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Abstract. With a simple generic approach, we develop a classification
that encodes and measures the strength of completeness (or compact-
ness) properties in various types of spaces and ordered structures. The
approach also allows us to encode notions of functions being contrac-
tive in these spaces and structures. As a sample of possible applications
we discuss metric spaces, ultrametric spaces, ordered groups and fields,
topological spaces, partially ordered sets, and lattices. We describe sev-
eral notions of completeness in these spaces and structures and determine
their respective strengths. In order to illustrate some consequences of
the levels of strength, we give examples of generic fixed point theorems
which then can be specialized to theorems in various applications which
work with contracting functions and some completeness property of the
underlying space.

Ball spaces are nonempty sets of nonempty subsets of a given set.
They are called spherically complete if every chain of balls has a nonempty
intersection. This is all that is needed for the encoding of complete-
ness notions. We discuss operations on the sets of balls to determine
when they lead to larger sets of balls; if so, then the properties of the
so obtained new ball spaces are determined. The operations can lead
to increased level of strength, or to ball spaces of newly constructed
structures, such as products. Further, the general framework makes it
possible to transfer concepts and approaches from one application to
the other; as examples we discuss theorems analogous to the Knaster–
Tarski Fixed Point Theorem for lattices and theorems analogous to the
Tychonoff Theorem for topological spaces. Finally, we present some
generic multivalued fixed point theorems as well as coincidence theo-
rems for ball spaces.
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1. Introduction

In view of the notions of completeness of metric spaces, spherical com-
pleteness of ultrametric spaces and compactness of topological spaces, the
question arose how these notions can be “reconciled”, which indicates the
search for some “umbrella” notion. The question was triggered in the early
1990s by the appearance of an ultrametric version of Banach’s Fixed Point
Theorem (see [23]), which turned out to be a useful tool in valuation the-
ory. An attempt at finding a generic fixed point theorem for “metric and
order fixed point theory” was made by M. Kostanek and P. Waszkiewicz
in an unpublished paper in the early 2010s. However, the structure they
introduced for this purpose is quite involved.

While fixed point theory was the driving force behind the above question,
the notions we have mentioned in the beginning are fundamental and have a
multitude of other applications. Therefore, the main purpose of this paper is
to present a simple basic approach that enables us to formulate an umbrella
notion which is suitable to encode various completeness notions, and to
measure and compare the strength of these notions. Fixed point theorems
will be used to illustrate the consequences of the level of strength and to
show how the umbrella notion makes it possible to formulate generic fixed
point theorems which then can be specialized to theorems in the various
applications.

The inspiration for the minimal structure that allows encoding of notions
of completeness is taken from ultrametric spaces and the notions of “ul-
trametric ball” and “spherically complete”. A ball space (X,B) consists
of a nonempty set X together with a nonempty family B of distinguished
nonempty subsets B of X. Note that B, a subset of the power set P(X),
is partially ordered by inclusion; we will write (B,⊆) when we refer to this
partially ordered set (in short: poset). A nest of balls in (X,B) is a
nonempty totally ordered subset of (B,⊆). The basic completeness notion
for ball spaces is inspired by the corresponding notion for ultrametric spaces:
a ball space (X,B) is called spherically complete if every nest of balls
has a nonempty intersection. We note that if this is the case and if B′ ⊆ B,
then also (X,B′) is spherically complete.

The concept of ball spaces enables us to distinguish various levels of spher-
ical completeness, which then provide a tool for measuring the strength of
completeness in the spaces and ordered structures under consideration. On
the one hand, we can specify what the intersection of a nest really is, apart
from being nonempty. On the other hand, we can consider intersections of
more general collections of balls than just nests. A directed system of
balls is a nonempty collection of balls such that the intersection of any two
balls in the collection contains a ball included in the collection. A centered
system of balls is a nonempty collection of balls such that the intersection
of any finite number of balls in the collection is nonempty. Note that every
nest is a directed system, and every directed system is a centered system
(but in general, the converses are not true).

We introduce the following hierarchy of spherical completeness properties:

S1: The intersection of each nest in (X,B) is nonempty.

S2: The intersection of each nest in (X,B) contains a ball.

S3: The intersection of each nest in (X,B) contains maximal balls.
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S4: The intersection of each nest in (X,B) contains a largest ball.

S5: The intersection of each nest in (X,B) is a ball.

Sdi : The same as Si, but with “directed system” in place of “nest”.

Sci : The same as Si, but with “centered system” in place of “nest”.

Note that S1 is just the property of being spherically complete.

The strongest of these properties is Sc5; we will abbreviate it as S∗ as it
will play a central role, enabling us to prove useful results about several
important ball spaces that have this property (it is the “star” among the
above properties). In Section 5.6 we will define an even stronger property,
namely that arbitrary intersections of balls are again balls.

We have the following implications:

(1)

S1 ⇐ Sd1 ⇐ Sc1
⇑ ⇑ ⇑
S2 ⇐ Sd2 ⇐ Sc2
⇑ ⇑ ⇑
S3 ⇐ Sd3 ⇐ Sc3
⇑ ⇑ ⇑
S4 ⇐ Sd4 ⇐ Sc4
⇑ ⇑ ⇑
S5 ⇐ Sd5 ⇐ Sc5 = S∗

In Section 2 we exemplify the (explicit or implicit) use of spherical com-
pleteness and its stronger versions by presenting generic fixed point theo-
rems for ball spaces. We discuss various ways of encoding the property of
a function of being contractive in the ball space language. We demonstrate
the flexibility of ball spaces, which allows us to taylor them to the specific
function under consideration. In connection with Theorem 2.6 we introduce
the idea of associating with every element x ∈ X a ball Bx ∈ B, leading to
the very useful notion of “Bx–ball space”.

The proofs for the generic fixed point theorems will be given in Section 3.
We use Zorn’s Lemma as the main tool in two different ways: it can be
applied to the set of all balls as well as to the set of all nests, as both are
partially ordered by inclusion.

The properties of hierarchy (1) will be studied in more detail in Section 4.
We introduce a refinement of the hierarchy; however, it will not be used
further in the present paper. We clarify the connection between properties
in the hierarchy and properties of posets. Finally we reveal the strong
properties of ball spaces that are closed under various types of nonempty
intersections of balls.

In Section 5 we discuss the ways in which ball spaces can be associated
with metric spaces, ultrametric spaces, ordered groups and fields, topolog-
ical spaces, partially ordered sets, and lattices. In each case we determine
which completeness property is expressed by the spherical completeness of
the associated ball space; an overview is given in the table below. We also
study the properties of the associated ball spaces, in particular which of the
properties in the hierarchy (1) they satisfy.
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spaces balls completeness
property

ultrametric spaces all closed ultrametric balls spherically
complete

metric spaces metric balls with radii complete
in suitable sets of
positive real numbers

totally ordered sets, symmetrically
ordered abelian all intervals [a, b] with a ≤ b complete
groups and fields
posets intervals [a,∞) inductively

ordered
topological spaces all nonempty closed sets compact

metric spaces Caristi–Kirk balls or complete
Oettli–Théra balls

The last entry, the second one for metric spaces, is different from all the
other ones. In all other cases the table has to be read as saying that the
completeness property of the given space is equivalent to the spherical com-
pleteness of one single associated ball space containing the indicated balls.
But if we work with Caristi–Kirk balls or Oettli–Théra balls, then the com-
pleteness of the metric space is equivalent to the spherical completeness of
a whole variety of Caristi–Kirk ball spaces or Oettli–Théra ball spaces that
can be defined on it (see Section 5.3). While this may appear impracticable
at first glance, it turns out that these types of balls offer a much better ball
spaces approach to metric spaces than the metric balls.

Not only the specialization of the general framework to particular appli-
cations is important. It is also fruitful to develop the abstract theory of
ball spaces, in particular the behaviour of the various levels of spherical
completeness in the hierarchy (1) under basic operations on ball spaces.

In Section 6 we study our strongest, the S∗ ball spaces. Examples are
the compact topological spaces, where we take the balls to be the nonempty
closed sets. Their ball spaces are closed under arbitrary nonempty intersec-
tions of balls, and we make use of the results of Section 4. S∗ ball spaces
allow the definition of what we call spherical closures of subsets. They help
us to deal with ball space structures induced on subsets of the set underlying
the ball space.

In Section 8 we consider set theoretic operations on ball spaces, such
as their closure under finite unions or nonempty intersections of balls, and
we study the behaviour of spherical completeness properties under these
operations. We use these preparations to associate a topology to each ball
space and show that it is compact if and only if the ball space is Sc1.

Products of ball spaces will be studied in Section 9. In the paper [1],
we discuss a notion of continuity for functions between ball spaces, as well
as quotient spaces and category theoretical aspects of ball spaces. The
products we define here turn out to be the products in a suitable category
of ball spaces.

Further, the fact that a general framework links various quite different
applications can help to transfer ideas, approaches and results from one
to the other. For instance, the Knaster–Tarski Theorem in the theory of
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complete lattices presents a useful property of the set of fixed points: they
form again a complete lattice. In Section 7, using our general framework
and in particular the results from Section 6, we transfer this result to other
applications, such as ultrametric and topological spaces. Similarly, in Sec-
tion 9 the Tychonoff Theorem from topology is proven for ball spaces and
then transferred to ultrametric spaces. To derive the topological Tychonoff
Theorem from its ball spaces analogue, essential use is made of the results
of Section 8.

Finally, the last section of our paper is devoted to a quick discussion of
two types of theorems that are related to fixed point theorems (and in fact
are generalizations, as fixed point theorems can be deduced from them).
First, we present generic multivalued fixed point theorems for ball spaces.
Such theorems deal with functions F from a nonempty set X to its power
set P(X) and ask for criteria that guarantee the existence of a fixed point
x ∈ X in the sense that

x ∈ F (x) .

Multivalued ultrametric fixed point theorems have been successfully applied
in logic programming (see [27, 5]).

Second, we present generic coincidence theorems for ball spaces. Coinci-
dence theorems consider two or more functions f1, . . . , fn from a nonempty
set X to itself and ask for criteria that guarantee the existence of a coinci-
dence point x ∈ X in the sense that

f1(x) = . . . = fn(x) .

A number of coincidence theorems for ball spaces and ultrametric spaces
have been proven in [17] (see also [25] for theorems on ultrametric spaces).

For both types of theorems we will use two approaches. Inspired by the
theory of strongly contractive ball spaces which we develop in connection
with Caristi–Kirk and Oettli–Théra ball spaces in Section 5.3, we first em-
ploy criteria for the existence of singleton balls with suitable properties.
Thereafter, we prove variants which work with minimal balls instead.

We hope that we have convinced the reader that the advantage of a
general framework is (at least) threefold:

• compare the strength of completenes properties in various spaces and
ordered structures, and transfer concepts and results from one to another,
• provide generic proofs of results (such as generic fixed point theorems)
which then only have to be specialized to various applications,
• exhibit the underlying principles that are essential for theorems working
with some completeness notion in various spaces and ordered structures.

2. Generic fixed point theorems and the notion of
“contractive function”

Fixed Point Theorems (FPTs) can be divided into two classes: those
dealing with functions that are in some sense “contracting”, like Banach’s
FPT and its ultrametric variant (cf. [23], [26]), and those that do not use
this property (explicitly or implicitly), like Brouwer’s FPT. In this section,
we will be concerned with the first class.
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Under which conditions do “contracting” functions have a fixed point?
First of all, we have to say in which space we work, and we have to spec-
ify what we mean by “contracting”. These specifications will have to be
complemented by a suitable condition on the space, in the sense that it is
“rich” or “complete” enough to contain fixed points for all “contracting”
functions. Ball spaces constitute a simple minimal setting in which the
necessary conditions on the function and the space can be formulated.

We will now give examples of generic FPTs for ball spaces; they will
be proved in Section 3.4. More such theorems and related results such
as coincidence theorems and so-called attractor theorems are presented in
[13, 14, 15, 17]. In the present paper we will not discuss the uniqueness of
fixed points; see the cited papers for this aspect. However, an exception
will be made in Theorem 2.2, as this will be used later for an interesting
comparison with a topological fixed point theorem proven in [31].

For the remainder of this section, we fix a function f : X → X.
We abbreviate f(x) by fx. Further, we call a subset S of X f-closed if
f(S) ⊆ S. An f -closed set S will be called f-contracting if it satisfies
f(S) ( S unless it is a singleton. In the search for fixed points, it is a
possible strategy to try to find f -closed singletons {a} because then the
condition f({a}) ⊆ {a} implies that fa = a. The significance of this idea is
particularly visible in the case of Caristi–Kirk and Oettli–Théra ball spaces
discussed in Section 5.3.

Theorem 2.1. Assume that the ball space (X,B) is spherically complete.

1) If every f -closed subset of X contains an f -contracting ball, then f has
a fixed point in each f -closed set.

2) If every f -closed subset of X is an f -contracting ball, then f has a
unique fixed point.

We will now give examples showing how some of the stronger notions
of spherical completeness can be employed in general FPTs. In the next
theorem, observe how stronger assumptions on the ball space and on f allow
us to only talk about f -closed balls instead of f -closed subsets.

Theorem 2.2. Assume that (X,B) is an S5 ball space and that f(B) ∈ B
for every B ∈ B.

1) If every f -closed ball contains an f -contracting ball, then f has a fixed
point in each f -closed ball.

2) If every f -closed ball is f -contracting, then f has a unique fixed point
in each f -closed ball. If in addition X ∈ B, then f has a unique fixed point.

The next theorem is a variation on the first parts of the previous two
theorems.

Theorem 2.3. Assume that (X,B) is an S2 ball space. If every ball in B
contains a fixed point or a smaller ball, then f has a fixed point in each ball.

We can get around asking that the ball space be S2 by giving a condition
on the intersection of nests; note that it is implicit in this condition that
the ball space is spherically complete.

Theorem 2.4. Take a ball space (X,B) such that the intersection of every
nest of balls in B contains a fixed point or a smaller ball B ∈ B. Then f
admits a fixed point in every ball of B.
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A condition like “contains a fixed point or a smaller (f -closed) ball” may
appear a little unusual at first. However, a possible algorithm for finding
fixed points should naturally be allowed to stop when it has found one, so
from this point of view the condition is quite natural. We also sometimes
use a condition like “each f -closed ball is a singleton or contains a smaller
f -closed ball”. This implies “contains a fixed point or a smaller f -closed
ball” because in an f -closed singleton {a} the element a must be a fixed
point. But this condition is too strong: as we will see below, there are
cases where finding a ball with a fixed point is easier and more natural than
finding a singleton. One example are partially ordered sets where the balls
are taken to be sets of the form [a,∞). On the other hand, Section 5.3
shows that there are settings in which in a natural way we are led to finding
f -closed singletons (cf. Proposition 3.8).

The assumptions of these theorems can be slightly relaxed by adapting
them to the given function f . Instead of talking about the intersections of
all nests of balls, we need information only about the intersections of nests of
f -closed balls. Trivially, if ∅ 6= B′ ⊆ B, then also (X,B′) is a ball space, and
if (X,B) is spherically complete, then so is (X,B′). This flexibility of ball
spaces appeared already implicitly in Theorem 2.2 where only f -closed balls
are used; if nonempty, the subset of all f -closed balls is also a ball space,
and it inherits important properties from the (possibly) larger ball space.
Tayloring the assumptions on the ball space to the given function also comes
in handy in the following refinement of Theorem 2.2. In its formulation, the
condition “spherically complete” does not appear explicitly anymore, but
is implicitly present for the ball space that is chosen in dependence on the
function f .

Theorem 2.5. Assume that there is a ball space (X,Bf ) such that

(B1) each ball in Bf is f -closed,
(B2) the intersection of every nest of balls in Bf is a singleton or contains
a smaller ball B ∈ Bf .

Then f admits a fixed point in every ball in Bf .

At first glance, certain conditions of these theorems may appear somewhat
unusual. But the reader should note that their strength lies in the fact that
we can freely choose the ball space. For example, it does not have to be
a topology, and in fact, for essentially all of our applications it should not
be. This makes it possible to even choose the balls relative to the given
function, which leads to results like the theorem above.

When uniqueness of fixed points is not required, then in certain settings
(such as ultrametric spaces, see Section 5.1) the condition that a function
be “contracting” on all of the space can often be relaxed to the conditions
that the function just be “non-expanding” everywhere and “contracting”
on orbits. Again, there is some room for relaxation, and this is why we will
now introduce the following notion. For each i ∈ N, f i will denote the i-th
iteration of f , that is, f 0x = x and f i+1x = f(f ix). The function f will be
called ultimately contracting on orbits if there is a function

(2) X 3 x 7→ Bx ∈ B
such that for all x ∈ X, the following conditions hold:
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(NB) x ∈ Bx ,

(CO) Bfx ⊆ Bx , and if x 6= fx, then Bf ix ( Bx for some i ≥ 1.

If in addition (CO) always holds with i = 1, then we call f contracting
on orbits. Note that (NB) and (CO) imply that f ix ∈ Bx for all i ≥ 0.

Now we can state our sixth basic theorem; its second assertion shows
that instead of asking for general spherical completeness, the scope can be
restricted to a particular kind of nests. We will say that a nest N of balls is
an f-nest if N = {Bx | x ∈ S} for some set S ⊆ X that is closed under f .

Theorem 2.6. Assume that the function f on the ball space (X,B) is ulti-
mately contracting on orbits and that for every f -nest N in this ball space
there is some z ∈

⋂
N such that Bz ⊆

⋂
N . Then for every x ∈ X, f has

a fixed point in Bx .

The following is the ball spaces analogue of the Ultrametric Banach Fixed
Point Theorem first proved in [23] (see Theorem 7.3 below).

