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1. Introduction

A polynomial f(x1, . . . , xn) over a field K is additive if

f(a1 + b1, . . . , an + bn) = f(a1, . . . , an) + f(b1, . . . , bn)

for all a1, . . . , an, b1, . . . , bn ∈ L where L is any extension of K. In characteristic
zero the only additive polynomials are the linear polynomials with constant term
zero. In positive characteristic, p, additive polynomials are of the form

n∑
i=1

ki∑
j=0

aijx
pj

i

where aij ∈ K. Additive polynomials over valued fields in positive characteristic
play an important role in understanding many algebraic and model theoretic prop-
erties of maximal fields of positive characteristic, see [7] for a thorough examination
of the issue.

A subset S of a valued field (K, v) has the optimal approximation property if for
all a ∈ K, the set {v(s − a) : s ∈ S} has a maximal element. By the image of a
polynomial f(x1, . . . , xn) over K we mean the set

{f(a1, . . . , an) : a1, . . . , an ∈ K}.

As pointed out in [7], one natural question is: Does the image of every additive
polynomial over a maximal valued field of positive characteristic have the optimal
approximation property? It is shown in [8] that the image of an additive polynomial
over Fq((t)) (considered as a valued field with the t-adic valuation) has the opti-
mal approximation property. Furthermore this elementary property is independent
of the previously observed elementary properties of Fq((t)), see [5]. In particular
henselianity, algebraic maximality and even being defectless, in addition to alge-
braic maximality, does not imply the optimal approximation property for images
of additive polynomials. However, when additive polynomials in one variable are
considered algebraic maximality is sufficient, [6].

Theorem 1.1. A henselian valued field of characteristic p > 0 is algebraically
maximal if and only if the image of every additive polynomial in one variable has
the optimal approximation property.

An extension (L,w) of a valued field (K, v) is immediate if it has the same value
group and residue field as (K, v). A valued field is (algebraically) maximal if it has
no proper (algebraic) immediate extensions.

The main result of this paper is:
1
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Theorem 1.2. Let (K, v) be a perfect, algebraically maximal valued field of charac-
teristic p > 0. Then the image of every additive polynomial over K has the optimal
approximation property.

The result follows from Theorem 3.1 which actually provides a stronger conclusion.
The core observation leading to Theorem 3.1 is the fact that, in perfect fields, ap-
proximation of an arbitrary element with elements from the image of an additive
polynomial in one variable can fail essentially in finitely many situations which de-
pend only on the additive polynomial, see Corollary 2.5. It is worth noting that
in positive characteristic, perfect algebraically maximal valued fields correspond
exactly to tame fields, see [4]. For algebraically maximal Kaplansky Fields, the
conclusion of Theorem 3.1 can be easily obtained from Theorem 6 of [7]. However,
generalization of properties from Kaplansky fields to perfect fields is often an essen-
tially different and hard problem. One obvious obstruction for such generalizations
is the fact that over Kaplansky fields algebraically maximal, algebraic immediate
extensions are unique and over perfect fields this is not the case.

Valued fields in positive characteristic are indeed valued fields equipped with an
endomorphism, the Frobenius. This aspect has long been on the spot light but still
very little is known about the contribution of the Frobenius endomorphism to the
structure of a valued field of positive characteristic. I stumbled upon the issue when
working with valued fields equipped with an automorphism. Valued fields equipped
with an automorphism, even in residue characteristic zero, exhibit pathological
behaviour very similar to that of valued fields in positive characteristic. In [2],
a simple translation between the two cases is introduced, which in turn explains
the similarities of these pathologies from both cases. This translation, which is
essentially considering polynomials over valued fields in positive characteristic as
difference polynomials, is the main technical tool leading to Corollary 2.5.

It is worth noting that the notion of extremality is related to the notion of optimal
approximation but they are not quite the same thing. The original definition for
extremality, in [3], turned out to ask too much and it was revised in [1]. A valued
field K is extremal if for every polynomial f(x1, . . . , xn) ∈ K[x1, . . . , xn], the set
{vf(a1, . . . , an) : a1, . . . , an ∈ Ov} has a maximal element. Thus, extremality and
having the optimal approximation property for the images of all polynomials (which
was the original definition of extremality) are not equivalent.

This problem was brought to my attention by Franz-Viktor Kuhlmann during
the Workshop on Valuation Theory in Positive Characteristic held at Nesin Math-
ematics Village which proved to be a wonderful environment for research and col-
laboration. I would like to thank Franz-Viktor Kuhlmann not only for his valuable
comments on the current article but also for all the guidance and support he has
provided throughout my research career.

2. Preliminaries

Throughout the rest of the paper K = (K,Γ,k, v) is a valued field of character-
istic p > 0 with value group Γ and residue field k. The valuation ring is denoted
by Ov and mv denotes the maximal ideal. The residue class map from Ov to k is
a 7→ ā : Ov → k.

