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1. Introduction

In the first part of this work, [5], we studied Hodge theoretical invari-
ants of local systems of the complements to germs of plane curve sin-
gularities. These invariants, called the faces of quasi-adjunction, yield
a refinement of the multivariable Alexander polynomial of a link of iso-
lated singularity or, more precisely, the refinement of the characteristic
varieties associated with the fundamental group of the complements
to the links. They also provide a multivariable generalization of the
spectrum of singularity due to Arnold and Steenbrink (in the case of
curves).

In the present paper we develop algorithmic methods for calculating
these Hodge theoretical invariants in terms of power series which are the
defining equations of the germs. Given such a power series we describe
a decorated by integers graph with two types of 0-dimensional cells
and two types of 1-dimensional cells (cf. below in this introduction).
This graph is called the Newton tree (cf. sect.2.3). After dropping
distinction between types of edges in the Newton tree one essentially
obtains the splice diagram of Eisenbud and Neumann ([8]) for the link
of the singularity of f . Newton trees earlier were used for the study
of quasi-ordinary power series in [2], ideals in C[[x, y]] in [6] and plane
algebraic curves in [4]. Here we also associate with a germ the toroidal
(in the sense of [14]) pair (Uf , D) which provides a resolution in the
category of toroidal pairs of the pair (B,C), where C is the germ of
plane curve and B is a small ball about the singular point of C. Our
resolution can as well be viewed as a resolution in the category of
orbifolds. Unlike previously used smooth resolutions (cf. references
in [25]) use of toroidal resolutions allows to encode whole resolution
process into the combinatorial data i.e. the Newton tree. Previous
attempts to use mildly singular resolutions in this context were made
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in [21], [3], [10]. Use of such type of resolutions is also consistent with
philosophy used in the minimal model program (cf. [12] and references
there and [27]).

One of the main results in this paper describes the polytopes of quasi-
adjunction in terms of Newton tree (cf.theorem 4.4). Among other
things such description allows to get results on the structure of the poly-
topes of quasi-adjunction and make many explicit calculations. Since
the log-canonical threshold is one of the constants of quasi-adjunction
(recall that these constants depend of a choice of germ φ ∈ C2

0,0 and the
log-canonical threshold corresponds to the choice φ = 1 cf. [17]), as a
consequence we also obtain explicit description of the polytope which
is the (multivariable) log-canonical threshold (called here log-canonical
wall) and also the part of the toroidal resolution Uf which determines
it. Using the relation between the faces of quasi-adjunction and Bern-
stein ideals obtained in [5], here we obtain a polynomial (a product of
linear forms) which divides all the polynomials in the Bernstein ideal.

Here is one of the consequences of calculations in this paper. In
example 5.1 we consider a sequence of singularities such that the se-
quence of constants of quasi-adjunction (corresponding to φ = y2) is
given by 13+6q

18+8q
which is increasing sequence when q → ∞. The se-

quence of log-canonical thresholds for this sequence of singularities is
(decreasing) sequence 2+q

4q
. Recall that set of log-canonical thresholds

of singularities contains only finite ascending sequences (cf. [24] for a
much more general discussion).

Let us describe the content of the paper in more details. In the
first section we recall the definition and construction of Newton trees
of a germ f . The Newton tree is a tree (with additional structure),
built from the Newton polygons that appear at each stage of the
Newton algorithm. This additional structure consists with splitting
0-dimensional (resp. 1-dimensional) cells of the tree into two types
called vertices and arrows (resp. horizontal and vertical). Each ver-
tex in the Newton tree corresponds to a face of the Newton polygon
of a polynomial appearing in a step of the Newton algorithm. It is
decorated by integers extracted from the data obtained from the linear
form vanishing on a face. The Newton tree determines the dual graph
of the smooth resolution of the singularity of f obtained after resolving
cyclic quotient singularities of our toroidal resolution. More precisely,
we have a bijection between the vertices of the Newton tree and the
exceptional divisors in the resolution which intersect other exceptional
divisors at least three times (“rupture points” of the dual graph). One
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of the results in this section is that the Newton tree is sufficient to com-
pute the polytopes of quasi-adjunction i.e. only the “rupture points”
contribute to the calculation of the polytopes of quasi-adjunction (this
was observe in [5] already). In the following section, we prove that
this condition is also necessary, that means that all the vertices in the
Newton tree contribute to a face of a polytope of quasi-adjunction.
This is done using induction. Firstly we show that the intersections
of the polytopes of quasi-adjunction with {s1 = 1} are the polytopes
of quasi-adjunction of f2, · · · , fr. Then we prove the result for r = 1.
In particular we retrieve the computation of M.Saito of the exponents
between 0 and 1. Recall that the identification of the constants of
quasi-adjunction and the spectrum was made in [19]. The result for r
branches follows from the result for r − 1 branches except in the cases
where some vertex doesn’t appear in hyperplane {si = 1} for any i.
We have to work out these cases separately (r = 2 and r = 3).