Theorem 2.7. Assume that the function f on the ball space (X,B) is ulti-
mately contracting on orbits and that the following holds:

(C1) By ⊆ Bx for every y ∈ Bx.

If (X,B) is spherically complete, then f has a fixed point in every Bx .

A particularly elegant version of our approach can be given in the case of
Caristi–Kirk and Oettli–Théra ball spaces (see Theorem 3.9 in Section 5.3).
These ball spaces are used in complete metric spaces. Usually, proofs of
fixed point theorems in this setting work with Cauchy sequences, while
the use of metric balls is inefficient and complicated. For this reason, a
ball spaces approach to metric spaces may seem pointless at first glance.
However, it has turned out that ball spaces made up of Caristi–Kirk or
Oettli–Théra balls have a particularly strong property (cf. Proposition 3.8),
which makes the ball space approach in this case exceptionally successful,
as demonstrated in Section 5.3 and the papers [2, 15].

To describe the properties of Caristi–Kirk and Oettli–Théra balls, we
introduce the following notions for ball spaces. A ball space (X,B) is a
Bx–ball space if there is a function (2) such that B = {Bx | x ∈ X}. We
call a Bx–ball space (X,B) normalized if it satisfies condition (NB), and
contractive if for all x, y ∈ X condition (C1) and the following condition
hold:

(C2) if Bx is not a singleton, then there exists y ∈ Bx such that By ( Bx.

A Bx–ball space (X,B) is strongly contractive if it satisfies (C1) and:

(C2s) if y ∈ Bx \ {x}, then By ( Bx.

Note that condition (C2s) implies (C2) as well as that the function (2) is a
bijection. In particular, every strongly contractive ball space is contractive.
Proposition 5.10 will show that all Caristi–Kirk and Oettli–Théra ball spaces
are strongly contractive normalized Bx–ball spaces.

It will turn out that condition (NB), while present in many applications,
is not always necessary for our purposes. The next theorem has some sim-
ilarity with Theorem 2.6, but it does not require the Bx–ball space to be
normalized.
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Theorem 2.8. If (X,B) is a spherically complete contractive Bx–ball space
and the function f satisfies

(3) fx ∈ Bx for all x ∈ X ,

then it has a fixed point in every ball B ∈ B.

We note that if (X,B) is a strongly contractive Bx–ball space and the
function f satisfies (3), then it also satisfies (CO) (with i = 1 for all x).

Interestingly, the exceptional strength of the Caristi–Kirk and Oettli–
Théra ball spaces is shared by the ball space made up of the final segments
[a,∞) on partially ordered sets. It would be worthwhile to find more ex-
amples of such strong ball spaces.

The proofs of our generic fixed point theorems are based on Zorn’s Lemma.
They will be given in Section 3 after first investigating the relation between
partially ordered sets and ball spaces. In the present paper we are not inter-
ested in avoiding the use of the axiom of choice, nor is it our task to study
its equivalence with certain fixed point theorems. For a detailed discussion
of the case of Caristi–Kirk and Oettli–Théra ball spaces, see Remark 5.13.

3. Zorn’s Lemma in the context of ball spaces

Consider a poset (T,<). By a chain in T we mean a nonempty totally
ordered subset of T . An element a ∈ T is said to be an upper bound of
a subset S ⊆ T if b ≤ a for all b ∈ S. A poset is said to be inductively
ordered if every chain has an upper bound.

Zorn’s Lemma states that every inductively ordered poset contains max-
imal elements. By restricting the assertion to the set of all elements in the
chain and above it, we obtain the following more precise assertion:

Lemma 3.1. In an inductively ordered poset, every chain has an upper
bound which is a maximal element in the poset.

Corollary 3.2. In an inductively ordered poset, every element lies below a
maximal element.

Take a ball space (X,B). If we order B by setting B1 < B2 if B1 ) B2 ,
then we obtain a poset (B, <). Under this transformation, nests of balls in
B correspond to chains in the poset. A maximal element in the poset (B, <)
is a minimal ball, i.e., a ball that does not contain any smaller ball.

3.1. The case of S2 ball spaces.

The following observation is straightforward:

Lemma 3.3. The ball space (X,B) is S2 if and only if every chain in (B, <)
has an upper bound.

From this fact, one easily deduces the following result.

Proposition 3.4. In an S2 ball space, every ball and therefore also the
intersection of every nest contains a minimal ball. If in addition every ball
is either a singleton or contains a smaller ball, then every ball and therefore
also the intersection of every nest contains a singleton ball.
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In view of Lemma 3.3 it is important to note that every S1 ball space
(X,B) can easily be extended to an S2 ball space by adding all singleton
subsets of X: we define

Bs := B ∪ {{a} | a ∈ X} .
The proof of the following result is straightforward.

Lemma 3.5. The ball space (X,Bs) is S2 if and only if (X,B) is S1 .

However, in many situations the point is exactly to prove that a given ball
space admits singleton balls. This is in particular the case when we work
with ball spaces that are adapted to a given function, as in Theorem 2.5.
In such cases, instead of applying Zorn’s Lemma to chains of balls, one can
work with chains of nests instead, as we will discuss in Section 3.2.

3.2. Posets of nests of balls.

We call a poset chain complete if every chain of elements has a least
upper bound (which we also call a supremum). Note that commonly the
condition “nonempty” is dropped from the definition of chains, in which
case a chain complete poset must have a least element. However, for our
purposes it is more convenient to only consider chains as nonempty totally
ordered sets.

Lemma 3.6. For every ball space (X,B), the set of all nests of balls, ordered
by inclusion, is a chain complete poset.

Proof: The union over a chain of nests of balls is again a nest of balls,
and it is the smallest nest that contains all nests in the chain. �

This shows that in particular every chain of nests that contains a given
nest N0 has an upper bound. Hence Zorn’s Lemma shows:

Corollary 3.7. Every nest N0 of balls in a ball space is contained in a
maximal nest.

3.3. The case of contractive Bx–ball spaces.

In general, a (strongly) contractive ball space (X,B) may not contain balls
of the form {a} for every a ∈ X. Then we cannot apply Lemma 3.5 to
acquire the equivalence between properties S1 and S2. However, the follow-
ing lemma yields the existence of a “sufficient” amount of singleton balls to
obtain this equivalence which moreover satisfy Ba = {a} even if (X,B) is
not assumed to be normalized.

Proposition 3.8. In a contractive Bx–ball space, the intersection of a max-
imal nest of balls, if nonempty, is a singleton ball of the form Ba = {a}.

Proof: LetM be a maximal nest of balls and assume that a ∈
⋂
M for

some element a ∈ X. Since a ∈ B for every ball B ∈ M, we obtain from
(C2) that Ba ⊆ B for every B ∈M and thus Ba ⊆

⋂
M. This means that

M∪{Ba} is a nest of balls, so by maximality ofM we have that Ba ∈M.
Consequently, Ba =

⋂
M. Suppose that Ba is not a singleton. Then by

condition (C3) there is some element b such that Bb ( Ba whence Bb /∈M.
But thenM∪{Bb} is a nest which strictly containsM. This contradiction
to the maximality ofM shows that Ba is a singleton. Since a ∈

⋂
M = Ba,

we must have that Ba = {a}. �
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Since by Corollary 3.7 every nest is contained in a maximal nest, this
proposition yields:

Theorem 3.9.
1) A contractive Bx–ball space is S1 if and only if it is S2 .

2) In a spherically complete contractive Bx–ball space every ball Bx contains
a singleton ball of the form Ba = {a}.

3.4. Proofs of the fixed point theorems.

Take a ball space (X,B) and a function f : X → X. By Bf we will denote
the collection of all f -closed balls in B, provided there exist any. From
Corollary 3.7 we infer that every nest in (X,B) and every nest in (X,Bf ) is
contained in a maximal nest.

Under various conditions on f and on (X,B) or (X,Bf ), we have to make
sure that the intersections of such nests contain a fixed point for f . We
observe:

Lemma 3.10. 1) If S is an f -closed set, then f 2(S) ⊆ f(S) since f(S) ⊆
S, hence f(S) is f -closed.

2) The intersection over any collection of f -closed sets is again an f -closed
set.

Proof of Theorem 2.1: Take any f -closed set S. By the assumption of the
theorem we know that it contains an f -contracting ball B. By definition,
B is f -closed. By Corollary 3.7 there exists a maximal nest N in the set
Bf of all f -closed balls in B which contains the nest {B}. Then by part
2) of Lemma 3.10,

⋂
N is an f -closed set. By assumption, it contains an

f -contracting ball B′. Suppose that B′ is not a singleton. Then B′ properly
contains f(B′), which by part 1) of Lemma 3.10 is an f -closed set. Again by
assumption, it contains an f -contracting and hence f -closed ball B′′. Since
B′′ ⊆ f(B′) ( B′ ⊆

⋂
N , we find that N ∪ {B′′} is a larger nest than N ,

which contradicts the maximality of N . This proves that B′ is an f -closed
singleton contained in S and thus, S contains a fixed point. This proves
part 1) of the theorem.

In order to prove part 2), assume that x and y are fixed points of f . Then
the set S = {x, y} is f -closed, hence by assumption it is f -contracting. Since
f(S) = S, it must be a singleton, i.e., x = y. �

Proof of Theorem 2.2: Assume that (X,B) is an S5 ball space and that
f(B) ∈ B for every B ∈ B. Take some f -closed ball B0 ∈ B.

1): As in the previous proof, choose a maximal nest N in Bf which contains
the nest {B0}. Then

⋂
N is an f -closed set. As (X,B) is assumed to be

an S5 ball space,
⋂
N is also a ball, so

⋂
N ∈ Bf . Hence by assumption,⋂

N contains an f -contracting ball B. This must be a singleton, because
otherwise, it would contain the smaller f -closed ball f(B), giving rise to the
nestN∪{f(B)} that properly containsN , which contradicts the maximality
of N . Thus,

⋂
N is an f -closed singleton contained in B0 and therefore,

B0 contains a fixed point.

2): Take any f -closed ball B0 ∈ B. Using transfinite induction, we build a
nest N consisting of f -closed balls as follows. We set N0 := {B0}. Having
constructed Nν for some ordinal ν with smallest f -closed ball Bν ∈ Nν ,
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we set Bν+1 := f(Bν) ⊆ Bν and Nν+1 := Nν ∪ {Bν+1}. By part 1) of
Lemma 3.10, also Bν+1 is f -closed, and by assumption, it is again a ball.

If λ is a limit ordinal and we have constructed Nν for all ν < λ, we
observe that the union over all Nν is a nest N ′λ . We set Bλ :=

⋂
N ′λ and

Nλ := N ′λ ∪ {Bλ}. Since (X,B) is an S5 ball space, we know that Bλ ∈ B,
and by part 2) of Lemma 3.10, Bλ is f -closed.

The construction becomes stationary when we reach an f -closed ball Bµ

that does not properly contain f(Bµ). By assumption, Bµ is f -contracting,
so this means that Bµ ⊆ B0 is a singleton {x}. As it is f -closed, x is a fixed
point contained in B0 .

If x 6= y ∈ B0 , then y /∈ Bµ which means that there is some ν < µ such
that y ∈ Bν , but y /∈ Bν+1 = f(Bν). This shows that y cannot be a fixed
point of f . Therefore, x is the unique fixed point of f in B0 .

The second assertion of part 2) is an immediate consequence of the first.
�

Proof of Theorem 2.3: Assume that (X,B) is an S2 ball space and that
every ball in B contains a fixed point or a smaller ball. Take a ball B ∈ B.
By Proposition 3.4, B contains a minimal ball B0 . As B0 cannot contain
a smaller ball, it must contain a fixed point by assumption, which then is
also an element of B. �

Proof of Theorem 2.4: Take a ball B ∈ B. As before, there exists a maximal
nest N in B which contains the nest {B}. Now

⋂
N cannot contain a

smaller ball since this would contradict the maximality of N . Hence by
assumption,

⋂
N and thus also B must contain a fixed point. �

Proof of Theorem 2.5: Assume that Bf is a ball space of f -closed balls and
that the intersection of every nest of balls in Bf is a singleton or contains
a smaller ball B ∈ Bf . Take a ball B ∈ Bf . As in the previous proofs,
there exists a maximal nest N in Bf which contains the nest {B}. The
intersection

⋂
N cannot contain a smaller ball B′ ∈ Bf since this would

contradict the maximality of N . Hence by assumption,
⋂
N must be a

singleton. As it is also f -closed by part 2) of Lemma 3.10 and contained in
B, we have proved that f has a fixed point in B. �

Proof of Theorem 2.6: Take a function f on a ball space (X,B) which is
ultimately contracting on orbits and assume that for every f -nest N in this
ball space there is some z ∈

⋂
N such that Bz ⊆

⋂
N . For every x ∈ X,

the set {Bf ix | i ≥ 0} is an f -nest. The set of all f -nests is partially ordered
in the following way. If N1 = {Bx | x ∈ S1} and N2 = {Bx | x ∈ S2} are
f -nests with S1 and S2 closed under f , then we define N1 ≤ N2 if S1 ⊆ S2 .
Then the union over an ascending chain of f -nests is again an f -nest since
the union over sets that are closed under f is again closed under f . Hence
by Corollary 3.2, for every x0 ∈ X there is a maximal f -nest N containing
{Bf ix0 | i ≥ 0}. By the assumption of Theorem 2.6, there is some z ∈

⋂
N

such that Bz ⊆
⋂
N . We wish to show that z is a fixed point of f . If

z 6= fz would hold, then by (CO), Bf iz ( Bz ⊆
⋂
N for some i ≥ 1, and

the f -nest N ∪ {Bfkz | k ∈ N} would properly contain N . But this would
contradict the maximality of N . Hence, z ∈

⋂
N ⊆ Bx0 is a fixed point

of f . �
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Proof of Theorem 2.7: As in the previous proof, we obtain a maximal f -
nest N containing Bx0 . Since (X,B) is assumed to be spherically complete,
there is some z ∈

⋂
N . Hence z ∈ Bx for every Bx in N . By condition

(C1), it follows that Bz ⊆ Bx , whence Bz ⊆
⋂
N . Now we proceed as in

the previous proof.

Proof of Theorem 2.8: Take a spherically complete contractive Bx–ball
space (X,B) and a function f : X → X such that fx ∈ Bx for all x ∈ X.
Then by part 2) of Theorem 3.9, every ball Bx contains a singleton ball of
the form Ba = {a}. Since fa ∈ Ba = {a}, we find that a is a fixed point of
f which is contained in Bx .

4. Some facts about the hierarchy of ball spaces

4.1. A refinement of the hierarchy.

By considering stronger properties of directed and centered systems of balls,
we will now add further entries to the hierarchy (1).

We will say that a centered system of balls is

c′ if the intersection of any finite number of balls in the system contains a
ball,
c′′ if the intersection of any finite number of balls in the system contains a
largest ball,
c′′′ if the intersection of any finite number of balls in the collection is a ball.

We will say that a directed system of balls is

d′ if the intersection of any finite number of balls in the system contains a
ball which is again in the system,
d′′ if the intersection of any finite number of balls in the system contains a
largest ball which is again in the system,
d′′′ if the intersection of any finite number of balls in the system is a ball
which is again in the system.

For 1 ≤ i ≤ 5 we will say that a ball space is Sd
′
i (or Sd

′′
i , or Sd

′′′
i ) if it

satisfies the definition of Sdi with “directed system” replaced by “d′ directed
system” (or “d′′ directed system”, or “d′′′ directed system”, respectively).
Again for 1 ≤ i ≤ 5, we will say that a ball space is Sc

′
i (or Sc

′′
i , or Sc

′′′
i ) if it

satisfies the definition of Sci with “centered system” replaced by “c′ centered
system” (or “c′′ centered system”, or “c′′′ centered system”, respectively).

By induction one shows that in the above definitions for d′ and d′′′, “any
finite number of” can be replaced by “any two” without changing the mean-
ing. In particular, every directed system of balls is d′. We also note that
every nest of balls is a d′′′ directed system of balls. This together with
the obvious implications between the properties defined above gives us the
following refinement of each row of the hierarchy (1):

(4)
Si ⇐ Sd

′′′

i ⇐ Sd
′′

i ⇐ Sd
′

i = Sdi
⇑ ⇑ ⇑

Sc
′′′

i ⇐ Sc
′′

i ⇐ Sc
′

i ⇐ Sci

for 1 ≤ i ≤ 5.
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4.2. Connection with posets.

A directed system in a poset is a nonempty subset which contains an up-
per bound for any two of its elements. A poset is called directed complete
if every directed system has a least upper bound. Note that commonly the
condition “nonempty” is dropped; but for our purposes it is more conve-
nient to only consider nonempty systems (cf. our remark in Section 3.2).
As every chain is a directed system, every directed complete poset is chain
complete.

The proof of the following observations is straightforward:

Proposition 4.1. 1) A ball space (X,B) is S2 if and only if (B, <) is
inductively ordered.

2) A ball space (X,B) is Sd2 if and only if every directed system in (B, <)
has an upper bound.

3) A ball space (X,B) is S4 if and only if (B, <) is chain complete.

4) A ball space (X,B) is Sd4 if and only if (B, <) is directed complete.

Let us point out that the intersection of a system of balls may not be
itself a ball, even if it is nonempty (but if it is a ball, then it is clearly the
largest ball contained in all of the balls in the system). For this reason,
in general, the properties S1 , Sd1 , S5 and Sd5 cannot be translated into a
corresponding property of (B, <). This shows that ball spaces have more
expressive strength than the associated poset structures.

A proof of the following fact can be found in [4, p. 33]. See also [19] for
generalizations.

Proposition 4.2. Every chain complete poset is directed complete.

