= 0. Any
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question of solvability of a system L(x) = b for b ∈ Γ, can then easily be trans-
formed to a question involving only σ, by iterating the equation throughout by σm.
Thus, (

∑n
l=1 alσ

l +
∑m
l=1 blσ

−l)(x) = b is solvable if and only if (
∑n
l=1 alσ

m+l +∑m
l=1 blσ

m−l)(x) = σm(b) is solvable. In particular, for all practical purposes we
can think of Γ as a Z[σ]-module, with the understanding that σ has an inverse.

Secondly, if σ(γ) = ρ · γ, then σ−1(γ) = ρ−1 · γ. In particular, if 0 < ρ ≤ 1, we
can shift to σ−1, and instead work with ρ−1 ≥ 1. Thus, without loss of generality,
we may assume that ρ ≥ 1.

And finally, this is a generalization over the isometric and the contractive cases.
The case ρ = 1 is precisely the isometric case; and the case “ρ =∞”, i.e., when all
0 < γ ∈ Γ satisfy for all b ∈ Z+, ρ · γ > bγ, is the contractive case. We can have
other finite and infinitesimal values for ρ as well.

Also one more thing needs mention here about the characteristics of the relevant
fields. Any automorphism of a field is trivial on the integers. Thus for any n ∈ Z,
we have σ(n) = n. In particular, this means that for any prime p, if v(p) > 0,
then v(p) = v(σ(p)) = ρ · v(p), which implies ρ = 1. Thus the mixed characteristic
case does not arise for ρ > 1, and the mixed characteristic case for ρ = 1 has
already been dealt with in [2]. The equi-characteristic p case even without the
automorphism is already an enormously difficult problem. So we restrict ourselves
only to the equi-characteristic zero case in this paper.

Section 2 deals with the value group and shows that, under additional restric-
tion, the theory of an ordered abelian group with an automorphism has a model
companion. Section 3 gives a few basic preliminaries about difference algebra. Sec-
tion 4 shows that in case ρ is transcendental, difference polynomials satisfy the
properties of pseudocontinuity and pseudoconvergence trivially, whereas if ρ is al-
gebraic over the integers, one might have to shift to an equivalent sequence to
restore these properties. Section 5 introduces the σ-hensel configuration and gives
some properties of σ-henselian valued difference fields. Section 6 shows that for a
multiplicative valued difference field K with linear difference closed residue field,
all (σ-algebraically) maximal extensions of K are unique upto isomorphism over K.
Section 7 gives a canonical example of a multiplicative valued difference field and
also shows by a counter-example that the assumption of linear difference closed
residue field is necessary to get unique maximal extensions. Section 8 shows how to
extend isomorphisms of valued difference fields by extending the value groups and
the residue fields. Section 9 proves the main theorem (Theorem 9.4) of this paper,
which is basically the back-and-forth method for extending partial isomorphisms.
Section 10 lists the main consequences of this theorem, namely that the theory of
σ-henselian multiplicative valued difference fields admits relative completeness and
relative quantifier elimination, relative to the residue-valuation structures (RVs).
Finally, section 11 shows that in the presence of a cross-section (in the language),
the elementary theory of σ-henselian multiplicative valued difference fields is essen-
tially controlled by the theories of the value groups and the residue fields.

I thank Thomas Scanlon for his advice and guidance on my doctoral thesis, from
which this paper derives. I also thank the referee for thorough reading of this paper,
and for providing valuable comments, suggestions and corrections.
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2. Multiplicative Ordered Difference Abelian Group (MODAG)

We work in the language of ordered groups with a symbol for the automorphism
LOG,σ = {+,−, 0, <, σ}.

The LOG,σ-theory Tσ of ordered difference abelian groups is axiomatized by the
following axioms:

(1) Axioms of Abelian Groups in the language {+,−, 0}
(2) Axioms of Linear Order in the language {<}
(3) Axiom about interaction

• ∀x∀y∀z(x < y → x+ z < y + z)
(4) Axioms asserting σ is an L-automorphism, where L = {+,−, 0, <}.

• σ(0) = 0
• ∀x∀y(σ(x+ y) = σ(x) + σ(y))
• ∀x(σ(−x) = −σ(x))
• ∀x∀y(x < y → σ(x) < σ(y))
• ∀x∃y(σ(y) = x)

Remark 2.1. Note that Tσ is an ∀∃-theory in the language LOG,σ: the existence of
inverse (∀x∃y(σ(y) = x)) is the only ∀∃-axiom. The universal theory of Tσ, (Tσ)∀,
is the theory of ordered abelian groups with an injective endomorphism.

Unfortunately the theory of ordered abelian groups has the strict order property.
As before, by Kikyo and Shelah’s theorem [5], we cannot hope to have a model
companion of the theory of ordered difference abelian groups.

However, if we restrict ourselves to a very specific kind of automorphisms, we do
actually get a model companion. Each of the intended automorphisms is multipli-
cation by an element of a real-closed field. For example, σ(x) = 2x, or σ(x) =

√
2x,

or σ(x) = δx, where δ could be an infinite or infinitesimal element.
The problem is that in general abelian groups such multiplication does not make

sense. But since integers embed in any torsion-free abelian group, in particular any
ordered abelian group, by imitating what we do for real numbers, we can make
sense of such multiplication.

For an abelian group G, multiplication by m ∈ N makes sense: mg :=
m times︷ ︸︸ ︷
g + · · ·+ g .

Taking additive inverses, multiplication by integers makes sense: (−m)g := −(mg).
If G is torsion-free divisible, then multiplication by rational numbers makes sense:
m

n
g =

mg

n
is defined to be the unique y ∈ G such that ny = mg.

Motivation. We carry this idea forward and define cuts in rational numbers to
make sense of multiplication by irrationals. Let ρ be an element of a real closed
field K. Then, for any 0 < g ∈ G, we would like ρ · g to be an element of G such
that, for all r ∈ Q,

rg ≶ ρ · g ⇐⇒ r ≶ ρ.

Since we are typically interested in preserving the order on G, we also require that
ρ > 0, because then

g1 ≶ g2 ⇐⇒ ρ · g1 ≶ ρ · g2.

Without loss of generality, we also require that ρ ≥ 1; otherwise, we can work with
ρ−1 instead. Since ρ is an element of the real closed field K, we can define the cut
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of ρ in the rationals by

cutQ(ρ) = {a ∈ K : for each q ∈ Q, q ≶ a ⇐⇒ q ≶ ρ}.

Clearly for all a ∈ cutQ(ρ), ρ · g and a · g are order-indistinguishable with respect
to the rationals. This is a little bit of a problem because we would typically like to
be able to distinguish between b · g and (b+ ε) · g, where b is an algebraic number,
and ε is an infinitesimal. This is because if b is algebraic over Z, then b is a root
of a polynomial L(x) =

∑n
i=0 aix

i, with ai ∈ Z for all i = 0, . . . , n. Then for any
0 6= g ∈ G, we have L(b) · g = 0, but L(b+ ε) · g 6= 0. However, for any a ∈ K and
any polynomial L(x) over Z, we also have L(a) ∈ K. In particular, L(a) > 0 or
L(a) = 0 or L(a) < 0. So either L(a) · g > 0 for all 0 < g ∈ G, or L(a) · g = 0 for all
g > 0, or L(a) ·g < 0 for all g > 0. This is the property we take from this particular
setting and apply to the general setting to make the “multiplication” work and
define what we call multiplicative ordered difference abelian group (MODAG).

Coming back to the general situation, we have an ordered abelian group G and
an automorphism σ : G→ G. For i ∈ N, we denote

σi(x) :=

i times︷ ︸︸ ︷
σ(σ(. . . (σ(x)) . . .)).

Definition 2.2. There is a natural map Φ : Z[σ] → End(G), which maps any
L := mkσ

k +mk−1σ
k−1 + . . .+m1σ +m0 (thought of as an element of Z[σ] with

the mi’s coming from Z), to an endomorphism L(·) : G → G. Such an L is called
a linear difference operator.

Due to this action of Z[σ], G has the structure of a Z[σ]-module, with the under-
standing that σ has an inverse. To turn it into an ordered Z[σ]-module, we further
impose the following condition on σ (motivated from our earlier example with the
real closed fields): for each L ∈ Z[σ],(

∀x > 0 (L(x) > 0)
)∨(

∀x > 0 (L(x) = 0)
)∨(

∀x > 0 (L(x) < 0)
)
.

We call this condition Axiom OM (OM stands for Ordered Module). This axiom
also makes sense for σ an injective endomorphism.

Axiom OM is consistent with Axioms 1-4 because any ordered abelian group
is a model of these axioms with σ(x) = 2x for all x, say. Also, with this axiom,
Z[σ] becomes a quasi-ordered ring with the order defined as follows: L1 = L2 ⇐⇒
∀x > 0

(
(L1 − L2)(x) = 0

)
, and L1 > L2 ⇐⇒ ∀x > 0

(
(L1 − L2)(x) > 0

)
.

It is easy to see that the relation

L1 ≈ L2 ⇐⇒ L1 = L2 and L2 = L1 ⇐⇒ ∀x > 0 ((L1 − L2)(x) = 0)

is an equivalence relation. Thus taking a quotient makes sense, and we define

Definition 2.3. Z[ρ] := Z[σ]/ ≈, where ρ is the image of σ under this quotient
map.

We also define Q(ρ) to be the fraction field of Z[ρ].

Remark 2.4. Clearly then Z[ρ] is an (totally) ordered ring and admits an em-
bedding into a real closed field. So ρ can also be simultaneously thought of as an
element of a real closed field.
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It is also easy to see that Z[ρ] = Z[σ]/Ker(Φ), where Φ is as defined in Definition
2.2. Note that the kernel of Φ need not be trivial. For example, if σ(x) = 2x for
all x, then σ − 2 ∈ Ker(Φ).

Moreover G is an ordered module over the ordered ring Z[ρ] with the understand-
ing that ρ has an inverse. So we can denote the automorphism on G equivalently
by ρ·, i.e. σ(x) = ρ · x. Axiom OM then is equivalent to: for each L ∈ Z[ρ],(

∀x > 0 (L · x > 0)
)∨(

∀x > 0 (L · x = 0)
)∨(

∀x > 0 (L · x < 0)
)
.

Definition 2.5. For any ordered difference abelian group G satisfying Axiom OM,
we define the set of Z[σ]-positivities of G as

ptpZ[σ](G) := {L ∈ Z[σ] : ∀x ∈ G (x > 0 =⇒ L(x) > 0)}.

We say that G and G′ have the same ρ if ptpZ[σ](G) = ptpZ[σ](G′). We also say G
is a MODAG with a given ρ if G satisfies a given consistent set of Z[σ]-positivities.

Definition 2.6. An ordered difference abelian group is called multiplicative if it
satisfies Axiom OM. The theory of such structures (also called MODAG) is axiom-
atized by Axioms 1-4 and Axiom OM. Note that this theory is also an ∀∃-theory.

MODAGρ denotes the theory of the class of all MODAGs with a given ρ.

Definition 2.7. If there is a non-zero L ∈ Z[σ] such that ∀x > 0 (L(x) = 0), we
say ρ satisfies L and ρ is algebraic (over the integers); otherwise ρ is transcendental.
If ρ is algebraic, there is a minimal (degree) polynomial that ρ satisfies.

Definition 2.8. A MODAG G is called divisible (or linear difference closed) if for
any 0 6≈ L ∈ Z[σ] and b ∈ G, the equation L(x) = b has a solution in G.

Definition 2.9 (Language for MODAG). We study MODAG in the language of
ordered abelian groups together with a symbol for the automorphism, LOG,σ :=
{+,−, 0, <, σ}.

Definition 2.10. Let div-MODAG be the LOG,σ-theory of non-trivial divisible
multiplicative ordered difference abelian groups. This theory is axiomatized by the
above axioms along with

∃x(x 6= 0)
and the following additional infinite list of axioms: for each L ∈ Z[σ],(

∀x (L(x) = 0)
)
∨
(
∀y∃x (L(x) = y)

)
,

i.e., all non-zero linear difference operators are surjective. Thus, div-MODAG is an
∀∃-theory. Similarly as above, we denote by div-MODAGρ the theory of the class
of all div-MODAGs with a same ρ.

We now show that div-MODAG is the model companion of MODAG. By abuse
of terminology, we refer to both the theory and any model of the theory as MODAG
(respectively div-MODAG).

Remark 2.11. It might already be clear from the definitions above that for a given
ρ, div-MODAGρ is basically the theory of non-trivial ordered vector spaces over
the ordered field Q(ρ) and then quantifier elimination actually follows from [12].
However, here we are doing things a little differently. Instead of proving the result
for a particular ρ, we prove it uniformly across all ρ using Axiom OM.
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Lemma 2.12. MODAG and div-MODAG are co-theories.

Proof. We will prove something stronger: for a fixed ρ, MODAGρ and div-MODAGρ

are co-theories. Any model of div-MODAGρ is trivially a model of MODAGρ. So
it remains to show that we can embed any model of MODAGρ into a model of
div-MODAGρ.