The final section is devoted to the computation of the log canonical
wall. Let f be a germ, we define the Newton nest of f , the following
way. It is a set of vertices of the Newton tree, consisting in all vertices
that correspond to faces of the Newton polygon of f in some system of
coordinates. It is a connected set of vertices in the Newton tree. We
show that the log canonical polytope is exactly given by the Newton
nest of f . One can compare this with the result of J.Kollar showing
the constant which is the log-canonical threshold of a germ depends
only on the first characteristic pair. The article ends with discussion of
ACC conditions for constants and polytopes of quasi-adjunction and
with additional explicit examples.

2. Newton trees

2.1. Newton polygons. For a subset E ⊂ N2, let ∆(E) denotes the
convex hull of the set E +R2

+ = {a+ b, a ∈ E, b ∈ R2
+}. The boundary

of ∆(E) is a polygon with a finite number of vertices and edges. A
subset ∆ ⊂ R2 is called a Newton diagram if there exists a set E ⊂ N2

such that ∆ = ∆(E). Let E0 = {v0, · · · , vm} be the set of vertices of ∆
and let vi = (αi, βi) ∈ N2 with ordering such that αi−1 < αi, βi−1 > βi
for i = 1, · · · ,m. For i = 1, · · · ,m we denote by Si = [vi−1, vi] and by
lSi the line supporting the segment Si. The union of compact edges of
the boundary of a Newton diagram is called the Newton polygon. In
above notation, it is the union of the edges Si and denoted N (∆). The
Newton polygon N (∆) is empty iff ∆ = (α0, β0) + R2

+. The integer
h(∆) = β0 − βm is called the height of ∆.
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Let
f(x, y) =

∑
(α,β)∈N2

cα,βx
αyβ ∈ C[[x, y]]

The support of f is

Suppf = {(α, β) ∈ N× N | cα,β 6= 0}.
We use ∆(f) = ∆(Suppf) and N (f) = N (∆(f)). For a line l in R2,
the initial part of f with respect to l is

in(f, l) =
∑

(α,β)∈l

cα,βx
αyβ.

If the line l has equation pα + qβ = N , with (p, q) ∈ (N∗)2 and
gcd(p, q) = 1, then in(f, l) is zero or a monomial or, if l = lS for
some segment S of N (∆), of the form

in(f, l) = xalyblFS(xq, yp),

where (al, bl) ∈ N2 and

FS(x, y) = c
∏

1≤i≤n

(y − µix)νi ,

with c ∈ C∗, n ∈ N∗, µi ∈ C∗ (all different) and νi ∈ N∗.

2.2. Newton algorithm.

Definition 2.1. (Newton maps) Let (p, q) ∈ N2, gcd(p, q) = 1 and
µ ∈ C∗. Let (p′, q′) ∈ N2 such that qq′ − pp′ = 1. The map Π(p,q,µ) :

C2
(x1,y1) → C2

(x,y) given by x = µq
′
xp1, y = xq1(y1 + µp

′
) is called Newton

map.
If µ = 0, the Newton map is the monomial map given by: x = xp1, y =

xq1y1

We denote by Π∗(p,q,µ) the induced homomorphim C[[x, y]] −→ C[[x1, y1]].

The change (p′, q′)→ (p′ + iq, q′ + ip) results in change of coordinates:
(x1, y1) 7→ (µix1, µ

−iqy1) and does not affect results.
In the sequel we will always assume that p′ < q and q′ < p. This will

make procedures canonical.

Lemma 2.2. [6] Let f(x, y) ∈ C[[x, y]], f 6= 0 and Π∗(p,q,µ)(f)(x1, y1) =

f1(x1, y1) ∈ C[[x1, y1]].