This proposition together with Proposition 4.1 yields:

Corollary 4.3. Every S4 ball space is an Sd4 ball space.

In the next sections, we will give further criteria for the equivalence of
various properties in the hierarchy.

4.3. Singleton balls.

In many applications (e.g. metric spaces, ultrametric spaces, T1 topological
spaces) the associated ball spaces have the property that singleton sets are
balls. The following observation is straightforward:

Proposition 4.4. For a ball space in which all singleton sets are balls, S1

is equivalent to S2 , Sd1 is equivalent to Sd2 , and Sc1 is equivalent to Sc2 .

4.4. Tree-like ball spaces.

We will call a ball space (X,B) tree-like if any two balls in B with nonempty
intersection are comparable by inclusion. We will see in Section 5.1 (Propo-
sition 5.1) that the ball spaces associated with classical ultrametric spaces
are tree-like.

Proposition 4.5. In a tree-like ball space, every centered system of balls
is a nest. For such a ball space, Si , Sdi and Sci are equivalent, for each
i ∈ {1, . . . , 5}. If in addition, in this ball space all singleton sets are balls,
then S1 is equivalent to Sc2 .
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Proof: The first assertion follows from the fact that in a tree-like ball
space, every two balls in a centered system have nonempty intersection and
therefore are comparable by inclusion, so the system is a nest. From this,
the second assertion follows immediately. The third assertion follows by
way of Proposition 4.4. �

4.5. Intersection closed ball spaces.

A ball space (X,B) will be called finitely intersection closed if B is
closed under nonempty intersections of any finite collection of balls, chain
intersection closed or nest intersection closed if B is closed under
nonempty intersections of nests of balls, and intersection closed if B is
closed under nonempty intersections of arbitrary collections of balls.

We deduce from Proposition 4.5:

Proposition 4.6. Every chain intersection closed tree-like ball space is in-
tersection closed.

Proof: Every collection C of balls with nonempty intersection in an
arbitrary ball space is a centered system. If the ball space is tree-like,
then by Proposition 4.5, C is a nest. If in addition the ball space is chain
intersection closed, then the intersection

⋂
C is a ball. Hence under the

assumptions of the proposition, the ball space is intersection closed. �

The proofs of the following two propositions are straightforward:

Proposition 4.7. Assume that the ball space (X,B) is finitely intersection
closed. Then by closing under finite intersections, every centered system of
balls can be expanded to a directed system of balls which has the same inter-
section. Hence for a finitely intersection closed ball space, Sdi is equivalent
to Sci , for 1 ≤ i ≤ 5.

Proposition 4.8. For chain intersection closed ball spaces, the properties
S1 , S2 , S3 , S4 and S5 are equivalent.

As can be expected, the intersection closed ball spaces are the strongest
when it comes to equivalence of the properties in the hierarchy.

Theorem 4.9. For an intersection closed ball space, S1 is equivalent to S∗,
so all properties in the hierarchy (1) are equivalent.

Proof: Since (X,B) is intersection closed, it is in particular chain inter-
section closed, hence by Proposition 4.8, S1 implies S4 . By Corollary 4.3, S4

implies Sd4. Since (X,B) is intersection closed, Proposition 4.7 shows that
Sd4 implies Sc4. Again since (X,B) is intersection closed, the intersection
over every directed system of balls, if nonempty, is a ball; hence Sc4 implies
Sc5. Altogether, we have shown that S1 implies Sc5, which shows that all
properties in the hierarchy (1) are equivalent. �

Proposition 4.10. Every S∗ ball space is intersection closed.

Proof: Take any collection of balls with nonempty intersection. Each
element in the intersection lies in every ball, so the collection is a centered
system. By assumption, the intersection is again a ball. �

In a poset, a set S of elements is bounded if and only if it has an upper
bound. A poset is bounded complete if every nonempty bounded set has
a least upper bound. A bounded system of balls is a nonempty collection
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of balls whose intersection contains a ball. Note that a bounded system of
balls is a centered system, but the converse is in general not true (not even
a nest of balls is necessarily a bounded system if the ball space is not S2).

Lemma 4.11. The poset (B, <) is bounded complete if and only if the in-
tersection of every bounded system of balls in (X,B) contains a largest ball.
In an intersection closed ball space, the intersection of every bounded system
of balls is a ball.

5. Ball spaces and their properties in various applications

In what follows, we will give the interpretation of various levels of spher-
ical completeness in our applications of ball spaces. At this point, let us
define a notion that we will need repeatedly. In a (totally or partially) or-
dered set (S,<) a subset S is a final segment if for all s ∈ S, s < t implies
t ∈ S; similarly, S is an initial segment if for all s ∈ S, s > t implies
t ∈ S.

5.1. Ultrametric spaces.

An ultrametric u on a set X is a function from X × X to a partially
ordered set Γ with smallest element 0, such that for all x, y, z ∈ X and all
γ ∈ Γ,

(U1) u(x, y) = 0 if and only if x = y,
(U2) if u(x, y) ≤ γ and u(y, z) ≤ γ, then u(x, z) ≤ γ,
(U3) u(x, y) = u(y, x) (symmetry).

The pair (X, u) is called an ultrametric space. Condition (U2) is the
ultrametric triangle law.

We set uX := {u(x, y) | x, y ∈ X} and call it the value set of (X, u). If
uX is totally ordered, we will call (X, u) a classical ultrametric space;
in this case, (U2) is equivalent to:

(UT) u(x, z) ≤ max{u(x, y), u(y, z)}.
We will now introduce three ways of deriving a ball space from an ultra-

metric space. A closed ultrametric ball is a set

Bα(x) := {y ∈ X | u(x, y) ≤ α} ,
where x ∈ X and α ∈ Γ. We obtain the ultrametric ball space (X,Bu)
from (X, u) by taking B to be the set of all such balls Bα(x).

It follows from symmetry and the ultrametric triangle law that every
element in a ball is a center, meaning that

(5) Bα(x) = Bα(y) if y ∈ Bα(x) .

Further,

(6) Bβ(y) ⊆ Bα(x) if y ∈ Bα(x) and β ≤ α .

A problem with the ball Bα(x) can be that it may not contain any element
y such that u(x, y) = α; if it does, it is called precise. It is therefore
convenient to work with the precise balls of the form

B(x, y) := {z ∈ X | u(x, z) ≤ u(x, y)} ,
where x, y ∈ X. We obtain the precise ultrametric ball space (X,B[u])
from (X, u) by taking B to be the set of all such balls B(x, y).
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It follows from symmetry and the ultrametric triangle law that

B(x, y) = B(y, x)

and that

(7) B(t, z) ⊆ B(x, y) if and only if t ∈ B(x, y) and u(t, z) ≤ u(x, y) .

In particular,

(8) B(t, z) ⊆ B(x, y) if t, z ∈ B(x, y) .

More generally,

(9) B(t, z) ⊆ Bα(x) if t, z ∈ Bα(x) ,

showing that ultramtric balls are convex with respect to the ultrametric.

Two elements γ and δ of Γ are comparable if γ ≤ δ or γ ≥ δ. Hence
if u(x, y) and u(y, z) are comparable, then B(x, y) ⊆ B(y, z) or B(y, z) ⊆
B(x, y). If u(y, z) < u(x, y), then in addition, x /∈ B(y, z). We note:

(10) u(y, z) < u(x, y) =⇒ B(y, z) ( B(x, y) .

In classical ultrametric spaces every two values α, β are comparable. Hence
in this case one can derive from (5) and (6) that every two ultrametric balls
with nonempty intersection are comparable by inclusion.

From (6), we derive:

Proposition 5.1. In a classical ultrametric space (X, u), any two balls
with nonempty intersection are comparable by inclusion. Hence (X,B[u])
and (X,Bu) are tree-like ball spaces.

We define (X, u) to be spherically complete if its ultrametric ball space
(X,Bu) is spherically complete. For this definition, it actually makes no
difference whether we work with Bu or B[u] :

Proposition 5.2. The classical ultrametric ball space (X,Bu) is spherically
complete if and only if the precise ultrametric ball space (X,B[u]) is.

Proof: Since B[u] ⊆ Bu , the implication “⇒” is clear. Now take a nestN
of balls in Bu . We may assume that it does not contain a smallest ball since
otherwise this ball equals the intersection over the nest, which consequently
is nonempty. Further, there is a coinitial subnest (Bαν (xν))ν<κ such that κ
is an infinite limit ordinal and µ < ν < κ implies that Bαν (xν) ( Bαµ(xµ).
It follows that this subnest has the same intersection as N .

For every ν < κ, also ν + 1 < κ and thus Bαν+1(xν+1) ( Bαν (xν). Hence
there is yν+1 ∈ Bαν (xν) \Bαν+1(xν+1). It follows that

u(xν+1, yν+1) > αν+1 ,

and from (6) we obtain that

Bαν+1(xν+1) ⊆ Bu(xν+1,yν+1)(xν+1) = B(xν+1, yν+1) .

Since xν+1, yν+1 ∈ Bαν (xν), we know from (9) that

B(xν+1, yν+1) ⊆ Bαν (xν) .

It follows that ⋂
N =

⋂
ν<κ

Bαν (xν) =
⋂
ν<κ

B(xν+1, yν+1) .
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Consequently, if B[u] is S1 , then this intersection is nonempty and we have
proved that also Bu is S1 . �

Since uX contains the smallest element 0 := u(x, x), Bu contains all
singletons {x} = B0(x). Therefore, each ultrametric ball space is already
S2 once it is S1 . The same is true for the precise ultrametric ball space
(X,B[u]) in place of (X,Bu). However, these ball spaces will in general not
be S3 , S4 or S5 because even if an intersection of a nest is nonempty, it will
not necessarily be a ball of the form Bα(x) or B(x, y), respectively.

In a classical ultrametric space, every two balls are comparable by in-
clusion once they have nonempty intersection. Therefore, every centered
system is already a nest of balls. This shows:

Proposition 5.3. A classical ultrametric space (X, u) is spherically com-
plete if and only if the ball space (X,Bu) (or equivalently, (X,B[u])) is an
Sc2 ball space.

If (X, u) is a classical ultrametric space, then we can obtain stronger
completeness properties if we work with a larger set of ultrametric balls.
Given x ∈ X and an initial segment S 6= ∅ of uX, we define:

BS(x) = {y ∈ X | u(x, y) ∈ S} .
Setting

Bu+ := {BS(x) | x ∈ X and S a nonempty initial segment of uX} ,
we obtain what we will call the full ultrametric ball space (X,Bu+).
Note that X = BuX(x) ∈ Bu+. We leave it to the reader to prove:

(11) BS(x) =
⋃
α∈S

Bα(x) ⊆
⋂
β≥S

Bβ(x)

where β ≥ S means that β ≥ γ for all γ ∈ S, and the intersection over an
empty index set is taken to be X. We note that the inclusion on the right
hand side is proper if and only if S has no largest element but admits a
supremum α in uX and there is y ∈ X such that α = u(x, y). Indeed, if
S = {β | β < α}, then BS(x) is the open ultrametric ball

B◦α(x) := {y ∈ X | u(x, y) < α} ,
which is a proper subset of Bα(x) =

⋂
β≥S Bβ(x) if and only if Bα(x) is

precise.

We have that
B[u] ⊆ Bu ⊆ Bu+

where the second inclusion holds because Bα(x) = BS(x) for the initial
segment S = [0, α] of uX. We have an easy generalization of (9):

(12) if B ∈ Bu+ and t, z ∈ B , then B(t, z) ⊆ B .

The following results are proven in [11]:

Theorem 5.4. Let (X, u) be a classical ultrametric space. Then the follow-
ing assertions hold.

1) The intersection over every nest of balls in (X,Bu+) is equal to the
intersection over a nest of balls in (X,Bu) and therefore, (X,Bu+) is chain
intersection closed.

2) The ball space (X,Bu+) is spherically complete if and only if (X,Bu) is.
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3) The ball space (X,Bu+) is tree-like and intersection closed. If (X,Bu)
is spherically complete, then (X,Bu+) is an S∗ ball space.

By [10, Theorem 1.2], assertions 1) and 2) of Theorem 5.4 also hold
for all ultrametric spaces (X, u) with countable narrow value sets uX; the
condition narrow means that all sets of mutually incomparable elements
in uX are finite. On the other hand, it is shown in [10] that the condition
“narrow” cannot be dropped in this case. It is however an open question
whether the condition “countable” can be dropped.

A large number of ultrametric fixed point and coincidence point theorems
have been proven by S. Prieß-Crampe and P. Ribenboim (see e.g. [23, 24,
25, 26, 28]). Using ball spaces, some of them have been reproven and new
ones have been proven in [13, 14, 17].

5.2. Metric spaces with metric balls.

In metric spaces (X, d) we can consider the closed metric balls

Bα(x) := {y ∈ X | d(x, y) ≤ α}

for x ∈ X and α ∈ R≥0 := {r ∈ R | r ≥ 0}. We set

Bd := {Bα(x) | x ∈ X , α ∈ R≥0} .

The following theorem will be deduced from Theorem 5.6 below:

Theorem 5.5. If the ball space (X,Bd) is spherically complete, then (X, d)
is complete.

The converse is not true. Consider a rational function field k(x) together
with the x-adic valuation vx . Choose an extension of vx to a valuation v of
the algebraic closure K0 of k(x). Then the value group is Q. An ultrametric
in the sense of Section 5.1 is obtained by setting, for instance,

u(a, b) := e−v(a−b) .

Take (K, u) to be the completion of (K0, u). It can be shown that the balls

Bαi

(
i−1∑
j=1

x−
1
j

)
with αi = e

1
i (2 ≤ i ∈ N)

have empty intersection in K. Hence (K, u) is not spherically complete,
that is, the ultrametric ball space induced by u on K is not spherically
complete. But this ultrametric is a complete metric.

Note that from Theorem 5.19 below it follows that the ball space (X,Bd) is
spherically complete if every closed metric ball in (X, d) is compact under
the topology induced by d, as the closed metric balls are closed in this
topology.

In order to characterize complete metric spaces by spherical completeness,
we have to choose smaller induced ball spaces. For any subset S of the set
R>0 of positive real numbers, we define:

BS := {Br(x) | x ∈ X , r ∈ S} .
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Theorem 5.6. The following assertions are equivalent:

a) (X, d) is complete,

b) the ball space (X,BS) is spherically complete for some S ⊂ R>0 which
admits 0 as its only accumulation point,

c) the ball space (X,BS) is spherically complete for every S ⊂ R>0 which
admits 0 as its only accumulation point.

Proof: a) ⇒ c): Assume that (X, d) is complete and take a set S ⊂
R>0 which admits 0 as its only accumulation point. This implies that S
is discretely ordered, hence every infinite descending chain in S with a
maximal element can be indexed by the natural numbers.

Take any nest N of closed metric balls in BS. If the nest contains a
smallest ball, then its intersection is nonempty; so we assume that it does
not. If B ∈ N , then NB := {B′ ∈ N | B′ ⊆ B} is a nest of balls with⋂
N =

⋂
NB ; therefore, we may assume from the start that N contains a

largest ball. Then the radii of the balls in N form an infinite descending
chain in S with a maximal element, and 0 is their unique accumulation
point. Hence we can write N = {Bri(xi) | i ∈ N} with rj < ri for i < j,
and with limi→∞ ri = 0.

For every i ∈ N and all j ≥ i, the element xj lies in Bri(xi) and therefore
satisfies d(xi, xj) ≤ ri . This shows that (xi)i∈N is a Cauchy sequence. Since
(X, d) is complete, it has a limit x in X. We have that d(xi, x) ≤ ri , so x lies
in every ball Bri(xi). This proves that the nest has nonempty intersection.

c) ⇒ b): Trivial.

b) ⇒ a): Assume that (X,BS) is spherically complete. Take any Cauchy
sequence (xn)n∈N in X. By our assumptions on S, we can choose a sequence
(si)i∈N in {s ∈ S | s < s0} such that 0 < 2si+1 ≤ si. Now we will use
induction on i ∈ N to choose an increasing sequence (ni)i∈N of natural
numbers such that the balls Bi := Bsi(xni) form a nest.

Since (xn)n∈N is a Cauchy sequence, we have that there is n1 such that
d(xn, xm) < s2 for all n,m > n1 . Once we have chosen ni−1 , we choose
ni > ni−1 such that d(xn, xm) < si+1 for all n,m ≥ ni . We show that the
so obtained balls Bi form a nest. Take i ∈ N and x ∈ Bi+1 = Bsi+1

(xni+1
).

This means that d(xni+1
, x) ≤ si+1. Since ni, ni+1 ≥ ni, we have that

d(xni , xni+1
) < si+1. We compute:

d(xni , x) ≤ d(xni , xni+1
) + d(xni+1

, x)

≤ si+1 + si+1 = 2si+1 ≤ si .

Thus x ∈ Bi and hence Bi+1 ⊆ Bi for all i ∈ N. The intersection of this
nest (Bi)i∈N contains some y, by our assumption. We have that y ∈ Bi for
all i ∈ N, which means that d(xni , y) ≤ si. Since

lim
i→∞

si = 0,

we obtain that
lim
i→∞

xni = y,

which proves that (X, d) is a complete metric space. �

Proof of Theorem 5.5: Assume that (X,Bd) is spherically complete. Then
so is (X,B′) for every nonempty B′ ⊂ Bd . Taking B′ = BS with S as in
Theorem 5.6, we obtain that (X, d) is complete. �
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Remark 5.7. Theorems 5.5 and 5.6 remain true if instead of the closed
metric balls the open metric balls

Bα(x) := {y ∈ X | d(x, y) < α}
are used for the metric ball space.