We will actually show something even stronger. Let (G, σ) be an ordered abelian
group with an injective endomorphism that is multiplicative with a given ρ. Then
we can extend it to a “smallest” model (H,σ) of div-MODAGρ, which we call the
(multiplicative) divisible hull of G.

If G is trivial, we can embed it into Q(ρ). If G is non-trivial, G becomes an
ordered, and hence torsion-free, Z[ρ]-module, and thus, by a classical result (see
[16, Chapter II, §2.2, Proposition 3]), embeds in its module of fractions F over Q(ρ).
Clearly, F is a model of div-MODAGρ. This embedding ι also has the universal
property that any other embedding of G into a model of div-MODAGρ factors
through ι. Thus, F is the smallest model of div-MODAGρ in which G embeds. �

Remark 2.13. Since div-MODAG∀ is the theory of ordered abelian groups with a
multiplicative injective endomorphism, the above proof shows that div-MODAGρ

has algebraically prime models, namely the (multiplicative) divisible hull.

Lemma 2.14. div-MODAGρ has quantifier elimination.

Proof. We have already shown that div-MODAGρ has algebraically prime models.
All we need to show now is that div-MODAGρ is simply closed.

So suppose G ⊆ H are two models of div-MODAGρ. We want to show G ≺s H.
Suppose ϕ(v, w̄) is a quantifier-free formula, ḡ ∈ G and for some h ∈ H, H |=

ϕ(h, ḡ). It suffices to consider the case where ϕ is a conjunction of atomic and
negated atomic formulas. If θ(v, w̄) is atomic, then θ is equivalent to

∑n
i=1 Li(wi)+

L(v) = 0 or
∑n′

i=1 L
′
i(wi) + L′(v) > 0 for some L,L′, Li, L′i ∈ Z[σ]. In particular,

there is an element a ∈ G such that θ(v, ḡ) is of the form L(v) = a or L(v) > a.
Also note that L(v) 6= a is equivalent to L(v) > a or −L(v) > a. So we may assume
that

ϕ(v, ḡ)↔
∧
Li(v) = ai ∧

∧
L′i(v) > bi,

where ai, bi ∈ G and Li, L′i ∈ Z[σ]. We may also assume that Li 6≈ 0 because either
the corresponding ai is zero, in which case the equation is trivially true for all v,
or the corresponding ai is non-zero, in which case the equation is inconsistent.

If there is actually a conjunct Li(v) = ai with 0 6≈ Li, then we must have h ∈ G
because G is divisible and a non-zero linear equation has a unique solution. So
suppose ϕ(v, ḡ) =

∧
L′i(v) > bi. Let h1 = min{[(bi, L′i)] : L′i < 0} and h2 =

max{[(bi, L′i)] : L′i > 0}. Since H |= ϕ(h, ḡ), we have h2 < h < h1. In particular,
h2 < h1. Now since G |= div-MODAGρ, G is densely ordered because if g < h, then

g <
g + h

2
< h. So there is d ∈ G such that h2 < d < h1, and then G |= ϕ(d, ḡ).

Thus, G ≺s H. �

Thus, div-MODAGρ eliminates quantifiers. In particular, div-MODAGρ is model
complete. Moreover, for a fixed ρ, Q(ρ) with the induced ordering is a prime model
of div-MODAGρ. In particular, div-MODAGρ is complete. Note that div-MODAG
is not complete; its completions are given by div-MODAGρ by fixing a (consistent)
set of Z[σ]-positivities. Finally we have,
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Theorem 2.15. div-MODAG is the model companion of MODAG.

Proof. By Lemma 2.12, MODAG and div-MODAG are co-theories. All we need to
show now is that div-MODAG is model complete.

So let G ⊆ H be two models of div-MODAG. Want to show that G ≺ H.
Since G ⊆ H and both are non-trivial, in particular they have the same set

of Z[σ]-positivities. Thus, for some fixed ρ, we have G,H |= div-MODAGρ. But
div-MODAGρ is model complete.

Hence, G ≺ H. �

3. Preliminaries

Let K ≺ K′ be an extension of valued difference fields. For any a ∈ K′, K〈a〉
denotes the smallest difference subfield of K′ containing K and a. The underlying
field of K〈a〉 is K(σi(a) : i ∈ Z). In literature a difference field generally means a
field with an endomorphism. For our case, a difference field always means a field
with an automorphism. So “the smallest difference subfield” in our context actually
means the smallest inversive difference subfield.

For any (n+ 1)-variable polynomial P (X0, . . . , Xn) ∈ K[X0, . . . , Xn], we define
a corresponding 1-variable σ-polynomial f(x) = P (x, σ(x), σ2(x), . . . , σn(x)). We
define the degree of f to be the total degree of P ; and the order of f to be the
largest integer 0 ≤ d ≤ n such that the coefficient of σd(x) in f(x) is non-zero. If
f ∈ K, then order(f) := −∞. Finally we define the complexity of f as

complexity(f) := (d,deg xd
f, deg f) ∈ (N ∪ {−∞})3,

where complexity(0) := (−∞,−∞,−∞) and for f ∈ K, f 6= 0, complexity(f) :=
(−∞, 0, 0). We order complexities lexicographically.

Let x = (x0, . . . , xn), y = (y0, . . . , yn) be tuples of indeterminates and a =
(a0, . . . , an) be a tuple of elements from some field. Let I = (i0, . . . , in) ∈ Nn+1 be
a multi-index. We define the length of I as |I| := i0 + · · ·+ in and aI := ai00 · · · ainn .
For any element ρ of any ring, we define the ρ-length of I as |I|ρ := i0ρ

0 + i1ρ
1 +

· · · + inρ
n. Then |I| ∈ N and |I|ρ is an element of that ring. For any polynomial

P (x) over K, we have a unique Taylor expansion in K[x,y] :

P (x + y) =
∑

I

P(I)(x) · yI ,

where the sum is over all I = (i0, . . . , in) ∈ Nn+1, each P(I)(x) ∈ K[x], with
P(I) = 0 for |I| > deg(P ), and yI := yi00 · · · yinn . Thus I!P(I) = ∂IP where ∂I is the
operator (∂/∂x0)i0 · · · (∂/∂xn)in on K[x], and I! := i0! · · · in!. We construe Nn+1

as a monoid under + (componentwise addition), and let ≤ be the (partial) product
ordering on Nn+1 induced by the natural order on N. Define for I ≤ J ∈ Nn+1,( J

I

)
:=
( j0
i0

)
· · ·
( jn
in

)
.

Then it is easy to check that for I,J ∈ Nn+1,

(f(I))(J) =
( I + J

I

)
f(I+J).
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Let x be an indeterminate. When n is clear from the context, we set σ(x) :=
(x, σ(x), . . . , σn(x)), and also σ(a) = (a, σ(a), . . . , σn(a)) for a ∈ K. Then for
P ∈ K[x0, . . . , xn] as above and f(x) = P (σ(x)), we have

f(x+ y) = P (σ(x+ y)) = P (σ(x) + σ(y))

=
∑

I

P(I)(σ(x)) · σ(y)I =
∑

I

f(I)(x) · σ(y)I ,

where f(I)(x) := P(I)(σ(x)).
A pseudo-convergent sequence (henceforth, pc-sequence) from K is a limit ordinal

indexed sequence {aη}η<λ of elements of K such that for some index η0,

η′′ > η′ > η ≥ η0 =⇒ v(aη′′ − aη′) > v(aη′ − aη).

An element a ∈ K is called a pseudo-limit of a limit ordinal indexed sequence
{aη} from K (denoted aη  a) if there is some index η0 such that

η′ > η ≥ η0 =⇒ v(a− aη′) > v(a− aη).

Such a sequence is necessarily a pc-sequence in K. For a pc-sequence {aη} as above,
let γη := v(aη′ − aη) for η′ > η ≥ η0; note that this depends only on η. Then
{γη}η≥η0 is strictly increasing. The breadth of {aη} is defined as the set

{y ∈ K : v(y) > γη for all η ≥ η0}.
Two pc-sequences {aη} and {bη} from K are said to be equivalent if they have the

same pseudo-limits in all valued field extensions of K. Equivalently, by [6, Lemma
3], {aη} and {bη} are equivalent iff they have the same breadth and a common
pseudo-limit in some extension of K.

4. Pseudoconvergence and Pseudocontinuity

Definition 4.1. Let K = (K,Γ, k; v, π, σ) be a valued difference field. The au-
tomorphism σ is called multiplicative if the induced structure on Γ is that of a
MODAG with ρ ≥ 1.

Then K is called a multiplicative valued difference field.

All we need in the above definition is ρ > 0. However, if ρ ≤ 1, we can switch
to σ−1 and then we will have ρ ≥ 1. As noted in the introduction, we restrict
ourselves only to the equi-characteristic zero case.

We are interested in proving an Ax-Kochen-Ershov type theorem for (and hence,
finding the model companion of) the theory of multiplicative valued difference fields.
We denote the induced automorphisms on the residue field k and the value group
Γ by σ̄ and ρ· respectively. Our main axiom is

Axiom 1. Γ is a MODAG with ρ ≥ 1, and v(σ(x)) = ρ · v(x) ∀x ∈ K.
From now on, we assume that all our valued difference fields and valued difference
field extensions satisfy Axiom 1.

Our first goal is to prove pseudo-continuity. It follows from [6] that if {aη}
is a pc-sequence from K, and aη  a with a ∈ K, then for any ordinary non-
constant polynomial P (x) ∈ K[x], we have P (aη)  P (a). Unfortunately, this is
not true in general for non-constant σ-polynomials over valued difference fields. As
it turns out, this is true when ρ is transcendental over the integers (which includes
the contractive case “ρ = ∞”), but not true if ρ is algebraic (which includes the
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isometric case ρ = 1). Fortunately, in the algebraic case, we can remedy the
situation by resorting to equivalent pc-sequences. We will follow the treatment of
[2], [3] with appropriate modifications. We will need the following basic lemma.

Lemma 4.2. Let {γη} be an increasing sequence of elements in a MODAG Γ.
Let A = {|Ii|ρ : Ii ∈ Zn+1, i = 1, . . . , l} be a finite set with |A| = m, and for
i = 1, . . . ,m, let ci + ni · x, ci ∈ Γ, ni ∈ A, be linear functions of x with distinct
ni. Then there is a µ, and an enumeration i1, i2, . . . , im of {1, . . . ,m} such that for
η > µ, ci1 + ni1 · γη < ci2 + ni2 · γη < · · · < cim + nim · γη.

Proof. Since Γ is a MODAG, there is a linear order amongst the ni’s. Suppose
ni 6= nj ∈ A. WMA ni < nj . Then either cj + nj · γη < ci + ni · γη for all η, or
for some ηij , ci + ni · γηij ≤ cj + nj · γηij . But in the later case, for all η > ηij , we
have ci +ni · γη < cj +nj · γη, as ni < nj and {γη} is increasing. Since A is a finite
set, the set of all such ηij ’s is also finite, and hence taking µ to be the maximum of
those ηij ’s, we have our result. �

Basic Calculation.

Suppose K is a multiplicative valued difference field. Let {aη} be a pc-sequence
from K with a pseudo-limit a in some extension. Let P (x) be a non-constant σ-
polynomial over K of order ≤ n.

Case I. ρ is transcendental.
Let γη = v(aη − a). Then for each η we have,

P (aη)− P (a) =
∑

L∈Nn+1

1≤|L|≤deg(P )

P(L)(a) · σ(aη − a)L =:
∑

L∈Nn+1

1≤|L|≤deg(P )

QL(η)

To calculate v(P (aη)−P (a)), we need to calculate the valuation of each summand
QL(η). We claim that there is a unique L for which the valuation of QL(η) is
minimum eventually. Suppose not. Note that the valuation of QL(η)

v(QL(η)) = v(P(L)(a) · σ(aη − a)L) = v(P(L)(a)) + |L|ρ · γη
is a linear function in γη. Thus, by Lemma 4.2, the only way there isn’t a unique
L with the valuation of QL(η) minimum eventually is if there are L 6= L′ with
|L|ρ = |L′|ρ. But then,

|L|ρ = |L′|ρ =⇒ |L− L′|ρ = 0

=⇒ (l0 − l′0)ρ0 + (l1 − l′1)ρ1 + · · ·+ (ln − l′n)ρn = 0

which implies that ρ is algebraic over Z, a contradiction. Hence, the claim holds.
In particular, there is a unique L0 such that eventually (in η),

v(P (aη)− P (a)) = v(P(L0)(a)) + |L0|ρ · γη,
which is strictly increasing. Hence, P (aη) P (a).

Note that if ρ =∞, then ρ is transcendental over Z. Hence, the contractive case
is included in Case I.

Case II. ρ is algebraic.
Since ρ satisfies some algebraic equation over the integers, there can be accidental

cancelations and we might have v(QL(η)) = v(QL′(η)) for infinitely many η and
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L 6= L′, and the above proof fails. To remedy this, we construct an equivalent
pc-sequence {bη} such that P (bη) P (a).

Put γη := v(aη − a); then {γη} is eventually strictly increasing. Since v is
surjective, choose θη ∈ K such that v(θη) = γη. Set bη := aη + µηθη, where we
demand that µη ∈ K and v(µη) = 0. Define dη by aη−a = θηdη. So v(dη) = 0 and
dη depends on the choice of θη. Since a is normally not in K, dη won’t normally
be in K either. Then,

bη − a = bη − aη + aη − a
= θη(µη + dη).

