
RAMIFICATION OF HIGHER LOCAL FIELDS,

APPROACHES AND QUESTIONS

LIANG XIAO AND IGOR ZHUKOV

This is yet another attempt to organize facts, ideas and problems concerning
ramification in finite extensions of complete discrete valuation fields with arbitrary
residue fields.

We start (§3) with a rather comprehensive description of classical ramification
theory describing the behavior of ramification invariants in the case of perfect
residue fields. This includes some observations that could be not published earlier,
e. g., Prop. 3.3.2 or 3.5.1. We proceed in §4 with the detailed study of an example
showing that almost all the classical theory breaks down if we admit inseparable
extensions of residue field and this cannot be easily repaired.

The remaining part of the survey describes several approaches aimed to repro-
duce parts of the classical theory in the non-classical setting. §5 is devoted to the
description of upper numbering ramification filtration as well as analogs of Artin
and Swan conductors in the general case; this description has become standard.
Historically, this theory started with the appropriate definitions for abelian exten-
sions via class field theory and cohomological duality and culminated in the general
definitions in terms of rigid analytic geometry done by A. Abbes and T. Saito. In §6,
we discuss two ways to realize the ramification filtration geometrically: approach
using l-adic sheaves as in the work of Abbes and Saito and approach using p-adic
differential equations as in the work of K. Kedlaya and the first author. Either
approach has its own advantage; they are applied to prove important basic theo-
rems on the structure of the ramification filtration. We also introduce the notion
of irregularity which is related to one more analogous situation of ramification.

The next section starts with the observation that we still do not have a “fully
satisfactory” ramification theory since the upper ramification filtration does not give
us enough information about “näıve” invariants including the lower ramification
filtration; we sketch some requirements for a “satisfactory theory”. We proceed
to describe an approach based on the theory of elimination of wild ramification.
It results in a construction bearing some properties of classical theory and giving
additional information on ramification of given extension. This approach still does
not fill the gap but gives some room for further development as mentioned at the
end of the section.

Sections 8 and 9 are devoted to the approach of Deligne who started to analyze
2-dimensional ramification problems by looking at all their 1-dimensional restric-
tions. This makes sense in the context of 2-dimensional schemes, and we suggest to
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study ramification in an extension of 2-dimensional local fields by “globalizing” the
setting, i. e., constructing a sufficiently nice morphism of complete 2-dimensional lo-
cal rings which serves as a model for given extension. For such morphisms Deligne’s
idea is applicable: we can look at the induced morphisms of algebroid curves on
spectra of 2-dimensional rings and use the classical ramification invariants for them.
This study is at the very beginning; there are some initial observations and a lot of
open questions.

In Section 10, we discuss the Abbes-Saito upper ramification filtration in the
semi-local or global geometric context, for the l-adic and p-adic realizations as well
as for the analogous algebraic D-module case. The goal is to compute the Euler
characteristic in all three situations in terms of the ramification data, in hope to
generalize the Grothendieck-Ogg-Shafarevich formula. Furthermore, we hope to
describe or even define log-characteristic cycles using the ramification data.

The last section includes some open questions which we find curious and which
are not covered in the previous text.

We almost do not touch here asymptotic properties of ramification numbers in
infinite extensions and related notions of deeply ramified or arithmetically profinite
extensions except for Subsection 3.10; our subject is restricted to the area of finite
extensions of complete fields which still remains full of mystery.

We understand that the subject is not fashionable and in many aspects looks
elementary. For this reason, various interesting results, observations, conjectures
and questions have good chances to remain unpublished or tend to be forgotten;
some of the included questions can already have answers. We would be happy to
learn more about what is known and what is unknown; please do not hesitate to
send us your comments and suggestions.

We are very grateful to V. Abrashkin, I. Barrientos, D. Benois, I. Faizov, I. Fe-
senko, E. Lysenko, M. Morrow for valuable remarks.

Notation

If K is a complete discrete valuation field of characteristic 0 or p with the residue
field of characteristic p > 0, the following notation is used.

• v = vK : the valuation on K as well as its (non-normalized) extension to the
algebraic closure of K;

• OK : ring of valuation in K;
• mK = { a ∈ OK : v(a) > 0 }: the maximal ideal of OK ;
• UK = O∗K ;
• Ui,K = 1 +miK , i ≥ 1;
• π = πK : an arbitary uniformizing element of K;
• | · |: the norm on K given by |π|v(·); when K is of mixed characteristic, we

require that |p| = p−1;
• K: the residue field of K;
• a: the residue class in K of a ∈ OK ;
• e = eK = vK(p): the absolute ramification index of K;
• Kab: the maximal abelian extension of K;
• Kalg: an algebraic closure of K;
• GK : the absolute Galois group of K (often abbreviated to G when there is no

confusion);
• ζpn : a primitive pnth root of unity in Kalg (assuming charK = 0).
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For any integral scheme S, k(S) is the field of rational functions on S. For an
integral domain A, Q(A) is its fraction field.

1. Basic definitions

1.1. Ramification invariants. Here we recall various ramification invariants as-
sociated with a finite extension L/K where K is a complete discrete valuation field
with the residue field K of characteristic p > 0. We shall make a distinction be-
tween the classical case when K is a perfect (or at least when L/K is separable)
and the non-classical case when this assumption is omitted.

We mention without reference facts proven in [Se68] or [FV]; in other cases,
proofs or references are usually included.

The most well-known ramification invariants are:
• the ramification index e(L/K) = vL(πK);
• the different DL/K which can be defined, e. g., as the annihilator ideal of the

OL-module of Kähler differentials Ω1
OL/OK

;

• the depth of ramification

dM (L/K) = inf
a∈L

(vM (TrL/K a)− vM (a)),

where M is any finite extension of K.
These three invariants are related by the simple formula ([Hy, formula (1-4)]):

(1) vL(DL/K) = e(L/K)− 1 + dL(L/K).

One of fundamental properties of the depth is its additivity [Hy, Lemma (2-4)].
Namely, for an intermediate field K ′ in L/K we have

(2) dM (L/K) = dM (L/K ′) + dM (K ′/K).

We have

[L : K] = e(L/K)f(L/K) = et(L/K)ew(L/K)fs(L/K)fi(L/K) = etewfsfi,

where (et, p) = 1, ew = pN for some N ≥ 0, fs = [L : K]sep, fi = [L : K]ins.
A finite extension L/K is said to be:
• unramified, if [L : K] = fs;
• totally ramified, if fs = fi = 1;
• tame, if ew = fi = 1;
• wild, if [L : K] = ew;
• ferocious1, if [L : K] = fi;
• weakly unramified, if et = ew = 1;
• completely ramified, if et = fs = 1.
Note that L/K is tame iff dL(L/K) = 0 [Hy, Remark (2-12)].
If L/K is a Galois extension with the Galois group G, for any g ∈ G one defines

the Artin and Swan ramification numbers by the formulas

i(g) = iG(g) = inf
a∈OL

vL(g(a)− a);

s(g) = sG(g) = inf
x∈L∗

vL(g(a)a
−1 − 1).

We assume iG(1) = sG(1) = ∞.

1Such extensions are more often referred to as fiercely ramified; this is a translation of original

French (Deligne’s?) expression “ferocement ramifié”. However, John Coates told one of the
authors that the English word “ferocious” is more appropriate here than “fierce”.
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If OL is generated by x1, . . . , xn as an OK-algebra, we have

iG(g) = inf
i
vL(g(xi)− xi);

sG(g) = inf
i
vL(g(xi)x

−1
i − 1).

In the classical case we have ([Sn], 6.1.4):

sG(g) =

{
iG(g)− 1, iG(g) > 0;

0, iG(g) = 0.

On the other hand, if L/K is ferocious, then sG(g) = iG(g) for any g.
For an integer i ≥ −1 the ith (“lower”) ramification subgroup is defined as

(3) Gi = {σ ∈ G|iG(σ) ≥ i+ 1}.
More generally, for non-negative integers n and i, the (n, i)th ramification subgroup
is defined as

Gn,i = {σ ∈ G|vL(σ(x)− x) ≥ n+ i for all x ∈ miL}.
It is a normal subgroup in G. It makes sense to consider Gn,i with i > 0 only in the
non-classical case. Indeed, in the classical case Gn,i = Gn−1 if p|i, and Gn,i = Gn
otherwise ([dS, §2]).

The subgroups Gn = Gn+1,0 and Hn := Gn,1 form a filtration on G ([dS, Prop.
2.2–2.3]):

G ⊇ G0 ⊇ H1 ⊇ G1 ⊇ H2 ⊇ · · · ⊇ {1}
Here G/G0 ≃ Gal(L/K) and (G : G0) = fs(L/K); G0/H1 is a cyclic group of order
et(L/K); H1 is a p-group of order ew(L/K)fi(L/K). The subgroups G0 andH1 will
be referred to as inertia subgroup and wild ramification subgroup of G respectively.

For i > 1, the subgroups Gn,i are non-informative, since

Gn,i =

{
Hn, p - i,
Gn−1, p|i,

when n > 1, whereas G1,i/H1 is exactly the kernel of multiplication by i in the
cyclic group G0/H1 (see [dS, Prop. 2.3]).

All elements of { s(σ) | σ ∈ G0, σ ̸= 1 } are said to be (“lower”) ramification
breaks of L/K. If L/K is an inseparable normal extension, the ramification breaks
of L/K are defined as {the breaks of L0/K} ∪ {∞} where L0/K is the maximal
separable subextension of L/K.

In the classical case the breaks are exactly the nonnegative integers i with Gi ̸=
Gi+1. If (Gi : Gi+1) = pm, then i is called a ramification break of multiplicity m.

For a Galois extension L/K in the classical case, the Hasse-Herbrand function
φL/K : [−1,∞) → [−1,∞) is a piecewise linear map defined by the formula

φL/K(u) =

∫ u

0

dt

(G0 : Gt)
;

here it is assumed that Gi = G[i]+1 for non-integral i, i. e., in the formula (3) we
allow fractional i, and (G0 : Gt) = 1 for t < 0. Since φL/K is strictly increasing,
the inverse function ψL/K is well defined.

It is known that, for a normal subextension M/K, we have

φL/K = φM/K ◦ φL/M .
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(It is essential here that we consider the classical case!) Therefore, φL/K can
be defined for arbitrary finite separable extension L/K by the formula φL/K =
φL′/K ◦ ψL′/L, where L

′/K is any finite Galois extension containing L/K.
Using Hasse-Herbrand function, one defines the “upper” ramification subgroups

Gu = GψL/K(u) for all u ≥ −1.

The non-negative rational numbers u such that Gv ̸= Gu for any v > u are called
upper ramification breaks of L/K. The biggest such u is called the highest ramifi-
cation break, denoted by b(L/K).

The upper ramification breaks are exactly the ordinates of points on the graph
of φL/K where the slope is changed, whereas the lower ramification breaks are their
abscissas. The number 0 is a break if and only if et ̸= 1; the other breaks are called
wild. A change of slope by factor pm corresponds to a wild break of multiplicity m.
This property can be used as a definition of lower and upper breaks for non-Galois
finite extensions L/K. (In this case even the lower breaks need not be integral.)

1.1.1. Example. Let L/K be a totally ramified cyclic extension of degree pn, and
let s1 < · · · < sn be all Swan ramification numbers of L/K. Then L/K have n
upper breaks h1 < · · · < hn, all of multiplicity 1, and

(4) hr = s1 +

r∑
i=2

si − si−1
pi−1

=

r∑
i=1

p− 1

pi
si +

1

pr
sr.

1.2. m-dimensional complete discrete valuation fields. We give only defini-
tions; see [HLF, Ch. I] for more information.

Let K be a field. We define a structure of an m-dimensional complete discrete
valuation field (m-CDVF) on K as a sequence of fields km = K, km−1, . . . , k0 such
that ki is a complete discrete field with the residue field ki−1, 1 ≤ i ≤ m. The field
km−1 (resp. k0) is referred to as the first (resp. the last) residue field of K.

If the last residue field is perfect, K is said to be an m-dimensional local field.
(NB: often it is required that the last residue field is finite.)

A system of local parameters of K is any m-tuple t1, . . . , tm such that each ti is
a lifting to K of some uniformizing element of ki.

Fix a system of local parameters t1, . . . , tm and consider the map

vK = (v1, . . . , vm) : K∗ → Zm,

where vm = vkm , vm−1(α) = vkm−1(αm−1), αm−1 is the class of αt
−vm(α)
m in km−1,

etc. Then vK is a discrete valuation of rank m; here it is assumed that Zm is
lexicographically ordered as follows: i = (i1, . . . , im) < j = (j1, . . . , jm), if and only
if

il < jl, il+1 = jl+1, . . . , im = jm for some l ≤ m.

If we change the system of local parameters, the valuation is replaced by an
equivalent one. Thus, vK is defined up to equivalence.

For any finite extension L/K, there exists a unique structure of anm-dimensional
complete discrete valuation field on L compatible with that onK; the non-normalized
(Qm-valued) extension of vK on L is also denoted by vK .

The notion of depth of ramification can be generalized as follows ([Hy, (1-3)]):

dM (L/K) = inf
a∈L

(vM (TrL/K a)− vM (a)),

where both L and M are finite extensions of K.
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2. Cyclic extensions of degree p and genome

2.1. Cyclic extensions of degree p. Here we look carefully at the case of a Galois
extension L/K with [L : K] = p (see also [Hy, Lemma (2-16)]). This is important
for discussing examples in the subsequent sections.

Let g be any generator of G = Gal(L/K); then i(g) and s(g) are independent of
the choice of g, and we can use the notation s(L/K) = s(g).

Since [L : K] = etewfsfi, and et is prime to p, there can be 3 cases.
Case U (unramified): fs = p, ew = fi = 1. Here i(g) = s(g) = 0.
Case W (wild): ew = p, fs = fi = 1. Let s = vL(π

g
L/π−1). Then OL = OK [π]

immediately implies i(g) = s+ 1, s(g) = s.
Case F (ferocious): fi = p, fs = ew = 1. Choose any t ∈ OL such that t /∈ K.

Let s = vL(t
g/t− 1). Then OL = OK [t] and i(g) = s(g) = s.

In all 3 cases we have dL(L/K) = (p− 1)s(L/K).

Let us compute ramification invariants for specific constructions of cyclic exten-
sion of degree p, i. e., for Artin-Schreier and Kummer extensions.

1◦. charK = p. In this case L = K(x), ℘(x) = a ∈ K, where ℘ = Xp − X.
We have v(a) ≤ 0 since mK ⊂ ℘(K) by Hensel lemma. Choose an equation with
maximal possible v(a).