5.3. Metric spaces with Caristi–Kirk balls or Oettli–Théra balls.
Consider a metric space (X, d). A function ϕ : X → R is lower semicon-
tinuous if for every y ∈ X,

lim inf
x→y

ϕ(x) ≥ ϕ(y) .

If ϕ is lower semicontinuous and bounded from below, we call it a Caristi–
Kirk function on X. For a fixed Caristi–Kirk function ϕ we consider
Caristi–Kirk balls of the form

(13) Bϕ
x := {y ∈ X | d(x, y) ≤ ϕ(x)− ϕ(y)}, x ∈ X,

and the corresponding Caristi–Kirk ball space (X,Bϕ) given by

Bϕ := {Bϕ
x | x ∈ X}.

These ball spaces and their underlying theory can be employed to prove the
Caristi–Kirk Theorem in a simple manner (see below). We found the sets
that we call Caristi–Kirk balls in a proof of the Caristi–Kirk Theorem given
by J.-P. Penot in [21].

We say that a function φ : X × X → (−∞,+∞] is an Oettli–Théra
function on X if it satisfies the following conditions:

(a) φ(x, ·) : X → (−∞,+∞] is lower semicontinous for all x ∈ X;

(b) φ(x, x) = 0 for all x ∈ X;

(c) φ(x, y) ≤ φ(x, z) + φ(z, y) for all x, y, z ∈ X;

(d) there exists x0 ∈ X such that inf
x∈X

φ(x0, x) > −∞.

This notion was, to our knowledge, first introduced by Oettli and Théra in
[20]. An Oettli–Théra function φ yields balls of the form

Bφ
x := {y ∈ X | d(x, y) ≤ −φ(x, y)}, x ∈ X,

which will be called Oettli–Théra balls. If an element x0 satisfies condi-
tion (d) above, then we will call it an Oettli–Théra element for φ in X.
For a fixed Oettli–Théra element x0 we define the associated Oettli–Théra
ball space to be (Bφ

x0
,Bφx0), where

Bφx0 := {Bφ
x | x ∈ Bφ

x0
}.

We observe that for a given Caristi–Kirk function ϕ : X → R, the mapping

φ(x, y) := ϕ(y)− ϕ(x)

is an Oettli–Théra function. Furthermore, every Caristi–Kirk ball is also an
Oettli–Théra ball.

In general the balls defined above are not metric balls. However, when
working in complete metric spaces they prove to be a more useful tool
than metric balls. As observed in the previous section, the completeness
of a metric space need not imply spherical completeness of the space of
metric balls (X,Bd). In the case of Caristi–Kirk and Oettli–Théra balls,
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completeness turns out to be equivalent to spherical completeness, as shown
in the following two propositions.

Proposition 5.8. Let (X, d) be a metric space. Then the following asser-
tions are equivalent:

a) The metric space (X, d) is complete.

b) Every Caristi–Kirk ball space (X,Bϕ) is spherically complete.

c) For every continuous function ϕ : X → R bounded from below, the
Caristi–Kirk ball space (X,Bϕ) is spherically complete.

Proposition 5.9. A metric space (X, d) is complete if and only if the
Oettli–Théra ball space (Bφ

x0
,Bφx0) is spherically complete for every Oettli–

Théra function φ on X and every Oettli–Théra element x0 for φ in X.

The proofs of Proposition 5.8 and Proposition 5.9 can be found in [15,
Proposition 3] and in [2], respectively.

The easy proof of the next proposition is provided in [2].

Proposition 5.10. Every Caristi–Kirk ball space (X,Bϕ) and every Oettli–
Théra ball space (Bφ

x0
,Bφx0) is a strongly contractive normalized Bx–ball

space.

We will meet another strongly contractive ball space in the case of partially
ordered sets; see Proposition 5.30.

The following is the Caristi–Kirk Fixed Point Theorem:

Theorem 5.11. Take a complete metric space (X, d) and a lower semicon-
tinuous function ϕ : X → R which is bounded from below. If a function
f : X → X satisfies the Caristi condition

(14) d(x, fx) ≤ ϕ(x)− ϕ(fx) ,

for all x ∈ X, then f has a fixed point on X.

Also in [2], the same tools (with Proposition 5.8 replaced by Proposi-
tion 5.9) are used to prove the following generalization:

Theorem 5.12. Take a complete metric space (X, d) and φ an Oettli-Théra
function on X. If a function f : X → X satisfies

(15) d(x, fx) ≤ −φ(x, fx),

for all x ∈ X, then f has a fixed point on X.

The conditions (14) and (15) guarantee that fx ∈ Bx for every Bx ∈
Bϕ or Bx ∈ Bφx0 , respectively. Hence Theorem 2.8 in conjunction with
Propositions 5.8, 5.9 and 5.10 proves Theorems 5.11 and 5.12. Similar
proofs were given in [2] (see also [15]). Note that conditions (14) and (15)
do not necessarily imply that every ball Bx is f -closed.

A variant of part 2) of Theorem 3.9 is used in [2] to give quick proofs of
several theorems that are known to be equivalent to the Caristi–Kirk Fixed
Point Theorem (see [20, 21, 22] for presentations of these equivalent results
and generalizations).

Remark 5.13. Assume that (X,B) is a contractive Bx–ball space. Then
we can define a partial ordering on X by setting

x ≺ y :⇔ By ( Bx .
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If (X,B) is strongly contractive, then the function x 7→ Bx is injective, and
X together with the reverse of the partial order we have defined is order
isomorphic to B with inclusion, that is, the function x 7→ Bx is an order
isomorphism from (X,≺) onto (B, <) where the latter is defined as in the
beginning of Section 3.

If the Bx are the Caristi–Kirk balls defined in (13), then we have that

x ≺ y ⇔ d(x, y) < ϕ(x)− ϕ(y) ,

which means that ≺ is the Brønsted ordering on X. The Ekeland
Variational Principle (cf. [2]) states that if the metric space is complete,
then (X,≺) admits maximal elements, or in other words, B admits minimal
balls. The Brønsted ordering has been used in several different proofs of
the Caristi–Kirk Fixed Point Theorem. However, at least in the proofs that
also define and use the Caristi–Kirk balls (such as the one of Penot in [21]),
it makes more sense to use directly their natural partial ordering (as done
in [15]). But the main incentive to use the balls instead of the ordering
is that it naturally subsumes the metric case in the framework of fixed
point theorems in several other areas of mathematics which is provided by
the general theory of ball spaces as laid out in the present paper (see also
[13, 14, 17]).

It has been shown that the Ekeland Variational Principle can be proven
in the Zermelo Fraenkel axiom system ZF plus the axiom of dependent
choice DC which covers the usual mathematical induction (but not transfi-
nite induction, which is equivalent to the full axiom of choice). Conversely,
it has been shown in [3] that the Ekeland Variational Principle implies the
axiom of dependent choice.

Several proofs have been provided for the Caristi–Kirk FPT that work in
ZF+DC. Kozlowski has given a proof that is purely metric as defined in
his paper [9], which implies that the proof works in ZF+DC. The proofs of
Proposition 5.8 in [15] and of Proposition 5.9 in [2] are purely metric. The
existence of singleton balls in Caristi–Kirk and Oettli-Théra ball spaces over
complete metric spaces can also be shown directly by purely metric proofs
and this result can be used to give quick proofs of many principles that
are equivalent to the Caristi–Kirk FPT in ZF+DC (cf. [2]). However, in
other settings it may not be possible to deduce the existence in ZF+DC,
so then the axiom of choice is needed. Therefore, in view of the number
of possible applications even beyond the scope as presented in this paper,
we do not hesitate to use Zorn’s Lemma for the proofs of our generic fixed
point theorems.

We should point out that proofs have been given that apparently prove
the Caristi–Kirk FPT in ZF (see [18, 7]). This means that the Caristi–Kirk
FPT and the Ekeland Variational Principle are equivalent in ZF+DC, but
not in ZF. For the topic of axiomatic strength, see the discussions in [6, 8, 9].

5.4. Totally ordered sets, abelian groups and fields.

Take any ordered set (I,<). We define the closed interval ball space as-
sociated with (I,<) to be (I,Bint) where Bint consists of all closed intervals
[a, b] with a, b ∈ I. By a cut in (I,<) we mean a partition (C,D) of I such
that c < d for all c ∈ C, d ∈ D and C,D are nonempty. The cofinality
of a totally ordered set is the least cardinality of all cofinal subsets, and
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the coinitiality of a totally ordered set is the cofinality of this set under
the reverse ordering. A cut (C,D) is asymmetric if the cofinality of C is
different from the coinitiality of D. For example, every cut in R is asym-
metric. The following fact was first proved in [30] for ordered fields, and
then in [16] for any totally ordered sets.

Lemma 5.14. The ball space (I,Bint) associated with the totally ordered
set (I,<) is spherically complete if and only if every cut (C,D) in (I,<) is
asymmetric.

Totally ordered sets, abelian groups or fields whose cuts are all asym-
metric are called symmetrically complete. By our above remark, R is
symmetrically complete. The following theorem was proved in [16]; its first
assertion follows from the previous lemma. The second assertion addresses
the natural valuation of an ordered abelian group or field, which is the
finest valuation compatible with the ordering; it is nontrivial if and only if
the ordering is nonarchimedean.

Theorem 5.15. A totally ordered set, abelian group or field is symmet-
rically complete if and only if its associated closed interval ball space is
spherically complete. The ultrametric ball space associated with the natural
valuation of a symmetrically complete ordered abelian group or field is a
spherically complete ball space.

In [30] it was shown that arbitrarily large symmetrically complete ordered
fields exist. With a different construction idea, this was reproved and gener-
alized in [16] to the case of ordered abelian groups and totally ordered sets,
and a characterization of symmetrically complete ordered abelian groups
and fields has been given.

In order to give an example of a fixed point theorem that can be proven
in this setting, it is enough to consider symmetrically complete ordered
abelian groups, as the additive group of a symmetrically complete ordered
field is a symmetrically complete ordered abelian group. The following is
Theorem 21 of [13] (see also [16]).

Theorem 5.16. Take an ordered abelian group (G,<) and a function f :
G → G. Assume that every nonempty chain of closed intervals in G has
nonempty intersection and that f has the following properties:

1) f is nonexpanding:

|fx− fy| ≤ |x− y| for all x, y ∈ G ,

2) f is contracting on orbits: there is a positive rational number m
n
< 1

with m,n ∈ N such that

n|fx− f 2x| ≤ m|x− fx| for all x ∈ G .

Then f has a fixed point.

As in the case of ultrametric spaces, all singletons in Bint are balls: {a} =
[a, a]. So also here, (I,Bint) is S2 as soon as it is S1 . But again as in the
case of ultrametric spaces, S2 does not necessarily imply S5 or even S3 . For
example, consider a nonarchimedean ordered symmetrically complete field.
The set of infinitesimals is the intersection of balls [−a, a] where a runs
through all positive elements that are not infinitesimals. This intersection
is not a ball, nor is there a largest ball contained in it.
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Further, we note:

Lemma 5.17. Assume that (I,<) is a totally ordered set and its associated
ball space (I,Bint) is an Sd1 or S3 ball space. Then (I,<) is cut complete,
that is, for every cut (C,D) in (I,<), C has a largest or D has a smallest
element.

Proof: First assume that (I,Bint) is an Sd1 ball space, and take a cut
(C,D) in I. If a, c ∈ C and b, d ∈ D, then max{a, c} ∈ C and min{b, d} ∈ D
and [a, b] ∩ [c, d] = [max{a, c},min{b, d}]. This shows that

{[c, d] | c ∈ C , b ∈ D}

is a directed system in Bint . Hence its intersection is nonempty; if a is
contained in this intersetion, it must be the largest element of C or the
least element of D. Hence (I,<) is cut complete.

Now assume that (I,<) is not cut complete; we wish to show that (I,Bint)
is not an S3 ball space. Take a cut (C,D) in I such that C has no largest
element and D has no least element. Pick some c ∈ C. Then

{[c, d] | d ∈ D}

is a nest of balls in (I,Bint). Its intersection is the set {a ∈ C | c ≤ a}.
Since C has no largest element, this set does not contain a maximal ball.
This shows that (I,Bint) is not an S3 ball space. �

It is a well known fact that the only cut complete densely ordered abelian
group or ordered field is R. So we have:

Proposition 5.18. The associated ball space of the reals is S∗ . For all
other densely ordered abelian groups and ordered fields the associated ball
space can at best be S2 .

Proof: Take any centered system {[ai, bi] | i ∈ I} of intervals in R. We
set a := supi∈I ai and b := infi∈I bi . Then⋂

i∈I

[ai, bi] = [a, b] .

We have to show that [a, b] 6= ∅, i.e., a ≤ b. Suppose that a > b. Then
there are i, j ∈ I such that ai > bj . But by assumption, [ai, bi]∩ [aj, bj] 6= ∅,
a contradiction. We have now proved that the associated ball space of the
reals is S∗ .

The second assertion follows from Lemma 5.17. �

5.5. Topological spaces.

If X is a topological space on a set X, then we will take its associated ball
space to be (X,B) where B consists of all nonempty closed sets. Since the
intersections of arbitrary collections of closed sets are again closed, this ball
space is intersection closed.

The following theorem shows how compact topological spaces are char-
acterized by the properties of their associated ball spaces; note that we use
“compact” in the sense of “quasi-compact”, that is, it does not imply the
topology being Hausdorff.
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Theorem 5.19. The following are equivalent for a topological space X :

a) X is compact,

b) the nonempty closed sets in X form an S1 ball space,

c) the nonempty closed sets in X form an S∗ ball space.

Proof: a) ⇒ b): Assume that X is compact. Take a nest (Xi)i∈I of
balls in (X,B) and suppose that

⋂
i∈I Xi = ∅. Then

⋃
i∈I X \ Xi = X, so

{X \Xi | i ∈ I} is an open cover of X . It follows that there are i1, . . . , in ∈ I
such that X \Xi1 ∪ . . .∪X \Xin = X, whence Xi1 ∩ . . .∩Xin = ∅. But since
the Xi form a nest, this intersection equals the smallest of the Xij , which
is nonempty. This contradiction proves that the nonempty closed sets in X
form an S1 ball space.

b) ⇒ c): This follows from Theorem 4.9.

c) ⇒ a): Assume that the nonempty closed sets in X form an S∗ ball
space. Take an open cover Yi, i ∈ I, of X . Since

⋃
i∈I Yi = X, we have that⋂

i∈I X \ Yi = ∅. As the ball space is S∗, this means that {X \ Yi | i ∈ I}
cannot be a centered system. Consequently, there are i1, . . . , in ∈ I such
that X \ Yi1 ∩ . . . ∩X \ Yin = ∅, whence Yi1 ∪ . . . ∪ Yin = X. �

Some of the assertions of the following topological fixed point theorems
were already proven in [13, Theorem 11]. We will give their modified and
improved proofs here as they illustrate applications of Theorems 2.6 and 2.2.

Theorem 5.20. Take a compact space X and a closed function f : X → X.
Assume that for every x ∈ X with fx 6= x there is a closed subset B of X
such that x ∈ B and x /∈ f(B) ⊆ B. Then f has a fixed point in B.

Proof: For every x ∈ X we consider the following family of balls:

Bx := {B | B closed subset of X, x ∈ B and f(B) ⊆ B}.
Note that Bx is nonempty because it contains X. We define

(16) Bx :=
⋂

Bx .

We see that x ∈ Bx and that f(Bx) ⊆ Bx by part 2) of Lemma 3.10.
Further, Bx is closed, being the intersection of closed sets. This shows that
Bx is the smallest member of Bx .

For every B ∈ Bx we have that fx ∈ B and therefore, B ∈ Bfx . Hence
we find that Bfx ⊆ Bx.

Assume that fx 6= x. Then by hypothesis, there is a closed set B in X
such that x ∈ B and x /∈ f(B) ⊆ B. Since f is a closed function, f(B) is
closed. Moreover, f(f(B)) ⊆ f(B) and fx ∈ f(B), so f(B) ∈ Bfx. Since
x /∈ f(B), we conclude that x /∈ Bfx, whence Bfx ( Bx . We have proved
that f is contracting on orbits. Our theorem now follows from Theorem 2.6
in conjunction with Theorem 5.19. �
Note that if B satisfies the assumptions of the theorem, then B ∈ Bx .
Hence the set Bx defined in (16) satisfies Bx ⊆ B, f(Bx) ⊆ f(B) and
therefore x /∈ f(Bx). This shows that Bx is the smallest of all closed subsets
B of X for which x ∈ B and x /∈ f(B) ⊆ B.

An interesting interpretation of the ball Bx defined in (16) will be given
in Remark 6.6 below.

The next theorem follows immediately from part 1) of Theorem 2.2 in
conjunction with Theorem 5.19.
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Theorem 5.21. Take a compact space X and a closed function f : X → X.

1) If every nonempty closed and f -closed subset B of X contains a closed
f -contracting subset, then f has a fixed point in X.

2) If every nonempty closed and f -closed subset B of X is f -contracting,
then f has a unique fixed point in X.

The condition that every f -closed ball is f -contracting may appear to be
quite strong. Yet there is a natural example in the setting of topological
spaces where this condition is satisfied in a suitable collection of closed sets.
In [31], Steprans, Watson and Just define the notion of “J-contraction” for
a continuous function f : X → X on a topological space X as follows. An
open cover U of X is called J-contractive for f if for every U ∈ U there
is U ′ ∈ U such that the image of the closure of U under f is a subset of U ′.
Then f is called a J-contraction if any open cover U has a J-contractive
refinement for f . We will use two important facts about J-contractions f
on a connected compact Hausdorff space X which the authors prove in the
cited paper:

(J1) If B is a closed subset of X with f(B) ⊆ B, then the restriction of
f to B is also a J-contraction ([31, Proposition 1, p. 552]);

(J2) If f is onto, then |X| = 1 ([31, Proposition 4, p. 554]).