We impose v(µη + dη) = 0. This ensures bη  a, and that {aη} and {bη} have
the same breadth; so they are equivalent. Let A := {|L|ρ : L ∈ Nn+1 and 1 ≤
|L| ≤ deg(P )}. Now,

P (bη)− P (a) =
∑

|L|ρ ∈ A

P(L)(a) · σ(bη − a)L

=
∑
m∈A

∑
|L|ρ=m

P(L)(a) · σ(bη − a)L

=
∑
m∈A

∑
|L|ρ=m

P(L)(a) · σ(θη(µη + dη))L

=
∑
m∈A

∑
|L|ρ=m

P(L)(a) · σ(θη)L · σ(µη + dη)L

=
∑
m∈A

Pm,η(µη + dη)

where Pm,η is the σ-polynomial over K〈a〉 given by

Pm,η(x) =
∑
|L|ρ=m

P(L)(a) · σ(θη)L · σ(x)L.

Since P 6∈ K, there is an m ∈ A such that Pm,η 6= 0. For such m, pick L = L(m)
with |L|ρ = m for which v(P(L)(a) · σ(θη)L) is minimal, so

Pm,η(x) = P(L)(a) · σ(θη)L · pm,η(σ(x)),

where pm,η(x0, . . . , xn) has its coefficients in the valuation ring of K〈a〉, with one
of its coefficients equal to 1. Then

v(Pm,η(µη + dη)) = v(P(L)(a)) +m · γη + v(pm,η(σ(µη + dη))).

This calculation suggests a new constraint on {µη}, namely that for each m ∈ A
with Pm,η 6= 0,

v(pm,η(σ(µη + dη))) = 0 (eventually in η).

Assume this constraint is met. Then Lemma 4.2 yields a fixed m0 ∈ A such that
if m ∈ A and m 6= m0, then eventually in η,

v(Pm0,η(µη + dη)) < v(Pm,η(µη + dη))

For this m0 we have, eventually in η,

v(P (bη)− P (a)) = v(P(L)(a)) +m0 · γη, L = L(m0),

which is increasing. So P (bη) P (a), as desired.
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To have {µη} satisfy all constraints, we introduce an axiom (scheme) about K
which involves only the residue field k of K :

Axiom 2. For each integer d > 0 there is y ∈ k such that σ̄d(y) 6= y.
By [14, p. 201], this axiom implies that there are no residual σ̄-identities at all,
that is, for every non-zero f ∈ k[x0, . . . , xn], there is a y ∈ k with f(σ̄(y)) 6= 0 (and
thus the set {y ∈ k : f(σ̄(y)) 6= 0} is infinite). Now note that the pm’s are over
K〈a〉, and we need µ̄η ∈ k. The following lemma will take care of this.

Lemma 4.3. Let k ⊆ k′ be a field extension, and p(x0, . . . , xn) a non-zero polyno-
mial over k′. Then there is a non-zero polynomial f(x0, . . . , xn) over k such that
whenever y0, . . . , yn ∈ k and f(y0, . . . , yn) 6= 0, then p(y0, . . . , yn) 6= 0.

Proof. Using a basis b1, . . . , bm of the k-vector subspace of k′ generated by the
coefficients of p, we have p = b1f1 + · · · + bmfm, with f1, . . . , fm ∈ k[x0, . . . , xn].
Let f be one of the fi’s. Then f has the required property. �

Consider an m ∈ A with non-zero Pm,η, and define

qm,η(x0, . . . , xn) := pm,η(x0 + dη, . . . , xn + σn(dη)).

Then the reduced polynomial

q̄m,η(x0, . . . , xn) := p̄m(x0 + d̄η, . . . , xn + σ̄n(d̄η))

is also non-zero for each η. By Lemma 4.3, we can pick a non-zero polyno-
mial fη(x0, . . . , xn) ∈ k[x0, . . . , xn] such that if y ∈ OK and fη(σ̄(ȳ)) 6= 0, then
q̄m,η(σ̄(ȳ)) 6= 0 for each m ∈ A with Pm,η 6= 0.

Conclusion: if for each η the element µη ∈ OK satisfies µ̄η 6= 0, µ̄η + d̄η 6= 0,
and fη(σ̄(µ̄η)) 6= 0, then all constraints on {µη} are met.

Axiom 2 allows us to meet these constraints, even if instead of a single P (x) of
order ≤ n we have finitely many non-constant σ-polynomials Q(x) of order ≤ n
and we have to meet simultaneously the constraints coming from each of those Q’s.
This leads to:

Theorem 4.4. Suppose K satisfies Axiom 2. Suppose {aη} in K is a pc-sequence
and aη  a in an extension with γη := v(a − aη). Let Σ be a finite set of σ-
polynomials P (x) over K.

• If ρ is transcendental, then P (aη) P (a), for all non-constant P ∈ K[x];
more specifically there is a unique L0 = L0(P ) such that for all I 6= L0,
eventually

v(P (aη)− P (a)) = v(P(L0)(a)) + |L0|ρ · γη < v(P(I)(a)) + |I|ρ · γη.
• If ρ is algebraic, then there is a pc-sequence {bη} from K, equivalent to {aη},

such that P (bη)  P (a) for each non-constant P ∈ Σ; more specifically
there is a unique m0 = m0(P ) such that for all I with |I|ρ 6= m0, eventually

v(P (bη)− P (a)) = min
|L0|ρ=m0

v(P(L0)(a)) + |L0|ρ · γη < v(P(I)(a)) + |I|ρ · γη.

Refinement of the Basic Calculation. The following improvement of the basic
calculation will be needed later on.

Theorem 4.5. Suppose K satisfies Axiom 2 and ρ is algebraic. Let {aη} be a
pc-sequence from K and let aη  a in some extension. Let P (x) be a σ-polynomial
over K such that
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(i) P (aη) 0,
(ii) P(L)(bη) 6 0, whenever |L| ≥ 1 and {bη} is a pc-sequence in K equivalent

to {aη}.
Let Σ be a finite set of σ-polynomials Q(x) over K. Then there is a pc-sequence
{bη} in K, equivalent to {aη}, such that P (bη)  0, and Q(bη)  Q(a) for all
non-constant Q in Σ.

Proof. By augmenting Σ, we can assume P(L) ∈ Σ for all L. Let n be such that
all Q ∈ Σ have order ≤ n. Let {θη} and {dη} be as before. By following the
proof in the basic calculation and using Axiom 2, we get non-zero polynomials
fη ∈ k[x0, . . . , xn] and a sequence {µη} satisfying the constraints

µη ∈ O, µ̄η 6= 0, µ̄η + d̄η 6= 0, fη(σ̄(µ̄η)) 6= 0,

such that, by setting bη := aη + θηµη, we have

Q(bη) Q(a) for each non-constant Q ∈ Σ.

We would like to constrain {µη} further so that we also have P (bη)  0. Letting
A := {|L|ρ : L ∈ Nn+1 and 1 ≤ |L| ≤ deg(P )}, we have

P (aη) = P (bη − θηµη)

= P (bη) +
∑
m∈A

∑
|L|ρ=m

P(L)(bη) · σ(−θηµη)L

= P (bη) +
∑
m∈A

∑
|L|ρ=m

P(L)(bη) · σ(−θη)L · σ(µη)L

= P (bη) +
∑
m∈A

Qm,η(µη)

where Qm,η is the σ-polynomial over K given by

Qm,η(x) =
∑
|L|ρ=m

P(L)(bη) · σ(−θη)L · σ(x)L.

Now, for |L| ≥ 1, P(L)(bη) 6 0, and, provided P(L) 6∈ K, P(L)(bη)  P(L)(a).
Hence, v(P(L)(bη)) settles down eventually. Let γL be this eventual value. For each
m ∈ A such that Qm,η 6= 0, let L = L(m) be such that P(L)(bη) · σ(−θη)L has
minimal valuation. Then, for such Qm,η, we can write (eventually in η),

Qm,η(x) = cm,η · qm,η(σ(x)),

where v(cm,η) = γL + |L|ρ · γη and qm,η is a polynomial over O with at least one
coefficient 1. This suggests another constraint on {µη}, namely, for each m ∈ A such
that Qm,η 6= 0, v(qm,η(σ(µη))) = 0 (eventually in η); equivalently, q̄m,η(σ̄(µ̄η)) 6= 0.
As usual, this constraint can be met by Axiom 2. And then, by Lemma 4.2, we
have a unique m0 such that eventually in η,

v
( ∑
m∈A

Qm,η(µη)
)

= v(Qm0,η(µη)) = γL +m0 · γη, L = L(m0),

which is increasing. Now,

P (bη) = P (aη)−
∑
m∈A

Qm,η(µη).
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If v(P (aη)) 6= v(Qm0,η(µη)), we do nothing. However, if v(P (aη)) = γL + m0 · γη,
then replacing µη by a variable x, consider

P (aη)−
∑
m∈AQm,η(x)

= P (aη)
(

1− P (aη)−1
∑
m∈AQm,η(x)

)
= P (aη)

(
1− P (aη)−1cm0,ηqm0,η(σ(x))(1 + εη)

)
= P (aη)

(
1− c′m0,ηqm0,η(σ(x)) + ε′η

)
where c′m0,η = P (aη)−1cm0,η, v(εη) > 0 and v(ε′η) > 0. Note that v(c′m0,η) = 0 and
qm0,η is a polynomial over O with at least one coefficient 1. So we impose our final
constraint on {µη}: for each η such that v(P (aη)) = γL +m0 · γη, we require that

1− c̄′m0,η q̄m0,η(σ̄(µ̄η)) 6= 0.

Then we get that eventually

v(P (bη)) = min{v(P (aη)), v(Qm0,η(µη))},

and since both of these are increasing, we have P (bη) 0. �

5. Around Newton-Hensel Lemma

For the moment we consider the basic problem of how to start with a ∈ K and
P (a) 6= 0, and find b ∈ K with v(P (b)) > v(P (a)).

Before we do that, we need a little notation. Let K = (K,σ, v) be a multiplicative
valued difference field. As already mentioned, the automorphism σ on K induces
an automorphism on the value group Γ, which we also denote by σ, as follows:

γ 7→ σ(γ) := v(σ(a)), where γ = v(a) for some a ∈ K.

Then for any multi-index I = (i0, i1, . . . , in) ∈ Nn+1, we have

v(σ(a)I) = v(ai0(σ(a))i1 · · · (σn(a))in) =
n∑
j=0

ijv(σj(a)) =
n∑
j=0

ijρ
j ·v(a) = |I|ρ·v(a).

If I = ei = (0, . . . , 0, 1, 0, . . . 0) with 1 at the i-th place, we denote P(ei) by P(i).
And then, for γ ∈ Γ, we have |ei|ρ · γ = ρi · γ. By abuse of notation, we will often
identify ei with i. For example, we will write J 6= i (for some multi-index J) to
actually mean J 6= ei. Hopefully, this should be clear from the context.

Let K be a multiplicative valued difference field. Let P (x) be a σ-polynomial
over K of order ≤ n, and a ∈ K. Let I,J ,L ∈ Nn+1.

Definition 5.1. We say (P, a) is in σ-hensel configuration if P is not a constant
and there is 0 ≤ i ≤ n and γ ∈ Γ such that

(i) v(P (a)) = v(P(i)(a)) + ρi · γ ≤ v(P(j)(a)) + ρj · γ whenever 0 ≤ j ≤ n,
(ii) v(P(J)(a)) + |J |ρ · γ < v(P(L)(a)) + |L|ρ · γ whenever 0 6= J < L and

P(J) 6= 0.
We say (P, a) is in strict σ-hensel configuration if the inequality in (i) is strict for
j 6= i.
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Remark 5.2. Note that if (P, a) is in (strict) σ-hensel configuration, then P(J)(a) 6=
0 whenever J 6= 0 and P(J) 6= 0, so P (a) 6= 0, and therefore γ as above satisfies

v(P (a)) = min
0≤j≤n

v(P(j)(a)) + ρj · γ,

so is unique, and we set γ(P, a) := γ. If (P, a) is not in σ-hensel configuration, we
set γ(P, a) := ∞. If (P, a) is in strict σ-hensel configuration, then i is unique and
we set i(P, a) := i.

Remark 5.3. Suppose P is non-constant, P (a) 6= 0, v(P (a)) > 0 and v(P(J)(a)) =
0 for all J 6= 0 with P(J) 6= 0. Then (P, a) is in σ-hensel configuration with
γ(P, a) = v(P (a)) > 0 and any i with 0 ≤ i ≤ n; and for ρ > 1, (P, a) is in strict
σ-hensel configuration with γ(P, a) = v(P (a)) > 0 and i(P, a) = 0.

Now given (P, a) in (strict) σ-hensel configuration, we aim to find b ∈ K such
that v(P (b)) > v(P (a)) and (P, b) is in (strict) σ-hensel configuration. This, how-
ever, requires an additional assumption on the residue field k, namely that k should
be linear difference-closed. We will justify later on why this assumption is necessary.