If v(a) = 0, the Hensel lemma implies a /∈ ℘(K), and we are in the Case U.
If v(a) < 0 and p - v(a), we obviously have Case W, and s(L/K) = −v(a).
If v(a) < 0 and p | v(a), the maximality of v(a) implies π−v(a)a /∈ K

p
. It follows

that we have Case F, and s(L/K) = −v(a)/p.
2◦. charK = 0, ζp ∈ K. In this case L = K(x), xp = a. We can choose a with

v(a) = 1 or v(a) = 0; in the latter case we require that l = v(a − 1) is maximal.
Then we can distinguish 5 cases.

A. v(a) = 1. Here we have Case W,

s(L/K) = vL(ζp − 1) =
eL
p− 1

=
pe

p− 1
.

B. v(a) = 0, a /∈ K
p
. This is Case F,

s(L/K) = vL(ζp − 1) =
eL
p− 1

=
e

p− 1
.

C. v(a) = 0, a = 1, l < pe
p−1 , p - l. This is Case W, s(L/K) = pe

p−1 − l.

D. v(a) = 0, a = 1, l < pe
p−1 , p | l. From the maximality of l it follows that this

is Case F, s(L/K) = 1
p

(
pe
p−1 − l

)
.

E. v(a) = 0, a = 1, l ≥ pe
p−1 . It follows from Hensel lemma that in fact l = pe

p−1 ,

and this is Case U.

2.2. Genome of an extension. Let L/K be a cyclic extension of degree pn. Then
it can be uniquely written as a tower L = Mn/Mn−1/ . . . /M1/M0 = K of cyclic
extensions of degree p, and the genome of L/K is by definition the word T1 . . . Tn,
where

Ti =

{
W, Mi/Mi−1 wild,

F, Mi/Mi−1 ferocious.

We would be able define the genome for a general Galois extension of degree pn,
were a positive answer to the following question known.
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2.2.1.Question. Let L/K be a completely ramified Galois extension, G = Gal(L/K);
Gi and Hi the ramification subgroups of G defined in previous section. Denote by
Ki (resp. Li) the intermediate field fixed by Hi (resp. Gi). Is it true that any
Li/Ki is ferocious and any Ki+1/Li is wild?

3. What is nice in the classical case

Throughout this section we consider only the case of perfect K. We list various
facts which are sometimes referred to as “beautiful ramification theory” in the
classical case. (However, probably the whole collection of facts has not been ever
included in one text.)

3.1. Factor groups. Let K ′ be an intermediate field in L/K. Then the ram-
ification invariants of K ′/K can be described in terms of those of L/K. More
specifically, let L/K be a finite Galois extension with G = Gal(L/K), and K ′

an intermediate extension corresponding to a normal subgroup H. Then for any
σ ∈ G/H, σ ̸= 1, we have

(5) iG/H(σ) =
1

eL/K′

∑
sH=σ

iG(s)

(Herbrand theorem, see [Se68, Ch. IV, Prop. 3]).
It follows that we have the following statement comparing lower and upper ram-

ification filtrations on G/H with those on G.

3.1.1. Proposition. 1. For any v ≥ −1 we have (G/H)v = GψL/K′ (v)H/H.

2. For any v ≥ −1 we have (G/H)v = GvH/H.

3.1.2. Corollary. Let H = Gj for some j. Then

(G/H)i =

{
Gi/H, i ≤ j,

{1}, i ≥ j.

One of the nice consequences of Prop. 3.1.1 is that we can define upper ramifi-
cation filtration for an infinite Galois extensions L/K by the formula

Gal(L/K)v = lim←−
L′/K finite
L′⊂L

Gal(L′/K)v.

In particular, we have an upper ramification filtration on the whole absolute
Galois group.

3.2. Subgroups. Let L/K be a finite Galois extension, and K ′/K any subex-
tension; G = Gal(L/K), H = Gal(L/K ′). Obviously, Hi = Gi ∩ H for any i.
Therefore,

Hi = HψL/K′ (i) = GψL/K′ (i) ∩H = GφL/K◦ψL/K′ (i) ∩H = GφK′/K(i) ∩H.

3.3. Base change. Here we observe how the ramification invariants change as one
passes from L/K to LK ′/K ′ for some finite extension K ′/K linearly disjoint with
L/K. We start with the basic case of two Galois extensions of degree p.
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3.3.1. Lemma. 1. Let L1/K and L2/K be Galois extensions of degree p with
positive s1 = s(L1/K) and s2 = s(L2/K), and s1 < s2. Then s(L1L2/L2) = s1,
and s(L1L2/L1) = s1 + p(s2 − s1).

2. Let L1/K and L2/K be linearly disjoint Galois extensions of degree p such
that s = s(L/K) > 0 is the same for any subextension L/K of degree p in L1L2/K.
Then s(L1L2/L2) = s(L1L2/L1) = s.

Proof. Set L = L1L2, G = Gal(L/K).
Assume first that L/K has two distinct lower ramification breaks s′1 < s′2. Put

H2 = Gs′1+1, K
′ = LH2 . Then by Cor. 3.1.2 we have

Gal(K ′/K)i =

{
Gal(K ′/K), i ≤ s′1,

{1}, i > s′1,

whence s(K ′/K) = s′1.
Let K ′′/K be any other subextension of degree p in L/K, H = Gal(L/K ′′), σ0

any element of G outside H. Note that σ0H contains an only element of H2, with
Artin number s′2 + 1. By (5),

iG/H(σ0|K′′) =
1

p
((p− 1) · (s′1 + 1) + 1 · (s′2 + 1)) = s′1 +

s′2 − s′1
p

+ 1.

It follows s(K ′′/K) = s′1 +
s′2−s

′
1

p . Since s1 and s2 are among s(K ′/K) and (all)

s(K ′′/K), and s1 < s2, we conclude that s1 = s′1, s2 = s′1 +
s′2−s

′
1

p .

In the remaining case when L/K has one break s′ of multiplicity 2, the same
computation shows that s(K ′′/K) = s′ for any subextension K ′′/K of degree p in
L/K. �

This can be generalized as follows.

3.3.2. Proposition. Let L/K and K ′/K be finite Galois p-extensions. Assume
that L/K have upper ramification breaks h1, . . . , hr with multiplicities m1, . . . ,mr.
Assume that all the upper ramification breaks of K ′/K are distinct from h1, . . . , hr.
Then the upper ramification breaks of LK ′/K ′ are ψK′/K(h1), . . . , ψK′/K(hr) and
their multiplicities are m1, . . . ,mr.

Proof. For [L : K] = [K ′ : K] = p, this is the first part of Lemma 3.3.1. The
general case follows by double induction on [L : K] and [K ′ : K]. �

3.3.3. Question. If L/K andK ′/K are Galois extensions of degree p with the same
ramification break, we cannot determine the ramification invariants of LK ′/K ′ in
general. However, in view of the second part of Lemma 3.3.1, we can do this if we
know the ramification breaks of all subextensions of degree p in LK ′/K.

How can this observation be generalized to arbitrary finite Galois p-extensions
L/K and K ′/K?

3.4. Filtration on the group of units and the norm map. For a finite exten-
sion L/K, consider the norm map NL/K : L∗ → K∗ and its interaction with the
filtration on K∗ by the groups Ui,K , i ≥ 1, and the similar filtration on L∗. For
any i ≥ 1, define f(i) by the conditions

NL/KUi,L ⊂ Uf(i),K , NL/KUi,L ̸⊂ Uf(i)+1,K .
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Then the map f = fL/K can be computed from the ramification breaks of L/K

and vice versa, at least if the residue field K is infinite. Indeed, [FV, Prop. (3.1)]
states essentially the following.

3.4.1. Proposition. Let K be infinite, L/K a finite Galois extension, and ψ =
ψL/K . Then for any positive integer j we have f(i) = j, if ψ(j− 1)+1 ≤ i ≤ ψ(j).

3.4.2. Remark. Thus, for infinite K, fL/K(i) is equal to the minimal integer not

less than φL/K(i). If K is finite, fL/K(i) can “jump” at the lower ramification
breaks of L/K.

3.4.3. Question. How can φL/K be defined in terms of fL/K in the case of finite

K?

3.4.4. Question. What is the exact relation between fL/K and φL/K for a non-
Galois L/K?

3.5. Artin-Schreier and Kummer filtrations and the embedding map.
First assume charK = p. Then we have a filtration on K/℘(K) by the groups

Ci,K = (miK + ℘(K))/℘(K), i ≤ 0.

(Recall that mK ⊂ ℘(K) by Hensel lemma.) Then, for a finite extension L/K, we
can consider the interaction of this filtration with a similar one on L/℘(L). For
i ≥ 0, determine g(i) by the conditions ε(C−i,K) ⊂ C−g(i),L, ε(C−i,K) ̸⊂ C−g(i)+1,L

for the natural map ε : K/p(K) → L/p(L).
In the same spirit, if charK = 0, ζp ∈ K, we can consider filtration on K∗/(K∗)p

by the subgroups

C∗i,K = Ui,K(K∗)p/(K∗)p, 1 ≤ i ≤ pe

p− 1
.

(Recall that U pe
p−1+1,K ⊂ (K∗)p.) For a finite L/K and a positive integer i <

pe
p−1 , define g(i) by the conditions ε

(
C∗pe

p−1−i,K
)
⊂ C∗pe

p−1−g(i),L
and ε

(
C∗pe

p−1−i,K
)
̸⊂

C∗pe
p−1−g(i)+1,L for the natural map ε : K∗/(K∗)p → L∗/(L∗)p.

Then the function g = gL/K is closely related to ψ = ψL/K . Namely, Prop.
3.3.2 and explicit computation of the ramification break for an Artin-Schreier or
Kummer extension immediately imply

3.5.1. Proposition. Let i be a positive integer which is prime to p and distinct from
any upper ramification break of L/K. (We also require i < pe

p−1 if charK = 0.)

Then g(i) = ψ(i).

If K is infinite, we can use the second part of Lemma 3.3.1 to prove

3.5.2. Proposition. For an infinite K, let i be a positive integer which is prime to
p. (i < pe

p−1 if charK = 0.) Then g(i) = ψ(i).

Since the upper breaks are always prime to p, this means that g determines the
ramification invariants of L/K in the case of infinite K and charK = p.

Similarly, if ζpn ∈ K, one can define an explicit filtration on K∗/(K∗)p
n

com-
patible with the upper ramification filtration on the maximal abelian extension of
K of exponent p.
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3.5.3.Question. Can we construct ψL/K from the filtrations onK(ζpn)
∗/(K(ζpn)

∗)p
n

for all n, thus eliminating the condition i < pe
p−1 in Prop. 3.5.2?

If charK = p, the explicit form of the filtration onWr(K)/℘(Wr(K)) compatible
with the ramification filtration is given in [Br, §1]. HereWr denotes the group Witt
vectors of length r, and

℘((x0, . . . , xr−1)) = (xp0, . . . , x
p
r−1)−Wr(K) (x0, . . . , xr−1);

note that Jean-Luc Brylinski uses different notation. For a new proof and very
clear treatment of related questions, see [Th].

3.6. Hasse-Arf theorem.

3.6.1.Theorem. Let L/K be a finite abelian extension. Then all upper ramification
breaks of L/K are integral.

See [Se68, Ch. IV, §3], [FV, Ch. III, (4.3)].
An inverse result is due to Fesenko [Fe95b]:

3.6.2. Proposition. Let L/K be a totally ramified finite Galois extension such that
for any totally ramified finite abelian extension K ′/K all upper ramification breaks
of LK ′/K ′ are integral. Then L/K is abelian.

3.6.3. Question. Can we replace the class of all abelian extensions K ′/K by a
smaller class here, e. g., by the class of all elementary abelian extensions, at least
in the case charK = p?

3.6.4. Question. For a finite Galois extension L/K, can we determine Gal(L/K), if
we know all upper ramification breaks of LK ′/K ′ for all abelian extensions K ′/K?

One of the related results is the following Sen congruence (see, e. g., [Sn, Theorem
6.1.34]).

3.6.5. Proposition. Let L/K be a finite Galois extension, g ∈ Gal(L/K) such that
s(g) > 0 and gp

n ̸= 1. Then

s
(
gp

n−1)
≡ s

(
gp

n)
mod pn.

3.7. Artin and Swan representations. (See [Se68, Ch. VI], [Se77] as well as the
discussion in [Sn, 6.1].) Fix a finite Galois extension L/K, and for G = Gal(L/K)
introduce Artin and Swan central function aG, swG : G→ Z by formulas

aG(σ) =

{
−f · iG(σ), σ ̸= 1,

f
∑
τ ̸=1 iG(τ), σ = 1,

swG(σ) =

{
−f · sG(σ), σ ̸= 1,

f
∑
τ ̸=1 sG(τ), σ = 1,

where f = f(L/K).
The Serre’s theorem on the existence of Artin representation ([Se77, p. 68])

claims:

3.7.1. Proposition. The central functions aG and swG are characters of certain
complex representations of G.
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For the corresponding representations AG and SWG we have the following ex-
plicit formulas in the ring of complex representations R(G) (cited from [Sn, 6.1]):

AG =
∞∑
i=0

[G0 : Gi]
−1IndGGi

(IndG{e}(1)− 1)

and

SWG = AG + IndGG0
(1)− IndG{e}(1),

where IndGH(V ) denotes the representation of G induced by the representation V
of H, and 1 is the class of 1-dimensional trivial representation of the corresponding
group.

For a normal subgroup H of G it follows from Herbrand theorem that

(6) SWG/H ≃ SWG ⊗C[G] C[G/H].

For the character χ of a complex representation V of G, the Artin conductor of
χ (or V ) is defined as

ArK(χ) = ArK(V ) = ⟨aG, χ⟩G =
1

|G|
∑
g∈G

aG(g)χ(g).

Similarly, the Swan conductor of χ (or V ) is

SwK(χ) = SwK(V ) = ⟨swG, χ⟩G =
1

|G|
∑
g∈G

swG(g)χ(g);

we have

SwK(V ) = ArK(V ) + dimV G0 − dimV.

3.7.2. Example. (see [Se68, Ch. VI, Prop. 5]) Let L/K be a totally ramified
cyclic extension of degree pn, and χ the character of any faithful (i. e., injective)
representation of G = Gal(L/K) = ⟨g⟩. Let s1 < · · · < sn be all Swan ramification
numbers of L/K. Then

SwK(χ) =
1

pn

pn∑
i=1

ζiswG(g
i)

=
1

pn

n∑
r=0

∑
vp(i)=r

ζiswG(g
i)

= − 1

pn

n−1∑
r=0

sr+1

∑
vp(i)=j

ζi +
1

pn

pn−1∑
i=1

sG(g
i)

=
1

pn

(
sn +

n−1∑
r=0

(pn−r − pn−r−1)sr+1

)
= b(L/K)

in view of (4), where ζ is a primitive pnth root of unity in C.