The following is Theorem 4 of [31]:

Theorem 5.22. Take a connected compact Hausdorff space X and a con-
tinuous J-contraction f : X → X. Then f has a unique fixed point.

We will deduce our theorem from Theorem 2.2. We take B to be the set
of all nonempty closed connected subsets of X; in particular, X ∈ B. Take
any B ∈ B. As f is a continuous function on the compact Hausdorff space
X, it is a closed function, so f(B) is closed. Since B is connected and f is
continuous, f(B) is also connected. Hence f(B) ∈ B.

Further, the intersection of any chain of closed connected subsets of X is
closed and connected. This shows that B is chain intersection closed. By
Theorem 5.19 the ball space consisting of all nonempty closed subsets of the
compact space X is S∗. As it contains B, (X,B) is S1 and it follows from
Proposition 4.8 that (X,B) is an S5 ball space.

Finally, we have to show that every f -closed ball B ∈ B is f -contracting.
As B is closed in X, it is also compact Hausdorff, and it is connected as
it is a ball in B. By (J1), the restriction of f to B is also a J-contraction.
Therefore, we can replace X by B and apply (J2) to find that if f is onto,
then B is a singleton; this shows that B is f -contracting. Now Theorem 5.22
follows from part 2) of Theorem 2.2 as desired.

It should be noted that J-contractions appear in a natural way in the
metric setting. The following is the content of Theorems 2 and 3 of [31]:

Theorem 5.23. Any contraction on a compact metric space is a J-contrac-
tion. Conversely, if f is a J-contraction on a connected compact metrizable
space X, then X admits a metric under which f is a contraction.
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5.6. Partially ordered sets.

Take any nonempty partially ordered set (T,<). We will associate with it
two different ball spaces; first, the ball space of principal final segments,
and then later the segment ball space.

A principal final segment is a set [a,∞) := {c ∈ T | a ≤ c} with
a ∈ T . Then the ball space of principal final segments is (T,Bpfs) where
Bpfs := {[a,∞) | a ∈ T}. The following proposition gives the interpretation
of spherical completeness for this ball space:

Proposition 5.24. The following assertions are equivalent:

a) the poset (T,<) is inductively ordered,

b) the ball space (T,Bpfs) is spherically complete,

c) (T,Bpfs) is an S2 ball space.

Proof: We observe that {ai | i ∈ I} is a chain in T if and only if
N = ([ai,∞))i∈I is a nest of balls in Bpfs.
a) ⇒ c): Take a nest N = ([ai,∞))i∈I . Since (T,<) is inductively ordered,
the chain {ai | i ∈ I} admits an upper bound a ∈ T . Then for all i ∈ I,
ai ≤ a, whence [a,∞) ⊆ [ai,∞). Thus, [a,∞) ⊆

⋂
N , which proves that

(T,Bpfs) is an S2 ball space.

c) ⇒ b): This holds by the general properties of the hierarchy.

b) ⇒ a): Take a chain {ai | i ∈ I} in T . Since (T,Bpfs) is spherically
complete, the intersection of the nest N = ([ai,∞))i∈I is nonempty. If
a ∈

⋂
N , then for all i ∈ I, a ∈ [ai,∞), whence ai ≤ a. Thus, a is an upper

bound of {ai | i ∈ I}, which proves that (T,<) is inductively ordered. �

We leave it to the reader to show that (T,Bpfs) is an S3 (or Sd3 or Sc3)
ball space if and only if every chain (or directed system, or centered system,
respectively) has minimal upper bounds.

If {ai | i ∈ I} is a subset of T , then supi∈I ai will denote its supremum, if
it exists. We will need the following observation:

Lemma 5.25. The equality

[a,∞) =
⋂
i∈I

[ai,∞)

holds if and only if a = supi∈I ai . Further,
⋂
i∈I [ai,∞) is the (possibly

empty) set of all upper bounds for {ai | i ∈ I}.

Proof: We have a ∈
⋂
i∈I [ai,∞) if and only if a ∈ [ai,∞) and hence

a ≥ ai for all i, which means that a is an upper bound for the ai . Hence,⋂
i∈I [ai,∞) is the set of all upper bounds of the ai , and this set is equal to

[a,∞) if and only if a is the least upper bound. �

An element a in a poset is called top element if b ≤ a for all elements b
in the poset, and bottom element if b ≥ a for all elements b in the poset.
A top element is commonly denoted by >, and a bottom element by ⊥. A
poset (T,<) is an upper semilattice if every two elements in T have a
supremum, and a complete upper semilattice if every nonempty set of
elements in T has a supremum.

Proposition 5.26. 1) (T,Bpfs) is finitely intersection closed if and only if
every nonempty finite bounded subset of T has a supremum.
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2) (T,Bpfs) is intersection closed if and only if every nonempty bounded
subset of T has a supremum, i.e., (T,<) is bounded complete.

3) If (T,<) has a top element, then (T,<) is an upper semilattice if and
only if (T,Bpfs) is finitely intersection closed,

4) (T,<) is a complete upper semilattice if and only if (T,<) has a top
element and (T,Bpfs) is intersection closed.

Proof: 1), 2): Assume that (T,Bpfs) is (finitely) intersection closed and
take a nonempty (finite) subset {ai | i ∈ I} of T . If this set is bounded,
then

⋂
i∈I [ai,∞) is nonempty, and thus by assumption it is equal to [a,∞)

for some a ∈ T . By Lemma 5.25, this implies that a = supi∈I ai , showing
that {ai | i ∈ I} has a supremum.

Now assume that every nonempty (finite) bounded subset of T has a
supremum. Take a nonempty (finite) set {[ai,∞) | i ∈ I} of balls in Bpfs
with nonempty intersection. Take b ∈

⋂
i∈I [ai,∞). Then b is an upper

bound of {ai | i ∈ I}. By assumption, there exists a = supi∈I ai in T . Again
by Lemma 5.25, this implies that

⋂
i∈I [ai,∞) = [a,∞). Hence, (T,Bpfs) is

(finitely) intersection closed.

3) and 4) follow from 1) and 2), respectively, because if (T,<) has a top
element, then every nonempty subset is bounded. �

We add to our hierarchy (1) an even stronger property: we say that the
ball space (X,B) is an S∗∗ ball space if B is closed under arbitrary intersec-
tions; in particular, this implies that intersections of arbitrary collections
of balls are nonempty. Every S∗∗ ball space is an S∗ ball space. Note that
every complete upper semilattice has a top element.

Proposition 5.27. 1) Assume that (T,<) has a top element >. Then
every intersection of balls in (T,Bpfs) contains the ball [>,∞), and (T,Bpfs)
is an Sc2 ball space. Moreover, (T,Bpfs) is an S∗ ball space if and only if it
is an S∗∗ ball space.

2) (T,Bpfs) is an S∗∗ ball space if and only if (T,<) has a top element and
(T,Bpfs) is intersection closed.

3) (T,<) is a complete upper semilattice if and only if (T,Bpfs) is an S∗∗

ball space.

Proof: 1): The first two statements are obvious. If (T,<) has a top
element, then every collection of balls in Bpfs is a centered system. Hence if
(T,Bpfs) is an S∗ ball space, then it is an S∗∗ ball space.

2): Assume that (T,Bpfs) is an S∗∗ ball space. Then it follows directly from
the definition that it is intersection closed. Further, the intersection over
{[a,∞) | a ∈ T} is a ball [b,∞). By Lemma 5.25, b is the supremum of T
and thus a top element.

Now assume that (T,<) has a top element > and (T,Bpfs) is intersection
closed, and take an arbitrary collection of balls in Bpfs. As all of the balls
contain >, their intersection is nonempty, and hence by our assumption, it
is a ball.

3): This follows from part 2) of our proposition together with part 4) of
Proposition 5.26. �

Now we can characterize chain complete and directed complete posets by
properties from our hierarchy:
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Theorem 5.28. Take a poset (T,<). Then the following are equivalent:

a) (T,<) is chain complete,

b) (T,<) is directed complete,

c) (T,Bpfs) is an S5 ball space,

d) (T,Bpfs) is an Sd5 ball space.

If every nonempty finite bounded subset of T has a supremum, then the
above properties are also equivalent to

e) (T,Bpfs) is an S∗ ball space.

Proof: The equivalence of assertions a) and b) follows from Proposi-
tion 4.2.

b) ⇒ d): Assume that (T,<) is directed complete and take a directed
system S = {[ai,∞) | i ∈ I} in Bpfs . Then also {ai | i ∈ I} is a directed
system in (T,<). By our assumption on (T,<) it follows that {ai | i ∈ I}
has a supremum a in T . By Lemma 5.25, [a,∞) =

⋂
i∈I [ai,∞), which shows

that the intersection of S is a ball.

d) ⇒ c) holds by the general properties of the hierarchy.

c) ⇒ a): Take a chain {ai | i ∈ I} in T . Since (T,Bpfs) is an S5 ball space,
the intersection of the nest N = ([ai,∞))i∈I is a ball [a,∞). It follows by
Lemma 5.25 that a is the supremum of the chain, which proves that (T,<)
is chain complete.

If every nonempty finite bounded subset of T has a supremum, then by
part 1) of Proposition 5.26, (T,Bpfs) is finitely intersection closed, hence by
Proposition 4.7, properties Sd5 and S∗ are equivalent. �

Remark 5.29. Note that we define chains to be nonempty totally ordered
sets and similarly, consider directed systems to be nonempty. If we drop
this convention, then the theorem remains true if we require in c) and d)
that (T,<) has a least element.

The ball space (T,Bpfs) shares an important property with Caristi–Kirk
and Oettli–Théra ball spaces:

Proposition 5.30. The ball space (T,Bpfs) is a normalized strongly con-
tractive Bx-ball space.

Proof: We define

Bx := [x,∞) ∈ Bpfs .
Then x ∈ Bx for every x ∈ T . If y ∈ Bx , then x ≤ y and therefore
[y,∞) ⊆ [x,∞); if in addition x 6= y, then x < y so that x /∈ [y,∞) and
[y,∞) ( [x,∞). �

A function f on a poset (T,<) is increasing if f(x) ≥ x for all x ∈ T .
The following result is an immediate consequence of Zorn’s Lemma, but
can also be seen as a corollary to Propositions 5.24 and 5.30 together with
Theorem 2.8:

Theorem 5.31. Every increasing function f : X → X on an inductively
ordered poset (T,<) has a fixed point.
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Note that this theorem implies the Bourbaki-Witt Theorem, which
differs from it by assuming that every chain in (T,<) even has a supremum.

A function f on a poset (T,<) is called order preserving if x ≤ y implies
fx ≤ fy. The following result is an easy consequence of Theorem 5.31:

Theorem 5.32. Take an order preserving function f on a nonempty poset
(T,<) which contains at least one x such that fx ≥ x (in particular, this
holds when (T,<) has a bottom element). Assume that (T,<) is chain
complete. Then f has a fixed point.

Proof: Take S := {x ∈ T | fx ≥ x} 6= ∅. Then also S is chain
complete. Indeed, if (xi)i∈I is a chain in S, hence also in T , then it has a
supremum z ∈ T by assumption. Since z ≥ xi and f is order preserving,
we have that fz ≥ fxi ≥ xi for all i ∈ I, so fz is also an upper bound for
(xi)i∈I . Therefore, fz ≥ z since z is the supremum of the chain, showing
that z ∈ S.

Further, S is closed under f , because if x ∈ S, then fx ≥ x, hence
f 2x ≥ fx since f is assumed to be order preserving; this shows that fx ∈ S
Now the existence of a fixed point follows from Theorem 5.31. �

The second ball space we associate with posets will be particularly useful
for the study of lattices. We define the principal segment ball space
(T,Bps) of the poset (T,<) by taking Bps to contain all principal seg-
ments (which may also be called “closed convex subsets”), that is, the
closed intervals [a, b] := {c ∈ T | a ≤ c ≤ b} for a, b ∈ T with a ≤ b, the
principal initial and final segments {c ∈ T | c ≤ a} and {c ∈ T | a ≤ c} for
a ∈ T , and T itself. Note that all of these sets are of the form [a, b] if and
only if T has a top element > and a bottom element ⊥. Even if T does not
have these elements, we will still use the notation [⊥, b] for {c ∈ T | c ≤ b}
and [a,>] for {c ∈ T | a ≤ c}. Hence,

Bps = {[a, b] | a ∈ T ∪ {⊥}, b ∈ T ∪ {>}} .

If ⊥,> ∈ T (as is the case for complete lattices), this is a generalization
to posets of the closed interval ball space Bint that we defined for totally
ordered sets. We will thus also talk again of “closed intervals” [a, b].

A greatest lower bound of a subset S of T will also be called its infimum.
If {ai | i ∈ I} is a subset of T , then infi∈I ai will denote its infimum, if it
exists.

Lemma 5.33. Take subsets {ai | i ∈ I} and {bi | i ∈ I} of T such that
ai ≤ bj for all i, j ∈ I. If a = supi∈I ai and b = infi∈I bi exist, then a ≤ b
and

[a, b] =
⋂
i∈I

[ai, bi] .

Proof: We can write⋂
i∈I

[ai, bi] =
⋂
i∈I

([ai,>] ∩ [⊥, bi]) =
⋂
i∈I

[ai,>] ∩
⋂
i∈I

[⊥, bi]

Applying Lemma 5.25, we obtain that [a,>] =
⋂
i∈I [ai,>], and applying it

to L with the reverse order, we obtain that [⊥, b] =
⋂
i∈I [⊥, bi]. Hence the

above intersection is equal to [a, b], which we will now show to be nonempty.
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By the assumption of our lemma, every bj is an upper bound of the set
{ai | i ∈ I}. Since a is the least upper bound of this set, we find that a ≤ bi
for all i ∈ I. As b is the greatest lower bound of the set {bi | i ∈ I}, it
follows that a ≤ b. �

5.7. Lattices.

A lattice is a poset in which every two elements have a supremum and
an infimum (greatest lower bound). It then follows that all finite sets in
a lattice (L,<) have a supremum and an infimum. A complete lattice
is a poset in which all nonempty sets have a supremum and an infimum.
Lemma 5.33 implies the following analogue to Proposition 5.26:

Proposition 5.34. The ball space (L,Bps) associated to a lattice (L,<) is
finitely intersection closed. The ball space (L,Bps) associated to a complete
lattice (L,<) is intersection closed.

For a lattice (L,<), we denote by (L,>) the lattice endowed with the
reverse order. We will now characterize complete lattices by properties
from our hierarchy.

Theorem 5.35. For a poset (L,<), the following assertions are equivalent.

a) (L,<) is a complete lattice,

b) (L,<) and (L,>) are complete upper semilattices,

c) the principal final segments of (L,<) and of (L,>) form S∗∗ ball spaces,

d) (L,Bps) is an S∗ ball space and (L,<) admits a top and a bottom element,

e) (L,Bps) is an S∗ ball space and every finite set in (L,<) has an upper
and a lower bound.

Proof: The equivalence of a) and b) follows directly from the definitions.
The equivalence of b) and c) follows from part 3) of Proposition 5.27.

a) ⇒ d): Assume that (L,<) is a complete lattice. Then it admits a top
element (supremum of all its elements) and a bottom element (infimum of
all its elements). Take a centered system {[ai, bi] | i ∈ I} in (L,Bps). Then
for all i, j ∈ I, [ai, bi] ∩ [aj, bj] 6= ∅, so ai ≤ bj . Since (L,<) is a complete
lattice, a := supi∈I ai and b := infi∈I bi exist. From Lemma 5.33 it follows
that

⋂
i∈I [ai, bi] = [a, b] 6= ∅, which consequently is a ball in Bps. We have

proved that (L,Bps) is an S∗ ball space.

d) ⇒ e): A top element is an upper bound and a bottom element a lower
bound for every set of elements.

e) ⇒ a): Take a poset (L,<) that satisfies the assumptions of e), and any
subset S ⊆ L. If S0 is a finite subset of S, then it has an upper bound b by
assumption. Hence the balls [a,>], a ∈ S0 , have a nonempty intersection,
as it contains b. This shows that {[a,>] | a ∈ S} is a centered system of
balls. Since (L,Bps) is an S∗ ball space, its intersection is a ball [c, d], where
we must have d = >. By Lemma 5.25, c is the supremum of S.

Working with the reverse order, one similarly shows that S has an infimum
since (L,Bps) is an S∗ ball space. Hence, (L,<) is a complete lattice. �

For our next theorem, we will need one further lemma:
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Lemma 5.36. For a lattice (L,<), the following are equivalent:

a) (L,<) is a complete lattice,

b) (L,<) and (L,>) are directed complete posets,

c) (L,<) and (L,>) are chain complete posets.

Proof: The implication a) ⇒ b) is trivial as every nonempty set in a
complete lattice has a supremum and an infimum.

b) ⇒ a): Take a nonempty subset S of L. Let S ′ be the closure of S
under suprema and infima of arbitrary finite subsets of S. Then S ′ is a
directed system in both (L,<) and (L,>). Hence by b), S ′ has an infimum
a and a supremum b. These are lower and upper bounds, respectively, for
S. Suppose there was an upper bound c < b for S. Then there would
be a supremum d of some finite subset of S such that d > c. But as c is
also an upper bound of this finite subset, we must have that d ≤ c. This
contradiction shows that b is also the supremum of S. Similarly, one shows
that a is also the infimum of S. This proves that (L,<) is a complete lattice.

b) ⇔ c) follows from Proposition 4.2. �

Now we can prove:

Theorem 5.37. For a lattice (L,<), the following are equivalent:

a) (L,<) is a complete lattice,

b) (L,Bps) is an S5 ball space,

c) (L,Bps) is an S∗ ball space.