Axiom 3n. If α0, . . . , αn ∈ k are not all 0, then the equation

1 + α0x+ α1σ̄(x) + · · ·+ αnσ̄
n(x) = 0

has a solution in k.

Lemma 5.4. Suppose K satisfies Axiom 3n, and (P, a) is in σ-hensel configuration.
Then there is b ∈ K such that

(1) v(b− a) ≥ γ(P, a), v(P (b)) > v(P (a)),
(2) either P (b) = 0, or (P, b) is in σ-hensel configuration.

For any such b, we have v(b− a) = γ(P, a) and γ(P, b) > γ(P, a).

Proof. This is the same proof as [4, Lemma 4.4]. But we include it here for the
sake of completeness, and also to set the ground for the next lemma.

Step 1. Let γ = γ(P, a). Pick ε ∈ K with v(ε) = γ. Let b = a+ εu, where u ∈ K
is to be determined later; we only impose v(u) ≥ 0 for now. Consider

P (b) = P (a) +
∑
|J|≥1

P(J)(a) · σ(b− a)J .

Therefore, P (b) = P (a) · (1 +
∑
|J|≥1 cJ · σ(u)J ), where

cJ =
P(J)(a) · σ(ε)J

P (a)
.

From v(ε) = γ and the fact that (P, a) is in σ-hensel configuration, we obtain
min0≤j≤n v(cj) = 0 and v(cL) > 0 for |L| > 1. Then imposing v(P (b)) > v(P (a))
forces ū to be a solution of the equation

1 +
∑

0≤j≤n

c̄j · σ̄j(x) = 0.

By Axiom 3n, we can take u with this property, and then v(u) = 0, so v(b − a) =
γ(P, a), and v(P (b)) > v(P (a)).
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Step 2. Assume that P (b) 6= 0. It remains to show that then (P, b) is in σ-hensel
configuration with γ(P, b) > γ. Let J 6= 0, P(J) 6= 0 and consider

P(J)(b) = P(J)(a) +
∑
L6=0

P(J)(L)(a) · σ(b− a)L.

Note that P(J)(a) 6= 0. Since K is of equi-characteristic zero, v(P(J)(L)(a)) =
v(P(J+L)(a)). Therefore, for all L 6= 0,

v(P(J)(L)(a) · σ(b− a)L) > v(P(J)(a)),

hence v(P(J)(b)) = v(P(J)(a)). Since P (b) 6= 0, we can pick γ1 ∈ Γ such that

v(P (b)) = min
0≤j≤n

v(P(j)(a)) + ρj · γ1.

Then γ < γ1 : Pick 0 ≤ i ≤ n such that v(P (a)) = v(P(i)(a)) + ρi · γ. So

ρi · γ = v(P (a))− v(P(i)(a)) < v(P (b))− v(P(i)(a)) ≤ ρi · γ1.

Also for J ,L 6= 0 and θ ∈ Γ with θ > 0, we have |J |ρ · θ < |L|ρ · θ for J < L
(here we are using the fact that ρ > 0 and the fact that J ,L are tuples of natural
numbers). Thus the inequality

v(P(J)(a)) + |J |ρ · γ < v(P(L)(a)) + |L|ρ · γ
together with γ1 > γ and v(P(I)(b)) = v(P(I)(a)) for all I yields

v(P(J)(b)) + |J |ρ · γ1 < v(P(L)(b)) + |L|ρ · γ1.

Hence, (P, b) is in σ-hensel configuration with γ(P, b) = γ1. �

Lemma 5.5. Suppose K satisfies Axiom 3n and ρ > 1, and (P, a) is in σ-hensel
configuration. Then there is c ∈ K such that

(1) v(c− a) ≥ γ(P, a), v(P (c)) > v(P (a)),
(2) either P (c) = 0, or (P, c) is in strict σ-hensel configuration.

For any such c, we have v(c − a) = γ(P, a), γ(P, c) > γ(P, a); and if (P, a) was
already in strict σ-hensel configuration, then i(P, c) ≤ i(P, a).

Proof. Let γ = γ(P, a) and i = i(P, a) (in case (P, a) is in strict σ-hensel config-
uration). Since (P, a) is in σ-hensel configuration, by Lemma 5.4, there is b ∈ K
such that v(b − a) = γ(P, a), v(P (b)) > v(P (a)), γ(P, b) > γ(P, a) = γ and either
P (b) = 0 or (P, b) is in σ-hensel configuration.

If P (b) = 0, let c := b and we are done. So suppose P (b) 6= 0. Then, letting
γ1 = γ(P, b), we have for some 0 ≤ j0 ≤ n,

v(P (b)) = v(P(j0)(a)) + ρj0 · γ1 ≤ v(P(j)(a)) + ρj · γ1

for all 0 ≤ j ≤ n.
If the above inequality is strict for j 6= j0, we are done: Then (P, b) is in strict σ-

hensel configuration with i(P, b) = j0 and γ(P, b) = γ1. Moreover, if (P, a) is already
in strict σ-hensel configuration and i = i(P, a) < j0, then ρi ·(γ1−γ) ≤ ρj0 ·(γ1−γ)
as γ1 − γ > 0 and ρ ≥ 1, and we have

v(P(i)(a)) + ρi · γ < v(P(j0)(a)) + ρj0 · γ
=⇒ v(P(i)(a)) + ρi · γ + ρi · (γ1 − γ) < v(P(j0)(a)) + ρj0 · γ + ρj0 · (γ1 − γ)

=⇒ v(P(i)(a)) + ρi · γ1 < v(P(j0)(a)) + ρj0 · γ1,

which is a contradiction. Thus j0 ≤ i. Hence, letting c := b works.
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However, if there is no such unique j0, then it means there are 0 ≤ j0 < j1 <
· · · < jm ≤ n such that

v(P (b)) = v(P(j0)(a))+ρj0 ·γ1 = v(P(j1)(a))+ρj1 ·γ1 = · · · = v(P(jm)(a))+ρjm ·γ1.

Since (P, b) is in σ-hensel configuration, we can find b′ ∈ K such that v(P (b′)) >
v(P (b)) > v(P (a)), γ(P, b′) > γ(P, b) > γ(P, a), v(b′ − b) = γ(P, b) and either
P (b′) = 0 or (P, b′) is in σ-hensel configuration. It follows that

v(b′ − a) = v(b′ − b+ b− a)
≥ min{v(b′ − b), v(b− a)}
= min{γ(P, b), γ(P, a)}

=⇒ v(b′ − a) = γ(P, a) since, γ(P, a) < γ(P, b).

If P (b′) = 0, we are done. So suppose P (b′) 6= 0. Let γ2 = γ(P, b′). Since γ2−γ1 > 0
and ρ > 1 (this is where we crucially use this hypothesis), we have

ρj0 · (γ2 − γ1) < ρj1 · (γ2 − γ1) < · · · < ρjm · (γ2 − γ1).

But then by doing the same trick as in the previous paragraph, we obtain

v(P(j0)(a)) + ρj0 · γ2 < v(P(j1)(a)) + ρj1 · γ2 < · · · < v(P(jm)(a)) + ρjm · γ2.

Thus, we have succeeded in finding a better approximation b′ than b in the sense
that (P, b′) is in σ-hensel configuration with its minimal valuation occurring at a
possibly lower index than that of (P, b). And these inequalities will remain as we
pass to higher γ. Since i(P, a) is finite, there are only finitely many possibilities for
this index to go down. So by repeating this step finitely many times, we end up at
our required c with v(c−a) = γ(P, a) such that either P (c) = 0 or (P, c) is in strict
σ-hensel configuration with γ(P, c) > γ(P, a) and i(P, c) ≤ i(P, a). �

Lemma 5.6. Suppose K satisfies Axiom 3n, and (P, a) is in σ-hensel configuration.
Suppose also there is no b ∈ K such that P (b) = 0 and v(b − a) = γ(P, a). Then
there is a pc-sequence {aη} in K with the following properties:

(1) a0 = a and {aη} has no pseudolimit in K;
(2) {v(P (aη))} is strictly increasing, and thus P (aη) 0;
(3) v(aη′ − aη) = γ(P, aη) whenever η < η′;
(4) (P, aη) is in σ-hensel configuration with γ(P, aη) < γ(P, aη′) for η < η′;
(5) for any extension K′ of K and b, c ∈ K ′ such that aη  b (and hence, (P, b)

is in σ-hensel configuration) and v(c− b) ≥ γ(P, b), we have aη  c.

Proof. We will build the sequence by transfinite recursion. Start with a0 := a.
Suppose for some ordinal λ > 0, we have built the sequence {aη}η<λ such that

(i) (P, aη) is in σ-hensel configuration, for all η < λ,
(ii) v(aη′ − aη) = γ(P, aη) whenever η < η′ < λ,

(iii) v(P (aη′)) > v(P (aη)) and γ(P, aη′) > γ(P, aη) whenever η < η′ < λ.
Now we will have to deal with the inductive case. If λ is a successor ordinal, say
λ = µ + 1, then by Lemma 5.4, there is aλ ∈ K such that v(aλ − aµ) = γ(P, aµ),
v(P (aλ)) > v(P (aµ)) and γ(P, aλ) > γ(P, aµ). Then the extended sequence
{aη}η<λ+1 has the above properties with λ+ 1 instead of λ.

Suppose λ is a limit ordinal. Then {aη} is a pc-sequence and P (aη) 0. If {aη}
has no pseudolimit in K, we are done. Otherwise, let aλ ∈ K be a pseudolimit of
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{aη}. Then v(aλ − aη) = v(aη+1 − aη) = γ(P, aη); also, for any η < λ,

P (aλ) = P (aη) +
∑
|I|≥1

P(I)(aη) · σ(aλ − aη)I ;

since P (aη) has the minimal valuation of all the summands, we have v(P (aλ)) ≥
v(P (aη)) for all η < λ. Since {v(P (aη))}η<λ is increasing by inductive hypothesis,
we get v(P (aλ)) > v(P (aη)) for all η < λ. And then by Step 2 of Lemma 5.4,
it follows that (P, aλ) is in σ-hensel configuration with γ(P, aλ) > γ(P, aη) for all
η < λ. Thus the extended sequence {aη}η<λ+1 satisfies all the above properties
with λ + 1 instead of λ. Eventually we will have a sequence cofinal in K, and
hence the building process must come to a stop, yielding a pc-sequence satisfying
(1), (2), (3) and (4).

Now aη  b. Thus v(b− aη) = v(aη+1 − aη) = γ(P, aη) for all η, and (P, b) is in
σ-hensel configuration with γ(P, b) > γ(P, aη) for all η. In particular,

v(c− aη) = v(c− b+ b− aη)
≥ min{v(c− b), v(b− aη)}
≥ min{γ(P, b), γ(P, aη)}

=⇒ v(c− aη) = γ(P, aη)

Since {γ(P, aη)} is increasing, we have aη  c. �

It follows similarly (with ideas from the proof of Lemma 5.5) that

Lemma 5.7. Suppose K satisfies Axiom 3n, ρ > 1 and (P, a) is in strict σ-hensel
configuration. Suppose also there is no b ∈ K such that P (b) = 0 and v(b − a) =
γ(P, a). Then there is a pc-sequence {aη} in K with the following properties:

(1) a0 = a and {aη} has no pseudolimit in K;
(2) {v(P (aη))} is strictly increasing, and thus P (aη) 0;
(3) v(aη′ − aη) = γ(P, aη) whenever η < η′;
(4) (P, aη) is in strict σ-hensel configuration with γ(P, aη) < γ(P, aη′) and

i(P, aη′) ≤ i(P, aη) for η < η′;
(5) for any extension K′ of K and b, c ∈ K ′ such that aη  b (and hence, (P, b)

is in σ-hensel configuration) and v(c− b) ≥ γ(P, b), we have aη  c.

Definition 5.8. A multiplicative valued difference field K is called (strict) σ-
henselian if for all (P, a) in (strict) σ-hensel configuration there is b ∈ K such
that v(b− a) = γ(P, a) and P (b) = 0.

By Axiom 3 we mean the set {Axiom 3n : n = 0, 1, 2, . . .}. So Axiom 3 is really
an axiom scheme and K satisfies Axiom 3 if and only if k is linear difference closed.

Corollary 5.9. If K is maximally complete as a valued field and satisfies Axiom
3, then K is σ-henselian (strict σ-henselian if ρ > 1). In particular, if K is com-
plete with discrete valuation and satisfies Axiom 3, then K is σ-henselian (strict
σ-henselian if ρ > 1).

Lemma 5.10. (1) If K is σ-henselian, then K satisfies Axiom 3.
(2) If K satisfies Axiom 3, then K satisfies Axiom 2.

Proof. (1) Assume that K is σ-henselian and let Q(x) = 1 + α0x+ α1σ̄(x) + · · ·+
αnσ̄

n(x) ∈ k〈x〉 such that not all αi’s are zero. We want to find b ∈ k such that
Q(b) = 0.
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Let P (a) = 1 + a0x + a1σ(x) + · · · + anσ
n(x), where for all i, ai ∈ K, ai = 0

if αi = 0, and v(ai) = 0 with āi = αi if αi 6= 0. It is easy to see that (P, 0) is
in σ-hensel configuration with γ(P, 0) = 0. By σ-henselianity, there is a ∈ K such
that v(a) = 0 and P (a) = 0. Set b := ā.