3.7.3. Remark. This is the simplest case of the following fact (see [Se68, Ch. VI,
§2, Ex. 2]). Let V be an irreducible representation of G of dimension d. Then
ArK(V ) = d(b(L/K) + 1), where b(L/K) is the highest (upper) ramification break
defined in Section 1.1.
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As a consequence of this fact, we may define the Artin conductor and Swan
conductor of a finite dimensional complex representation V of G to be

ArK(V ) =
∑
a≥−1

(a+ 1) · dimV G
a+

/V G
a

, SwK(V ) =
∑
a≥0

a · dimV G
a+

/V G
a

.

Note that one can recover the ramification filtration on G from Artin conductors
of all its irreducible representations. (The same does not hold for Swan conductors
since Swan conductor measures only wild ramification and does not know anything
about (G0 : G1).)

In a similar way, one defines Swan conductor for Fl-representations; this version
of Swan conductor is used in Grothendieck-Ogg-Shafarevich formula (see Subsection
3.11 below).

There is an alternative and equivalent way of stating Proposition 3.7.1.

3.7.4. Proposition. For all finite dimensional complex representation V of G,
the Artin conductor ArK(V ) and the Swan conductors SwK(V ) are non-negative
integers.

Applying this to all one-dimensional representations of G and using the above
explicit description of Artin and Swan conductors (Remark 3.7.3), we obtain that
b(L/K) is always an integer for an abelian extension L/K. Thus, we recover the
original Hasse-Arf Theorem 3.6.1. So sometimes the above proposition will be also
referred to as Hasse-Arf theorem.

3.8. Local class field theory. Let K be a complete discrete valuation field of any
characteristic with a quasi-finite residue field of prime characteristic. (A field F is

called quasi-finite if GF ≃ Ẑ.)
The central theorem of local class field theory states that there exists a homo-

morphism ΘK : K∗ → Gal(Kab/K) uniquely determined by the following two
properties.

1. For any finite abelian extension L/K, ΘK induces an isomorphism ΘL/K :
K∗/NL/KL

∗ → Gal(L/K).
2. For any prime element πK , the restriction of ΘK(πK) on the maximal unram-

ified extension of K is the Frobenius automorphism.
It appears that the reciprocity map transforms the valuation filtration on the

multiplicative group into the upper ramification filtration on (abelian) Galois group.
More precisely, we have the following results. ([Se68], Ch. XV, Th.1 with Cor. 3
and Th. 2. Note that NL/KUψ(n),L ⊂ Un,K by Prop. 3.4.1.)

3.8.1. Proposition. Let L/K be a finite abelian extension. Put ψ = ψL/K .
1. For any positive integer n, the canonical map Un,K/NL/KUψ(n),L → K∗/NL/KL

∗

is injective.
2. The reciprocity map ΘL/K transforms the filtration on K∗/NL/KL

∗ by sub-
groups Un,K/NL/KUψ(n),L into the filtration on G = Gal(L/K) by Gn.

3.8.2.Proposition. Let L/K be a possibly infinite abelian extension, G = Gal(L/K).
For any positive integer n the image of ΘK(Un,K) ⊂ Gal(Kab/K) in G is dense in
Gn (equal to Gn if the residue field of K is finite).

In characteristic 0, provided ζp ∈ K, this implies self-duality of the valuation
filtration on K∗/(K∗)p with respect to Hilbert symbols. In characteristic p, we
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have a duality between the valuation filtration on K∗/(K∗)p
r

and the Brylinski
filtration on Wr(K)/℘(Wr(K)), see [Br, Theorem 1].

For Fesenko’s non-abelian reciprocity map [Fe01], compatibility with ramification
filtration was established in [IS].

3.9. Abrashkin’s anabelian yoga. Let K1 and K2 be local fields (complete dis-
crete valuation fields with finite residue fields). V. A. Abrashkin [Abr00], [Abr10]
proved that if there exists an isomorphism between absolute Galois groups of K1

and K2 preserving ramification filtration, then K1 and K2 are isomorphic. (Char-
acteristic 0 case is due to Sh. Mochizuki [Mo-S].)

3.10. A theorem of Deligne. Let K and K ′ be two complete discrete valua-
tion fields (typically with large absolute ramification indices in the case of mixed
characteristic). Assume that there exists b ∈ N such that there is an isomorphism
OK/π

b
KOK

∼= OK′/πbK′OK′ as rings. Deligne [De84] proved the following result.

3.10.1. Proposition. Keep the notation as above. If K has a perfect residue field,
then there is a canonical isomorphism

(7) GK/G
b
K

∼= GK′/GbK′ .

In other words, the quotient Galois groups above depend only on the truncated
discrete valuation rings OK/π

b
KOK

∼= OK′/πbK′OK′ . Note that there were no
assumptions on the characteristics of K and K ′. In particular, they could be
different, which may be used to build a connection between the mixed characteristic
fields and the equal characteristic fields on the aspect of ramification theory.

Deligne’s theorem provides an alternative way to understand the field of norms
of J.-M. Fontaine and J.P. Wintenberger [FW1, FW2] (which precedes Deligne’s
work).

Put Kn = Qp(ζpn) for n ∈ N and K∞ = ∪n∈NKn. We take the uniformizer
πKn to be ζpn − 1. Then the tower (Kn)n∈N is APF (short for arithmetically
profinite) in the sense of [FW1, FW2]. The following statement is a special case of
the main result of Fontaine-Wintenberger [FW1, FW2] (exposed also in [FV, Ch.
III, Theorem 5.7]).

3.10.2. Theorem. There is a canonical isomorphism between the absolute Galois
group of K∞ and that of the equal characteristic field Fp((T )).

One can give a heuristic proof using Deligne’s theorem as follows. For each n,
we put rn = pn−1(p− 1) so that OKn/π

rn
Kn

∼= FpJT K/(T rn). Deligne’s theorem then
implies that we have an isomorphism

(8) GFp((T ))/G
rn
Fp((T ))

∼= GKn/G
rn
Kn
.

An easy computation shows that φKn/K(n) = rn. The basic property in Subsec-
tion 3.2 implies that GrnKn

= GnQp
∩GKn . Thus, taking the inverse limit of (8) gives

an isomorphism between GFp((T )) and GK∞ .
We expect that the same proof works for general complete discrete valuation field

K in place of Qp, at least when K has a perfect residue field, and hence we could
reprove the main result of [FW1, FW2] this way. The APF condition is expected
to ensure that the inverse limit of (8) as n → ∞ gives the isomorphism between
the Galois group of K∞ and that of K((T )). Unfortunately, to our knowledge, we
do not know if such a proof exists in the literature.
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3.11. Global formulas. Let X be a smooth projective curve over an algebraically
closed field and let Y be its normalization in a finite extension of k(X ). Riemann-
Hurwitz formula compares the genera of these curves:

2gY − 2 = [k(Y) : k(X )](2gX − 2) +
∑
Q

vQ(DY/X ),

where Q runs over closed points of Y.
Let U be a dense open subset of X , η̄ a geometric generic point of X , F a locally

constant sheaf of Fl-modules of finite rank on Uét. Then the geometric generic fiber
M = Fη̄ is a finite-dimensional Fl-representation of Gal(k(X )); it factors through
Gal(L/k(X )), where L/k(X ) is a finite Galois extension.

For a closed point P of X , the Swan conductor SwP F is defined as the Swan
conductor of M considered as Gal(Lw/k(X )v)-module, where v corresponds to P ,
and w is any extension of v to L. Independence of L follows from an Fl-analog of
(6). Then the Grothendieck-Ogg-Shafarevich formula for F reads:

(9) χc(U,F) = χc(U,Fl) rankF −
∑

P∈X\U

SwP F ,

where χc(U, ·) is the Euler-characteristic of the corresponding étale sheaf. (This can
be obtained from the shape of G.-O.-S. formula in [Mil] as follows. Let u : U ↪→ X ,
F0 a constant sheaf on Uét of rank equal to rankF . Apply the formula in [Mil, Ch.
V, Th. 2.12] to both u!F and u!F0 and compute the difference.)

For equivariant versions of Riemann-Hurwitz and Grothendieck-Ogg-Shafarevich
formulas, see [Kö].

3.11.1. Remark. We point out that there is an analogous statement for lisse Ql-
sheaves instead of lisse Fl-sheaves.2 In fact the formula for the former reduces to
that of the latter, as we explain now.

A lisse Ql-sheaf F corresponds to a representation ρ : π1(U) → GLd(Ql). Since
the fundamental group is profinite and hence compact, the image ρ(π1(U)) lands
in GLd(Zl) (up to conjugation). This integral representation ρ◦ gives rise to a lisse
Zl-sheaf F◦. Put ρ̄ = ρ◦mod l and F̄ = F◦/l. It is not difficult to show that
the Euler characteristic of F agrees with that of F̄ . We need to match the Swan
conductors.

Note that, for each point P ∈ X\U , the wild ramification groupWP at P is a pro-
p group; but the kernel of GLd(Zl) → GLd(Fl) is a pro-l group. Hence the image
ρ(WP ) has trivial intersection with Ker(GLd(Zl) → GLd(Fl)); consequently, we
have an isomorphism ρ(WP ) ∼= ρ̄(WP ). From this it is clear that SwPF = SwP F̄ ,
since both sides depend only on the action of the wild inertia group.

3.12. Completeness. Given a finite Galois extension of complete discrete valua-
tion fields L/K with Gal(L/K) = G, we have a number of ramification invariants
occurring in various formulas: e(L/K), vL(DL/K), Gi and Gi for i ≥ 0, ArK(V )
and SwK(V ) for a complex representation V of G. However, there is a sufficient
system of ramification invariants, namely, the lower ramification filtration, which
“describes the ramification completely”: all the other ramification invariants (in-
cluding local terms of classical global formulas) can be expressed in terms of it.

2We can of course consider a finite extension of Ql in place of Ql; the argument goes through
with no essential changes.
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(Upper ramification filtration is a sufficient system of invariants as well. The same
is true for Artin conductors of all complex representations of G.) For example,

e(L/K) = |G0|;

(10) vL(DL/K) =
∞∑
i=0

|Gi| − 1;

and

SwK(V ) =
∞∑
i=1

1

(G : Gi)
dimC(V/V

Gi),

where V is a finite-dimensional complex representation of G.

4. What is missing in the non-classical case

This section is devoted to the detailed study of an example of extension L/K
with Gal(L/K) ≃ (Z/p)2 such that for L/K Lemma 3.3.1 (as well as any reasonable
analog of it) fails. Furthermore, the example exhibits obstacles to extension of the
most part of classical theory to the general case.

Let us look carefully at the following example.
LetK be a complete discrete valuation field of characteristic p > 0 with imperfect

residue field. Fix a prime element π and t ∈ OK such that t ̸∈ K
p
. Take some

positive integers N > n > m such that N ≡ n ≡ −1 (mod p). Now we define
L1/K and L2/K by Artin-Schreier equations:

(11)
K1 = K(x1), xp1 − x1 = a1 = π−n + π−mt,
K2 = K(x2), xp2 − x2 = π−N ,

and set L = K1K2 = K(x1, x2) = K1(x2) = K2(x1).
In view of considerations in Section 2, both K1/K and K2/K are wild, and

s(K1/K) = n, s(K2/K) = N . Note also that for any subextension K ′/K of degree
p in L/K we have s(K ′/K) = N unless K ′ = K1.

L

K1

||||||||
K2

?

BBBBBBBB

K

n

BBBBBBB N

|||||||

Let us compute s(L/K2). Put N = pD − 1. Then π2 = x2π
D is a prime in K2,

and the equation

(πDx2)
p − π(p−1)D(πDx2) = π

implies

π = πp2 − π
(p−1)pD+1
2 + · · · ,
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where the dots denote terms of higher order. Thus,

a1 = (πp2 − π
(p−1)pD+1
2 + · · · )−n + (πp2 − π

(p−1)pD+1
2 + · · · )−mt

= π−pn2 (1− π
(p−1)pD−p+1
2 + · · · )−n + π−pm2 (1− π

(p−1)pD−p+1
2 + · · · )−mt

= π−pn2 (1 + nπ
(p−1)N
2 + · · · ) + π−pm2 (1 +mπ

(p−1)N
2 + · · · )t

= π−pn2 + nπ
−pn+(p−1)N
2 + · · ·+ π−pm2 t+ · · ·

≡ π−n2︸︷︷︸
−n

+nπ
−pn+(p−1)N
2︸ ︷︷ ︸
−pn+(p−1)N

+ · · ·+ π−pm2 t︸ ︷︷ ︸
−pm

+ · · · (mod ℘(K2)),

where the numbers under the braces denote the corresponding values of vK2 .
Assume further that m > n

p . Since −n < −pn + N(p − 1), the valuation of

the sum is −pm. We can conclude that L/K2 is ferocious, and s(L/K2) = m.
Note that the latter number is not determined by the values of n = s(K1/K) and
N = s(K2/K). (However, if m < n

p , the valuation of the sum is −n, the extension

L/K2 is wild and s(L/K2) = m. In fact, we are in the classical case here.)
We see that an analog of Lemma 3.3.1 is not true in the general case: we cannot

predict s(L/K2) even having known the s(K ′/K) for any subextension K ′/K of
degree p in L/K.

Next, the “compatibility with factor groups” property also fails in the general
case. Indeed, from the depth additivity (2) we have

dL(L/K) = dL(L/K2) + dL(K2/K) = (p− 1)m+ (p− 1)N,

and

dL(L/K1) = dL(L/K)− dL(K1/K) = (p− 1)(m+N)− (p− 1)n,

whence s(L/K1) = m+N−n. Therefore, the two breaks of the (lower) ramification
filtration of L/K are m and m+N −n, and these two numbers do not give enough
information to determine, say, s(K1/K) = n.

Essentially, this example shows that we cannot give a suitable definition of “upper
ramification filtration” based on the usual (Artin or Swan) ramification numbers,
and consequently we lose all constructions and facts using this upper filtration:
Hasse-Arf theorem, Artin and Swan representations, global formulas etc.

Also, we do not have any “completeness” for the known systems of invariants.
In particular, one of the motivating goals in development of “non-classical” ram-
ification theory could be to obtain an explicit form for the order of different (or,
equivalently, for the depth of ramification) in terms of suitable lower or upper ram-
ification breaks, i. e., an analog of (10).

For more examples showing “mysterious behavior” of ramification invariants in
the non-classical case, see [Hy], [Sn, 6.2], [Lo].

5. Kato-Swan conductor and its generalizations

5.1. Kato-Swan conductor. Note that for abelian extensions of usual local fields
the upper filtration can be recovered from the filtration on the multiplicative group
by Prop. 3.8.1. In the same way one could define an upper filtration in the situa-
tions where some class field theory is available, e. g., for abelian extensions of higher
local fields with finite last residue field (see [HLF] for the basic facts about higher
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local fields and [Fe96] for a survey of various versions of higher local class field the-
ory). This approach was explored in several papers starting from [Lo]. For example,
Hyodo [Hy] defines (“upper”) ramification breaks for a finite abelian extension L/K
of m-dimensional local fields (with finite last residue field) as m-tuples

(12) jL/K(l) =

{
max{i ∈ Zm+ : |ΘL/K(UiK

top
m K)| ≥ pl}, if such i exists,

0, otherwise,

for all l ≥ 1, where ΘL/K : Ktop
m K → Gal(L/K) is the reciprocity map and

(UiK
top
m K) is the standard filtration on Ktop

m K defined by means of valuation of
rank m. For the case of arbitrary perfect last residue field, see [Fe95a, §4].