(1) If there does not exist a face S of N (f) whose supporting line
has equation pα + qβ = k with k ∈ N, then

f1(x1, y1) = xm1 u(x1, y1)

with m ∈ N, u(x1, y1) ∈ C[[x1, y1]] and u(0, 0) 6= 0.
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(2) If there exists a face S of N (f) whose supporting line has equa-
tion pα + qβ = k0 for some k0 ∈ N, and if FS(1, µ) 6= 0, then

f1(x1, y1) = xk01 u(x1, y1)

with u(x1, y1) ∈ C[[x1, y1]] and u(0, 0) 6= 0.
(3) If there exists a face S of N (f) whose supporting line has equa-

tion pα + qβ = k0 for some k0 ∈ N, and if FS(1, µ) = 0, then

f1(x1, y1) = xk01 g1(x1, y1)

with g1(x1, y1) ∈ C[[x1, y1]] and g1(0, 0) = 0, g1(0, y1) 6= 0.

For the proof see [6].
From this lemma, we see that there are a finite number of (p, q, µ)

such that Π∗(p,q,µ)(f) is not a monomial times a unit in C[[x1, y1]]. These
triples are given by the equations of the faces of the Newton polygon
and the roots of the corresponding face polynomials.

Remark 2.3. In the first and second case of Lemma 2.2, the Newton
polygon of f1 is empty. In the third case, the height of the Newton
diagram of f1 is less than or equal to the multiplicity of µ as root of
FS(1, X).

We say that f ∈ C[[x, y]] is in good coordinates if

(1) βm 6= 0 or
(2) if βm = 0 and

(a) either lSm has equation pα + qβ = N with p 6= 1 or
(b) if p = 1, and m ≥ 1 then FSm has at least two factors,
(c) if p = 1 and m = 1 FSm is not of the form

FSm = c(y − µ1x)ν1(y − µ2x)ν2

Lemma 2.4. If f ∈ C[[x, y]] is not in good coordinates, there exist
changes of variables in C[[x, y]] in which it is in good coordinates.

The proof can be found in [15]. One has to take in account that our
definition of good coordinates corresponds to their definition of quasi-
good coordinates. The changes of coordinates we use to put f in good
coordinates are x = x, y = y + h(x) with h ∈ C[[x]].

We say that f ∈ C[[x, y]] is in very good coordinates if it is in good
coordinates and

(1) α0 6= 0 or
(2) if α0 = 0 and

(a) either lS1 has equation pα + qβ = N with p 6= 1 or
(b) if p = 1 and m ≥ 1 then FS1 has at least two factors.
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Let f ∈ C[[x, y]] in very good coordinates. Let Π = Π(p,q,µ) be a
Newton map. We denote by fΠ the result of Π∗(f) after a change of
variables so that fΠ is in good coordinates. Let Σn = (Π1, · · · ,Πn)
where Πi is a Newton map for all i, we define fΣn by induction: fΣ1 =
fΠ1 , fΣi = (fΣi−1

)Πi .

Theorem 2.5. Let f(x, y) ∈ C[[x, y]], there exists an integer n0 such
that, for any sequence Σn = (Π1, · · · ,Πn) where Πi is a Newton map
for all i, of length at least n0, fΣn is a monomial up to a unit.

Proof. From Lemma 1.1, we first observe that the number of Newton
maps Π, such that fΠ is not a monomial times a unit is finite, bounded
by the sum on all faces S of the number of roots of FS. What we
have to show is that the number of successive Newton maps we have
to perform so that fΣ is a monomial up to a unit, is also finite.

We start with f in very good coordinates. In this system of coor-
dinates, we denote by h the height of ∆(f). We argue by induction
on h. If h = 0, then f is a monomial up to a unit, and n = 0.
Consider the case where h > 0. In that case, N (f) is not empty.
Choose a face of N (f), S, and a root of FS with multiplicity ν. Let
αp + βq = N be the equation of the supporting line of S. Then
f1(x1, y1) = xN1 g1(x1, y1) ∈ C[[x1, y1]] and the height of ∆(f1) is ν < h
since f is in good coordinates.

�

If f is in very good coordinates, we define the length of the Newton
algorithm A applied to f , d(f,A) by induction. If f is a monomial
up to a unit, then d(f,A) = 0. Otherwise d(f,A) = max d(fΠ) + 1
where the maximum is taken over all faces S of the Newton polygon
and all roots of FS. Note that the definition of the length depends on
the choice of good coordinates at each step of the Newton algorithm.