(2) For K to satisfy Axiom 2, we need for each d ∈ Z+, an element a ∈ k such
that σ̄d(a) 6= a. Consider the linear difference polynomial Pd(x) = σ̄d(x)−x+1 over
k. Since K satisfies Axiom 3, there is a ∈ k such that Pd(a) = 0, i.e., σ̄d(a) = a−1.
In particular, σ̄d(a) 6= a. �

Remark 5.11. (1) If Γ = {0}, then K is σ-henselian.
(2) If Γ 6= {0} and K is σ-henselian, then K satisfies Axiom 3 by Lemma 5.10.

In particular, σ̄n 6= idk for all n ≥ 1. Thus, K satisfies Axiom 2 as well.
(3) If ρ > 1 and K satisfies Axiom 3, then K is σ-henselian iff K is strict σ-

henselian: the “only-if” direction is trivial, and the “if” direction follows
from Lemma 5.5.

Definition 5.12. We say {aη} is of σ-algebraic type over K if P (bη) 0 for some
σ-polynomial P (x) over K and an equivalent pc-sequence {bη} in K. Otherwise,
we say {aη} is of σ-transcendental type.

If {aη} is of σ-algebraic type over K, then a minimal σ-polynomial of {aη} over
K is a σ-polynomial P (x) over K with the following properties:

(i) P (bη) 0 for some pc-sequence {bη} in K equivalent to {aη};
(ii) Q(bη) 6 0 whenever Q(x) is σ-polynomial over K of lower complexity than

P (x) and {bη} is a pc-sequence in K equivalent to {aη}.

Lemma 5.13. Suppose K satisfies Axiom 2. Let {aη} from K be a pc-sequence of σ-
algebraic type over K with minimal σ-polynomial P (x) over K, and with pseudolimit
a in some extension. Let Σ be a finite set of σ-polynomials Q(x) over K. Then
there is a pc-sequence {bη} in K, equivalent to {aη}, such that, with γη := v(a−aη) :

(I) v(a− bη) = γη, eventually, and P (bη) 0;
(II) if Q ∈ Σ and Q 6∈ K, then Q(bη) Q(a);

(III) (P, bη) is in σ-hensel configuration with γ(P, bη) = γη, eventually;
(IV) if P (a) 6= 0, then (P, a) is in σ-hensel configuration with γ(P, a) > γη

eventually.

If ρ > 1, then (P, bη) is actually in strict σ-hensel configuration. Also there is some
a′, pseudolimit of {aη}, such that (I), (II) and (IV ) hold with a replaced by a′,
and either P (a′) = 0 or (P, a′) is in strict σ-hensel configuration with γ(P, a′) > γη
eventually.

Proof. Let P have order n. Let us augment Σ with all P(I) for 1 ≤ |I| ≤ deg(P ). In
the rest of the proof, all multi-indices range over Nn+1. Also since P is a minimal
polynomial of {aη}, there is an equivalent sequence {cη} such that P (cη) 0.

Now if ρ is transcendental, then by Theorem 4.4, Q(cη) Q(a) for all Q ∈ Σ and
Q 6∈ K. Let bη := cη. Thus, {bη} satisfies (I) and (II). And if ρ is algebraic, then
by Theorem 4.5, there is a pc-sequence {bη}, equivalent to {cη} (and hence to {aη}),
such that (I) and (II) hold. Theorem 4.4 also shows that in the transcendental
case, there is a unique L0 such that eventually for all I 6= L0,

v(P (bη)− P (a)) = v(P(L0)(a)) + |L0|ρ · γη < v(P(I)(a)) + |I|ρ · γη,
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and in the algebraic case there is a unique m0 such that eventually for all I with
|I|ρ 6= m0,

v(P (bη)− P (a)) = min
|L0|ρ=m0

v(P(L0)(a)) +m0 · γη < v(P(I)(a)) + |I|ρ · γη.(1)

We will show that in either case |L0| = 1. Since for ρ > 1, there is a unique L0

such that |L0|ρ = m0 and |L0| = 1, this gives us that for ρ > 1 (both algebraic and
transcendental), there is a unique L0 such that eventually for all I 6= L0,

v(P (bη)− P (a)) = v(P(L0)(a)) + |L0|ρ · γη < v(P(I)(a)) + |I|ρ · γη.(2)

This actually gives the strict σ-hensel configuration of (P, bη) for ρ > 1.
For any I such that P(I) 6= 0, we claim that if I < J , then

v(P(I)(a)) + |I|ρ · γη < v(P(J)(a)) + |J |ρ · γη

eventually: Theorem 4.4 with Σ = {P, P(I)} shows that we can arrange that our
sequence {bη} also satisfies

v(P(I)(bη)− P(I)(a)) ≤ v(P(I)(L)(a)) + |L|ρ · γη,

eventually for all L with |L| ≥ 1. Since v(P(I)(bη)) = v(P(I)(a)) eventually (as P
is a minimal polynomial for {aη}), this yields

v(P(I)(a)) ≤ v(P(I)(L)(a)) + |L|ρ · γη = v(P(I+L)(a)) + |L|ρ · γη.

For L with I +L = J , this yields

v(P(I)(a)) ≤ v(P(J)(a)) + |J − I|ρ · γη.

As {γη} is increasing, we have eventually in η,

v(P(I)(a)) < v(P(J)(a)) + |J − I|ρ · γη.

Since eventually v(P(I)(bη)) = v(P(I)(a)), we have

v(P(I)(bη)) + |I|ρ · γη < v(P(J)(bη)) + |J |ρ · γη, and
v(P(I)(a)) + |I|ρ · γη < v(P(J)(a)) + |J |ρ · γη

It follows that |L0| = 1 (for ρ = 1, this means m0 = 1). In particular, we have
established (1) with m0 = 1 for ρ = 1, and (2) for ρ > 1. Since P (bη)  0,
this yields v(P (a)) > v(P (bη)) eventually, i.e., v(P (bη) − P (a)) = v(P (bη)). It
follows from this and (1) that (P, bη) is in σ-hensel configuration eventually with
γ(P, bη) = γη; and it follows from (2) that for ρ > 1, (P, bη) is in strict σ-hensel
configuration.

Finally by Step 2 of Lemma 5.4, it follows that if P (a) 6= 0, then (P, a) is also
in σ-hensel configuration with γ(P, a) > γη eventually. And for ρ > 1, if (P, a) is
already in strict σ-hensel configuration, we are done. Otherwise follow the proof of
Lemma 5.5 to find the required a′. �
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6. Immediate Extensions

Throughout this section, K = (K,Γ, k; v, π) is a multiplicative valued difference
field satisfying Axiom 2. Note that then any immediate extension of K also satisfies
Axiom 2. We state here a few basic facts on immediate extensions.

Lemma 6.1. Let {aη} from K be a pc-sequence of σ-transcendental type over K.
Then K has a proper immediate extension (K〈a〉,Γ, k; va, πa) such that:

(1) a is σ-transcendental over K and aη  a;
(2) for any extension (K1,Γ1, k1; v1, π1) of K and any b ∈ K1 with aη  b,

there is a unique embedding

(K〈a〉,Γ, k; va, πa) −→ (K1,Γ1, k1; v1, π1)

over K that sends a to b.

Proof. See [3, Lemma 5.2]. (All that is needed in the proof is the pseudo-continuity
of the σ-polynomials (upto equivalent sequences). So the same proof works here.)

�

As a consequence of both (1) and (2) of Lemma 6.1, we have:

Corollary 6.2. Let a from some extension of K be σ-algebraic over K and let {aη}
be a pc-sequence in K such that aη  a. Then {aη} is of σ-algebraic type over K.

Lemma 6.3. Let {aη} from K be a pc-sequence of σ-algebraic type over K, with
no pseudolimit in K. Let P (x) be a minimal σ-polynomial of {aη} over K. Then
K has a proper immediate extension (K〈a〉,Γ, k; va, πa) such that:

(1) P (a) = 0 and aη  a;
(2) for any extension (K1,Γ1, k1; v1, π1) of K and any b ∈ K1 with P (b) = 0

and aη  b, there is a unique embedding

(K〈a〉,Γ, k; va, πa) −→ (K1,Γ1, k1; v1, π1)

over K that sends a to b.

Proof. See [3, Lemma 5.3]. �

Definition 6.4. K is said to be σ-algebraically maximal if it has no proper im-
mediate σ-algebraic extension; and K is said to be maximal if it has no proper
immediate extension.

Corollary 6.5. (1) K is σ-algebraically maximal if and only if each pc-sequence
in K of σ-algebraic type over K has a pseudolimit in K;

(2) if K satisfies Axiom 3 and is σ-algebraically maximal, then K is σ-henselian.

Proof. (1) The “only if” direction follows from Lemma 6.3. For the “if” direction,
suppose for a contradiction that K1 := (K1,Γ, k; v1, π1) is a proper immediate
σ-algebraic extension of K. Since the extension is proper, there is a ∈ K1 \ K.
Since the extension is immediate, we can find a pc-sequence {aη} from K such
that aη  a. Since the extension is σ-algebraic, a is σ-algebraic over K. Then by
Corollary 6.2, {aη} is of σ-algebraic type over K. So by assumption, there is b ∈ K
such that aη  b. But then by part (2) of Lemma 6.3, we have

(K〈a〉,Γ, k; va, πa) ∼= (K〈b〉,Γ, k; vb, πb) ∼= (K,Γ, k; v, π),

i.e., a ∈ K, a contradiction.
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(2) Let P (x) be a σ-polynomial over K of order ≤ n, and a ∈ K be such that
(P, a) is in σ-hensel configuration. If there is no b ∈ K such that v(b− a) = γ(P, a)
and P (b) = 0, then by Lemma 5.6, there is a σ-algebraic pc-sequence {aη} in K
such that {aη} has no pseudolimit in K. But then by part (1) of this corollary, K
is not σ-algebraically maximal, a contradiction. �

It is clear that K has σ-algebraically maximal immediate σ-algebraic extensions,
and also maximal immediate extensions. We will show that, provided K satisfies
Axiom 3, both kinds of extensions are unique up to isomorphism.

Lemma 6.6. Let K′ be a σ-algebraically maximal extension of K satisfying Axiom
3. Let {aη} from K be a pc-sequence of σ-algebraic type over K, with no pseudolimit
in K, and with minimal σ-polynomial P (x) over K. Then there exists b ∈ K ′ such
that aη  b and P (b) = 0.

Proof. By Corollary 6.5 (1), there exists a ∈ K ′ such that aη  a. If P (a) = 0,
we are done. So let us assume P (a) 6= 0. Then by Lemma 5.13 (IV), (P, a) is in
σ-hensel configuration with γ(P, a) > v(a−aη) eventually. Since K′ satisfies Axiom
3, by Corollary 6.5 (2), there is b ∈ K ′ such that v(b− a) = γ(P, a) and P (b) = 0.
Finally v(b−aη) = v(b−a+a−aη) = v(a−aη), since v(b−a) = γ(P, a) > v(a−aη).
Thus, aη  b. �

Together with Lemmas 6.1 and 6.3, this yields:

Theorem 6.7. (1) Suppose K′ is a proper immediate σ-henselian extension of
K, and let a ∈ K ′ \K. Let K1 be a σ-henselian extension of K satisfying
Axiom 2, such that every pc-sequence from K1 of length at most card(Γ)
has a pseudolimit in K1. Then K〈a〉 embeds in K1 over K.

(2) Suppose K′ is a proper immediate σ-henselian σ-algebraic extension of K,
and let a ∈ K ′\K. Let K1 be a σ-henselian extension of K satisfying Axiom
2, such that every pc-sequence of σ-algebraic type over K1 and of length at
most card(Γ) has a pseudolimit in K1. Then K〈a〉 embeds in K1 over K.

Proof. (1) By [6, Theorem 1], there is a pc-sequence {aη} from K such that aη  a
and {aη} has no pseudolimit in K. By assumption, there is b ∈ K1 such that
aη  b.

If {aη} is of σ-transcendental type, then by Corollary 6.2, both a and b must be
σ-transcendental over K. Now apply Lemma 6.1.

If {aη} is of σ-algebraic type, let P (x) be a minimal polynomial for {aη}. By
Theorem 5.13, we get an equivalent pc-sequence {bη} from K with bη  a, such
that P (bη)  0, P (bη)  P (a), P(L)(bη)  P(L)(a) (but not to 0) for all |L| ≥ 1,
(P, bη) is in σ-hensel configuration eventually, and either P (a) = 0, or (P, a) is also
in σ-hensel configuration with γ(P, a) > γ(P, bη) eventually. If P (a) = 0, we are
done. Otherwise, since K′ is σ-henselian, we have a′ ∈ K ′ such that P (a′) = 0 and
v(a′ − a) = γ(P, a). Since γ(P, a) > γ(P, bη) eventually, we have bη  a′. Thus, in
either case, we have a′ ∈ K ′ such that P (a′) = 0 and bη  a′. Similarly, we get
b′ ∈ K1 such that bη  b′ and P (b′) = 0.