In a compatible manner with this observation, Kato [Ka89] introduced a notion
of a conductor for one-dimensional representations of Gal(L/K), where L/K is a
finite extension of a complete discrete valuation field with any residue field.

We do not include Kato’s definition, since it is difficult to do this in a self-
contained manner; see, e. g., [Sn, 6.2]. However, his conductor KSw(χ) can be
characterized by either of the following two properties ([Sp99], Prop. 3.3.10 and
Cor. 3.3.11).

5.1.1. Proposition. Let χ ∈ H1(K) be a character of G = Gal(Kab/K); denote
by Lχ the subfield in Kab fixed by χ.

1. KSwG(χ) is the smallest integer n ≥ 0 such that {χL0 , u} = 0 in BrL0 for
any u ∈ Un+1,L0 , where L0 is the maximal unramified subextension in Lχ/K.

2. KSwG(χ) is the smallest integer n ≥ 0 such that Un+1,K ⊂ NLχ/KL
∗
χ.

Here H1(K) = Hom(Gal(Kab/K),Q/Z); the braces denote the cohomological
pairing H1(K)×K∗ → H2(K) = BrK.

From this, one can define a filtration G• on G = Gal(Kab/K) so that, for any
character χ of G, we have

KSwG(χ) = inf{a > 0 |Ga ⊆ Kerχ};

we call this filtration the Kato filtration on G.
For an m-dimensional local field K with finite last residue field and χ ∈ H1(K),

KSwG(χ) is exactly the smallest integer n ≥ 0 such that ΘL/K(Un+1K
top
m K) acts

trivially on Lχ, see [Sp99, 3.4]. In other words, KSwG(χ) is the last component of
the maximal break j(1) for Lχ/K in Hyodo’s notation (12).

In the classical case this Kato-Swan conductor coincides with the usual Swan
conductor. This relation between KSw and the usual (Swan) ramification numbers
is in force also in the so called Case II (cf. Subsection 7.2), [Ka89, prop. 6.8, p.12]:

5.1.2. Proposition. Let L/K be a finite Galois extension, G = Gal(L/K), and
χ : G→ C∗ a one-dimensional representation. Assume that either L/K is separable
or e(L/K) = 1 and L/K is generated by one element. Then

KSwG(χ) = − 1

e(L/K)

∑
g∈G

s(g)χ(g),

where we use the convention that s(1) = −
∑
g∈G,g ̸=1 s(g).

Boltje, Cram and Snaith (see [BCS], [Sn, 6.3]) define a conductor in the general
case by means of explicit Brauer induction. This results in a conductor compatible
with Swan conductor and Kato-Swan conductor in the cases where those are defined.
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5.2. Borger’s construction using generic perfection. J. Borger [Bo04, Bo02]
constructed a conductor through considering a “generic residual perfection” process.
His result is based on the following observation: taking OK = Fp(x)JπK as an
example, one would like to reduce the definition of ramification filtrations to the
case of perfect residue field, by adjoining p∞-roots of x. Note that x should be
thought of as a lift of the x of the residue field. But there is no canonical such lift,
as one could choose, for example, x + π instead and adjoin all p∞-roots of x + π.
Borger’s idea is to introduce an indeterminate u1 and consider Fp(x, u1)JyK; he then
adjoins all p∞-roots of x+ u1π. Next, he has to deal with p-power roots of u1. For
this, he adjoins another indeterminate u2 and all p∞-roots of u1+u2π. Continuing
this process and “taking limit” gives a “generic perfection of OK”.

To present this observation systematically, Borger showed that there is a moduli
space Spf(Au) that parametrizes the ways of modifying OK so that its residue field
is perfect. In the example above,

Au = Fp(x)[u1, u2, . . . ][(x+ u1π)
1/p∞ , (u1 + u2π)

1/p∞ , . . . ]JπK.
Let Ag denote the the completion of Au at the generic point of its special fiber.
Then Q(Ag) is a complete discrete valuation field with perfect residue field.

We may then use the natural map GK → GQ(Ag) to pull back the (upper) rami-
fication filtration on the latter group. Borger [Bo04] proved that this construction
is compatible with the “non-logarithmic” (Artin-like) version of Kato conductor.

5.3. Approach of A. Abbes and T. Saito. A. Abbes and T. Saito [AS02]
adopted a rather different approach to the construction of (upper) ramification
filtration using rigid analytic spaces. (We refer [BGR] for basics of rigid analytic
spaces.)

As explained in Section 4, it seems very difficult to obtain the upper ramification
breaks from the lower ones when the residue fieldK is not perfect. Abbes and Saito,
instead, work directly with the upper ramification filtrations. Their construction
relies on the following crucial but easy proposition in the case of perfect residue
field case.

5.3.1.Proposition. Let K be a complete discrete valuation field with perfect residue
field. Let L be a finite Galois extension of K with Galois group G = G(L/K). We
know that OL is generated as an OK-algebra by one element x. Let P (u) be the
minimal polynomial of x.

(i) Let b(L/K) be the highest ramification break as defined just before Exam-
ple 1.1.1. We assume that L/K is not unramified so that b(L/K) ≥ 0. Then

b(L/K) =
1

e(L/K)

( ∑
g∈G,g ̸=1

vL(g(x)− x) + max
g∈G,g ̸=1

vL(g(x)− x)
)
.

(ii) Consider the rigid analytic space for each positive rational number a:

Xa =
{
u ∈ Kalg

∣∣ |u| ≤ 1, |P (u)| ≤ |πK |a
}
.

Then Xa has [L : K] geometric connected components if and only if a > b(L/K).

Proof. The first statement is straightforward from unwinding the definition of upper
ramification filtration.

A rigorous proof of (ii) can be found in [AS02, Lemma 6.6]. We will give a rough
idea of why this is true. The picture here is that, if a is very large, we confine u
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in very small neighborhoods of the roots of P (u) = 0, which are the conjugates
of x. The rigid space Xa is expected to be geometrically a disjoint union of very
small discs centered at each of conjugates of x. In other words, Xa should have
[L : K] geometric connected components. In contrast, when a→ 0+, the condition
|P (u)| < |πK |a is significantly weakened, and Xa is almost the whole disc |u| ≤ 1.

When the rational number a decreases from a big starting value, the discs grow
larger. There is a first such a moment that some of the [L : K] discs clash together,
and the number of geometric connected components decreases. We need to show
that the rational number a at this moment is exactly the highest ramification break
b(L/K). Indeed, the cut-off condition is obviously |u − x| < ming∈G,g ̸=1 |gx − x|
(or with a conjugate of x in place of x). This implies that |u − gx| = |gx − x| for
g ̸= 1. Thus

|P (u)| = |
∏
g∈G

(u− gx)| =
∏
g∈G

|u− gx| = |u− x|
∏
g∈G

|gx− x| < |πK |b(L/K).

In fact, one can turn this explanation into a complete proof if argued more carefully.
�

Trying to imitate this description in the general case, Abbes and Saito considered
the following construction. Let K be a complete discrete valuation field and L a
finite Galois extension of K. Suppose that OL is generated by x1, . . . , xr as an OK-
algebra. Then we may write OL as the quotient OK [u1, . . . , ur]/(f1, . . . , fs) ≃ OL,
where the isomorphism sends ui to xi. For a positive rational number a, consider
the following rigid analytic space

Xa
L/K :=

{
u = (u1, . . . , ur) ∈ (Kalg)r

∣∣∣ |u1| ≤ 1, . . . , |ur| ≤ 1;
|f1(u)| ≤ |πK |a, . . . , |fs(u)| ≤ |πK |a

}
.

Put G = GK for simplicity. Inspired by Prop. 5.3.1, we want to define an (upper)
ramification filtration Gb of G so that Xa

L/K has [L : K] geometric connected

components if and only if a > inf{b |Gb ⊆ GL}. It is not difficult to see that
the space Xa

L/K does not depend on the choice of fi’s, and the set of geometric

connected components πgeom
0 (Xa

L/K) does not depend on the choice of ui’s (because

adding a new generator is equivalent to changing Xa
L/K to a fiber bundle over Xa

L/K

with discs as the fibers.) So our statement is well-defined, depending only on L.
Abbes and Saito [AS02] proved the existence of such ramification filtration using

certain abstract framework of “Galois functor” by studying functors for all rational
a that take every finite Galois extension L of K to the set of geometric connected
components πgeom

0 (Xa
L/K); they call it the non-logarithmic ramification filtration

Ganlog for a ∈ Q≥0. They also gave a log-variant of the construction which gives the

logarithmic ramification filtration Galog for a ∈ Q≥0. For details, we refer to [AS02].

We list a few immediate properties of these filtrations using notation Ga+nlog (resp.

Ga+log) for the closure of union of Gbnlog (resp. Gblog) over all b > a:

(1) both filtrations are left continuous, with rational breaks;
(2) for 0 < a ≤ 1, Ganlog is the inertia subgroup of G (inverse limit of inertia

subgroups over finite subextensions);
(3) G1+

nlog = G0+
log is the wild ramification subgroup of G (inverse limit of wild

ramification subgroups over finite subextensions);
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(4) if K is perfect, we have Ga+1
nlog = Galog = Ga for all a ≥ 0; here (Ga) is usual

(upper) ramification filtration;
(5) if K ′/K is a finite unramified extension, then both filtrations on GK′ are

induced by those on GK ;
(6) if K ′/K is a finite tame extension with e(K ′/K) = m, then (GK′)malog =

(GK)alog for any a;

(7) if K ′/K is any finite extension with e(K ′/K) = m, then (GK′)malog ⊂ (GK)alog
for any a.

For L/K a finite Galois extension, we put bnlog(L/K) = inf{b |Gbnlog ⊆ GL} and

blog(L/K) = inf{b |Gblog ⊆ GL}; they are called the highest non-log and log (upper)
ramification break, respectively. The following is a typical example of ramification
breaks.

5.3.2. Example. Let K = K((π)) be an equal characteristic complete discrete
valuation field and let L = K(z) be an Artin-Schreier extension given by zp − z =
aπ−n for a ∈ KJπK∗ and n ∈ N. We assume that the generator z is chosen so that
n is minimal (see §2). The Galois group Gal(L/K) ∼= Z/pZ.

(1) If p - n, then we have bnlog(L/K) = n+ 1 and blog(L/K) = n.
(2) If p|n, then we have blog(L/K) = bnlog(L/K) = n.

B. Chiarellotto and A. Pulita [ChP] proved that the induced filtration Gab,•
log on

the abelian Galois group Gab agrees with the Kato filtration in Subsection 5.1.
For a finite dimensional representation ρ : GK → GL(V ) with finite image, we

put bnlog(ρ) = bnlog(V ) := bnlog(L/K) and blog(ρ) = blog(V ) := blog(L/K), where
L is the finite extension of K corresponding to the kernel of ρ. Under very mild
technical restrictions, these ramification filtrations also enjoy the following Hasse-
Arf property, as proved in [X10, X12a].

5.3.3. Theorem. Assume either K is of equal characteristic, or p > 2 and K is
not absolutely unramified (i.e. p is not an uniformizer). Let ρ : GK → GL(V ) be
an irreducible representation with finite image. Then the Swan conductor Sw(ρ) :=
blog(ρ) · dim ρ and the Artin conductor Art(ρ) := bnlog(ρ) · dim ρ are integers.

We will come back to the discussion of this proof later in Subsection 6.2.
In the same paper [X10], it is also proved that, when K is of equal characteristic,

Abbes and Saito nonlog filtration agrees with Borger filtration. In the mixed char-
acteristic case, a similar argument used in [X10] relates Abbes and Saito non-log
filtration with a variant of Borger filtration (see [X12a, Remark 3.2.14]). It would
be interesting to see if the two definitions are exactly the same.

As of yet, we are not aware of any attempt to compare the approach of Boltje-
Cram-Snaith with the other two.

We also mention that Abbes-Saito’s construction can be applied to finite flat
group schemes over OK and give a ramification filtration on the group schemes.
For progress along this line, see [AM, Ha12, Ha12+]. This result can be used to
prove the existence of canonical subgroups for a p-divisible group with small degree;
see [Ti].

5.4. Refined Swan conductors. A much less trivial result says that the factors of
these filtrations graG•nlog := Ganlog/G

a+
nlog (a > 1) and graG•log := Galog/G

a+
log (a > 0)

are abelian groups of exponent p. This was proved with some restrictions in [AS03],
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[Sa09], [X12a] and, in full generality, in [Sa12]. Moreover, there is a natural injective
homomorphism

rsw : Hom(graG•log,Fp) ↪→ Ω1
OK

(log)⊗OK
m−a
K
/m

(−a)+
K

, a ∈ Q>0,

where Ω1
OK

(log) := Ω1
OK

+ OK
dπK

πK
, m−a

K
:= {x ∈ Kalg | vK(x) ≥ −a}, and

m
(−a)+
K

:= {x ∈ Kalg | vK(x) > −a}. Following Kato, this map is called the re-

fined Swan conductor homomorphism. When K is of equal characteristic, one can
define an analogous refined Artin conductor homomorphism

rar : Hom(graG•nlog,Fp) ↪→ Ω1
OK

⊗OK
m−a
K
/m

(−a)+
K

, a ∈ Q>1.

See [X12b] for more details. The analogous refined Artin conductor homomorphism
is also expected in the mixed characteristic case, using a variant of argument of
[Sa12].

When K is finite and a an integer, the rsw map is compatible with the natural
homomorphism in local class field theory in the following way.

Hom((Gab)a/(Gab)a+,Fp) //

LCFT

��

Hom(graG•log,Fp)

rsw

��
Hom(Ua,K/Ua+1,K ,Fp)

log∨
// Ω1
OK

(log)⊗OK
m−a
K
/m

(−a)+
K

where Gab denotes the abelian Galois group with the induced filtration, the left
vertical map is the isomorphism from the local class field theory, and the map log∨

is characterized below. For a homomorphism η : Ua,K/Ua+1,K → Fp, its image

log∨(η) is the element wηπ
−a
K

dπK

πK
for wη ∈ K such that

η
(
1 + xπaK

)
= trK/Fp

(xwη).

5.4.1. Example. Continuing with the setup in Example 5.3.2, we fix the generator
z. Fixing the isomorphism K ∼= K((π)), we have

Ω1
OK

⊗OK
K ∼= Ω1

K
⊕Kdπ and Ω1

OK
(log)⊗OK

K ∼= Ω1
K
⊕K

dπ

π
.