2.3. Newton trees. Given f ∈ C[[x, y]] in very good coordinates,
the Newton algorithm consists in applying successive Newton maps
attached to successive Newton polygons and changes of variables until
the result is a monomial times a unit.

Newton trees are trees that encode the Newton algorithm. They are
build by induction, and defined via gluing certain graphs associated to
a Newton diagram. More specifically:

Definition 2.6. An abstract Newton tree is a graph with no loops
with two types of 0-dimensional cells, called vertices and arrows and
two types of 1-dimensional cells called horizontal and vertical edges.

Decoration of an abstract Newton tree is assignment of an integer to
a vertex or arrow (represented below in parenthesis) and assignment an
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integer to each end of an edge. Below the integers assigned to unmarked
ends are considered to be equal to 1.

All abstract Newton trees have one marked arrow called upper arrow.

2.3.1. Graph associated to a Newton diagram.

Definition 2.7. 1. Graph associated to a Newton diagram is an ab-
stract Newton tree with vertices a1, a2, ....am which are in (ordered) 1-
1-correspondence with compact 1-dimensional faces Si of the boundary
of Newton diagram, arrows a0, am+1 corresponding to the non-compact
faces of the boundary of Newton diagram and m+ 1 vertical edges con-
necting ai and ai+1 for i = 0, ...,m. Increase of subscript corresponds
to the downward moving on the graph. The arrow a0 is called the upper
arrow.

If ∆ = (α0, β0) + R2
+ then the graph of ∆ is defined as follows: the

graph has no vertices and it has one edge incident to two arrows and
the edge is vertical. The upper arrow is defined as the arrow decorated
by (α0) and the arrow at the bottom is decorated by (β0).

Now let us describe the decoration of the graph of a Newton diagram.
If the non compact faces of the Newton diagram are α = α0 and β = βm
then the upper arrow is decorated by (α0) and the arrow at the bottom
is decorated by βm. The edges incident to the arrows are decorated
with 1 near the arrows. The extremities of the edges are decorated the
following way: A vertex corresponds to a face S whose supporting line
has equation pα + qβ = N . We decorate the extremity of the edge
above the vertex by q, and the extremity of the edge under the vertex
by p. We decorate the vertex by (N).

Note that one can recover the whole Newton polygon from the graph
since we can read the equations of the supporting lines of the faces on
the graph i.e. the data given by the graph and by the Newton diagram
are identical.

2.3.2. Newton tree of f ∈ C[[x, y]]. The Newton tree of f is defined
by induction on the length. Suppose that f has length 0. Then f is a
monomial times a unit and we define its Newton tree as the graph of
its Newton diagram (cf. def. 2.7).

Assume that we have constructed the Newton tree for all f of length
less or equal to n − 1. Let f ∈ C[[x, y]] in very good coordinates
and having length n. We define the Newton tree of f in terms of
the following data. On one hand the definition 2.7 provides the graph
associated to its Newton diagram. On the other hand, for each edge
of the Newton polygon and each root of the polynomial corresponding
to this edge via the Newton map Π and subsequent change to good
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ppx+qy=N

x=i

(i)

(0)

q

(N)

Figure 1

coordinates we obtain the polynomial fΠ of length at most n− 1. The
assumption of induction yields the Newton tree of fΠ (for each edge of
the Newton polygon of f).

Definition 2.8. The Newton tree of f is the tree obtained from the
above data as follows. Delete the upper arrow of the Newton tree of each
fΠ (recall that each Π corresponds to a vertex of the graph of Newton
diagram of f) and glue the edge which was incident to that arrow to
the corresponding vertex on the graph of the Newton diagram of f for
all Π. Moreover, the edges that are glued are renamed to horizontal
edges. All other edges of the graph of the Newton diagram of f and the
Newton trees of fΠ retain the labels which they had as edges of the trees.
The upper arrow of the graph of the Newton diagram of f is declared
the upper arrow of the Newton tree of f .

To sum up, in this construction the vertices on graph of f are all
incident to vertical edges and correspond to the faces on the Newton
polygon of some fΠ. The horizontal edges correspond to the successive
Newton maps used to construct polynomials fΠ.