By Lemma 6.3, K〈a′〉 is isomorphic to K〈b′〉 as multiplicative valued fields over
K, with a′ mapped to b′.

Now, K′ is immediate over K〈a′〉. If a is not already in K〈a′〉, then we may
repeat the argument and conclude by a standard maximality argument.
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(2) By Corollary 6.2, there is a pc-sequence {aη} from K of σ-algebraic type
pseudoconverging to a, with no pseudolimit in K. Then the calculation in (1) works,
since every extension or pc-sequence considered will be of σ-algebraic type. �

Corollary 6.8. Suppose K satisfies Axiom 3. Then all its maximal immediate
extensions are isomorphic over K, and all its σ-algebraically maximal immediate
σ-algebraic extensions are isomorphic over K.

Proof. We have already noticed the existence of both kinds of maximal immediate
extensions. By Corollary 6.5 (2), they are also σ-henselian. The desired uniqueness
then follows by a standard maximality argument using Theorem 6.7 (1) and (2). �

We now state minor variants of the last two results using the notion of saturation
from model theory.

Lemma 6.9. Let K′ be a |Γ|+-saturated σ-henselian extension of K. Let {aη} from
K be a pc-sequence of σ-algebraic type over K, with no pseudolimit in K, and with
minimal σ-polynomial P (x) over K. Then there exists b ∈ K ′ such that aη  b
and P (b) = 0.

Proof. By the saturation assumption, there is a pseudolimit a ∈ K′ of {aη}. If
P (a) = 0, we are done. So let’s assume P (a) 6= 0. But then by Lemma 5.13 (IV),
(P, a) is in σ-hensel configuration with γ(P, a) > v(a − aη) eventually. Since K′ is
σ-henselian, there is b ∈ K ′ such that v(b − a) = γ(P, a) and P (b) = 0. Finally,
aη  b, since v(b− a) = γ(P, a) > v(a− aη). �

In combination with Lemmas 6.1 and 6.3, this yields:

Corollary 6.10. Suppose that K satisfies Axiom 3 and K′ is a |Γ|+-saturated σ-
henselian extension of K. Let K∗ be a maximal immediate extension of K. Then
K∗ can be embedded in K′ over K.

7. Example and Counter-example

We will now show the consistency of our axioms by building models for our
theory. The canonical models we have in mind are the generalized power series fields
k((tΓ)), also known as the Hahn series. Given any difference field k of characteristic
zero with automorphism σ̄, and any MODAG Γ with automorphism σ(γ) = ρ · γ,
we form the multiplicative difference valued field k((tΓ)) as follows.

As a set, k((tΓ)) := {f : Γ → k | supp(f) := {x ∈ Γ : f(x) 6= 0} is well-ordered
in the ordering induced by Γ}. An element f ∈ k((tΓ)) is thought of as a formal
power series f ↔

∑
γ∈Γ f(γ)tγ . Addition, multiplication and valuation on k((Γ))

are defined the usual way. And, we define the automorphism on k((Γ)) as follows:

σ(f) :=
∑
γ∈Γ

σ̄(f(γ))tρ·γ

If we choose ρ ≥ 1, k((tΓ)) satisfies Axiom 1. Also if we impose that σ̄ is a linear
difference closed automorphism on k, then k((tΓ)) satisfies Axiom 2 and Axiom 3 as
well. Moreover, using the fact that k((tΓ)) is maximally complete (see [7]), it follows
from Corollary 5.9 that k((tΓ)) is σ-henselian for ρ ≥ 1, and strict σ-henselian for
ρ > 1. Also note that the residue field of k((tΓ)) is k, and the value group is Γ.
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Now we will justify why we need Axiom 3 (at least for the case ρ > 1). We will
provide an example that shows why Axiom 3 cannot be dropped. This example is
adapted from [4, Example 5.11], which is in turn adapted from [6, Section 5].

Example 7.1. Let ρ be any element of a real-closed field and ρ > 1. Let Γ be the
MODAG generated by ρ over Z. Thus we construe Γ as the ordered difference group
Z[ρ, ρ−1] with the order induced by the cut of ρ. Let k be any field of characteristic
zero, construed as a difference field equipped with its identity automorphism. And
let K be the multiplicative valued difference field (k((tΓ)),Γ, k; v, π).

For each n, let Γn := ρ−nZ[ρ] and let Kn be the multiplicative valued difference
field k((tΓn),Γn, k; v, π). Let

K∞ :=
(⋃

n

k((tΓn)),Γ, k; v, π
)
.

Then K∞ equipped with the restriction of σ, is a valued difference subfield of K
and σ is multiplicative. Let us define a sequence {an} as follows:

an =
n∑
i=1

t−ρ
−i
.

We claim that {an} is a pc-sequence : Note that since ρ > 1, we have for i < j ∈ N,
v(t−ρ

−i
) = −ρ−i < −ρ−j = v(t−ρ

−j
). Hence, v(an+1 − an) = v(t−ρ

−(n+1)
) =

−ρ−(n+1), which is increasing as n→∞.
Also it is clear that {an} has no pseudolimit in K∞. Moreover, since σ(t−ρ

−i
) =

t−ρ
−i+1

, we have for
P (x) = σ(x)− x− t−1,

P (an) = t−ρ
−n
 0, and hence {an} is of σ-algebraic type over K∞. Now K∞

is a union of henselian valued fields, and hence is henselian. Moreover it is of
characteristic zero. Hence K∞ is algebraically maximal. Therefore, P (x) is a
minimal σ-polynomial of {an} over K∞. Also,

P (an) + 1 0,

and so P (x)+1 is a minimal σ-polynomial of {an} over K∞ as well. By Lemma 6.3,
there are immediate extensions K∞〈a〉,K∞〈a′〉 of K∞ such that an  a, P (a) = 0,
and an  a′, P (a′) + 1 = 0. Let L1,L2 be σ-algebraically maximal, immediate,
σ-algebraic extensions of K∞〈a〉,K∞〈a′〉 respectively.

Now we claim that L1 and L2 are not isomorphic over K∞. Suppose for a
contradiction that they are isomorphic. Then there is b ∈ L1 such that P (b)+1 = 0.
Since P (a) = 0 we have

Q(a, b) := σ(b− a)− (b− a) + 1 = 0.

We claim that this is only possible when v(b− a) = 0 : if v(b− a) > 0, then since
ρ > 1, we have v(σ(b − a)) > v(b − a) > 0 = v(1). Hence, v(Q(a, b)) = v(1) = 0,
and thus Q(a, b) 6= 0, a contradiction; similarly, if v(b− a) < 0, then v(σ(b− a)) <
v(b − a) < 0 = v(1), in which case again v(Q(a, b)) = 0, a contradiction. Thus,
v(b− a) = 0.

But then, b− a ∈ k and b− a is a solution of

σ̄(x)− x+ 1 = 0,

which is impossible since σ̄ = id, contradiction.
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Here we considered a particular instance of failure of Axiom 3; namely, when σ̄ is
the identity, the above σ̄-linear equation does not have a solution in k. However, one
can produce a similar construction for any non-degenerate inhomogeneous σ̄-linear
equation which does not have a solution in k.

8. Extending Residue Field and Value Group

Let K = (K,Γ, k; v, π) and K′ = (K ′,Γ′, k′; v′, π′) be two multiplicative val-
ued difference fields with ptpZ[ρ](Γ) = ptpZ[ρ](Γ′). Let O and O′ be their re-
spective ring of integers, and let σ denote both their difference operators. Let
E = (E,ΓE , kE ; v, π) be a common multiplicative valued difference subfield of both
K and K′, that is, E ≤ K, E ≤ K′. Then we have:

Lemma 8.1. Let a ∈ O and assume α = π(a) is σ̄-transcendental over kE. Then
• v(P (a)) = minL{v(bL)} for each σ-polynomial P (x) =

∑
bLσ(x)L over E;

• v(E〈a〉×) = v(E×) = ΓE, and E〈a〉 has residue field kE〈α〉;
• if b ∈ O′ is such that β = π(b) is σ̄-transcendental over kE, then there is a

valued difference field isomorphism E〈a〉 → E〈b〉 over E sending a to b.

Proof. See [3, Lemma 2.5]. �

Lemma 8.2. Let P (x) be a non-constant σ-polynomial over the valuation ring of
E whose reduction P̄ (x) has the same complexity as P (x). Let a ∈ O, b ∈ O′,
and assume that P (a) = 0, P (b) = 0, and that P̄ (x) is a minimal σ̄-polynomial of
α := π(a) and of β := π′(b) over kE. Then

• E〈a〉 has value group v(E×) = ΓE and residue field kE〈α〉;
• if there is a difference field isomorphism kE〈α〉 → kE〈β〉 over kE sending α

to β, then there is a valued difference field isomorphism E〈a〉 → E〈b〉 over
E sending a to b.

Proof. See [3, Lemma 2.6]. �

Now we will show how to extend the value group. Recall that Γ is a model of
MODAG. Before stating the results, we need a couple of definitions.

Definition 8.3. For a given σ-polynomial P (x) =
∑
bLσ(x)L over K and a ∈ K,

we say a is generic for P if v(P (a)) = min{v(bL) + |L|ρ · v(a)}.

Definition 8.4. An element a ∈ K (or K ′) is said to be generic over E if a is
generic for all σ-polynomials P (x) =

∑
bLσ(x)L over E.

Lemma 8.5. Assume K satisfies Axiom 2. Then, for each γ ∈ Γ and P (x) =∑
bLσ(x)L over K, there is a ∈ K such that v(a) = γ and a is generic for P .

Proof. Let c ∈ K be such that v(c) = γ. If c is already generic for P , set a := c
and we are done. Otherwise, pick ε ∈ K such that v(ε) = 0 (we will decide
later how to choose ε) and set a := cε. Note that v(a) = v(c) = γ. Then,
P (a) =

∑
bLσ(c)Lσ(ε)L. Choosing d ∈ K× such that v(d) = min{v(bLσ(c)L)} =

min{v(bL) + |L|ρ · γ}, we can write P (a) = dQP (ε), where QP (ε) is over the ring
of integers of K. Consider QP (ε̄), a σ̄-polynomial over k; choose ε̄ ∈ k such that
QP (ε̄) 6= 0, which is possible since K satisfies Axiom 2. Let ε ∈ K be such that
π(ε) = ε̄. Then v(QP (ε)) = 0, and hence v(P (a)) = v(d) = min{v(bL) + |L|ρ · γ}.
Thus, a is generic for P and v(a) = γ. �
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Remark 8.6. It is clear from the proof of Lemma 8.5 that if we replace P (x) by a
finite set of σ-polynomials {P1(x), . . . , Pm(x)} of possibly different orders, then by
choosing ε̄ ∈ k such that it doesn’t solve any of the related m equations QPi(x) = 0
over k (which is again possible to do as K satisfies Axiom 2), we can find a ∈ K
such that a is generic for {P1, . . . , Pm}.

Definition 8.7. Let P (x) =
∑
bLσ(x)L be a σ-polynomial over K and a ∈ K.

Write P (ax) = dQP (x), where d ∈ K is such that v(d) = min{v(bL) + |L|ρ · v(a)}.
Then QP (x) is a σ-polynomial over OK , and thus QP (x) is a σ̄-polynomial over k.
We say QP (x) is a k-σ̄-polynomial corresponding to (P, a).

Lemma 8.8. Let γ ∈ Γ \ ΓE. Let κ be an infinite cardinal such that |kE | ≤ κ.
Assume K,K′ satisfy Axiom 2 and are κ+-saturated. Then

(i) there is a ∈ K, generic over E, with v(a) = γ;
(ii) E〈a〉 has value group ΓE〈γ〉, and residue field kE〈a〉 of size ≤ κ;
(iii) if γ′ ∈ Γ′ is such that there is a valued difference group isomorphism

ΓE〈γ〉 → ΓE〈γ′〉 over ΓE (in the language of MODAG), and a′ ∈ K ′

is such that a′ is generic over E with v(a′) = γ′, then there is a valued
difference field isomorphism E〈a〉 → E〈a′〉 over E sending a to a′.

Proof. (i) Fix c ∈ K such that v(c) = γ. For each σ-polynomial P (x) over E, let
QP (x) be a k-σ̄-polynomial corresponding to (P, c), and define

ϕP (y) := QP (y) 6= 0

i.e. ϕP (y) is the first-order formula with parameters from k saying “y is not a root
of QP ”. Let

p(y) := {ϕP (y) | P is a σ-polynomial over E}.

By Axiom 2, p(y) is finitely consistent, and hence consistent. So it is a type over
E. Moreover by cardinality considerations, |p(y)| ≤ κ<ω = κ (since κ is infinite).
Since K is κ+-saturated, p(y) is realized in K. In particular, there is y ∈ k such
that y is not a root of any QP . Choosing ε ∈ O with π(ε) = y and setting a := cε,
we then have that v(a) = γ and a is generic for all σ-polynomials P (x) over E, i.e.,
a is generic over E .