Proof: a) ⇒ c): This follows from Theorem 5.35.

c) ⇒ b) holds by the general properties of the hierarchy.

b)⇒ a): By Lemma 5.36 it suffices to prove that (L,<) and (L,>) are chain
complete posets. Take a chain {ai | i ∈ I} in (L,<). Then {[ai,>] | i ∈ I} is
a nest of balls in (L,Bps). Since (L,Bps) is an S5 ball space, the intersection
of this nest is a ball [a, b] for some a, b ∈ L; it must be of the form [a,>] since
the intersection contains >. From Lemma 5.25 we infer that a = supi∈I ai .
This shows that (L,<) is a chain complete poset. The proof for (L,>) is
similar. �

An example for a fixed point theorem that holds in complete lattices is
the Knaster–Tarski Theorem, which we will discuss in Section 7.

6. Sub-ball spaces and spherical closures

In this section we will study the relation between ball spaces (X,B) and
ball spaces on subsets Y of X. This is important for the Knaster–Tarski
type theorems that we will prove in Section 7. First, we will introduce two
particular cases of a good relation between the two ball spaces. Thereafter,
we will consider ball spaces induced on subsets of S∗ ball spaces.

6.1. Induced and liftable sub-ball spaces.

Take a ball space (X,BX) and a subset Y ⊆ X. Basically, there are two
different ways to obtain a related ball space BY on Y . Following the concept
of subspace topology, we can define a ball space on Y by intersecting the
balls of B with Y . However, in the case where the ball space on X is asso-
ciated with some given structure on X (like metric, ultrametric, ordering),



MEASURING THE STRENGTH OF COMPLETENESS 35

we prefer to consider Y with the restriction of this structure and then asso-
ciate a ball space (Y,BY ) to it. That ball space may not be induced in the
way we have discussed before (think of closed intervals that may lose their
endpoints when intersected with a subset). Nevertheless, we will hope for a
somewhat “tight” relation between the two ball spaces. One such relation
will be captured in the definition of “liftable sub-ball space”.

Assume first that there is at least one ball B ∈ BX such that Y ∩B 6= ∅.
Then with

BX ∩ Y := {B ∩ Y | B ∈ BX} \ {∅} ,
(Y,BX ∩ Y ) is a ball space. We call it the induced sub-ball space on
Y , induced by the ball space of X. For example, if X is equipped with a
topology, then the subspace topology on Y can be obtained by taking the
intersections with Y of the closed subsets of X to be the closed subsets of Y .
Hence the ball space on Y associated with the induced subspace topology
of Y is the sub-ball space on Y induced by the ball space on X which is
associated with the topology of X.

Now assume that a ball space BY on Y is already given. We then call
(Y,BY ) a liftable sub-ball space of (X,BX) if there is an assignment
BY 3 B 7→ BX ∈ BX such that

(LSB1) for each B ∈ BY we have that BX ∩ Y = B ,

(LSB2) for all B1, B2 ∈ BY , B1 ⊆ B2 ⇒ BX
1 ⊆ BX

2 .

Note that for every B ∈ BY , the equality BX ∩ Y = B implies that

B ⊆ BX .

As an example, take (X, u) to be an ultrametric space and (X,B[u]) its
associated ball space consisting of all precise balls. Then the restriction of u
to Y renders the ultrametric space (Y, u). Denote by (Y,BY,[u]) its associated
ball space of precise balls. Then in general, there will exist a, b ∈ X such
that B(a, b)∩Y is not a precise ball. Then (Y,BY,[u]) will not be an induced
sub-ball space. But the following holds:

Lemma 6.1. For every ultrametric space (X, u) and every nonempty sub-
set Y ⊆ X, the precise ball space (Y,BY,[u]) is a liftable sub-ball space of
(X,B[u]), where for each B(a, b) ∈ BY,[u] we take B(a, b)X to be the precise
ball generated by a, b in (X, u).

Proof: It is clear that B(a, b)X ∩ Y = B(a, b). If B(a, b) ⊆ B(c, d) for
c, d ∈ Y , then a, b ∈ B(c, d)X and hence B(a, b)X ⊆ B(c, d)X by (8). �

We will now study how sub-ball spaces can inherit properties of spherical
completeness from (X,BX). For this it is important to know whether nests
of balls (or directed or centered systems) in (Y,B∩Y ) can be lifted to nests
of balls (or directed or centered systems, respectively) in (X,BX).

Lemma 6.2. Assume that conditions (LSB1) and (LSB2) are satisfied.

1) The assignment BY 3 B 7→ BX ∈ BX preserves inclusion in the strong
sense that

(17) B1 ⊆ B2 ⇔ BX
1 ⊆ BX

2 and B1 6= B2 ⇔ BX
1 6= BX

2 .

2) Take any collection (Bi)i∈I of balls in BY . Then

(18)
⋂
i∈I

Bi =

(⋂
i∈I

BX
i

)
∩ Y .
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3) If (Bi)i∈I is a nest of balls (or directed or centered system) in (Y,BY ),
then also (BX

i )i∈I is a nest of balls (or directed or centered system, respec-
tively) in (X,BX).

Proof: 1): The “⇒” directions in (17) follow from (LSB2) and (LSB1),
respectively. The “⇐” direction in the first statement of (17) follows from
(LSB1), and the “⇐” direction in the second statement holds because to
each B ∈ BY exactly one BX is assigned.

2): Equation (18) holds since by (LSB1),⋂
i∈I

Bi =
⋂
i∈I

(BX
i ∩ Y ) =

(⋂
i∈I

BX
i

)
∩ Y .

3): If (Bi)i∈I is a nest of balls, then also (BX
i )i∈I is totally ordered by

inclusion by (LSB1), and hence a nest of balls.
If (Bi)i∈I is a centered system, then for all choices of i1, . . . , in ∈ I we

have that ∅ 6= Bi1 ∩ . . . ∩ Bin ⊆ BX
i1
∩ . . . ∩ BX

in ; hence also (BX
i )i∈I is a

centered system. A similar proof works for directed systems. �
Using this lemma, we prove:

Proposition 6.3. Assume that (Y,BY ) is a liftable sub-ball space of (X,BX)
such that each ball in BX has nonempty intersection with Y . If (X,BX) is an
S2 (or Sd2 or Sc2) ball space, then (Y,BY ) is an S1 (or Sd1 or Sc1, respectively)
ball space.

Proof: Take a nest of balls (Bi)i∈I in BY . Then by the previous lemma,
(BX

i )i∈I is a nest of balls in BX . By assumption, its intersection contains
a ball B, and the intersection of this ball with Y is nonempty. In view of
(18), this proves that (Y,BY ) is an S1 ball space. The same proof works for
the assertion with Sd2 and Sc2 in place of S2. �

In general, induced sub-ball spaces will not be liftable, and vice versa.
However, we will show in the next section that sub-ball spaces induced by
S∗ ball spaces are always liftable. We will use this fact in Section 7 for the
proof of a generic Knaster–Tarski Theorem for ball spaces.

6.2. Spherical closures in S∗ ball spaces.

Throughout this section, we consider an S∗ ball space (X,BX). As

before, if f : X → X is a function, then BfX will denote the collection of
all f -closed balls in BX . The following is a simple but useful observation.
It follows from the fact that the intersection over any collection of f -closed
sets is again f -closed, see part 2) of Lemma 3.10.

Lemma 6.4. Also (X,BfX) is an S∗ ball space, provided that BfX 6= ∅.
For every nonempty subset S of some ball in BX , we define

sclBX (S) :=
⋂
{B ∈ BX | S ⊆ B}

and call it the (spherical) closure of S in BX .

Lemma 6.5. 1) For every nonempty subset S of some ball in BX , sclBX (S)
is the smallest ball in BX containing S.

2) If f : X → X is a function, then for every nonempty subset S of some
f -closed ball in BX , sclBfX

(S) is the smallest f -closed ball containing S.



MEASURING THE STRENGTH OF COMPLETENESS 37

Proof: 1) The collection of all balls containing S is nonempty by
our condition that S is a subset of a ball in BX . The intersection of this
collection contains S 6= ∅, so it is a centered system, and since (X,BX) is
S∗, its intersection is a ball. As all balls containing S appear in the system,
the intersection must be the smallest ball containing S.

2) This follows from part 1) together with Lemma 6.4. �
Note that if X ∈ BX , then we can drop the condition that S is the subset
of some ball (or some f -closed ball, respectively) in BX .

Remark 6.6. The ball Bx defined in (16) in the proof of Theorem 5.20 is

equal to sclBf ({x}), where BfX is the set of all closed f -closed sets of the
topological space under consideration.

The proof of the following observation is straightforward:

Lemma 6.7. If S ⊆ T are nonempty subsets of a ball in BX , then sclB(S) ⊆
sclBX (T ).

Now we take a subset Y of X, assume that BY := BX ∩ Y 6= ∅ and
consider the induced ball space (Y,BY ). We show that it is liftable:

Proposition 6.8. The assignment BY 3 B 7→ BX := sclBX (B) ∈ BX
satisfies conditions (LSB1) and (LSB2) and therefore, the induced sub-ball
space (Y,BY ) is liftable. Further, sclBX (B) is the smallest ball in BX that
induces the ball B ∈ BY .

Proof: Since B ∈ BY = BX ∩ Y , there is some B′ ∈ BX such that
B = B′ ∩ Y ⊆ B′ and therefore, BX = sclBX (B) is defined. It follows
from the definition of sclBX (B) that B ⊆ sclBX (B), so B ⊆ BX ∩ Y . Since
sclBX (B) is the smallest ball in X containing B, it must be contained in B′

and therefore, BX ∩Y = sclBX (B)∩Y ⊆ B′∩Y = B. We have proved that
BX satisfies (LSB1) and that BX is the smallest ball in BX that induces B.
By virtue of Lemma 6.7, also condition (LSB2) is satisfied. �

With the help of this proposition, we obtain:

Proposition 6.9. Assume that B ∩ Y 6= ∅ for every B ∈ BX . Then also
(Y,BX ∩ Y ) is an S∗ ball space.

Proof: Take a centered system of balls (Bi)i∈N in (Y,BX ∩ Y ). Then
by Proposition 6.8 and part 3) of Lemma 6.2, (sclBX (Bi))i∈N is a centered
system of balls in (X,BX) with

⋂
i∈I Bi =

(⋂
i∈I sclBX (Bi)

)
∩ Y . Since

(X,BX) is assumed to be S∗,
⋂
i∈I sclBX (Bi) is a ball in BX . Therefore,⋂

i∈I Bi =
(⋂

i∈I sclBX (Bi)
)
∩ Y 6= ∅ is a ball in BX ∩ Y . �

In the special case considered in Section 7, the set Y is taken to be the
set Fix(f) of fixed points of a given function f : X → X. If (X,BX) is an

S∗ ball space with BfX 6= ∅ and every f -closed ball contains a fixed point,
then it follows from Lemma 6.4 together with Proposition 6.9 that also

(Fix(f),BfX ∩ Fix(f))

is an S∗ ball space. However, we are more interested in the possibly finer
ball space

(Fix(f),BX ∩ Fix(f)) .

The following proposition gives a criterion for the two ball spaces to be
equal:
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Proposition 6.10. Take a function f : X → X. If BX ∩ Fix(f) 6= ∅ and
B ∈ BX ∩ Fix(f) is such that sclBX (B) is f -closed, then

(19) sclBX (B) = sclBfX
(B) .

If this holds for every B ∈ BX ∩ Fix(f), then

(20) BfX ∩ Fix(f) = BX ∩ Fix(f) .

Proof: Pick B ∈ BX ∩ Fix(f). By part 1) of Lemma 6.5, sclBX (B) is
the smallest of all balls in BX that contain B . Consequently, if sclBX (B)

is f -closed, then it is also the smallest of all balls in BfX that contain B .
Then by part 2) of Lemma 6.5, it must be equal to sclBfX

(B).

Since B = sclBX (B)∩Fix(f) by Proposition 6.8, the equality (19) implies

that B = sclBfX
(B)∩Fix(f) ∈ BfX ∩Fix(f). If the equality (19) holds for all

B ∈ BX ∩Fix(f), then this implies the inclusion “⊇” in (20). The converse

inclusion follows from the fact that BfX ⊆ BX . �

Corollary 6.11. Take a function f : X → X. Assume that f−1(B) ∈ BX
for every B ∈ BX that contains a fixed point. Then (20) holds.

Proof: Pick B0 ∈ BX ∩ Fix(f). Since B := sclBX (B0) ∈ BX , we have
by assumption that f−1(B) ∈ BX . All fixed points contained in B are also
contained in f−1(B), hence B0 ⊆ f−1(B). As B is the smallest ball in BX
containing B0 , it follows that B ⊆ f−1(B) and thus f(B) ⊆ f(f−1(B)) ⊆
B, i.e., B is f -closed. Hence by Proposition 6.10, (19) holds for arbitrary
balls B0 ∈ BX ∩ Fix(f), which implies that (20) holds. �

7. Knaster–Tarski type theorems

7.1. An analogue of the Knaster–Tarski Theorem for ball spaces.

In 1927 B. Knaster and A. Tarski proved a set-theoretical fixed point theo-
rem by which every inclusion preserving function on the family of all subsets
of a given set has a fixed point. It can be used to prove the Cantor–
Bernstein–Schröder Theorem (see, e.g., [29]). In 1955 Tarski generalized
the result to the lattice-theoretical fixed point theorem which is now known
as the Knaster–Tarski Theorem (cf. [32, Theorem 1]). It states:

Theorem 7.1. Let L be a complete lattice and f : L → L an order-
preserving function. Then the set Fix(f) of fixed points of f in L is also a
complete lattice.

We prove an analogue for ball spaces (X,B) with a function f : X → X.
We call f ball continuous if for every ball B, also f−1(B) is a ball. As
before, Bf will denote the collection of all f -closed balls in B.

Theorem 7.2. Take an S∗ ball space (X,B) and a function f : X → X.

1) Assume that every ball in B contains a fixed point or a smaller ball.
Then every ball in B contains a fixed point, and (Fix(f),B ∩ Fix(f)) is an
S∗ ball space.

2) Assume that B contains an f -closed ball and every f -closed ball in B
contains a fixed point or a smaller f -closed ball. Then every f -closed ball
in B contains a fixed point, and (Fix(f),Bf ∩ Fix(f)) is an S∗ ball space.
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If in addition f is ball continuous, then (Fix(f),B∩Fix(f)) is an S∗ ball
space.

Proof: 1): It follows from our assumptions together with Theorem 2.3
that every B ∈ B contains a fixed point, that is, B ∩ Fix(f) 6= ∅. From
Proposition 6.9 it follows that (Fix(f),Bf ∩ Fix(f)) is an S∗ ball space.

2): By Lemma 6.4, (X,Bf ) is an S∗ ball space. Hence it follows from
our assumptions together with part 1) of our theorem, applied to Bf in
place of B, that every f -closed ball B in B contains a fixed point and that
(Fix(f),Bf ∩ Fix(f)) is an S∗ ball space.

If in addition f is ball continuous, then Proposition 6.10 yields the equal-
ity Bf ∩ Fix(f) = B ∩ Fix(f), which proves our last statement. �

In what follows, we will discuss some applications.

7.2. The case of lattices.

We show how to derive Theorem 7.1 from Theorem 7.2. We take a complete
lattice (L,<). By Theorem 5.37, the associated ball space (L,Bps) is S∗.
Take an order-preserving function f : L → L and consider the set Bfps of
all f -closed balls in Bps . It is nonempty since it contains L = [⊥,>]. By
Lemma 6.4, also (L,Bfps) is S∗.

Take an f -closed interval [a, b]. Since f is order preserving, it follows
that a ≤ fa ≤ fb ≤ b, and then fa ≤ f 2a ≤ f 2b ≤ fb. If fa = a or
fb = b, then the interval contains a fixed point. If fa 6= a or fb 6= b, then
[fa, fb] is an interval that is properly contained in [a, b]. It is also f -closed:
if c ∈ [fa, fb], then f 2a ≤ fc ≤ f 2b, whence fc ∈ [f 2a, f 2b] ⊆ [fa, fb]. We
have shown that the assumptions of Theorem 7.2 hold, so we obtain that
(Fix(f),Bfps ∩ Fix(f)) is an S∗ ball space.

Next, we show that Bfps ∩ Fix(f) is exactly the set of all closed intervals
[a, b]Fix(f) in the poset Fix(f). Indeed, if a, b are fixed points, then [a, b] is
an f -closed interval in L with [a, b]Fix(f) = [a, b]∩Fix(f) ∈ Bfps∩Fix(f). For

the converse, take any B ∈ Bfps. By Lemma 6.8, B ∩ Fix(f) = sclBfps(B ∩
Fix(f)) ∩ Fix(f). Now sclBfps(B ∩ Fix(f)) is an f -closed interval [a, b] in L.

If a or b is not a fixed point, then [f(a), f(b)] is an f -closed interval properly
contained in [a, b]. But as it also contains the set B∩Fix(f) which consists of
fixed points, this is a contradiction to the minimality of the spherical closure.
Hence, a, b are fixed points, and it follows that [a, b] ∩ Fix(f) = [a, b]Fix(f) .

We have shown that the closed interval ball space on Fix(f) is an S∗ ball
space. Applying what we have shown above to B = L shows the existence
of fixed points a, b such that Fix(f) = L ∩ Fix(f) = [a, b]Fix(f), i.e., Fix(f)
has bottom element a and top element b. It now follows from Theorem 5.35
that Fix(f) is a complete lattice.