Let dā be the usual differential of ā in Ω1
K
; it is nonzero if ā is not a pth power in

K. We can in turn view this element in Ω1
OK

⊗OK
K and Ω1

OK
(log)⊗OK

K using
the direct sum decomposition above.

We can define a natural homomorphism (in fact an isomorphism) ρ : Gal(L/K) →
Fp given by g 7→ g(z) − z ∈ Fp. Such ρ factors through grbnlog(L/K)G•K,nlog and

grblog(L/K)G•K,log. We describe the image of ρ under the refined Artin and Swan
conductor homomorphisms as follows.

In case (1), rar(ρ) = π−n−1nadπ and rsw(ρ) = π−n(nadππ + dā).
In case (2), rar(ρ) = π−ndā and rsw(ρ) = π−ndā. (They are not literally the

same because they live in different spaces.)
One can check that the refined Swan and Artin conductors do not depend on

the choice of z.

When K is perfect, one can also check that the refined Swan conductor homo-
morphism is in fact an isomorphism.
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5.4.2. Question. When K is not perfect, is the refined Swan conductor homomor-
phism still an isomorphism? What about the analogous refined Artin conductor
homomorphism?

5.5. Multi-index filtration for higher dimensional fields. Using the refined
Swan conductor, one can naturally associate a multi-index (upper) filtration for an
m-CDVF K as follows. We will only treat the case with logarithmic ramification
filtration and when the last residue field k0 is perfect to simplify the notation; one
can easily modify the construction to adapt to the general case.

Let K be an m-CDVF with the first residue field km−1. Assume the last residue
field k0 is perfect. We fix a system of local parameters t1, . . . , tm. In this case, we
have

Ω1
OK

(log)⊗OK
km−1 =

m⊕
i=1

km−1
dti
ti
.

For λ =
∑m
i=1 αi

dti
ti

∈ Ω1
OK

(log)⊗OK
t−imm kalgm−1, we set

vlog(λ) = min{v(α1), . . . ,v(αm)}.

This gives a multi-indexed valuation on Ω1
OK

(log)⊗OK t−imm kalgm−1 for im ∈ Q>0.
We put Qm>0 = {i ∈ Qm | im > 0}. For i = (i1, . . . , im) ∈ Qm>0, we can define a

filtration on G := GK by the following characterization:

Gi
log :=

{
g ∈ Gimlog

∣∣χ(g) = 0 for all χ : grimG•log → Fp such that vlog(rsw(χ)) > −i
}
.

5.5.1. Question. When K has finite last residue field, does this multi-index fil-
tration on Gab

K agree with the one defined by (12) (with l = 1) using the Milnor
K-group KM

n (K)? This amounts to comparing the refined Swan conductor homo-
morphism with the one defined by Kato for characters of Gab

K . The comparison
is expected by experts. In the equal characteristic case, this is proved in [AS09]
and also appears implicitly in Chiarellotto and Pulita [ChP]. But in the mixed
characteristic, to our best knowledge, it does not seem to have appeared in the
literature.

5.6. A generalization of the theorem of Deligne. Recall from Subsection 3.10
that one expects to be able to associate quotient of Galois groups to truncated dis-
crete valuation rings. More concretely, consider two complete discrete valuation
fields K and K ′ and assume that there exists b ∈ N such that there is an isomor-
phism OK/π

b
KOK

∼= OK′/πbK′OK′ as rings. Unlike in Subsection 3.10, we do not

assume that the residue field K = K
′
is perfect.

5.6.1. Question. Does this isomorphism of rings still imply that GK/G
b
K,nlog

∼=
GK′/GbK′,nlog and GK/G

b
K,log

∼= GK′/GbK′,log? Are these isomorphisms of quotient

groups canonical? Moreover, are they compatible with the refined Swan/Artin
conductor homomorphisms?

In the non-logarithmic case, it appears that T. Hiranouchi and Y. Taguchi [HT]
have started a project towards proving the isomorphism of quotients of Galois
groups. See also the survey paper [Hi].

6. Three realizations of ramification theory

In this section, we discuss three analogous objects that all carry the feature of
ramification theory: lisse l-adic sheaves, overconvergent F -isocrystals, and vector



RAMIFICATION OF HIGHER LOCAL FIELDS, APPROACHES AND QUESTIONS 23

bundles with flat connections. In the first two situations, we focus on how Abbes-
Saito ramification invariants appear geometrically. In the last situation, we focus
on the irregularities which are analogs of the Swan conductors in the first two
situations.

6.1. l-adic representations and lisse l-adic sheaves. To start, we first assume
that K is of equal characteristic and satisfies the following condition:

(Geom) There exist a smooth schemeX over a field k and an irreducible divisorD
smooth over k with the generic point η, such thatK is isomorphic to the completion
of k(X) with respect to the valuation given by η.

Properties for general equal characteristic K may be reduced to the case with
this condition by taking certain limit.

Now, given a finite dimensional irreducible l-adic representation ρ of GK , we
may realize it as an l-adic sheaf F = Fρ over U := X −D, possibly after shrinking
X. Using vanishing cycles, Saito [Sa09] gave a construction that can detect the
highest logarithmic ramification break b := blog(ρ). We review this construction
here.

Let ID denote the ideal sheaf for the closed immersion D ⊂ X. Let (X×X)′ be
the blow-up of X ×X along D ×D. Let (X ×X)∼ denote the complement of the
proper transform of (X×D)∪ (D×X). Let ũ : (X×X)∼ → X denote the natural
projection to the first factor. The diagonal embedding U → U × U ⊂ (X × X)∼

extends to a natural embedding δ̃ : X → (X ×X)∼. Let JX denote the ideal sheaf
for this closed immersion. Let j̃ : U ×U → (X ×X)∼ denote the natural inclusion.

For a ∈ Q≥0, we use (X ×X)(a) denote the normalization of the scheme associ-
ated to the quasi-coherent sub-O(X×X)∼-modules∑

n∈N

ũ∗(OX(⌊na⌋D)) · J n
X ⊂ j̃∗OU×U . (Here, ⌊·⌋ is the floor function).

When a is a positive integer, this is one of the open charts for the blow-up of
(X ×X)∼ along the ideal sheaf ũ∗(ID)a + JX .

We use the following notation for morphisms:

U
j //

δ

��

X

δ(a)

��
U × U

j(a)

// (X ×X)(a)

Put H := Hom(pr∗2F , pr∗1F). Saito [Sa09] proved that

6.1.1. Proposition. The highest log ramification break blog(ρ) ≤ a if and only if
the base change map

δ(a)∗j
(a)
∗ H → j∗End(F)

is an isomorphism at the generic point η of D.

When the condition of the proposition is satisfied, the restriction of j
(a)
∗ H on

the complement (X ×X)(a)\(U × U) is a direct sum of the Artin-Schreier sheaves
defined by certain linear forms. These linear forms give rise to the refined Swan
conductor homomorphism.
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When the field K is of mixed characteristic, Saito [Sa12] imitates the equal
characteristic construction to make sense ofX×kX using infinitesimal deformation.
It would be interesting to see if one can put Saito’s construction in a more global
setting for complete regular rings of mixed characteristic, and obtain global results
similar to that in [Sa09].

6.2. p-adic differential equations and overconvergent F -isocrystals. We
first consider the case when K = K((π)) is of equal characteristic and K is perfect.
Put F =W (K)[ 1p ]. Consider the following bounded Robba ring, for r ∈ (0, 1)∩pQ:

Rr
bdd :=

{∑
n∈Z

anT
n
∣∣∣ an ∈ F, |ai| is bounded, and lim

i→−∞
|ai| · ri = 0

}
.

It is the ring of analytic functions on the annulus r ≤ T < 1 which take bounded
values.

Let V be an irreducible p-adic representation of G = GK with finite image. The
theory of Fontaine (see, e. g., [Ke05, Section 4]) associate V with a differential
module over Rr

bdd for some positive rational number r sufficiently close to 0, that
is a finite free module F = FV over Rr

bdd equipped with a connection

∇ : F → F ⊗Rr
bdd

Ω1
Rr

bdd/F
.

This is equivalent to give a derivation ∂ = d
dT on F satisfying Leibniz rule.

This construction allows one to use the full power of the theory of p-adic differen-
tial equations to the study of ramification theory of G. For r′ ∈ pQ with r′ ∈ [r, 1),

we use F (T )(r
′) to denote the completion of F (T ) with respect to the r′-Gauss

norm, that is the norm extending the following norm | · |(r′) on F [T ]:∣∣∑
n≥0

anT
n
∣∣
(r′)

= max
n≥0

{|an|r′n}.

We pick a norm | · |F,(r′) on F (r′) := F ⊗Rr
bdd

F (T )(r
′) and consider the spectral

norm

|∂|sp,F,(r′) := lim
n→∞

|∂n|1/nF,(r′),

where |∂n|F,(r′) is the operator norm of ∂n. The spectral norm does not depend on

the chosen norm | · |F,(r′) on F (r′). This is one of the key invariants for a p-adic
differential equation. It was explained by Kedlaya in [Ke05] (based on the work of
Christol-Mebkhout, Crew, Matsuda, Tsuzuki) that the highest ramification break
b(V ) has the following characterization by spectral norms:

for r′ sufficiently close to 1−, |∂|sp,F,(r′) = p−1/(p−1) · (r′)−b(V )−1.

A generalization of this approach without the perfectness ofK was introduced by
Kedlaya in [Ke07]. Assume thatK has a finite p-basis (as the general case reduces to
this case). The construction works formally the same except the following changes:

• The field F is taken to be the fraction field of a Cohen ring of K; here
the Cohen ring is an absolutely unramified complete discrete valuation ring
with residue field K; we refer to [Wh] for a functorial construction of Cohen
rings.
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• We have the derivation ∂0 = d
dT as well as other derivations ∂1, . . . , ∂n com-

ing from a chosen p-basis of K. Using this, Kedlaya defined a logarithmic
differential ramification filtration such that for r′ sufficiently close to 1−,

(13) max
{
|∂0|sp,F,(r′) · r′, |∂1|sp,F,(r′), . . . , |∂n|sp,F,(r′)

}
= p−1/(p−1) · (r′)−blog(V ),

where, as before, blog(V ) is the highest ramification break defined by the
differential ramification filtration.

A different normalization of (13) by removing the factor r′ in the first term gives rise
to a non-log ramification filtration. Moreover, Kedlaya proved that his differential
ramification filtration has the analogous Hasse-Arf property using the integrality
of Newton polygons. (One can also deduce this by reducing to the perfect residue
field case.)

It is proved in [X10] that Kedlaya’s differential filtration agrees with Abbes
and Saito filtration; this then proves Theorem 5.3.3 in the equal characteristic by
transferring the Hasse-Arf property through the comparison.

Moreover, in the equal characteristic case, [X12b] realizes the refined Swan con-
ductor homomorphism using p-adic differential modules; this is related to the eigen-
values of the matrices for the differential operators ∂0, . . . , ∂n, acting on an appro-
priate basis of F . [X12b] further relates the refined Swan conductor homomorphism
to the variation of Swan conductor (see Subsection 10.2).

When K is of mixed characteristic under some mild condition, it is proved in
[X12a] that one can “fake” the Robba ring construction above and apply the recent
results [Ke10a, KeX] on p-adic equation equations to deduce the Hasse-Arf theorem.

6.2.1. Question. Can we realize the refined Swan conductor homomorphism in the
mixed characteristic case, using the fake Robba ring construction?

6.3. Vector bundles with irregular singularities. The object analogous to
representations of GK (when K is perfect) is a differential module over C((T )),
that is a finite dimensional vectors space V over C((T )) equipped with a derivation
∂ = d

dT (satisfying the Leibniz rule). Such a module is called regular if T∂ preserves
a CJT K-lattice Λ of V . For P ∈ C((T )), we can define a rank one module E(P ) =
C((T )) · e such that ∂(e) = Pe.

The Turrittin-Levelt-Hukuhara Theorem (see, e. g., [Ke10a, Section 7.5]) says
that there exists n ∈ N such that we have a decomposition

V ⊗C((T )) C((T 1/n)) ∼= ⊕ri=1Vi,

where each Vi is of the form Vi = E(Pi)⊗Ri for an element Pi ∈ C((T 1/n)) and a
regular module Ri over C((T 1/n)).

The analogous invariant of ramification break is just max{0,−vC((T ))(Pi)}. We
define the irregularity of V to be

Irr(V ) :=
r∑
i=1

dimVi ·max{0,−vC((T ))(Pi)}.

We can give an interpretation of this invariant in terms of the spectral norms of
the differential operators ∂. For details, see [Ke10a, X12b].

In the general case whenK = K((T )) withK has characteristic zero, there might
be additional derivations ∂1, . . . , ∂n on K. For example, when K = C(x, y), we may
consider the derivations ∂1 = d

dx and ∂2 = d
dy . We consider a differential module
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V over K((T )), that is a finite dimensional vector space K((T )) equipped with
commuting actions of ∂0 = d

dT , ∂1, . . . , ∂n. When V is irreducible, one can define
the irregularity of V by taking the maximum among all irregularities computed by
the spectral norms of all differential operators. For general V , its irregularity is
defined to be the sum of the irregularities over all Jordan-Hölder constituents. For
the details, we refer to [X12b].

Similarly, one can define a refined irregularity as an analogue of the refined Swan
conductor for Galois representations. This is also explained in [X12b].

7. Elimination theory

7.1. The expectations. We see that the Kato-Swan conductor as well as the
ramification filtration of Abbes-Saito work perfectly in all the situations where one
needs the ramification invariants that “live downstairs”, i. e., for an extension L/K,
are more closely attached to K than to L. These include multiple questions related
to the absolute Galois group of a complete discrete valuation field, or, in algebraic
geometry, to the étale site of an algebraic or arithmetic variety.

In other words, we have the best possible “upper ramification filtration”3. How-
ever, in general we cannot recover the usual (lower) ramification filtration from
it, there are no Hasse-Herbrand functions, and we cannot write down any analogs
of the functorial properties in Subsections 3.2, 3.3, 3.4, 3.5. The reason for this
is rather fundamental: any single ramification filtration as well as any theory of
Swan-type conductor describes the ramification of an extension of degree p with
just one number. But we saw in the example in section 4 that the “comprehensive”
ramification theory should provide more information in this case. Indeed, in (11)
we have to know not only n and N but also m.

Also, we have no formula for the order of different (or depth)4 in terms of upper
breaks which would be a substitute for (10). The best possible estimates in the case
of an n-dimensional local field (with finite last residue field) are given by Hyodo
inequalities (see [Hy], Th. (1-5), Prop. (3-4), Ex. (3-5)):

(14) (p− 1)
∑
l≥1

jL/K(l)

pl
≤ dK(L/K) ≤ p− 1

p

∑
l≥1

jL/K(l),

where jL/K(l) are defined in (12).