Decorations of the Newton tree of f are defined in terms of decora-
tions of the graph of Newton diagram of f and the decorations of fΠ

as follows.
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Definition 2.9. Let v be a vertex of a Newton tree. If v corresponds
to a face of the Newton polygon of f , we say that v has no preceding
vertex and we define S(v) = {v}. Let v be a vertex on a Newton tree.
It is on the Newton polygon of fΣ. The Newton tree of fΣ has been
glued on a vertex v1 which is called the preceding vertex of v. If v1 does
not correspond to a face of the Newton polygon of f , we can consider
its preceding vertex v2. Then we can define S(v) = {vi, · · · , v2, v1, v},
where vi has no preceding vertex and vj is the preceding vertex of vj−1

for 2 ≤ j ≤ i .

The final Newton tree is decorated the following way. The dec-
orations of the arrows and vertices are not changed. The decora-
tions of the edges are changed. Let v be a vertex on the Newton
tree. If S(v) = {v} then the decorations near v are not changed. If
S(v) = {vi, · · · , v2, v1, v} and if the decoration near v on the Newton
tree such that S(v) = {vi−1, · · · , v2, v1, v} (that is on the Newton tree
which is glued at vi), are (m, p), after the gluing, the decorations near
v are (m+ piqip

2
i−1 · · · p2

1p, p).
As an example the following is the Newton tree of f(x, y) = (x2 −

y3)2(x3 − y2)2 + x6y3 + x5y5 + x4y7

2

(0)

(20)

2

3

(20)

3

2

(20)

(24)

2

1

(20)

(42)

1

2

(24) (24)

(42)

(0)

(0)

(0)

(20)

(20)

(0)

2

3

3

2

(24)

(20)

2

1

(0)

(20)

(42)

(0)

(0)

(20)

(20)

2

3

3

2

(0)

8

1

(0)

13

2

(0)

(24)

(42)

(0)

Figure 2

If we add an arrow to a vertex of a Newton tree, this arrow defines
a germ of curve. This germ of curve is called a curvette of the vertex.
If v is the vertex, we denote by Cv its curvette. It is called a virtual
component in [8].

Note that on the edges arising for a vertex there are at most two
decorations on the ends near the vertex which are different from 1. We
call them nearby decorations of the vertex.
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2.4. Change of variables. Newton trees are constructed using a very
good system of coordinates. But very good systems of coordinates are
not unique. We want to study the Newton trees in different systems of
very good coordinates.

Consider a system of very good coordinates for f . Consider the
Newton polygon of f in this system of coordinates.

If there is no face of the Newton polygon with equation pα+qβ = N
with p or q equal to 1, then there is no other system of good coordinates.

If there is a face of the Newton polygon with equation pα+ qβ = N
with p or q equal to 1, assume p = 1. Let

cxaSybS
kS∏

(y − µixq)νi

be the face polynomial. Since we are in very good coordinates, we have
bS 6= 0 or if q 6= 1, kS > 1, and if q = 1, kS > 2.

We make the change of variables x = x, y = y + axq.
The faces above S do not change neither their face polynomial. The

face S has the same supporting line but its face polynomial is now

cxaS(y − axq)bS
kS∏

(y − (µi − a)xq)νi

If a = µi, for some i, the face doesn’t hit the x-axis. If a 6= µi for
all i, the face hits the x-axis, but anyway we are still in very good
coordinates.

We want to compare the Newton trees in these two systems of coor-
dinates.

1

v

v’

v1

vi

vk

q

Figure 3

We consider the vertex v which represents the face S. There are
kS horizontal edges starting from v corresponding to each root µ of
the face polynomial. There is a vertical edge decorated with 1 near v
under v and a vertical edge decorated with q above v. All the edges
can be ended by vertices or arrows. We denote these ends by vi for the
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horizontal edges and v′ for the vertical edge pointing downward. We
make the change of variables x = x, y = y + axq.

(1) If a 6= µi for all i. Then the new Newton tree is in Figure
4. We have kS + 1 horizontal edges, one for each of the roots
µi and one for a. We proved in [7] that in this case, we cut
out the Newton tree in two pieces on the vertical edge under
v. We have Ta which contains v and Tu which contains the
vertical edge ending with v′. We stick back Tu on v making the
vertical edge ending with v′, horizontal and we add a vertical
edge decorated with 1 ending with an arrow decorated with (0)
(On Figure 6, we start with Newton tree 2 or 3 and get Newton
tree 1).