7.3. The ultrametric case.

Take a classical ultrametric space (X, u). A function f : X → X is called
nonexpanding if u(fx, fy) ≤ u(x, y) for all x, y ∈ X. Further, f is called
contracting on orbits if u(fx, f 2x) < u(x, fx) for all x ∈ X such that
x 6= fx.

The following is the analogue of the Knaster–Tarski Theorem for ultra-
metric spaces; it extends the Ultrametric Banach Fixed Point Theorem that
was first proved in [23].
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Theorem 7.3. Take a nonempty spherically complete classical ultrametric
space (X, u) and a nonexpanding function f : X → X which is contracting
on orbits. Then every f -closed ultrametric ball contains a fixed point and
(Fix(f), u) is again a nonempty spherically complete ultrametric space.

For the proof, we need the following auxiliary result:

Lemma 7.4. Assume that f : X → X is nonexpanding and that fx ∈
B(x, y). Then B(x, y) is f -closed. In particular, every ball B(x, fx) is
f -closed, and the same holds for every B(x, y) when x is a fixed point of f .

Proof: Take z ∈ B(x, y). Then u(x, z) ≤ u(x, y) and since f is
nonexpanding, u(fx, fz) ≤ u(x, z) ≤ u(x, y). Since fx ∈ B(x, y), we also
have that u(x, fx) ≤ u(x, y). By the ultrametric triangle law, this yields
that u(x, fz) ≤ max{u(x, fx), u(fx, fz)} ≤ u(x, y), whence fz ∈ B(x, y).

�

Proof of Theorem 7.3: We set Bx := B(x, fx) and let B be the Bx–

ball space {Bx | x ∈ X}. Lemma 7.4 shows that B ⊆ Bf[u]. Since (X, u)

is assumed to be spherically complete, Proposition 5.3 shows that the ball
space (X,B[u]) is spherically complete. Hence so are (X,Bf[u]) and (X,B)

because B ⊆ Bf[u] ⊆ B[u] . What is more, (X,Bf[u]) is even an S2 ball space,

as we will show now. Take any B ∈ Bf[u] and x ∈ B. Then also fx ∈ B,

hence by (9), B(x, fx) ⊆ B. If N is a nest in Bf[u], then
⋂
N 6= ∅ and we

may pick some x ∈
⋂
N . Since x ∈ B for every B ∈ N , it follows that

B(x, fx) ⊆ B and consequently, B(x, fx) ⊆
⋂
N . This proves our claim.

We wish to show that (X,B) satisfies the conditions of Theorem 2.7. By
definition, (NB) holds. Since also fx ∈ Bx and u(fx, f 2x) < u(x, fx) by
assumption, we infer from (10) that Bfx = B(fx, f 2x) ( B(x, fx) = Bx .
Hence (CO) holds. Now take any y ∈ Bx . Then Lemma 7.4 shows that
fy ∈ Bx , which by (7) shows that By = B(y, fy) ⊆ B(x, fx) = Bx . Hence
also condition (C1) is satisfied. It thus follows from Theorem 2.7 that f has
a fixed point in every Bx . In particular, Fix(f) 6= ∅.

Take any B ∈ Bf[u] and x ∈ B. Then as shown above, Bx = B(x, fx) ⊆ B.

By what we have already proved, Bx contains a fixed point; consequently,
so does B.

Take any x, y ∈ Fix(f). Then by Lemma 7.4, B(x, y) ∈ Bf[u]. Since

B(x, y) ∩ Fix(f) equals the precise ball B(x, y)Fix(f) generated by x and y
in the precise ball space of (Fix(f), u), this shows that (LSB1) holds. If
B(z, t)Fix(f) ⊆ B(x, y)Fix(f) , then z, t ∈ B(x, y) and therefore, B(z, t) ⊆
B(x, y) by (8). This shows that also (LSB2) holds. Therefore, the precise

ball space of (Fix(f), u) is a liftable sub-ball space of (X,Bf[u]). It now

follows from Proposition 6.3 that this ball space is spherically complete. By
Proposition 5.3, this proves that (Fix(f), u) is spherically complete. �

Working with Bu+ in place of B[u] , we can employ Theorem 7.2 too.
The proof runs along the same lines as the above, using Theorem 5.4 and
Lemma 6.4 in addition to Proposition 5.3 to deduce that (X,Bfu+) is an S∗

ball space. Once we have obtained that every B ∈ Bfu+ contains a fixed
point, one applies Proposition 6.9 and it remains to show:
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Lemma 7.5. The ball space (Fix(f),Bfu+ ∩ Fix(f)) is equal to the full ul-
trametric ball space of (Fix(f), u).

Proof: For x, y ∈ Fix(f), denote by BF (x, y) the smallest ball in
(Fix(f), u) that contains x and y. Then B(x, y) ∩ Fix(f) = BF (x, y).

Take any ball B ∈ Bfu+ and fix any element x ∈ B ∩ Fix(f). If also
y ∈ B ∩ Fix(f), then by (12), B(x, y) ⊆ B; therefore,

B ∩ Fix(f) =
⋃
{BF (x, y) | y ∈ B ∩ Fix(f)} .

This shows in particular that all balls in Bfu+ ∩ Fix(f) are balls in the full
ultrametric ball space of (Fix(f), u).

For the converse, consider any ball BF in the full ultrametric ball space
of (Fix(f), u) and pick some x ∈ BF . Then BF can be written as

BF =
⋃
{BF (x, y) | y ∈ BF} =

⋃
{B(x, y) ∩ Fix(f) | y ∈ BF}

= Fix(f) ∩
⋃
{B(x, y) | y ∈ BF} .

Note that {B(x, y) | y ∈ BF} is a nest of balls since all balls contain
x, so its union is a ball in the full ultrametric ball space of (X, u). The
second assertion of Lemma 7.4 shows that each ultrametric ball B(x, y)
with x, y ∈ Fix(f) is f -closed. Therefore,

⋃
{B(x, y) | y ∈ BF} is also

f -closed. Hence BF ∈ Bfu+ ∩ Fix(f). �
In fact, we could also have used Proposition 6.10. Indeed, it can be seen

from the second part of the above proof that the full ultrametric ball space of
(Fix(f), u) is equal to (Fix(f),Bu+∩Fix(f)). Further, if B0 ∈ Bu+∩Fix(f)
and x ∈ B0, then

sclBu+(B0) =
⋃
{B(x, y) | y ∈ sclBu+(B0)}

is a union of balls which by Lemma 7.4 are f -closed and is thus itself f -
closed. This shows that the assumption of Proposition 6.10 is satisfied and
consequently,

Bu+ ∩ Fix(f) = Bfu+ ∩ Fix(f) .

7.4. The topological case.

Take a compact topological space X and (X,B) the associated ball space
formed by the collection B of all nonempty closed sets. If f : X → X is any
function, then Bf can be taken as the set of all nonempty closed sets of a
(possibly coarser) topology, as arbitrary unions and intersections of f -closed
sets are again f -closed. From Theorem 5.19, Lemma 6.4 and Theorem 7.2,
we obtain:

Theorem 7.6. Take a compact topological space X and a function f : X →
X. Assume that every nonempty closed, f -closed set contains a fixed point
or a smaller closed, f -closed set. Then the topology on the set Fix(f) of
fixed points of f having Bf ∩Fix(f) as its collection of nonempty closed sets
is itself compact.

As we are rather interested in the topology on Fix(f) induced by the
original topology of X, we ask for criteria on f which guarantee that Bf ∩
Fix(f) = B ∩ Fix(f). If the function f is continuous in the topology of X,
then it is ball continuous in the ball space (X,B) and the equality follows
from Corollary 6.11. Hence we obtain:
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Corollary 7.7. Take a compact topological space X and a continuous func-
tion f : X → X. Assume that every nonempty closed, f -closed set contains
a fixed point or a smaller closed, f -closed set. Then the induced topology on
the set Fix(f) of fixed points of f is itself compact.

8. Set theoretic operations on ball spaces

8.1. Subsets of ball spaces.

Proposition 8.1. Take two ball spaces (X,B1) and (X,B2) on the same set
X such that B1 ⊆ B2 . If (X,B2) is S1 (or Sd1 or Sc1), then also (X,B1) is
S1 (or Sd1 or Sc1, respectively). This does in general not hold for any other
property in the hierarchy.

Proof: The first assertion holds since every nest (or directed system,
or centered system) in B1 is also a nest (or directed system, or centered
system) in B2 . To prove the second assertion one constructs an S∗ ball
space (X,B2) and a nest (or directed system, or centered system) N such
that the intersection

⋂
N ∈ B2 does not lie in N . Then to obtain B1 one

removes all balls from B2 that lie in
⋂
N . �

8.2. Unions of two ball spaces on the same set.

The easy proof of the following proposition is left to the reader:

Proposition 8.2. If (X,B1) and (X,B2) are S1 ball spaces on the same set
X, then so is (X,B1 ∪ B2). The same holds with S2 or S5 in place of S1 ,
and for all properties in the hierarchy if B2 is finite.

Note that the assertion may become false if B2 is infinite and we replace
S1 by S3 or S4 . Indeed, the intersection of a nest in B1 may properly
contain maximal balls which do not remain maximal balls contained in the
intersection in B1 ∪ B2 .

It is also clear that in general infinite unions of S1 ball spaces on the
same set X will not again be S1 . For instance, ball spaces with just one
ball are always S1 , but by a suitable infinite union of such spaces one can
build nests with empty intersection.

For any ball space (X,B), we define the ball space (X, B̂) by setting:

B̂ := B ∪ {X} .
Taking B1 = B and B2 = {X} in Proposition 8.2, we obtain:

Corollary 8.3. A ball space (X,B) is S1 if and only if (X, B̂) is S1 . The
same holds for all properties in the hierarchy in place of S1 .

8.3. Closure under finite unions of balls.

Take a ball space (X,B). By f-un(B) we denote the set of all unions of
finitely many balls in B. The following lemma is inspired by Alexander’s
Subbase Theorem:

Lemma 8.4. If S is a maximal centered system of balls in f-un(B) (that
is, no subset of f-un(B) properly containg S is a centered system), then
there is a subset S0 of S which is a centered system in B and has the same
intersection as S.
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Proof: It suffices to prove the following: if B1, . . . , Bn ∈ B such that
B1 ∪ . . . ∪Bn ∈ S, then there is some i ∈ {1, . . . , n} such that Bi ∈ S.

Suppose that B1, . . . , Bn ∈ B \ S. By the maximality of S this implies
that for each i ∈ {1, . . . , n}, S ∪ {Bi} is not centered. This in turn means
that there is a finite subset Si of S such that

⋂
Si ∩ Bi = ∅. But then

S1 ∪ . . . ∪ Sn is a finite subset of S such that⋂
(S1 ∪ . . . ∪ Sn) ∩ (B1 ∪ . . . ∪Bn) = ∅ .

This yields that B1 ∪ . . . ∪Bn /∈ S, which proves our assertion. �

The centered systems of balls in a ball space form a poset under inclusion.
Since the union of every chain of centered systems is again a centered system,
this poset is chain complete. Hence by Corollary 3.2 every centered system
is contained in a maximal centered system. We use this to prove:

Theorem 8.5. If (X,B) is an Sc1 ball space, then so is (X, f-un(B)).

Proof: Take a centered system S ′ of balls in f-un(B). Take a maximal
centered system S in f-un(B) which contains S ′. By Lemma 8.4 there is a
centered system S0 of balls in B such that

⋂
S0 =

⋂
S ⊆

⋂
S ′. Since (X,B)

is an Sc1 ball space, we have that
⋂
S0 6= ∅, which yields that

⋂
S ′ 6= ∅. This

proves that (X, f-un(B)) is an Sc1 ball space. �

In [1] it is shown that the theorem becomes false if “Sc1” is replaced by “S1”.

In [1], the notion of “hybrid ball space” is introduced. The idea is to start
with the union of two ball spaces as in Section 8.2 and then close under fi-
nite unions. The question is whether the resulting ball space is spherically
complete if the original ball spaces are. On symmetrically complete ordered
fields K we have two spherically complete ball spaces: (K,Bint) and (K,Bu)
where u is the ultrametric induced by the natural valuation of (K,<) (cf.
Theorem 5.15). But by Proposition 5.18, (K,Bint) is not Sc1, hence Theo-
rem 8.5 cannot be applied. Nevertheless, the following result is proven in
[1] by a direct proof. The principles that make it work still remain to be
investigated more closely.

Theorem 8.6. Take a symmetrically complete ordered field K and B to be
the set of all convex sets in K that are finite unions of closed intervals and
ultrametric balls. Then (K,B) is spherically complete.

8.4. Closure under nonempty intersections of balls.

Take a ball space (X,B). We define:

(a) ic(B) to be the set of all nonempty intersections of arbitrarily many
balls in B,
(b) fic(B) to be the set of all nonempty intersections of finitely many balls
in B,
(c) ci(B) to be the set of all nonempty intersections of nests in B.

Note that (X,B) is intersection closed if and only if ic(B) = B, finitely
intersection closed if and only if fic(B) = B, and chain intersection closed if
and only if ci(B) = B. If (X,B) is S5 , then ci(B) = B. If (X,B) is S∗ , then
ic(B) = B by Proposition 4.10. We note:

Proposition 8.7. Take an arbitrary ball space (X,B). Then the ball space
(X, ic(B)) is intersection closed, and (X, fic(B)) is finitely intersection closed.
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Proof: Take balls Bi ∈ ic(B), i ∈ I, and for every i ∈ I, balls Bi,j ∈ B,
j ∈ Ji , such that Bi =

⋂
j∈Ji Bi,j . Then⋂

i∈I

Bi =
⋂

i∈I, j∈Ji

Bi,j ∈ ic(B) .

If I is finite and Bi ∈ fic(B) for every i ∈ I, then every Ji can be taken to
be finite and thus the right hand side is a ball in fic(B). �

In view of these facts, we call (X, ic(B)) the intersection closure of (X,B),
and (X, fic(B)) the finite intersection closure of (X,B). If a chain in-
tersection closed ball space (X,B′) is obtained from (X,B) by a (possibly
transfinite) iteration of the process of replacing B by ci(B), then we call
(X,B′) a chain intersection closure of (X,B). Chain intersection clo-
sures are studied in [10] and conditions are given for (X, ci(B)) to be the
chain intersection closure of (X,B). As stated already in part 1) of Theo-
rem 5.4, this holds for classical ultrametric spaces. This result follows from
a more general theorem (cf. [10, Theorem 2.2]):

Theorem 8.8. If (X,B) is a tree-like ball space, then (X, ci(B)) is its chain
intersection closure, and if in addition (X,B) is spherically complete, then
so is (X, ci(B)).

Since chain intersection closed spherically complete ball spaces are S5 we
obtain:

Corollary 8.9. If (X,B) is a spherically complete tree-like ball space, then
(X, ci(B)) is an S5 ball space.

Also intersection closure can increase the strength of ball spaces:

Theorem 8.10. If (X,B) is an Sc1 ball space, then its intersection closure
(X, ic(B)) is an S∗ ball space.

Proof: Take a centered system {Bi | i ∈ I} in (X, ic(B)). Write
Bi =

⋂
j∈Ji Bi,j with Bi,j ∈ B. Then {Bi,j | i ∈ I, j ∈ Ji} is a centered

system in (X,B): the intersection of finitely many balls Bi1,j1 , . . . , Bin,jn

contains the intersection Bi1 ∩ . . .∩Bin , which by assumption is nonempty.
Since (X,B) is Sc1,

⋂
iBi =

⋂
i,j Bi,j 6= ∅. This proves that (X, ic(B)) is

an Sc1 ball space. Since (X, ic(B)) is intersection closed, Theorem 4.9 now
shows that (X, ic(B)) is an S∗ ball space. �

8.5. Closure under finite unions and under intersections.

From Theorems 8.5 and 8.10 we obtain:

Theorem 8.11. Take any ball space (X,B). If B′ is obtained from B by first
closing under finite unions and then under arbitrary nonempty intersections,
then:

1) B′ is closed under finite unions,

2) B′ is intersection closed,

3) if in addition (X,B) is an Sc1 ball space, then (X,B′) is an S∗ ball space.

Proof: 1): Take S1, . . . , Sn ⊆ f-un(B) such that
⋂
Si 6= ∅ for 1 ≤ i ≤ n.

Then(⋂
S1

)
∪ . . . ∪

(⋂
Sn

)
=
⋂
{B1 ∪ . . . ∪Bn | Bi ∈ Si for 1 ≤ i ≤ n} .
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Since Bi ∈ f-un(B) for 1 ≤ i ≤ n, we have that also B1∪ . . .∪Bn ∈ f-un(B).
This implies that (

⋂
S1) ∪ . . . ∪ (

⋂
Sn) ∈ B′.

2): Since B′ is an intersection closure, it is intersection closed.

3): By Theorems 8.5 and 8.10, (X,B′) is an S∗ ball space. �

8.6. The topology associated with a ball space.

Take any ball space (X,B). Theorem 8.11 tells us that in a canonical way
we can associate with it a ball space (X,B′) which is closed under nonempty
intersections and under finite unions. If we also add X and ∅ to B′, then
we obtain the collection of closed sets for a topology whose associated ball
space is (X,B′ ∪ {X}).

Theorem 8.12. The topology associated with a ball space (X,B) is compact
if and only if (X,B) is an Sc1 ball space.

Proof: The “if” direction of the equivalence follows from Theorems 8.11
and 5.19. The other direction follows from Theorem 5.19 and Proposi-
tion 8.1. �

Example: the p-adics.