A possible distant goal for further investigation of ramification in the imperfect
residue field case could be to construct a certain system of invariants Σ(L/K)
for any finite extension L/K which would completely describe the ramification of
L/K. This vague desire can be made more specific by listing at least the following
requirements.

(1) “Näıve” ramification invariants (ramification index, order of different, genome,
Artin and Swan ramification numbers) as well as other important invariants (such
as Abbes-Saito conductor) can be expressed in terms of Σ(L/K).

(2) Ramification of intermediate extensions (i. e., Σ(L/M) and Σ(M/K)) can be
expressed in terms of Σ(L/K); reasonable base change properties in spirit of Prop.
3.3.2 are available.

3The terminology is absolutely misleading! The upper ramification breaks live downstairs, and

the lower ones live upstairs.
4The order of different and the depth can be considered as invariants that “live in the middle”.
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(3) Local terms of appropriate global formulas can be expressed in terms of
Σ(L/K).

7.2. Background. Here we discuss a theory producing some additional ramifica-
tion information that can be organized in analogs of lower and upper filtrations.
The approach, with the origin in [Ka87], is based on two observations.

1. The Herbrand theorem (5) is true not only in the classical case but, more
generally, in all the monogenic cases, i. e., when OL = OK [x] for some x. Con-
sequently, the ramification invariants of monogenic extensions, defined in a usual
manner, possess all the usual functorial properties. The inverse statement is also
true; more precisely ([Sp99, Prop. 1.5.2]):

7.2.1. Proposition. Let L/K be a finite Galois p-extension. Then the following
properties are equivalent:

(i) OL = OK [x] for some x;
(ii) for every normal subgroup H of G the Herbrand property (5) holds;
(iii) the Hilbert formula holds:

vL(DL/K) =
∑
σ ̸=1

iG(σ) =
∑
i≥0

(|Gi| − 1).

In [Sp99] such extensions are called well ramified. There are three types of well
ramified extensions.

Case I. All the extensions with separable L/K.
Case II. All the weakly unramified extensions such that L/K is generated by 1

element. (In particular, if K is a two-dimensional local field, or, more generally, if

[K : K
p
] = p, then all weakly unramified extensions of K are well ramified.)

Case III. Those well ramified extensions that belong neither to Case I nor to Case
II. Spriano showed that for any L/K from Case III there exists an intermediate
field M such that M/K is in Case I, and L/M is in Case II. A general description
of Case III extensions was given in [HLF, Sect. I, §18] and [Sp00].

For us, the above remark on two-dimensional fields is important.

2. Let L/K be any finite Galois extension of complete discrete valuation fields
with imperfect residue fields of characteristic p > 0, and let k be a constant subfield
of K, i. e., a maximal complete subfield of K with perfect residue field. (If charK =
0, such a subfield is unique.) Epp’s theorem on elimination of wild ramification
[E] (corrections in [P] and [Kuhl]) asserts that there exists a finite extension k′/k
such that k′L/k′K is weakly unramified. The paper [KZ] contains various refined
versions of Epp’s theorem, with application to classification of higher local fields.

7.3. Construction. Now we are ready to describe the construction from [Z03] and
[HLF, Sect. I, §17]. For a given complete two-dimensional5 discrete valuation field
K, fix a constant subfield k. An extension L/K is said to be constant if L = k′K
and almost constant, if L ⊂ k′Ku, where k

′/k is a finite extension, and Ku/K is
an unramified extension. We say that a field L is standard if a prime element of its
constant subfield is also a prime element of L. The choice of a constant subfield k
in K determines a constant subfield l in L which is algebraic over k.

5i. e. such that [K : K
p
] = p
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For any finite Galois extension L/K denote by L0 the inertia subfield in L/K
and by Lc/K the maximal almost constant subextension in L/K. The idea is to
induce:

(1) the ramification filtration on Gal(Lc/L0) by the filtration for the correspond-
ing constants subfields;

(2) the ramification filtration on Gal(L/Lc) by the filtration on an isomorphic
group Gal(k′L/k′Lc), where k

′/k is a finite extension that makes Gal(k′L/k′Lc)
weakly unramified by Epp’s theorem (and even ferocious in view of the definition
of Lc).

Namely, introduce a set

I = {−1, 0} ∪ {(c, i)|i ∈ Q, i > 0} ∪ {(c,∞)} ∪ {(i, i)|i ∈ Q, i > 0}

with linear order

−1 < 0 <(c, i) < (i, j) for any i, j;

(c, i) < (c, j) for any i < j;

(i, i) < (i, j) for any i < j.

This will be the index set for lower and upper numbering of new ramification
subgroups.

Let G = Gal(L/K). We put G−1 = G, and denote by G0 the usual inertia
subgroup in G.

To introduce subgroups G(c,i) = Gc,i, we consider first the case when Lc/K is
constant and contains no unramified subextension. Then Lc = lK, and we have a
natural projection

p : Gal(L/K) → Gal(Lc/K) = Gal(l/k) = Gal(l/k)0.

Then we put Gc,i = p−1(Gal(l/k)i). In the general case take an unramified ex-
tension K ′/K such that K ′L/K ′ contains no unramified subextension, and the
maximal almost constant subextension in K ′L/K ′ (i. e., K ′Lc/K

′) is constant. We
put Gc,i = Gal(K ′L/K ′)c,i. Next,

Gc,∞ = Gal(L/Lc) = Gc,m.

for m big enough.
Assume that Lc is standard and L/Lc is ferocious. Let t ∈ OL, t /∈ L

p
. We

define

(15) Gc,i = {g ∈ Gal(L/Lc)|vK(g(t)− t) ≥ i}

for all i > 0.
In the general case choose a finite extension l′/l such that l′Lc is standard

and e(l′L/l′Lc) = 1; this is possible by Epp’s theorem. Then Gal(l′L/l′Lc) =
Gal(L/Lc), and l

′L/l′Lc is ferocious. We define

Gc,i = Gal(l′L/l′Lc)c,i = Gal(l′L/l′K)c,i

for all i > 0; these groups are independent of the choice of l′ since we used vK (and
not vL) in (15).

This gives a well defined lower ramification filtration on G indexed by I; one can
define Hasse-Herbrand functions from I to I with usual properties and, consequently,
construct the upper filtration. The compatibility with subgroups and factor groups
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mimics that of the classical case, and a ramification filtration for infinite Galois
extensions is defined.

One can note also that we obtained filtration (on finite Galois groups) which
factors Gi/Gi+ are abelian for i ≥ 0 (even elementary abelian for i > 0). This
would not be true if we did not consider the contribution of c-part. For a 2-
dimensional local field, one could also define a refined I2-filtration using rank 2
valuations in the i-part ([Z03, §4]).

7.4. Further properties. There exists also a partial result on compatibility with
the higher class field theory. Namely, for an equal characteristic 2-dimensional local
field K with finite residue field, one can define explicitly an I2-filtration on Ktop

2 K
which coincides with the inverse image of the ramification filtration on Gal(Kab/K),
see [Z03, §6].

It is not so easy to do the same in the mixed characteristic case because of
the more complicated Gal(Kab/K) and the presence of p-torsions in Ktop

2 K. In
particular, the following question is of interest.

7.4.1. Question. What is CK = Θ−1K (Gal(Kab/Kab
c ))?

By the results of Miki [Mik74], any extension of K with the Galois group Zp is
almost constant. This means that KΓ/K, the compositum of all Zp-extensions, is
a subextension of Kab

c /K. On the other hand, Kab
c = kabKab,ur = kabKab,tr, and

it is easy to see that KΓKab,tr = kΓKab,tr, where Kab,ur/K (resp. Kab,tr/K) is the
maximal abelian unramified (resp. tamely ramified) extension of K. Therefore,

Gal(Kab
c /KΓKab,tr) = Gal(kabKab,tr/kΓKab,tr)

≃ Gal(kab/kΓkab,tr)

≃ torsions in U1,k

by usual local class field theory.
Let TK be the topological closure of p-torsions in Ktop

2 K. Since there is no
p-torsion in KΓKab,tr/K, we have ΘK(TK) ⊂ Gal(Kab/KΓKab,tr). From the ex-

plicit description of generators of Ktop
2 K/TK (see [Z97], [I08]), it is clear that even

ΘK(TK) = Gal(Kab/KΓKab,tr). This means that CK should be a subgroup of
index pm in TK , where pm is the order of p-torsions in k∗ (or in K∗). However,
what are the generators of CK?

The above described ramification filtration gives a way of generalizing the “an-
abelian yoga” to higher local fields. Abrashkin [Abr02] generalized the above con-
struction from 2-dimensional case to n-dimensional local fields, introducing rami-
fication theory that depends on the choice of i-dimensional subfields Ki (1 ≤ i ≤
n − 1) in the given n-dimensional local field, and proved a complete analog of his
1-dimensional result (announced in [Abr02], full proof in the equal characteristic
2-dimensional case in [Abr03]).

Next, Abrashkin used his generalized ramification theory to develop an analog
of the functor of field of norms for higher dimensional local fields, see [Abr07].
Note that there exists further generalization of the field of norms functor to the
case of arbitrary imperfect residue field with finite p-basis by A. J. Scholl [Sch]; his
construction does not use any kind of higher ramification theory.

Despite these nice properties, the I-ramification theory is quite far from being a
“Traumverzweigungstheorie”. In particular, even for an extension of prime degree
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its I-ramification break does not determine its depth of ramification and even its
genome (“W” or “F”). For example, let K = F ((t))((π)) and k = F ((π)), F
being a finite field. Assume that L/K corresponds to the Artin-Schreier equation
xp−x = π−n+ tπ−pm, where m,n are positive integers. Then the I2-break of L/K
is m for any n, whereas dK(L/K) = p−1

p max{n, pm}, and L/K is wild iff n ≥ pm.

However, in the equal characteristic case one can vary the constant subfield k of
K thus collecting more information on ramification. For example, if L/K is wild
of degree p with the Swan number s0, then, for some choices of k, the I-break of
L/K is (c, s) and necessarily s = s0. In this example m is not an invariant of L/K.
However, if in the example of §4 we consider only such k that the I-break ofK2/K is
some (c, s) (clearly, s = N), then the I-break of K1/K will be (i,m/p). Therefore,
the knowledge of I-breaks of K1/K and K2/K for all choices of k determines the
ramification of K1K2/K.

7.4.2. Question. Can we construct a powerful ramification theory for equal char-
acteristic 2-dimensional fields by varying the constant subfield?

7.4.3. Question. Can we use this approach even in the mixed characteristic case
using truncations from [De84]?

8. Semi-global modelling

Now we describe one more approach to description of ramification in the im-
perfect residue field case. This approach goes back to P. Deligne who sketched a
proof of Grothendieck-Ogg-Shafarevich formula for surfaces in his famous letter to
L. Illusie [De76].

8.1. Background. We recall some starting points of Deligne’s program. Let F be
a locally constant étale Fl-sheaf of finite rank on U , where U is the complement to
some divisor D on a smooth projective surface S over an algebraically closed field of
prime characteristic p ̸= l. In order to understand the ramification data associated
with F at the generic point of a component D0 of D, Deligne considers various
regular arcs C transversal to D0 and studies the restrictions of F|C to these arcs. It
is expected that the Swan conductor of F|C (at the point where C meetsD0) depends
only on the jet of C of certain order r. Thus, we can consider the Swan conductor
as a function on the space T1,r of r-jets of arcs transversal to D0; this space has a
natural structure of vector bundle over D0. Next, this function is expected to be
lower semi-continuous; in particular, it should take its maximal value over certain
Zariski open subset W of T1,r. The next claim is that the complement of W has
pure codimension one in T1,r, i. e., is a union of several irreducible hypersurfaces.
The further work is based on geometry of these hypersurfaces including intersection
theory.

Some of these facts were proved in [La] under assumption of “absence of ferocious
ramification”. This means that the locally constant sheaf F is trivialized in some
finite extension of k(S) such that all extensions of residue fields are separable.
In particular, the semi-continuity of Swan conductor has been proved under this
assumption.

Brylinski in [Br] considers a cyclic p-extension of the function field of s surface
S over a field of characterstic p given by the Witt vector x = (x0, . . . , xr−1). He
assumes that the branch locus D0 is smooth at a certain regular point P of S and
the valuations of all xi at the generic point of D0 are either positive or prime to
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p. (This condition implies absence of ferocious ramification if r = 1 but not in
general.) Under this assumption he proves that, for all curves C transversal to D0

at P , the Swan conductors of corresponding extensions of k(C) are equal, and their
common value is Kato-Swan conductor of the extension of the 2-dimensional local
field k(S)D0,P corresponding to x.

Consider a cyclic extension L of degree p of k(S) as above such that the branch
locus D0 is smooth with one component, and the ramification at this component
is wild. We see from the papers of Laumon and Brylinski that in this case for all
curves C transversal to D at a fixed point, the corresponding ramification numbers
will be the same (and equal to the ramification number of L/k(S)). However, in
order to approach a more comprehensive description of ramification in the sense of
Subsection 7.1, it appeared useful to consider curves which are tangent to D0 of
certain fixed order (and smooth).

8.1.1. Example. Let k be algebraically closed, char k = 2, S = A2
k with coordinates

t, u, S′ the normalization of S in the Artin-Schreier extension Lα/k(t, u) given by

x2 − x = t−2n+1(1 + αu),

where α ∈ k. Introducing t1 = tnx, wee see that t1 is integral over k[t, u] and S′0 =
Spec k[t, u, t1] is regular, whence S′ = S′0. Let O′ be the closed point of S′ above
the origin O. (It is unique since O belongs to the branch locus of normalization
morphism.) Replacing S and S′ with the spectra of completed local rings at O
and O′ respectively, and introducing t0 = t(1 + αu), we arrive at the morphsim
φ : k[[t0, u]] → k[[t1, u]] given by

φ(t0) = t21 + t2n+1
1 + terms of higher order.

Notice that the branch locus of φ is determined by the prime ideal (t0) of k[[t0, u]].
Consider a family of curves Cλ on Spec k[[t0, u]] with the equations

t0 = u2 + λu3 + u5, λ ∈ k,

and denote by C ′λ their pullbacks in Spec k[[t1, u]]. It is not difficult to calculate
that

s(k(C ′λ)/k(Cλ)) =

{
4n− 3, λ ̸= 0,

4n− 5, λ = 0,

(assuming n ≥ 2). Moreover, let C be an arbitrary regular curve on Spec k[[t0, u]]
which is simply tangent to the branch divisor, i. e., with an equation

t0 = λ2u
2 + λ3u

3 + . . . ,

where λ2 ̸= 0, and let C ′ be its pullback. Then C ′ is irreducible; s(k(C ′)/k(C)) =
4n−3 if λ3 ̸= 0, and s(k(C ′)/k(C)) < 4n−3 if λ3 = 0 (“exceptional hypersurface”).
Note that if C is determined by an equation

t = µ2u
2 + µ3u

3 + . . .

in the original coordinates t, u, then µ3 = λ3 + αµ2. This means that the equation
of the “exceptional hypersurface” Hα is µ3 = αµ2, and thus Hα “detects the α”.
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8.2. Semi-global models. Deligne’s program is intended to compute Euler-Poincaré
characteristic of an étale sheaf on a surface or, more generally, to describe ramifica-
tion of a finite morphism of algebraic or arithmetic surfaces. However, we can try to
use this approach as a source of rich information about ramification of extensions of
2-dimensional local fields by constructing geometric “models” for given extensions.