(ii) Since a is generic over E , it is clear that v(E〈a〉×) = ΓE〈γ〉, which clearly
has size at most κ. Moreover, since each element of the residue field comes from
an element of valuation zero, the size of kE〈a〉 is at most the size of the set
{P (x) | P is a σ-polynomial over E and v(P (a)) = 0}, which, again by cardinality
considerations, is at the most κ. Thus |kE〈a〉| ≤ κ.

(iii) Finally notice that if b is generic over E , then v(P (b)) 6= ∞ for any σ-
polynomial P (x) over E; i.e., P (b) 6= 0. So b is σ-transcendental over E. In
particular, a and a′ are σ-transcendental over E. Thus there is a difference field
isomorphism ψ : E〈a〉 → E〈a′〉 over E sending a to a′. But, since v(a) = γ,
v(a′) = γ′, ΓE〈γ〉 ∼= ΓE〈γ′〉 over ΓE , and a and a′ are both generic over E , the
valuations are already determined and matched up on both sides, i.e., ψ is actually
a valued difference field isomorphism. �
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9. Embedding Theorem

To prove completeness and relative quantifier elimination of the theory of mul-
tiplicative valued difference fields, we use a standard back and forth test, see [13,
Proposition 4.3.28]. To that end we would like to know when can we extend iso-
morphism between “small” substructures, and the main theorem of this section,
Theorem 9.4, gives an answer to that question.

For the moment we will work in a 4-sorted language L4vdf , where we have our
usual 3 sorts for the valued field K, the value group Γ and the residue field k, and
we add to it a fourth sort called the residue-valuation structure RV. This represents
the language of the leading terms introduced in [8], and explained further in [9] and
[10]. We replace the symbol for the induced automorphism σ̃ on the value group
Γ by ρ·. We could have just worked with a 2-sorted language with K and RV (we
call this the leading term language). But the 2-sorted language is interpretable in
and also interprets the 4-sorted language. So to make things more transparent we
stick to the 4-sorted language. Before we proceed further, we would like to recall
some preliminaries about the RVs. Recall that we are always dealing with the
equi-characteristic zero case.

Preliminaries
Let K = (K,Γ, k; v, π) be a multiplicative valued difference field. Let O be the

ring of integers, and m be its maximal ideal. Let K×, O× and k× denote the set
of units of K, O and k respectively. It is easy to see that (1 + m) is a subgroup
of K× under multiplication. We denote the factor group as RV := K×/1 + m and
the natural quotient map as rv : K× → RV. To extend the map to whole of K, we
introduce a new symbol “∞” (as we do with value groups) and define rv(0) = ∞.
Though RV is defined merely as a group, it inherits much more structure from K.

To start with, since the valuation v on K is given by the exact sequence

1 // O×
ι // K×

v // Γ // 0

and since 1 + m ≤ O×, the valuation descends to RV giving the following exact
sequence

1 // k×
ι // RV

vrv // Γ // 0
(note that O×/1 + m = (O/m)× = k×). In fact, it follows straight from the
definitions that,

Lemma 9.1. For all non-zero x, y ∈ K, the following are equivalent:
(1) rv(x) = rv(y)
(2) v(x− y) > v(y)
(3) π(x/y) = 1

Proof. See [10, Proposition 1.3.3].
Also note that if x, y ∈ O, then the last condition is equivalent to saying π(x) =

π(y). And both (2) and (3) imply that v(x) = v(y). �

Now σ(O) = O implies σ(m) = m: v(x) > 0 ⇐⇒ v(x−1) < 0 ⇐⇒ v(σ(x−1)) <
0 ⇐⇒ −v(σ(x)) < 0 ⇐⇒ v(σ(x)) > 0. Thus, the difference operator on K
induces a difference operator (which we call by σrv) on RV as follows:

σrv(rv(x)) := rv(σ(x)).
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It trivially follows that the induced σ is also multiplicative with the same ρ.
RV also inherits an image of addition from K via the relation

⊕(x1
rv, . . . , x

n
rv, zrv) = ∃x1, . . . , xn, z ∈ K (x1

rv = rv(x1) ∧ · · · ∧ xnrv = rv(xn)
∧ zrv = rv(z) ∧ x1 + · · ·+ xn = z).

The sum x1
rv + · · ·+xnrv is said to be well-defined (and = zrv) if there is exactly one

zrv such that ⊕(x1
rv, . . . , x

n
rv, zrv) holds. Unfortunately this is not always the case.

Fortunately, the sum is well-defined when it is “expected” to be. Formally,

Lemma 9.2. rv(x1)+ · · ·+rv(xn) is well-defined (and is equal to rv(x1 + · · ·+xn))
if and only if v(x1 + · · ·+ xn) = min{v(x1), . . . , v(xn)}.

Proof. See [10, Proposition 1.3.6, 1.3.7 and 1.3.8]. �

Thus, we construe RV as a structure in the language Lrv,σrv := {·,−1 ,⊕, 1, v, σrv}.
And finally, we have

Proposition 9.3. Γ and k are interpretable in RV.

Proof. See [10, Proposition 3.1.4]. Note that the proof there is done for valued fields.
For our case, the difference operator on Γ is interpreted in terms of the difference
operator on RV as ρ ·vrv(x) = vrv(σrv(x)). And since the nonzero elements x̄ of the
residue field are in bijection with x ∈ RV such that vrv(x) = 0, σ̄(x̄) is interpreted
in the obvious way as σrv(x). �

Now we describe the embeddings. Let K = (K,Γ, k,RV; v, π, vrv, ι, rv) and
K′ = (K ′,Γ′, k′,RV′; v′, π′, v′rv, ι

′, rv′) be two σ-henselian multiplicative valued dif-
ference fields of equal characteristic zero, satisfying Axiom 1 with ptpZ[ρ](Γ) =
ptpZ[ρ](Γ′). By Lemma 5.10, K and K′ satisfy Axiom 2 and Axiom 3. We de-
note the difference operator of both K and K′ by σ, and their rings of integers
by O and O′ respectively. Let E = (E,ΓE , kE ,RVE ; v, π, vrv, ι, rv) and E ′ =
(E′,Γ′E′ , k

′
E′ ,RV′E′ ; v

′, π′, v′rv, ι
′, rv′) be valued difference subfields of K and K′ re-

spectively. We say a bijection ψ : E → E′ is an admissible isomorphism if it has
the following properties:

(1) ψ is an isomorphism of multiplicative valued difference fields;
(2) the induced isomorphism ψrv : RVE → RV′E′ of RVs is elementary, i.e., for

all formulas ϕ(x1, . . . , xn) in Lrv,σrv , and ξ1, . . . , ξn ∈ RVE ,

RV |= ϕ(ξ1, . . . , ξn) ⇐⇒ RV′ |= ϕ(ψrv(ξ1), . . . , ψrv(ξn));

(3) the induced isomorphism ψr : kE → k′E′ of difference fields is elementary,
i.e., for all formulas ϕ(x1, . . . , xn) in the language LR,σ of difference rings,
and α1, . . . , αn ∈ kE ,

k |= ϕ(α1, . . . , αn) ⇐⇒ k′ |= ϕ(ψr(α1), . . . , ψr(αn));

(4) the induced isomorphism ψv : ΓE → Γ′E′ of MODAGs is elementary, i.e, for
all formulas ϕ(x1, . . . , xn) in LOG,ρ·, and γ1, . . . , γn ∈ ΓE ,

Γ |= ϕ(γ1, . . . , γn) ⇐⇒ Γ′ |= ϕ(ψv(γ1), . . . , ψv(γn)).

(Note that it is enough to maintain (1) and (2) above, since (3) and (4) are conse-
quences of (2) because of Proposition 9.3).

Our main goal is to be able to extend such admissible isomorphisms. For this
we need certain degree of saturation on K and K′. Fix an infinite cardinal κ and
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let us assume that K and K′ are κ+-saturated. We then say a substructure E =
(E,ΓE , kE ,RVE ; v, π, vrv, ι, rv) of K (respectively of K′) is small if |ΓE |, |kE | ≤ κ.
While extending the isomorphism, we do it in steps and at each step we typically
extend the isomorphism from some E to E〈a〉, which is obviously small if E is;
and then reiterate the process κ many times, which again preserves smallness.
Eventually we reiterate this process countably many times and take union of an
increasing sequence of countably many small fields, which also preserves smallness.
Having said all that, we now state the Embedding Theorem.

Theorem 9.4 (Embedding Theorem). Suppose K,K′, E , E ′ are as above with K,K′
κ+-saturated and E , E ′ small. Assume ψ : E → E′ is an admissible isomorphism
and let a ∈ K. Then there exist b ∈ K ′ and an admissible isomorphism ψ′ : E〈a〉 ∼=
E′〈b〉 extending ψ with ψ(a) = b.

Proof. Note that the theorem is obvious if Γ = {0}. So let us assume that Γ 6= {0}.
Also without loss of generality, we may assume a ∈ OK . We will extend the iso-
morphism in steps. Note that we have three cases to consider:

Case 1. There exists c ∈ E〈a〉 such that π(c) ∈ k \ kE ;
Case 2. There exists c ∈ E〈a〉 such that v(c) ∈ Γ \ ΓE ;
Case 3. For all c ∈ E〈a〉, π(c) ∈ kE and v(c) ∈ ΓE .

Step I: Extending the residue field
Let c ∈ E〈a〉 be such that α := π(c) 6∈ kE . Since k× ↪→ RV, α ∈ RV. By

saturation of K′, we can find α′ ∈ RV′ and an Lrv-isomorphism RVE〈α〉 ∼= RV′E′〈α′〉
extending ψrv and sending r 7→ r′ that is elementary as a partial map between RV
and RV′. Note that then α′ ∈ k′. Now we have two cases to consider.

Subcase I. α (respectively, α′) is σ̄-transcendental over kE (respectively, k′E′).
In that case, pick d ∈ O and d′ ∈ O′ such that π(d) = α and π(d′) = α′. Then
by Lemma 8.1, there is an admissible isomorphism E〈d〉 ∼= E ′〈d′〉 extending ψ with
small domain (E〈d〉,ΓE , kE〈α〉) and sending d to d′.

Subcase II. α is σ̄-algebraic over kE . Let P (x) be a σ-polynomial over OE such
that P̄ (x) is a minimal σ̄-polynomial of α. Pick d ∈ O such that π(d) = α.
If P (d) 6= 0 already, then (P, d) is in σ-hensel configuration with γ(P, d) > 0.
Since K is σ-henselian, there is e ∈ O such that P (e) = 0 and π(e) = π(d) = α.
Likewise, there is e′ ∈ O′ such that Pψ(e′) = 0 and π(e′) = α′, where Pψ is the
difference polynomial over E′ corresponding to P under ψ. Then by Lemma 8.2,
there is an admissible isomorphism E〈e〉 ∼= E ′〈e′〉 extending ψ with small domain
(E〈e〉,ΓE , kE〈α〉) and sending e to e′.

Note that in either case, we have been able to extend the admissible isomorphism
to a small domain that includes α. Since E is small, so is E〈a〉, i.e., |kE〈a〉| ≤ κ.
Thus, by repeating Step I κ many times, we are able to extend the admissible
isomorphism to a small domain E1 such that for all c ∈ E〈a〉 with π(c) 6∈ kE , we
have π(c) ∈ kE1 . Continuing this countably many times, we are able to build an
increasing sequence of small domains E = E0 ⊂ E1 ⊂ · · · ⊂ Ei ⊂ · · · such that for
each c ∈ Ei〈a〉 with π(c) 6∈ kEi , we have π(c) ∈ kEi+1 . Taking the union of these
countably many small domains, we get a small domain, which we still call E , such
that ψ extends to an admissible isomorphism with domain E and for all c ∈ E〈a〉,
we have π(c) ∈ kE , i.e., we are not in Case 1 anymore.
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Step II: Extending the value group
Let c ∈ E〈a〉 be such that γ := v(c) 6∈ ΓE . Let b ∈ K be generic over E with

v(b) = γ. Let r := rv(b). By saturation of K′, find r′ ∈ RV′ and an Lrv-isomorphism
RVE〈r〉 ∼= RV′E′〈r′〉 extending ψrv, sending r 7→ r′, that is elementary as a partial
map between RV and RV′. Let b′ ∈ K ′ be such that rv′(b′) = r′.

We claim that b′ is generic over E ′ : for any P (x) =
∑
bLσ(x)L with bL ∈ E′, let

Pψ
−1

(x) =
∑
aLσ(x)L be the corresponding σ-polynomial over E with aL ∈ E and

ψ(aL) = bL. Since b is generic over E , we have v(Pψ
−1

(b)) = min{v(aL) + |L|ρ ·γ},
and hence by Lemma 9.2, we have

rv(Pψ
−1

(b)) =
∑

rv(aLσ(b)L) =
∑

rv(aL)σ(rv(b))L =
∑

rv(aL)σ(r)L.

Then,

rv′(P (b′)) = ψrv(rv(Pψ
−1

(b))) = ψrv

(∑
rv(aL)σ(r)L

)
=

∑
rv′(bL)σ(r′)L =

∑
rv′(bLσ(b′)L),

and hence by Lemma 9.2 again, we have v(P (b′)) = min{v(bL) + |L|ρ · v(b′)}, i.e.,
b′ is generic over E ′. Then by Lemma 8.8, since K satisfies Axiom 2, there is an

admissible isomorphism from E〈b〉
∼= // E ′〈b′〉 extending ψ and sending b 7→ b′.