The field Qp of p-adic numbers together with the p-adic valuation vp is
spherically complete. (This fact can be used to prove the original Hensel’s
Lemma via the ultrametric fixed point theorem, see [23], or even better,
via the ultrametric attractor theorem, see [12].) The associated ball space
is a classical ultrametric ball space and hence tree-like. It follows from
Proposition 4.5 that it is an Sc1 ball space. Hence by Theorem 8.12 the
topology derived from this ball space is compact.

However, Qp is known to be locally compact, but not compact under the
topology induced by the p-adic metric. But in this topology the ultrametric
balls Bα(x) are basic open sets, whereas in the topology derived from the
ultrametric ball space they are closed and their complements are the basic
open sets. It follows that the balls Bα(x) are not open. It thus turns out
that the usual p-adic topology on Qp is strictly finer than the one we derived
from the ultrametric ball space.

9. Tychonoff type theorems

9.1. Products in ball spaces.

In [1] it is shown that the category consisting of all ball spaces together with
the ball continuous functions as morphisms allows products and coproducts.
The products can be defined as follows.

Assume that (Xj,Bj)j∈J is a family of ball spaces. Recall that B̂j =
Bj ∪ {Xj}. We set X =

∏
j∈J Xj and define the product (Xj,Bj)pr

j∈J to be

(X, (Bj)pr
j∈J), where

(Bj)pr
j∈J :=

{∏
j∈J

Bj | for some k ∈ J, Bk ∈ Bk and ∀j 6= k : Bj = Xj

}
.
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Further, we define the topological product (Xj,Bj)tpr
j∈J to be (X, (Bj)tpr

j∈J),
where

(Bj)tpr
j∈J :=

{∏
j∈J

Bj | ∀j ∈ J : Bj ∈ B̂j and Bj = Xj for almost all j

}
,

and the box product (Xj,Bj)bpr
j∈J of the family to be (X, (Bj)bpr

j∈J), where

(Bj)bpr
j∈J :=

{∏
j∈J

Bj | ∀j ∈ J : Bj ∈ Bj

}
.

Since the sets Bi are nonempty, it follows that B 6= ∅, and as no ball in any

Bi is empty, it follows that no ball in (Bj)pr
j∈J , (Bj)tpr

j∈J and (Bj)bpr
j∈J is empty.

We leave the proof of the following observations to the reader:

Proposition 9.1. a) We have that

(Bj)pr
j∈J ⊆ (Bj)tpr

j∈J = (B̂j)tpr
j∈J ⊆ (B̂j)bpr

j∈J .

b) The following equations hold:

fic
(

(B̂j)pr
j∈J

)
= fic

(
(Bj)tpr

j∈J

)
= (fic(Bj))tpr

j∈J ,

ic
(

(B̂j)pr
j∈J

)
= ic

(
(Bj)tpr

j∈J

)
= (ic(B̂j))bpr

j∈J .

The following theorem presents our main results on the various products.

Theorem 9.2. The following assertions are equivalent:

a) the ball spaces (Xj,Bj), j ∈ J , are spherically complete,

b) their box product is spherically complete,

c) their topological product is spherically complete.

d) their product is spherically complete.

The same holds with “ Sd1” and “ Sc1” in place of “spherically complete”.

The equivalence of a) and b) also holds for all other properties in the
hierarchy, and the equivalence of a) and d) also holds for S2 , S3 , S4 and
S5 .

Proof: Take ball spaces (Xj,Bj), j ∈ J , and in every Bj take a set of
balls {Bi,j | i ∈ I}. Then we have:

(21)
⋂
i∈I

∏
j∈J

Bi,j =
∏
j∈J

⋂
i∈I

Bi,j .

If N = (
∏

j∈J Bi,j)i∈I is a nest of balls in (
∏

j∈J Xj, (Bj)bpr
j∈J), then for every

j ∈ J , also (Bi,j)i∈I must be a nest in (Xj,Bj).
a) ⇒ b): Assume that all ball spaces (Xj,Bj), j ∈ J , are spherically com-
plete. Then for every j ∈ J , (Bi,j)i∈I has nonempty intersection. By (21)
it follows that

⋂
N 6= ∅. This proves the implication a) ⇒ b).

b) ⇒ a): Assume that (
∏

j∈J Xj, (Bj)bpr
j∈J) is spherically complete. Take

j0 ∈ J and a nest of balls N = (Bi)i∈I in (Xj0 ,Bj0). For each i ∈ I, set
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Bi,j0 = Bi and Bi,j = B0,j for j 6= j0 where B0,j is an arbitrary fixed ball in

Bj . Then (
∏

j∈J Bi,j)i∈I is a nest in (
∏

j∈J Xj, (Bj)bpr
j∈J). By assumption,

∅ 6=
⋂
i∈I

∏
j∈J

Bi,j =

(⋂
i∈I

Bi

)
×

( ∏
j0 6=j∈J

B0,j

)
,

whence
⋂
i∈I Bi 6= ∅. We have shown that for every j ∈ J , (Xj,Bj) is

spherically complete. This proves the implication b) ⇒ a).

a) ⇒ c): Assume that all ball spaces (Xj,Bj), j ∈ J , are spherically com-

plete. Then by Corollary 8.3, all ball spaces (Xj, B̂j), j ∈ J , are spherically
complete. By the already proven implication a) ⇒ b), their box product

(Xj, B̂j)bpr
j∈J is spherically complete. By part a) of Proposition 9.1 together

with Proposition 8.1, (X,B)tpr
j∈J is spherically complete, too.

c)⇒ d): Again, by part a) of Proposition 9.1 together with Proposition 8.1,

the product of the ball spaces (Xj, B̂j), j ∈ J , is spherically complete, and
as the product of the ball spaces (Xj,Bj), j ∈ J , is a subspace of this, it is
also spherically complete.

d) ⇒ a): Same as the proof of b) ⇒ a), where we now take B0,j = Xj .

These proofs also work when “spherically complete” is replaced by “Sd1”
or “Sc1”, as can be deduced from the following observations:

1) {
∏

j∈J Bi,j | i ∈ I} is a centered system if and only if all sets {Bi,j | i ∈ I},
j ∈ J , are.

2) If {
∏

j∈J Bi,j | i ∈ I} is a directed system, then so are {Bi,j | i ∈ I} for
all j ∈ J .

3) Fix j0 ∈ J . If {Bi,j0 | i ∈ I} is a directed system, then so is {
∏

j∈J Bi,j |
i ∈ I} when the balls are chosen as in the proof of b) ⇒ a) or d) ⇒ a).

A proof of the equivalence of a) and b) similar to the above also holds for
all other properties in the hierarchy. For the properties S2 , S3, S4 and S5 ,

one uses the fact that by definition,
∏

j∈J Bj is a ball in (Bj)bpr
j∈J if and only

if every Bj is a ball in Bj and that

4)
∏

j∈J B
′
j is a ball contained in

∏
j∈J Bj if and only if every B′j is a ball

contained in Bj ,

5)
∏

j∈J B
′
j is a maximal (or largest) ball contained in

∏
j∈J Bj if and only

if every B′j is a maximal (or largest, respectively) ball contained in Bj . �

Example 9.3. There are S∗ ball spaces (Xj,Bj), j ∈ N, such that the ball

space (X, (Bj)tpr
j∈N) is not even S2 . Indeed, we choose a set Y with at least

two elements, and for every j ∈ N we take Xj = Y and Bj = {B} with
∅ 6= B 6= Y . Then trivially, all ball spaces (Xj,Bj) are S∗. For all i, j ∈ N,
define

Bi := B ×B × . . .×B︸ ︷︷ ︸
i times

×Y × Y × . . . ∈ (Bj)tpr
j∈N.

Then N = {Bi | i ∈ I} is a nest of balls in (Bj)tpr
j∈N, but the intersection⋂

N =
∏

j∈NB does not contain any ball in this ball space.

Example 9.4. There are S∗ ball spaces (X,Bj), j = 1, 2, such that the
ball space (X, (Bj)pr

j∈{1,2}) is not Sc2. Indeed, we choose again a set Y with

at least two elements and take B1 = B2 = {B} with ∅ 6= B 6= Y . Then
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as in the previous example, (Xj,Bj), j = 1, 2 are S∗ ball spaces. Further,
(Bj)pr

j∈{1,2} = {Y × Y,B × Y, Y × B}, which is a centered system whose

intersection does not contain any ball.

9.2. The ultrametric case.

If (Xj, uj), j ∈ J are ultrametric spaces with value sets ujXj = {uj(a, b) |
a, b ∈ Xj}, and if Bj = Bγj(aj) is an ultrametric ball in (Xj, uj) for each j,
then ∏

j∈J

Bj = {(bj)j∈J | ∀j ∈ J : uj(aj, bj) ≤ γj} .

This shows that the box product is the ultrametric ball space for the product
ultrametric on

∏
j∈J Xj which is defined as

uprod((aj)j∈J , (bj)j∈J) = (uj(aj, bj))j∈J ∈
∏
j∈J

ujXj .

The latter is a poset, but in general not totally ordered, even if all ujXj

are totally ordered and even if J is finite. So the product ultrametric is a
natural example for an ultrametric with partially ordered value set.

If the index set J is finite and all ujXj are contained in some totally
ordered set Γ such that all of them have a common least element 0 ∈ Γ,
then we can define an ultrametric on the product

∏
j∈J Xj which takes

values in
⋃
j∈J ujXj ⊆ Γ as follows:

umax((aj)j∈J , (bj)j∈J) = max
j
uj(aj, bj)

for all (aj)j∈J , (bj)j∈J ∈
∏

j∈J Xj . We leave it to the reader to prove that
this is indeed an ultrametric. The corresponding ultrametric balls are the
sets of the form

{(bj)j∈J | ∀j ∈ J : uj(aj, bj) ≤ γ}
for some (aj)j∈J ∈

∏
j∈J Xj and γ ∈

⋃
j∈J ujXj . Now the value set is totally

ordered. It turns out that the collection of balls so obtained is a (usually
proper) subset of the full ultrametric ball space of the product ultrametric.
Therefore, if all (Xj, uj) are spherically complete, then so is (

∏
j∈J Xj, umax)

by Theorem 9.2 and Proposition 8.1.

Theorem 9.5. Take ultrametric spaces (Xj, uj), j ∈ J . Then the ultramet-
ric space (

∏
j∈J Xj, uprod) is spherically complete if and only if all (Xj, uj),

j ∈ J , are spherically complete.
If the index set J is finite and all ujXj are contained in some totally

ordered set Γ such that all of them have a common least element, then the
same also holds for umax in place of uprod .

Proof: As was remarked earlier, the ultrametric ball space of the
product ultrametric is the box product of the ultrametric ball spaces of the
ultrametric spaces (Xj, uj). Thus the first part of the theorem is a corollary
to Theorem 9.2.

To prove the second part of the theorem, it suffices to prove the converse
of the implication we have stated just before the theorem. Assume that the
space (

∏
j∈J Xj, umax) is spherically complete and choose any j0 ∈ J . Let

Nj0 = {Bγi(ai,j0) | i ∈ I} be a nest of balls in (Xj0 , uj0). Further, for every
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j ∈ J \ {j0} choose some element aj ∈ Xj and for every i ∈ I set ai,j := aj
and

Bi := {(bj)j∈J ∈
∏
j∈J

Xj | umax((ai,j)j∈J , (bj)j∈J) ≤ γi}

= {(bj)j∈J ∈
∏
j∈J

Xj | ∀j ∈ J : uj(ai,j, bj) ≤ γi} .

In order to show that N := {Bi | i ∈ I} is a nest of balls in (
∏

j∈J Xj, umax),
we have to show that any two balls Bi , Bk , i, k ∈ I, have nonempty inter-
section. Assume without loss of generality that γi ≤ γk . As {Bγi(ai,j0) |
i ∈ I} is a nest of balls, we have that ai,j0 ∈ Bγk(ak,j0). It follows that
uj0(ak,j0 , ai,j0) ≤ γk , and since ai,j = aj = ak,j for every j ∈ J \ {j0},

(ai,j)j∈J ∈ Bi ∩ {(bj)j∈J ∈
∏
j∈J

Xj | ∀j ∈ J : uj(ak,j, bj) ≤ γk} = Bi ∩Bk .

As (
∏

j∈J Xj, umax) is assumed to be spherically complete, there is some

(zj)j∈J ∈
⋂
N ; it satisfies uj(ai,j, zj) ≤ γi for all i ∈ I and all j ∈ J . In

particular, taking j = j0 , we find that zj0 ∈ Bγi(ai,j0) for all i ∈ I and thus,
zj0 ∈

⋂
Nj0 . �

9.3. The topological case.

In which way does Tychonoff’s theorem follow from its analogue for ball
spaces? The problem in the case of topological spaces is that the topological
product ball space we have defined, while containing only closed sets of the
product, does not contain all of them, as it is not necessarily closed under
finite unions and arbitrary intersections. We have to close it under these
operations.

If the topological spaces Xi , i ∈ I, are compact, then their associated ball
spaces (Xi,Bi) are Sc1 (cf. Theorem 5.19). By Theorem 9.2 their topological
product is also Sc1. Theorem 8.11 shows that the product topology of the

topological spaces Xi is the closure of (Bj)tpr
j∈J under finite unions and under

arbitrary nonempty intersections, when ∅ and the whole space are adjoined.
By Theorem 8.12, this topology is compact.

We have shown that Tychonoff’s Theorem follows from its ball spaces
analogue.

10. Other results related to fixed point theorems

In this section, we will discuss two types of theorems that are related to
fixed point theorems.

10.1. Multivalued fixed point theorems.

We take a function F from a nonempty set X to its power set P(X) and
ask for criteria that guarantee the existence of a fixed point x ∈ X in the
sense that

x ∈ F (x) .

A very elegant approach to proving a generic multivalued fixed point theo-
rem can be given by use of contractive ball spaces:
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Theorem 10.1. Take a spherically complete contractive Bx–ball space (X,B)
and a function F : X → P(X). Assume that

Bx ∩ F (x) 6= ∅ for all x ∈ X .

Then F admits a fixed point in X.

Proof: By part 2) of Theorem 3.9, B contains a singleton ball Ba = {a}.
Since by hypothesis Ba ∩ F (a) 6= ∅, it follows that a ∈ F (a). �

This theorem together with Proposition 5.9 and 5.10 can be used to prove
the following result:

Theorem 10.2. Take a complete metric space (X, d) and an Oettli-Théra
function φ on X. If a function F : X → P(X) satisfies

∀x ∈ X ∃y ∈ F (x) : d(x, y) ≤ −φ(x, y),

then F has a fixed point on X.

In [2] this theorem and its variants are proved using a version of part 2) of
Theorem 3.9 together with Proposition 5.9.

The following is a slight generalization of Theorem 10.1, replacing the
existence of singletons by that of minimal balls. Here again, as in Theo-
rems 2.5 and 2.6, the general condition on the ball space is adapted to the
given function: condition (C3) is replaced by a condition that depends on
the function F .

Theorem 10.3. Take a nonempty set X and a function F : X → P(X).
Assume that (X,B) is a spherically complete normalized Bx–ball space such
that for all x, y ∈ X,

1) Bx ∩ F (x) 6= ∅,
2) if y ∈ Bx , then By ⊆ Bx ,

3) if x /∈ F (x), then there is some z ∈ Bx such that Bz ( Bx .

Then F admits a fixed point in X.

Proof: A straightforward adaptation of the proof of Proposition 3.8
shows that the intersection of a maximal nest of balls, if nonempty, must
be a minimal ball Ba which consequently must satisfy a ∈ F (a). The
assumption that the ball space is spherically complete guarantees that the
intersection is nonempty. �

10.2. Coincidence theorems.

We take a nonempty set X and two or more functions f1, . . . , fn : X → X
and ask for criteria that guarantee the existence of a coincidence point
x ∈ X in the sense that

(22) f1(x) = . . . = fn(x) .

In order to obtain a generic coincidence theorem for ball spaces, one can
again use the idea of showing the existence of singleton balls with suitable
properties.

Theorem 10.4. Take a spherically complete contractive Bx–ball space (X,B)
and functions f1, . . . , fn : X → X. Assume that

f1(x), . . . , fn(x) ∈ Bx for all x ∈ X .

Then f1, . . . , fn admit a coincidence point in X.
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Proof: By part 2) of Theorem 3.9, B contains a singleton ball Ba. Since
by hypothesis f1(a), . . . , fn(a) ∈ Ba, it follows that f1(a) = . . . = fn(a). �

As in the previous section, we prove a generalization that replaces the
existence of singletons by that of minimal balls.

Theorem 10.5. Take a nonempty set X and functions f1, . . . , fn : X → X.
Assume that there is a Bx–ball space B on X such that (X,B) is an S2 ball
space and for all x ∈ X, if (22) does not hold, then there is some y ∈ X
such that By ( Bx .

Then f1, . . . , fn admit a coincidence point in X.

Proof: LetM be a maximal nest of balls in B (it exists by Corollary 3.7).
Since (X,B) is an S2 ball space, there is a ball Bx ⊆

⋂
M. This means

that M ∪ {Bx} is a nest of balls, so by maximality of M we have that
Bx ∈ M. Consequently, Bx =

⋂
M. Suppose that (22) does not hold.

Then by hypothesis there is some element y ∈ X such that By ( Bx

whence By /∈M. But then M∪ {By} is a nest which strictly contains M.
This contradiction to the maximality ofM shows that (22) must hold. �

Let us note that condition (22) can be replaced by any other condition on x.
In this way, a generic theorem can be obtained that is neither a fixed point
theorem nor a coincidence theorem but can be specialized to such theorems.
This idea has been exploited in [17].
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