Namely, let h : A → B be a finite k-homomorphism of 2-dimensional regular
local rings with perfect coefficient subfield k of characteristic p > 0. Let p be a
prime ideal of height 1 in B such that B/p and A/h−1(p) are regular. We shall
say that (h, p) is a model for a finite extension of 2-dimensional local fields L/K,

if there exists an isomorphism i of 2-dimensional local fields Q̂(B)p ≃ L mapping

Q̂(A)h−1(p) onto K.

We suggest to study ramification in L/K by considering various regular curves
on SpecA and their pullbacks in SpecB. For each such curve C and a component of
its pullback C ′, the field extension k(C ′)/k(C) is a finite extension of 1-dimensional
local fields inheriting information on L/K.

Of course, since we are interested only in “ramification in codimension 1”, we
have a huge freedom in choosing models for given L/K. (We can make blow-ups
preserving L/K etc.) We hope to describe a class of morphisms h having as simple
structure as possible to make the study of k(C ′)/k(C) easy but still providing
models for all L/K of interest.

For example, in [Z10] we proposed to study pairs (h, p) such that for some choice
of regular local parameters t, u in A and x, y in B with p = (x) and h−1(p) = (t)
the following conditions are satisfied:

(i) h(t) = δ · xex ,
(ii) h(u) ≡ ε · yey mod x,

(iii) J(t, u) =

∣∣∣∣∣ ∂h(t)∂x
∂h(t)
∂y

∂h(u)
∂x

∂h(u)
∂y

∣∣∣∣∣ = γ · xM ,

where ex, ey are positive integers, ey being a nonnegative power of p, M is a
nonnegative integer; δ, ε, γ ∈ B∗.

Such morphisms appeared in [CuP] in the context of resolution of a finite mor-
phism between regular algebraic surfaces over a field of characteristic p > 0.

It was proved in [Z10, Prop. 2.4] that an extension of 2-dimensional local fields
L/K has a model with properties (i), (ii), if the following 2 conditions are satisfied.

(1) fs(L/K) = 1.
(2) Let (eij)i,j=1,2 be the matrix ramification index for some choice of rank 2

valuations vL and vK , i. e., vL|K = vK · (eij). Then gcd(e11, e22)|e12.
Moreover, in this case we have ew(L/K) = ex and fi(L/K) = ey, see [Z10, Prop.

2.2].

8.3. Initial questions. Let (h, p) be as in Subsection 8.2; denote by D0 the prime
divisor of X = SpecA corresponding to h−1(p). Fix a positive integer r and
consider the set Tr of all regular arcs C on X such that (C.D0) = r. Assume
the above condition (iii); then C is not a component of the branch divisor, and
h∗C = C ′1 + · · ·+ C ′n, where C

′
1, . . . , C

′
n are distinct prime divisors of SpecB, and

n = n(C) is a positive integer. For each i (1 ≤ i ≤ n), we have an extension of
complete discrete valuation fields with perfect residue fields k(C ′i)/k(C). Our plan
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is to study the ramification invariants of the extensions k(C ′i)/k(C) as functions on
the set Tr.

First of all, we have to check that n(C) and all the ramification invariants depend
only on the jet of C of certain order R = R(r). Having this proved, we can consider
n(C) and ramification invariants as functions on the set Tr,R of R-jets of arcs from
Tr.

Each Tr,R has a structure of an affine variety over k. Indeed, let t, u be local
parameters of A such that (t) = h−1(p). Then, in view of Weierstraß preparation
theorem, each curve from Tr has a unique equation of the form

f =

{
−u+ α1t+ α2t

2 + . . . , r = 1,

−t+ βru
r + βr+1u

r+1 + . . . , r > 1,

where αi and βi are any elements of k with an only restriction βr ̸= 0. If r > 1,
Tr,R can be identified with {(βr, . . . , βR) ∈ AR−r+1

k |βr ̸= 0}; if r = 1, Tr,R can be
identified with ARk ; see more details in [Z02a].

Next, we would like to check that certain functions of these ramification invari-
ants are semi-continuous on Tr,R with respect to corresponding Zariski topology.
(These functions are reduced to conductors or the order of different if s = 1, and
the precise definitions in the general case is still to be understood.)

Some results in this direction are included into the next section.

9. Some results on semi-continuity

9.1. Artin-Schreier extensions. The paper [Z02a] is devoted to the study of
questions raised in subsection 8.3 in the case of Artin-Schreier coverings of the
spectrum of a complete 2-dimensional regular local ring (of characteristic p > 0).
Such coverings can serve as semi-global models of Artin-Schreier extensions of 2-
dimensional local fields. However, the setting in this work is somewhat more gen-
eral: the morphisms with 2 (transversal) components in the branch locus are also
included into consideration.

More precisely, let A be a regular two-dimensional local ring (not necessarily
complete), charA = p > 0, K = Q(A), m the maximal ideal of A, and k the residue
field which is assumed to be algebraically closed. For a prime ideal p of height 1,
denote by Fp the corresponding prime divisor of SpecA. For any two distinct prime
divisors Fp, Fp′ we define their intersection number as

(Fp.Fp′) = dimk A/(p+ p′);

by linearity this definition can be extended to any two divisors C,D with no common
components.

Let L/K be a cyclic extension of degree p, and let B be the integral closure of
A in L. For the sake of simplicity of statements we assume here that the branch
divisor of B/A consists of one smooth component Fp1 ; for the case of two transversal
components, see [Z02a]. Denote by UA the set of prime ideals of height 1 of A other
than p1. For p ∈ UA, denote by q any prime ideal of B over p. Denote

sp(L/K) =

{
s(L(q)/K(p)), e(L(q)/K(p)) = p,

0, otherwise,

where K(p) is the fraction field of A/p, and L(q) is the fraction field of B/q.
Introduce Tr and Tr,n as in Subsection 8.3 and identify p with the arc Fp.
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9.1.1. Proposition. (existence of a uniform sufficient jet order, [Z02a, Theorem
2.1]) For any r ≥ 1 there exists R such that if p, p′ ∈ Tr and (Fp.Fp′) ≥ R+1, then
sp(L/K) = sp′(L/K). Let su1,r(L/K) be the minimal such R. Then there exists
N ≥ 1 such that su1,r(L/K) < Nr for any r.

9.1.2.Remark. There was a mistake in the proof of “sufficient jet order conjecture”
in [Z02b]. The correct part of this preprint on the bounded growth of curve singu-
larity invariants along certain tame and wild morphisms of surfaces was published
later as [Z06].

Next, introduce Zariski topology in all Tr,n as in Subsection 8.3. Then the
following statements hold.

9.1.3. Proposition. (semi-continuity of a break, [Z02a, Theorems 2.2–2.4]) 1. Let
n ≥ su1,r(L/K). Denote by Jn(p) the n-jet of the arc Fp. Then for any s ≥ 0 the
set

{Jn(p)|p ∈ Tr; sp(L/K) ≤ s}
is a closed subset in Tr,n.

2. The supremum

sr(L/K) = sup{sp(L/K)|p ∈ Tr}

is finite.
3. Assume in addition that A is a G-ring. Then the sequence (sr(L/K)/r)r is

convergent.

9.2. Extensions of prime degree. The paper [Fa] is devoted to morphisms h :
A→ B of Subsection 8.3 with properties (i), (ii) and (iii) without assumption that
B is a Galois algebra over A.

Let Tr, Tr,R, C, n(C), C
′
i have the same meaning as in Subsection 8.3. Under

the assumption n(C) = 1, denote by sC the only ramification break of k(C ′1)/k(C)
as defined at the very end of §1. Then we have ([Fa, Theorem 4]):

9.2.1. Proposition. (existence of a uniform sufficient jet order) For any r ≥ 1 there

exists R such that if C, C̃ ∈ Tr and (C.C̃) ≥ R + 1, then sC = sC̃ . Let su1,r(h) be
the minimal such R. Then there exists N ≥ 1 such that su1,r(h) < Nr for any r.

Next, I. Faizov proved the following semi-continuity statement ([Fa, Theorems 5
and 6]).

9.2.2. Proposition. (semi-continuity of a break) 1. Let n ≥ su1,r(h). Then for
any rational s ≥ 0 the set

{Jn(C)|C ∈ Tr; sC ≤ s}

is a closed subset in Tr,n.
2. The supremum

sr(h) = sup{sC |C ∈ Tr}
is finite.

The proofs are based on careful work with Hamburger-Noether algorithm for
curve C1 yielding an explicit form of a uinformizing element of k(C).



RAMIFICATION OF HIGHER LOCAL FIELDS, APPROACHES AND QUESTIONS 35

9.3. Relation to singularity invariants. In the context of Subsection 8.3, we
considered regular arcs on SpecA; however, the arcs C ′i on SpecB are in general
singular, and the complexity of singularity can reflect the ramification data of the
morphism h; this phenomenon was first observed in [Z06]. In [CZ] we relate the
semi-continuity property of ramification invariants with the semi-continuity of δ-
invariant in families of singular arcs.

Let A,B be complete 2-dimensional regular local rings with algebraically closed
coefficient subfield k. A finite k-homomorphism h : A → B will be called unmixed
if h(mA) ⊂ mB and h(mA) ̸⊂ m2

B . In particular, a homomorphism with properties
(i) and (ii) is unmixed if in its definition either ex = 1 or ey = 1.

A decomposable homomorphism is by definition a composition of several unmixed
homomorphisms.

The following statement is proved in [CZ].

9.3.1. Proposition. Let h : A → B be a decomposable homomorphism of degree
m, and B its branch divisor in SpecA. Let C be a reduced curve on SpecA having
no common components with B; C ′ = h∗C. Let C ′1, . . . , C

′
r be all components of

C ′; Ci = h∗C
′
i, i = 1, . . . , r; di the order of different in the extension of discrete

valuation fields k(C ′i)/k(Ci). Then we have

(16) 2δ(C ′)− 2mδ(C) = (C.B)−
r∑
i=1

di.

This immediately implies

9.3.2. Corollary. Let h : A → B be a decomposable homomorphism, and B its
branch divisor in SpecA. Let C be a regular curve on SpecA which is not a com-
ponent of B; C ′1, . . . , C ′r all components of C ′ = h∗C, i = 1, . . . , l; di the order of
different in the extension of discrete valuation fields k(C ′i)/k(C). Then

1.
∑r
i=1 di ≤ (C.B).

2. δ(C ′) ≤ 1
2 (C.B).

Consider a decomposable homomorphism h : A→ B and assume that the branch
divisor of h is of the form B = bD0, where D0 is a regular reduced irreducible curve
on SpecA and b is a positive integer. (It is always so when h has properties (i)–(iii)
from Subsection 8.2.)

9.3.3. Lemma. Let ∆ be a positive integer. Let A be a complete 2-dimensional
regular local ring having a coefficient subfield. Consider two curves C, C̃ on SpecA
such that δ(C) ≤ ∆, and C, C̃ have the same 2∆-jet. Let C1, . . . , Cr be all irre-

ducible components of C. Then C̃ also has r irreducible components C̃1, . . . , C̃r
with δ(C̃i) = δ(Ci) and (C̃i.C̃j) = (Ci.Cj) for all i, j.

9.3.4. Question. Is it possible to estimate Milnor and Tjurina numbers µ(C) or
τ(C) in terms of δ(C)? Maybe, one could apply formulas for µ(C) from [BGM],
[MHW]. If yes, this would enable us to estimate finite determinacy of C.

Next, let Tr,R, n(C), C
′
i have the same meaning as in Subsection 8.3.

9.3.5. Proposition. Let C be a regular curve on SpecA with (C.D0) = r < ∞.
Then, for the curve h∗C, the number of components, their δ-invariants and inter-
section numbers depend only on the jet of C in Tr,br.



36 LIANG XIAO AND IGOR ZHUKOV

Proof. Let C and C̃ have the same br-jet. Then obviously h∗C and h∗C̃ also have
the same br-jet. In view of Corollary 9.3.2, δ(h∗C) ≤ br/2. It remains to apply
Lemma 9.3.3 with ∆ = [br/2]. �
9.3.6. Corollary. For C as in the above proposition, let di be the order of different
in the extension of discrete valuation fields k(C ′i)/k(C), i = 1, . . . , n(C). Then∑r
i=1 di depends only on the br-jet of C.

Proof. It follows from Proposition 9.3.5 and formula (16). �

Let us make the following Assumption Sδ on the semi-continuity of the δ-
invariant.

Let A be a complete 2-dimensional regular local ring with algebraically closed
coefficient subfield k, and let U be an open subset of ANk for some positive integer N .
Let f ∈ A[X1, . . . , XN ] be such that for any closed point (a1, . . . , aN ) ∈ U the curve
C(a1, . . . , aN ) = SpecA/(f,X1 − a1, . . . , XN − aN ) is reduced. Assume that there
exists a positive integer ∆ such that δ(C(a1, . . . , aN )) ≤ ∆ for all (a1, . . . , aN ) ∈ U .
Then δ(C(a1, . . . , aN )) is an upper semi-continuous function on U .

9.3.7. Proposition. If Assumption Sδ is satisfied, then for any r ≥ 1, δ(h∗C)
determines an upper semi-continuous function on Tr,br.

Proof. It follows immediately from Corollary 9.3.2. �
9.3.8. Question. Is it true that n(C) (the number of components of h∗C) deter-
mines a lower semi-continuous function on Tr,br? What can be said about the
generic value of n(C)?

9.3.9. Corollary. For a regular curve C on SpecA with (C.D0) = r, let C ′1, . . . , C
′
n

be all components of h∗C, n = n(C), and di the order of different in the extension
of discrete valuation fields k(C ′i)/k(C). Then

∑n
i=1 di determines a lower semi-

continuous function on Tr,br, if the Assumption Sδ is satisfied.

Proof. It follows immediately from Prop.9.3.7 and 9.3.1, since (C.B) = br. �
9.3.10. Question. We suggest to say that a lower semi-continuous integer-valued
function h on a variety S is purely lower semi-continuous if for every N each
component of the closed subset

SN = {P ∈ S|h(P ) < N}
has codimension ≤ 1 in the respective component of SN+1.