We consider the polynomial ring K[φi(x) : i ∈ N] where

x = φ0(x), φ1(x), φ2(x), . . .
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are distinct indeterminates. An element of this ring will be called a φ-polynomial
over K. We shall interpret φ as the Frobenius endomorphism. To be precise: for
any K-algebra R and a ∈ R, “evaluation at a” is the unique K-algebra morphism,

F 7→ F (a) : K[φi(x) : i ∈ N]→ R

sending φi(x) to ap
i

for all i ∈ N.

For an (n+ 1)-tuple i = (i0, i1, . . . , in) ∈ Nn+1 we set

φ(x)i := xi0 · φ(x)i1 · · ·φn(x)in ,

and |i| := i0 + i1 + · · ·+ in.

A φ-polynomial F =
∑

i ai · φ(x)i is small if each component of i is less than
p for all i such that ai 6= 0. Ordinary polynomials in one variable over K can

be viewed as small φ-polynomials, by mapping xp
k

to φk(x). See section 8 of [2],
for a more detailed treatment of this translation between polynomials and small
φ-polynomials.

Let x0, . . . , xn, y0, . . . , yn be distinct indeterminates, and put x = (x0, . . . , xn),
y = (y0, . . . , yn). For a polynomial f(x) over a field K we have a unique Taylor
expansion in K[x,y]:

f(x + y) =
∑
i

f(i)(x) · yi,

where the sum is over all i = (i0, . . . , in) ∈ Nn+1, each f(i)(x) ∈ K[x], with

f(i) = 0 for |i| := i0 + · · · + in > deg f , and yi := yi00 · · · yinn . (Also, for a tu-

ple a = (a0, . . . , an) with components ai in any field we put ai := ai00 · · · ainn .)
Thus i!f(i)(x) = ∂if where ∂i is the operator (∂/∂x0)i0 · · · (∂/∂xn)in on K[x], and

i! = i0! · · · in!. We construe Nn+1 as a monoid under + (componentwise addition),
and let ≤ be the (partial) product ordering on Nn+1 induced by the natural order

on N. Define

(
i
j

)
as

(
i0
j0

)
· · ·
(
in
jn

)
∈ N, when j ≤ i in Nn+1. Then:

Lemma 2.1. For i, j ∈ Nn+1 we have (f(i))(j) =

(
i+ j
i

)
f(i+j).

In particular, f(i) = f for |i| = 0, and if |i| = 1 with ik = 1, then f(i) = ∂f
∂xk

. Also,

deg f(i) < deg f if |i| ≥ 1 and f 6= 0.
For f ∈ K[x0, . . . , xn] as above and F (x) = f(x, . . . , φn(x)) we have the following

identity in the ring of φ-polynomials in the distinct indeterminates x and y over K:

F (x+ y) = f(x+ y, . . . , φn(x+ y)) = f(x+ y, . . . , φn(x) + φn(y))

=
∑
i

f(i)(x, . . . , φ
n(x)) · φ(y)i =

∑
i

F(i)(x) · φ(y)i,

where F(i)(x) := f(i)(x, . . . , φ
n(x)).

In the rest of this section we let f(x) ∈ K[x] be a nonzero polynomial. Suppose
that the degree of f is i and n is such that i < pn+1. Let F be the small φ-
polynomial that corresponds to f . Then F ∈ K[x, φ(x), . . . , φn(x)] and for any
a ∈ K, f(a) = F (a).
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Definition 2.2. 1 Let a ∈ K. We that say (f, a) is in φ-hensel configuration if
f /∈ K and there is i with |i| = 1, γ ∈ Γ such that

(i) v(F (a)) = v(F(i)(a)) + φiγ < v(F(j)(a)) + φjγ whenever |j| = 1,

(ii) v(F(j)(a)) + φjγ < v(F(j+l)(a)) + φj+lγ whenever |j|, |l| 6= 0 and
F(j) 6= 0.

If (f, a) is in φ-hensel configuration, then F(j)(a) 6= 0 whenever j 6= 0 and F(j) 6= 0.
Hence F (a) = f(a) 6= 0 and γ as above satisfies

v(F (a)) = min
|j|=1

v(F(j)(a)) + φjγ,

so is unique and we set γ(f, a) := γ.

Lemma 2.3. Suppose that Γ is p-divisible. Let f(x) = a0x + a1x
p + · · · + anx

pn

be a nonzero additive polynomial over K. There are θ1, . . . , θk ∈ Γ such that for
every nonzero c ∈ K if v(c) 6= θ1, . . . , θk ∈ Γ, then (f(x) + c, 0) is in φ-hensel
configuration.

Proof. As f is nonzero there is at least one i ∈ {0, . . . , n} with ai 6= 0 and for such
i define

Λi : Γ→ Γ, γ 7→ v(ai) + piγ.

Note that Λi is bijective as Γ is p-divisible. Since each Λi is increasing at a rate of
pi, the graphs of Λi have finitely many intersection points. Therefore for all θ ∈ Γ
there is a unique γ ∈ Γ such that

θ = min
i

Λi(γ)

and except for finitely many values of γ ∈ Γ we have Λi(γ) 6= Λj(γ) for i 6= j. So
there are θ1, . . . , θk ∈ Γ such that the minimum above is achieved at a single index
i.