(0)

v

v1

vi

vk

q

1

v’

Figure 4

(2) If a = µi, We cut the Newton tree in 3 pieces. We cut the
vertical edge ending with v′, we cut the horizontal edge ending
with vi. We have the piece containing v, the piece containing
v′ and the piece containing vi. We stick the piece containing
vi making the edge ending with vi vertical. We stick the piece
containing v′ on v making the edge containing v′ horizontal. We
call this operation exchange of vertical edge (On Figure 6, we
exchange Newton trees 2 and 3).

Note that some faces may appear on the Newton polygon in some
system of very good coordinates, but that there is not always a system
of coordinates such that they all appear at the same time.

Example 2.10. :
In this example, the 3 vertices can correspond to faces of a Newton

polygon in some system of coordinates, but at most two of them appear
in the same system of coordinates.
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kv

v1

q

1

vi

v’

v

Figure 5

2

3

1

(0)

(0)

(0)

7

2

9

2

(0)

(0)

(0)

(0)

(0)

(0) (0)

3

7

2

9

2

3

9

2

7

Figure 6

Definition 2.11. We say that two Newton trees are equivalent if they
differ by exchanging vertical and horizontal edges, and eventually delet-
ing horizontal edges ending with arrows decorated with (0).

We can chose a canonical representant of an equivalent class of New-
ton tree the following way: At each vertex the only possible edge deco-
rated with 1 near the vertex which is not horizontal ends with an arrow
decorated with (0).

In Figure 6, the three Newton trees are equivalent. The canonical
representant of the class is the first one.

Equivalent Newton trees represent f in different systems of good
coordinates.

Proposition 2.12. Newton trees of f ∈ C[[x, y]] in different systems
of good coordinates have the same number of vertices. This number is
called the Newton complexity of f .

2.5. Combinatorial properties of Newton trees. .
12



Proposition 2.13. If v0 is the preceding vertex of v with nearby dec-
orations respectively (q0, p0) and (q, p), we have

q = p0q0p+ m̃.

where (m̃, p) are the nearby decorations of v on the Newton tree where
S(v) = {v}.
Proof. See [6].

�

Definition 2.14. Consider a path on a Newton tree. We say that a
number is adjacent to this path if it is not on the path and is a nearby
decoration of a vertex on the path. If the path contains an arrow, the
decoration of the arrow is a number adjacent to the path.

Definition 2.15. Consider an edge on a Newton tree, its edge deter-
minant is the difference between the product of the numbers on the edge
and the product of the numbers adjacent to the edge when the edge is
incident to two vertices. If the edge is incident to one arrow, its edge
determinant is the product of the decorations on the edge.

Corollary 2.16. (1) In the process of gluing, the edge determi-
nants remain constant.

(2) All edges determinants are strictly positive integers.

Proof. This is a consequence of the previous proposition. �

Proposition 2.17. The decoration (N) of a vertex v on a Newton tree
is the sum over all the arrows F of the tree, of the products of the
numbers adjacent to the paths [v,F ].

For a proof see [6], Proposition 3.3.

Remark 2.18. From this proposition we see that when the tree is con-
structed, the decorations of the vertices are not needed any more because
we can compute them from the decorations of the edges. But, anyway,
we have to keep in mind that we know them from the beginning.

2.6. Computation of the intersection multiplicity using New-
ton trees.

Proposition 2.19. The intersection multiplicity of two branches f
and g is equal to the product of all the numbers adjacent to the path
going from the arrow representing f to the arrow representing g on any
Newton tree where f and g are represented.

Corollary 2.20. The decoration Nv of a vertex v of a Newton tree of
a germ f is equal to the intersection multiplicity of the curvette Cv and
f .
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See [6] Proposition 5.3.
Given a Newton tree, the arrows decorated with positive multiplici-

ties correspond to branches with the same multiplicity. Along horizon-
tal paths from the first vertical line to any arrow one can compute the
Puiseux pairs of the branch. One can also compute the intersection
multiplicity of any two branches. Then the data of the Newton tree of
f give the topological type of f . Given a decorated tree satisfying the
condition of positivity of edge determinants there exist germs f with
this Newton tree.

The Newton tree of f ,without specification of edges as horizontal or
vertical coincide with the splice diagram of the link of the singularity
of f at the origin defined by Eisenbud and Neumann [8].