Is it true that
∑n
i=1 di determines a purely lower semi-continuous function on

Tr,br? Equivalently, is δ(βr, . . . , βpr) purely upper semi-continuous on Tr,br? (Pure
upper semi-continuity is defined similarly.)

This is related to Deligne’s conjecture that the loci of exceptional values of
ramification invariants are always hypersurfaces.

10. Algebraic-geometric consequence of Abbes-Saito filtration

The theory of Abbes and Saito filtration has deep applications in algebraic geom-
etry including Grothendieck-Ogg-Shafarevich type formulas for Euler characterstic
of étale sheaves. A survey of geometric applications is also given in the ICM talk
of Saito [Sa10]. Here we prefer to discuss the global version of all three objects in
Section 6 at the same time to emphasize their similarities.
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10.1. Setup. Let k be a field. Let X a smooth variety over k and let D = ∪ri=1Di

be a divisor on X with strict simple normal crossings, where Di are irreducible
components. Let U = X\D be the complement. Suppose that we are in one of the
following globalizations of the three situations considered in Section 6:

(a) F is a lisse Ql-sheaf on U , where l is a prime number different from char k;
(b) F is an F -isocrystal on U overconvergent along D, while char k = p > 0;
(c) F is a locally free coherent sheaf on U with an integrable connection, while

char k = 0.

At the generic point ηi of an irreducible component Di of the divisor D, one can
talk about

(a) the Swan conductor Sw(F ;Di), obtained by considering the representa-
tion Gk(X)ηi → π1(U) → GL(VF ), where the latter homomorphism is the
representation associated to the lisse sheaf F ; or

(b) the (differential) Swan conductor Sw(F ;Di), obtained by passing to the
generic point in the sense of Subsection 6.2; or

(c) irregularity Irr(F ;Di) in the sense of Subsection 6.3 by base changing to
the completion at ηi; we rename it the Swan conductor Sw(F ;Di).

We list all these three cases together because most of results on ramification
theory hold in similar fashion.

10.2. Results of variation. We explain the main result of [KeX, Ke11a, Ke10b]
on variation of Swan conductors by an example. We take X = A2 = Speck[x, y],
D0 = V (y) and D1 = V (x). Let F be an object over U = X\(D0 ∪D1) as above.
We can consider the Swan conductors Sw(F ;D0) and Sw(F ;D1).

We may blowup X at the origin P = D0 ∩D1 to get X ′ = BlPX; let D1/2 de-
note the exceptional divisor. Since F is defined on U , we can talk about the Swan
conductor Sw(F ;D1/2). Carrying on this idea, we can continue to blowup X ′ along
the intersections of D1/2 with the proper transfer of D0 and D1. We use D1/3 and
D2/3 to denote the two exceptional divisors for this blowup. Similarly, we can talk
about the Swan conductors Sw(F ;D1/3) and Sw(F ;D2/3). We can iterate this pro-
cess to blowup intersections of the divisors and then consider the Swan conductors
along all the exceptional divisors. We label the exceptional divisors as follows: for
each coprime pair (m,n) ∈ N, there is exactly one such exceptional divisor Dn/m+n

such that, for the valuation v corresponding to Dn/m+n, we have v(x) = n and
v(y) = m. Along this divisor, we have a Swan conductor Sw(F ;Dn/m+n).

10.2.1. Proposition. The function

n

n+m
7−→ 1

n+m
Sw(F ;Dn/m+n)

extends by continuity to a convex piecewise linear function on [0, 1] with integral
slopes.

This proposition is a special case of the result for higher dimensional X and
for an intersection point of simple normal crossing divisors, as proved in [KeX,
Ke11a, Ke10b]. (The essential part of the proof is in [KeX]. But the statements
appear in [Ke11a] for cases (a) and (b) and in [Ke10b] for case (c).) Moreover, the
slopes of the piecewise linear function are related to the refined Swan conductor
homomorphism, as proved in Subsection 5.4. (See [X12b] for details.)
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10.2.2. Remark. We point out a caveat: there is no analogous result of Proposi-
tion 10.2.1 for Artin conductors. One of the explanations could be: blowing up is
log-smooth but not smooth. So a log version conductor is expected to work much
better.

10.3. Approach to ramification theory using cutting-by-curves. It would
be interesting to point out the conjectural relation between the generic ramifica-
tion using Abbes-Saito filtration (discussed above) and the ramification data from
cutting-by-curves (as discussed in detail in Section 9).

The Abbes-Saito Swan conductor is defined by looking at the generic points of
the divisors, as explained in Subsection 10.1. We now explain the “cut-by-curve”
Swan conductors. Let Di be an irreducible divisor of X, then one can define a new
Swan conductor by taking

Swcurve(F ;Di) := sup
C

(Sw(F|C ;C ∩Di)

(C.Di)

)
,

where (C.Di) is the intersection number of C with Di and the supremum is taken
over all curves C that intersects with Di (not necessarily transversely). A sugges-
tion to study Swcurve appeared (in 2-dimensional case) in [Z02b, Remark 2.5.3]; a
computation in the Artin-Schreier case was done in [Z02a] (see above Prop. 9.1.3).

The natural question to ask is whether Swcurve(F ;Di) is the same as Sw(F ;Di)
using the Abbes-Saito ramification filtration. We do not discuss this comparison in
detail, but refer to the forthcoming thesis [Ba] of I. Barrientos, which generalizes
an idea of Deligne-Esnault-Kerz [EK]. We nevertheless will emphasize that using
curves that are not transversal to the divisor is necessary in this theory, as shown
in the following example.

10.3.1. Example. Let X = A2 be the xy-plane over a field k of characteristic p and
let D be the divisor Z(y). Consider the Artin-Schreier sheaf F over U = X − D
given by the equation zp−z = x/yp, that is the lisse sheaf associated to a nontrivial
representation of the Galois group Z/pZ given by this equation.

Using Example 5.3.2, we see that Sw(F ;D) = p. (Note that x is not a pth
power in the residue field k(x).) However, when restricted to each line Ca : x = a
for a ∈ kalg, the Artin-Schreier equation becomes zp − z = a/yp which is the same
as z′p − z′ = a1/p/y for z′ = z− a1/p/y. So Sw(F|Ca ;D ∩Ca) = 1. In other words,
the generic Swan conductor (using Abbes-Saito’s filtraiton) does not equal to the
Swan conductor restricted to any such curve Ca.

If instead we consider the curve Ca,m : y = (x − a)m for a ∈ kalg and m ≫ 0,
the Artin-Schreier equation becomes zp − z = x/(x − a)pm. It is easy to compute

that Sw(F|Ca,m ;D ∩ Ca,m) = pm− 1. So lim supm
Sw(F|Ca,m ;D∩Ca,m)

(D.Ca,m) = p.

We also point out that when m = 1, the curve y = x − a is still transversal to
D, but Sw(F|Ca,1 ;D∩Ca,1) = p− 1, which is different from Sw(F|Ca ;D∩Ca) = 1;
thus restricting to different transversal curves may give different Swan conductors.
The largest Swan conductor obtained by restricting to transversal curves is p − 1,
which is still smaller than the “correct answer” p, as seen at the “generic point”.
This is why we need to consider curves non-transversal to the divisor.
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10.3.2. Question. Using the result on variation of Abbes-Saito Swan conductor
(Prop. 10.2.1) and the information of refined Swan conductors, can we say some-
thing along the line of semi-continuity type statement proposed by Deligne [De76]
(and proved by [La] in case of absence of ferocious ramification)?

10.4. Towards a generalized Grothendieck-Ogg-Shafarevich formula. One
of the goals of Abbes and Saito’s project is to generalize the Euler characteristic
formula for l-adic sheaves (Grothendieck-Ogg-Shafarevich type formula). For us,
this applies to all three cases we discussed above. We will only discuss formulas
that involve only the Swan conductors discussed in Section 6.

The formula is known whenX is a curve. Case (a) is discussed in Subsection 3.11.
Case (b) is due to Christol, Crew, Matsuda, Mebkhout, and Tsuzuki; a complete
reference with a proof is given in [Ke06, Theorem 4.3.1]. Case (c) is due to Deligne
and Gabber; one can find a proof in [Katz, Theorem 2.9.9].

For X general, the l-adic conjecture is described in detail in [AS11, Sa10] and
proved in a special case in [Sa09]. It is proved in the case of vector bundles with
flat connections under probably a necessary condition (see [X12+]). We sketch the
key points involved.

First, it appears to be impossible to obtain an unconditional formula that re-
sembles the classical Grothendieck-Ogg-Shafarevich formula (9) and involves only
the geometry of X and the Swan conductors (or more generally the set of highest
ramification breaks of constituents) discussed in Section 6. This is because the
ramification data at the generic points of the divisors do not determine the rami-
fication at closed points. One has to impose a cleanness6 condition on the object
F , which roughly says that the ramification at all closed points on D is determined
by the ramification data at generic points of D. The cleanness condition is dis-
cussed in [AS11] for l-adic sheaves, but also note the subtlety of different versions
of cleanness, as discussed in [X12+] for case (c).

10.4.1.Question. Does there always exist a birational proper morphism f : (X ′, D′) →
(X,D) such that f∗F satisfies the aforementioned cleanness condition? In case (c),
this question is known as the Sabbah’s Conjecture, proved by Kedlaya [Ke10b,
Ke11b] and T. Mochizuki [Mo-T] independently.

Second, assuming the cleanness condition, the ramification data does not only
give the Euler characteristic, but it is also expected to determine log-characteristic
cycle of F (as a cycle in the log-cotangent space of X). The definition of log-
characteristic cycles is in fact a big mystery, which we will discuss in the next para-
graph; for now, we just explain its conjectural properties assuming its existence.
Unlike in the usual (nonlog) characteristic cycle for algebraic D-modules (for defi-
nition of characteristic cycles, see, e. g., [HTT]), where all irreducible components
are conormal bundles of some closed subvariety of X, the log-characteristic cycles
are supposed to “point to various directions” in the cotangent space, determined by
the refined Swan conductors. This is related to the fact that the Poisson structure
on the log-cotangent space is degenerate. However, the Euler characteristic does
not depend on the “directions”.

In standard theory of algebraic D-modules and overconvergent F -isocrystals,
the intersection number of the characteristic cycle with the zero section of the

6Abbes and Saito used the word “cleanliness”; but we feel “cleanness” is a more appropriate
word here.
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cotangent space gives the Euler characteristic of F ; this formula is known as the
Kashiwara-Dubson formula. See [HTT] for the algebraic D-module case and [Be]
for the overconvergent F -isocrystal case. One may hope to use a log-version of such
a formula to prove the generalized Grothendieck-Ogg-Shafarevich formula by com-
puting explicitly the log-characteristic cycles, at least in the case of F -isocrystals
and algebraic D-modules. However, the technical subtlety here is exactly that, un-
like in the standard nonlog case, the log-characteristic cycles are not known to be
well-defined for F -isocrystals. Even for vector bundles with flat connections, the
theory of log-characteristic cycles is quite different from the classical theory. The
major difficulty is the lack of log-holonomicity! See [X12+] for more discussion.

10.4.2. Remark. A very important application for an appropriate definition of
log-characteristic cycles for overconvergent F -isocrystals would be the following.
Kedlaya developed a trick in [Ke11a, Section 5] that can “transfer” the ramification
data of a lisse l-adic sheaf to a (virtual) overconvergent F -isocrystal. Then we would
get a natural definition of log-characteristic cycles for lisse l-adic sheaves for free.
To our knowledge, a general construction of (log-)characteristic is not known for
lisse l-adic sheaves. (Under the cleanness condition, Abbes and Saito [AS11] gave
a definition using the refined Swan conductors, but it is unclear how to relate this,
for example, to the analog of the supersingular supports.)

11. Miscellaneous questions

11.1. Ramification numbers and structure of Galois groups. There exists
a number of results relating the structure of Galois groups with the possible values
of ramification invariants. Hasse-Arf theorem gives an example; another example
is the following Hyodo inequality ([Hy, Lemma (4-1)] or, without class field theory,
[Z95, §1]).

11.1.1. Proposition. Let M/K be a cyclic extension p2, L the intermediate sub-
field. Then

(17) dK(M/L) ≥ min
(
(p− 1 + p−1)dK(L/K), eK − p−1eK + p−1dK(L/K)

)
.

11.1.2.Question. Given a complete discrete valuation fieldK, a word T = T1 . . . Tn
in the alphabet {W,F} and an n-tuple of integers (i1, . . . , in), does there exist a
cyclic extension L/K with genome T and lower breaks (i1, . . . , in)?

The answer is known only in 2 cases.
(1) The classical case: we can give only the reference [Mik81] for the mixed

characteristic case. For equal characteristic case, a related work is [Th].
(2) Ferocious extensions of 2-dimensional fields ([We]).
In general, we do not even know the answer to the following question.

11.1.3. Question. Given a complete discrete valuation field K and a word T =
T1 . . . Tn in the alphabet {W,F}, does there exist a cyclic extension L/K with
genome T?

If charK = p, the answer is thought to be positive for any T ; however, it cannot
be so if charK = 0. Indeed, according to [Kur], in this case any complete discrete
valuation field belongs to one of two types; the fields of type I (resp. of type II)
do not have arbitrarily big cyclic ferocious (resp. wild) extensions. It would be
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interesting to try to answer Question 11.1.3 in terms of refinement of Kurihara’s
classification by O. Ivanova [I12].

One more aspect of this topic is the following phenomenon in the mixed charac-
teristic case: the assumption that the minimal ramification break of L/K takes its
almost maximal value, namely, h ≥ peK

p−1 − 1, has strong implications for the whole

ramification filtration; see [PVZ] for a number of results in this direction.

11.2. Small ramification numbers and embedding problem. In this subsec-
tion, we assume charK = 0.

By a result of Miki [Mik74], if L/K is a cyclic extension of degree p, it can be
embedded into a cyclic extension of degree pn if and only if L(ζp) = K1(x), where
xp ∈ NKn/K1

K∗n, and Kn denotes K(ζpn). The following statement is an easy
consequence ([VZ, §2]).

11.2.1. Proposition. Let L/K is a cyclic extension of degree p with dK(L/K) <
eK
p−1 . Then L/K can be embedded into a cyclic extension of degree p2.

We are interested in generalization of this observation to any Galois groups.

11.2.2. Question. Let f : G′ → G be an epimorphism of finite groups. Does there
exist an εf > 0 such that, for any Galois extension L/K of mixed characteristic
complete discrete valuation fields with Gal(L/K) ≃ G and dK(L/K) < εfeK , the
embedding problem (L/K, f) has a solution?

11.3. Ramification and higher adèles. It would be interesting to understand
what kind of ramification data are needed in adelic theory of arithmetic surfaces.
For example, the non-wild part of the conductor of the curve appears in [Fe10,
Subsection 3.4]; can we allow wild ramification here?
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