Now assume that c is a nonzero element of K with v(c) 6= θ1, . . . , θk. Then there
is i ∈ {0, . . . , n} and γ ∈ Γ such that

v(c) = Λi(γ) < Λj(γ)

whenever aj 6= 0 and i 6= j. Moreover if F (x) is the φ-polynomial which corre-
sponds to f(x) + c then F(j) = 0 whenever |j| > 1. So (f(x) + c, 0) is in φ-hensel
configuration.

�

Lemma 2.4. Suppose that Γ is divisible and k is perfect. If f(x) ∈ K[x] and a ∈ K
with (f, a) in φ-hensel configuration then there is b ∈ K such that v(b−a) = γ(f, a)
and v(f(b)) > v(f(a)).

Proof. Let F be the small φ-polynomial that corresponds to f and γ = γ(f, a).
Pick ε ∈ K with v(ε) = γ. Let b = a + εu where u ∈ K is to be determined later,
we only impose v(u) = 0 for now. Consider

F (b) = F (a) +
∑
|i|≥1

F(i)(a) · φ(b− a)i.

1This definition is not the same as the definition of φ-hensel configuration that appears in [2]
which was devised to deal with Kaplansky fields.



ADDITIVE POLYNOMIALS OVER PERFECT FIELDS 5

Therefore F (b) = F (a) · (1 +
∑
|i|≥1

ci · φ(u)i), where

ci =
F(i)(a) · φ(ε)i

F (a)
.

Since v(ε) = γ, we see that there is i with |i| = 1 such that v(ci) = 0, and v(cj) > 0
for all j 6= i. Since k is perfect we can take u such that ū is a solution of

1 + c̄i · φ̄(x)i = 0.

Then v(u) = 0, and v(b− a) = γ(f, a) and v(f(b)) > v(f(a)). �

Corollary 2.5. Suppose that K is a perfect algebraically maximal valued field. Let
f(x) = a0x + a1x

p + · · · + anx
pn

be a nonzero additive polynomial over K. Then
there are θ1, . . . , θk ∈ Γ such that for every c ∈ K either

• max{v(f(a)− c) : a ∈ K} = θi for some i = 1, . . . , k; or
• the equation f(x)− c = 0 has a solution in K.

Proof. Note that Γ is p-divisible and k is perfect as K is perfect. Let θ1, . . . , θk be
as in the conclusion of Lemma 2.3 for the additive polynomial f(x). Let c ∈ K.
Since K is algebraically maximal, {v(f(a)− c) : a ∈ K} ⊂ Γ ∪ {∞} has a maximal
element. Assume that f(x)−c = 0 has no solution in K and let a′ ∈ K be such that
v(f(a′)−c) = max{v(f(a)−c) : a ∈ K} ∈ Γ. Suppose that v(f(a′)−c) 6= θ1, . . . , θk.
Then by Lemma 2.3, (f(x) + f(a′) − c, 0) is in φ-hensel configuration. Therefore
Lemma 2.4 gives b with

v(f(b) + f(a′)− c) = v(f(b+ a′)− c) > v(f(a′)− c),
contradiction.

�

3. Main Result

Theorem 3.1. Suppose that K is a perfect algebraically maximal valued field. Let
h(x, y1, . . . , ym) ∈ K[x, y1, . . . , ym] be such that

h(x, y1, . . . , ym) = f(x) + g(y1, . . . , ym),

where f(x) ∈ K[x] is a nonzero additive polynomial, and g(y1, . . . , ym) ∈ K[y1, . . . , ym].
Then the image of h has the optimal approximation property.

Proof. Let c ∈ K and assume that for all (a, b1, . . . , bm) ∈ Km+1 if

h(a, b1, . . . , bm)− c 6= 0

then there is (a′, b′1, . . . , b
′
m) ∈ Km+1 such that

v(h(a′, b′1, . . . , b
′
m)− c) > v(h(a, b1, . . . , bm)− c).

The result will follow by finding a solution to the equation h(x, y1, . . . , ym)− c = 0.

Let θ1, . . . , θk be as in the conclusion of Corollary 2.5 for the additive polynomial
f(x). Let (a, b1, . . . , bm) ∈ Km+1 and assume h(a, b1, . . . , bm)− c 6= 0. We have

h(a+ x, b1, . . . , bm)− c = f(x) + h(a, b1, . . . , bm)− c.
By Corollary 2.5, either we have a solution to the equation

h(a+ x, b1, . . . , bm)− c = f(x) + h(a, b1, . . . , bm)− c = 0
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or max{v(f(a+ d) + h(a, b1, . . . , bm)− c) : d ∈ K} = θi for some i ∈ {1, . . . , k}. By
our assumption above the latter is not possible, so we obtain the result. �

It is now straightforward to obtain Theorem 1.2 .
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