3. Newton space

In this section for a series f ∈ C[[x, y]], we describe a morphism
πf : Uf → C2, where Uf is a toroidal variety with quotient singular-
ites, πf is birational and has the property that the proper preimage of
f = 0 does not intersect the singular locus of Uf and is transversal to
the exceptional set of πf . Its construction is much simpler than the
construction of log-resolution of pair (C2, C) where C is the zero set of
f . We show that Uf comes with the atlas of affine surfaces which are
global quotients by cyclic group and hence provides resolution of pair
(C2, C) in the category of orbifolds.

3.1. Factorization of monomial maps. Let N be a free abelian
group of rank two with fixed basis {E1, E2}. We use the latter to
identify N with Z2. Elements of N will be represented as column
vectors e.g. E1 and E2 correspond to t(0, 1) and t(1, 0) respectively.
Let N+ be the subset of vectors with positive coordinates.

3.1.1. The variety Uσ. Let {P1, P2} be a pair of primitive vectors in
N+. Let Pi =t (pi, qi) and assume that ∆ = det(P1, P2) = p2q1−p1q2 >
0. Let

σ = cone(P1, P2) = {tP1 + sP2, t, s ≥ 0}
The toric surface corresponding to this cone will be denoted Uσ (cf. [9],
p. 4). It is biregular to a quotient of C2 by a cyclic group. Let us recall
the description of the order of this cyclic group and its action yielding
Uσ.

Let t(p′1, q
′
1) be the unique vector such that p′1q1 − p1q

′
1 = 1 and

0 ≤ p2q
′
1 − q2p

′
1 < p2q1 − p1q2. The relation

t(p2, q2) = ct(p1, q1) + dt(p′1 − p1, q
′
1 − q1)

14



yields two integers c, d and we have

d = ∆, c = ∆− (p2q
′
1 − q2p

′
1) > 0, gcd(c, d) = 1

Let Gd be the group of d-roots of unity. Then the variety Uσ can be
parametrized via

C2 −→ C2/Gd ' Uσ
(t1, t2) 7→ (ζ−cd t1, ζdt2) 7→ (u1 = t1t

c
2, u2 = td1, u3 = td2)

We can also define the variety Uσ the following way. Let t(p′′2, q
′′
2) be

the unique vector such that p2q
′′
2−p′′2q2 = 1 and p′′2q1−q′′2p1 < p2q1−q2p1.

We can write

t(p1, q1) = c̃t(p2, q2) + dt(p′′2 − p2, q
′′
2 − q2),

where c̃ = ∆− (p′′2q1 − q′′2p1) > 0.

C2 −→ C2/Gd ' Uσ
(t1, t2) 7→ (ζdt1, ζ

−c̃
d t2) 7→ (ũ1 = td2, ũ2 = tc̃1t2, ũ3 = td1)

Note that cc̃ is congruent to 1 modulo d.

Definition 3.1. Let Πσ : C2 → C2 be given by:

(t1, t2) 7→ (x = tp11 t
p2
2 , y = tq11 t

q2
2 )

The maps κσ and πσ in the diagram:

C2 κσ−→ Uσ
πσ−→ C2

will be called the (toric) uniformization and the (toric) blow up respec-
tively.

Lemma 3.2. The morphism πσ : Uσ → C2 is birational.

Proof. Let (x, y) be the coordinates on C2. We have

u1 =
yp
′
1−p1

xq
′
1−q1

, u2 =
yp2

xq2
, u3 =

xq1

yp1

�

The lines D3 := {u1 = 0, u2 = 0} and D2 := {u1 = 0, u3 = 0} are
contained in Uσ. The line D3 contracts by πσ on the origin in C2 if
and only p1 is different from 0, and the line D2 contracts by πσ on the
origin in C2 if and only if q2 is different from 0. If d > 1 the origin in
C3 is a singular point in Uσ with a quotient singularity.

15



3.1.2. Gluing Uσ and Uσ′. Let σ be the cone cone(P1, P2) as before and
σ′ be the cone(P2, P3) with P3 =t (p3, q3) and p3q2 − p2q3 > 0.