Thus we have been able to extend the admissible isomorphism to a small domain
that includes γ. Since E is small, so is E〈a〉, i.e., |ΓE〈a〉| ≤ κ. Thus, by repeat-
ing Step II κ many times, we are able to extend the admissible isomorphism to a
small domain E1 such that for all c ∈ E〈a〉 with v(c) 6∈ ΓE , we have v(c) ∈ ΓE1 .
Continuing this countably many times, we are able to build an increasing sequence
of small domains E = E0 ⊂ E1 ⊂ · · · ⊂ Ei ⊂ · · · such that for each c ∈ Ei〈a〉 with
v(c) 6∈ ΓEi , we have v(c) ∈ ΓEi+1 . Taking the union of these countably many small
domains, we get a small domain, which we still call E , such that ψ extends to an
admissible isomorphism with domain E and for all c ∈ E〈a〉, we have v(c) ∈ ΓE ,
i.e., we are not in Case 2 anymore.

Step III: Immediate Extension
After doing Steps I and II, we are reduced to the case when E〈a〉 is an immediate

extension of E where both fields are equipped with the valuation induced by K. Let
E〈a〉 be the valued difference subfield of K that has E〈a〉 as the underlying field. In
this situation, we would like to extend the admissible isomorphism, not just to E〈a〉,
but to a maximal immediate extension of E〈a〉 and use Corollary 6.10. However, for
that we need E to satisfy Axiom 2 and Axiom 3. Since Axiom 3 implies Axiom 2
by Lemma 5.10, it is enough to extend E such that it satisfies Axiom 3. Recall that
K satisfies Axiom 3. Now to make E satisfy Axiom 3, for each linear σ̄-polynomial
P (x) over kE , if there is already no solution to P (x) in kE , find a solution α ∈ k
and follow Step I. Since there are at most κ many such polynomials, we end up
in a small domain. Thus, after doing all these, we can assume E satisfies Axiom 2
and Axiom 3. Let E∗ be a maximal immediate valued difference field extension of
E〈a〉. Then E∗ is a maximal immediate extension of E as well. Similarly let E ′∗ be a
maximal immediate extension of E ′. Since such extensions are unique by Corollary
6.8, and by Corollary 6.10 they can be embedded in K (respectively K′) over E
(respectively E ′) by saturatedness of K (respectively K′), we have that ψ extends
to a valued difference field isomorphism E∗ ∼= E ′∗. Since kE∗ = kE and ΓE∗ = ΓE ,
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it follows by Snake Lemma on the following diagram that RVE∗ = RVE :

1 // k×E
//

id

��

RVE
//

��

ΓE //

id

��

0

1 // k×E∗
// RVE∗

// ΓE∗ // 0

.

Thus, the isomorphism is actually admissible. It remains to note that a is in the
underlying difference field of E∗. �

Remark 9.5. It follows from the above proof that we can impose more structure
on the RV and still have the Embedding Theorem go through. We just need to
re-define the admissible maps accordingly.

10. Completeness and Quantifier Elimination Relative to RV

We now state some model-theoretic consequences of Theorem 9.4. We use ‘≡’
to denote the relation of elementary equivalence, and 4 to denote the relation of
elementary submodel. Recall that we are working in the 4-sorted language L4vdf

with sorts K for the valued field, Γ for the value group, k for the residue field and
RV for the residue-valuation structure. The language also has a function symbol
σ going from the field sort to itself. Let K = (K,Γ, k,RV; v, π, vrv, ι, rv) and K′ =
(K ′,Γ′, k′,RV′; v′, π′, v′rv, ι

′, rv′) be two σ-henselian multiplicative valued difference
fields (in the 4-sorted language) of equi-characteristic zero satisfying Axiom 1 with
ptpZ[ρ](Γ) = ptpZ[ρ](Γ′).

Theorem 10.1. K ≡L4vdf K′ if and only if RV ≡Lrv,σrv
RV′.

Proof. The “only if” direction is obvious. For the converse, note that (Q, {0},Q,Q;
v, π, vrv, ι, rv), with v(q) = 0, π(q) = q, rv(q) = q, vrv(q) = 0 and ι(q) = q for all
0 6= q ∈ Q, is a substructure of both K and K′, and thus the identity map between
these two substructures is an admissible isomorphism. Now apply Theorem 9.4. �

Theorem 10.2. Let E = (E,ΓE , kE ,RVE ; v, π, vrv, ι, rv) be a σ-henselian multi-
plicative valued difference subfield of K, satisfying Axiom 1, such that RVE 4Lrv,σrv

RV. Then E 4L4vdf K.

Proof. Take an elementary extension K′ of E . Then K′ satisfies Axiom 1, and is
also σ-henselian. Moreover (E,ΓE , kE ,RVE ; · · · ) is a substructure of both K and
K′, and hence the identity map is an admissible isomorphism. Hence, by Theorem
9.4, we have K ≡E K′. Since E 4L4vdf K′, this gives E 4L4vdf K. �

Corollary 10.3. K is decidable if and only if RV is decidable.

The proofs of these results use only weak forms of the Embedding Theorem,
but now we turn to a result that uses its full strength: a relative elimination of
quantifiers for the theory of σ-henselian multiplicative valued difference fields of
equi-characteristic 0 that satisfy Axiom 1.

Theorem 10.4. Let T be the L4vdf -theory of σ-henselian multiplicative valued
difference fields of equi-characteristic zero satisfying Axiom 1, and φ(x) be an L4vdf -
formula. Then there is an L4vdf -formula ϕ(x) in which all occurrences of field
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variables are free, such that
T ` φ(x)↔ ϕ(x).

Proof. Let ϕ range over L4vdf -formulas in which all occurrences of field variables
are free. For a model K = (K,Γ, k,RV; v, π, vrv, ι, rv) of T and a ∈ Kl, γ ∈ Γm,
α ∈ kn and r ∈ RVs, let

fqftpK(a, γ, α, r) := {ϕ : K |= ϕ(a, γ, α, r)}.
Let K,K′ be models of T and suppose

(a, γ, α, r) ∈ Kl × Γm × kn × RVs, (a′, γ′, α′, r′) ∈ K ′l × Γ′m × k′n × RV′s

are such that fqftpK(a, γ, α, r) = fqftpK′(a′, γ′, α′, r′). It suffices to show that

tpK(a, γ, α, r) = tpK′(a′, γ′, α′, r′).

Let E (respectively E ′) be the multiplicative valued difference subfield of K (respec-
tively K′) generated by a, γ, α and r (respectively a′, γ′, α′ and r′). Then there is
an admissible isomorphism E → E ′ that maps a→ a′, γ → γ′, α→ α′ and r → r′.
Now apply Theorem 9.4. �

11. Completeness and Quantifier Elimination Relative to (k,Γ)

Although the leading term language is already interpretable in the language of
pure valued fields and is therefore closer to the basic language, we would now like to
move to the 3-sorted language L3vdf , with a sort for the valued field K, a sort for the
value group Γ, and a sort for the residue field k. It is well-known that in the presence
of a “cross-section”, the four-sorted structure (K,Γ, k,RV) is interpretable in the
three-sorted structure (K,Γ, k). As a result any admissible isomorphism, as defined
in the section on Embedding Theorem, boils down to one that satisfies properties
(1), (3) and (4) only, because in the presence of a cross-section, (2) follows from (3)
and (4). What that effectively means is that now we have completeness relative to
the value group and the residue field. Let us now make all these explicit.

Let K = (K,Γ, k,RV; v, π, vrv, ι, rv) be a multiplicative valued difference field.
We construe RV as a left Z[σ]-module (w.r.t. multiplication) under the action( n∑

j=0

ijσ
j
)
a = σrv(a)I ,

where I = (i0, . . . , in) (we will freely switch between these two notations and the
corresponding I or the ij ’s will be clear from the context); similarly we construe Γ
also as a left Z[σ]-module (w.r.t. addition) under the action( n∑

j=0

ijσ
j
)
γ =

n∑
j=0

ijρ
j · γ.

With these actions in place, we make the following

Definition 11.1. A cross-section s : Γ→ RV on K is a group homomorphism such
that for all γ ∈ Γ and τ =

∑n
j=0 ijσ

j ∈ Z[σ], we have vrv(s(γ)) = γ, and

s((τ)γ) = (τ)s(γ).

Example 11.2. For Hahn difference fields k((tΓ)), the map given by s(γ) = tγ is
a cross-section.
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Since v(σ(a)I) =
∑n
j=0 ijρ

j · v(a), we have an exact sequence of Z[σ]-modules

1 // k×
ι // RV

vrv // Γ // 0 ,

where k× is the set of non-zero elements of k. Clearly then, existence of a cross-
section on K corresponds to this exact sequence being a split sequence.

Unfortunately, cross sections do not always exist. To make this happen, we need
to impose additional conditions on the residue field or on the value group or on the
valued field itself. For example, one could demand that Γ be a flat Z[σ]-module, or
the residue field be closed under taking roots with respect to Q(σ)-monomials, or
that O× be pure in K×, etc. This is a future research direction.

In any case, once we have the cross-section in place, we have the following result.

Proposition 11.3. Suppose K has a cross-section s : Γ → RV. Then RV is
interpretable in the two-sorted structure (Γ, k) with the first sort in the language of
MODAG and the second in the language of difference fields.

Proof. Let S = (Γ × k×) ∪ {(0, 0)}. Note that S is a definable subset of Γ × k
(in particular, the second co-ordinate is zero only when the first is too). Define
f : S → RV∪{∞} by

f((γ, a)) =
{
s(γ)a if a 6= 0
∞ if (γ, a) = (0, 0)

Now it follows from [10, Proposition 3.1.6], that f is a bijection, and that the inverse
images of multiplication and ⊕ on RV are definable in S. Moreover, if a 6= 0, then
vrv(s(γ)a) = vrv(s(γ)) + vrv(a) = γ + 0 = γ, and if a = 0, then v(∞) = ∞. Thus
the inverse image of the valuation map is {〈(γ, a), γ〉}∪{〈(0, 0),∞〉}. Finally, since
σrv(s(γ)a) = s(ρ · γ)σ̄(a), the inverse image of the difference operator on RV is
given by {〈(γ, a), (ρ · γ, σ̄(a))〉}. Hence the result follows. �

As an immediate corollary of Proposition 11.7, we have

Corollary 11.4. If K = (K,Γ, k,RV; v, π, vrv, ι, rv) and K′ = (K ′,Γ′, k′,RV′;
v′, π′, v′rv, ι

′, rv′) are two multiplicative valued difference fields satisfying Axiom 1
with ptpZ[ρ](Γ) = ptpZ[ρ](Γ′), have a cross-section, and Γ ≡LOG,ρ· Γ′ (as MODAGs)
and k ≡LR,σ k′ (as difference fields), then RV ≡Lrv,σrv

RV′.

This allows us to work in the 3-sorted language L3vdfs (eliminating the need for
the RV sort), where we have a symbol s for the cross-section. Combining Corol-
lary 11.8 with Theorems 10.1, 10.2 and 10.4 and Corollary 10.3, we then have
the following nice results. Let K = (K,Γ, k; v, π, s) and K′ = (K ′,Γ′, k′; v′, π′, s′)
be two σ-henselian multiplicative valued difference fields, satisfying Axiom 1 with
ptpZ[ρ](Γ) = ptpZ[ρ](Γ′), of equi-characteristic zero, and having a cross-section.
Then,

Theorem 11.5. K ≡L3vdfs K′ (as multiplicative valued difference fields with a
cross-section) if and only if Γ ≡LOG,ρ· Γ′ (as MODAGs) and k ≡LR,σ k′ (as differ-
ence fields).

Theorem 11.6. Let E = (E,ΓE , kE ; v, π, s) be a σ-henselian multiplicative valued
difference subfield of K, satisfying Axiom 1 and having a cross-section, such that
ΓE 4LOG,ρ· Γ (as MODAGs) and kE 4LR,σ k (as difference fields). Then E 4L3vdfs

K (as multiplicative valued difference fields with a cross-section).
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Theorem 11.7. Theory of K in the language L3vdfs is decidable if and only if
theories of Γ and k are decidable.

Since we have expanded the language to contain a symbol for the cross-section,
we also have the following relative quantifier elimination result.

Theorem 11.8. Let T be the L3vdfs-theory of σ-henselian multiplicative valued
difference fields of equi-characteristic zero satisfying Axiom 1 and having a cross-
section, and φ(x) be an L3vdfs-formula. Then there is an L3vdfs-formula ϕ(x) in
which all occurrences of field variables are free, such that

T ` φ(x)↔ ϕ(x).

And finally,

Theorem 11.9. In equi-characteristic zero, the model companion of the theory of
multiplicative valued difference fields satisfying Axiom 1 and Axiom 3 and having
a cross-section is the theory of σ-henselian multiplicative valued difference fields
satisfying Axiom 1 and having a cross-section, where the value group is a model of
div-MODAG and the residue field is a model of ACFA.
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