We have

C2 −→ Uσ −→ C2

(t1, t2) 7→ (x = tp11 t
p2
2 , y = tq11 t

q2
2 )

C2 −→ Uσ′ −→ C2

(t1, t2) 7→ (x = tp21 t
p3
2 , y = tq21 t

q3
2 )

We glue Uσ and Uσ′ along D2 on Uσ and D′3 on Uσ′ . We have u2 = yp2

xq2

and u′3 = xq2
yp2

. Then let A be a point on D2. Its coordinates are (0, ξ, 0)

on Uσ, (0, 0, ξ) on Uσ′ and πσ(A) = πσ′(A).

3.1.3. Decomposition of σ into σ1 ∪ σ′1. Let P3 = (p3, q3) be such that
p3q1−q3p1 > 0 and p2q3−p3q2 > 0. Denote by σ1 the cone cone(P1, P3).
Let (u1, u2, u3) the coordinates in C3 such that Uσ ⊂ C3

u1,u2,u3
and

(u1
1, u

1
2, u

1
3) the coordinates in C3 such that Uσ1 ⊂ C3

u11,u
1
2,u

1
3
. Let (c1, d1)

be defined as before for the cone σ1.
We have by π−1

σ

C2 −→ Uσ

(x, y) 7→ (u1 = yp
′
1−p1

xq
′
1−q1

, u2 = yp2

xq2
, u3 = xq1

yp1
)

The morphism πσ1 is the factorization to Uσ1 of the morphism

C2 −→ Uσ1 −→ C2

(v1, v2) 7→ (x = vp11 v
p3
2 , y = vq11 v

q3
2 )

After a short computation, we deduce

u1 = v1v
c1
2 = u1

1, u2 = vq1p2−q2p11 vq3p2−p3q22 , u3 = vd12 = u1
3

Then we have a morphism from C2 to Uσ which factorizes to Uσ1 .
Denote by πσ1,σ this factorization. We have

πσ1 = πσ ◦ πσ1,σ
The morphism πσ1,σ is the identity from D1

3 on D3 and the line D1
2

contracts to the singular point in Uσ.
We can also consider the cone σ′1, cone(P3, P2). Using the second

parametrization of Uσ we can define the same way as before, a mor-
phism πσ′1,σ. We have

πσ′1 = πσ ◦ πσ′1,σ
Now the morphism πσ′1,σ is the identity from D1′

2 on D2 and D1′
3 con-

tracts on the singularity of Uσ. We can glue Uσ1 and Uσ′1 as before and
we have a morphism from this new variety to Uσ.

16



3.1.4. Newton maps. Let {P1, · · · , Pm} be given positive primitive in-
tegral vectors in N+. We denote by P0 = E1 and Pm+1 = E2.

To begin, we consider the cone σm = cone(P0, Pm) and the cone
σ′m = cone(Pm, Pm+1). We consider the variety Uσm and the morphism
πσm which is the factorization of the Newton map

C2 −→ Uσm −→ C2

(t1, t2) 7→ (x = tpm2 , y = t1t
qm
2 )

We glue Uσm and Uσ′m along Dm
2 and D

′m
3 . We get a variety Um and

a birational morphism πm which is πσm on the chart Uσm . The line
Dm

2 = D
′m
3 contracts on the origin of C2. The lines Dm

3 and D
′m
2 are

not contracted. There is a singularity at the origin of Uσm (resp. Uσ′m)
if and only if the cone σm (resp. σ′m) is not regular.

Next we consider the subdivision of σm in two cones σm−1 = cone(P0, Pm−1)
and the cone σ′m−1 = cone(Pm−1, Pm). We consider the variety Uσm−1

and the map πσm−1 which is the factorization of the Newton map

C2 −→ Uσm−1 −→ C2

(t1, t2) 7→ (x = t
pm−1

2 , y = t1t
qm−1

2 )

This map factorizes through Uσm . When we glue Uσm−1 and Uσ′m−1
we

have a birational morphism πm,m−1 from this variety on Uσm which is

the identity on D
′m−1
2 . We glue Uσ′m along D

′m
3 and extend πm,m−1 by

the identity in this chart. We obtain a variety Um−1 and a birational
map πm,m−1 from Um−1 to Um. On the chart Uσm−1 we have

πσm ◦ πm,m−1 = πσm−1

Finally we get a toric variety U associated to the subdivision and a
birational morphism π from U to C2. Along one exceptional divisor E,
the morphism π is the Newton map πσi where E = Di

2 on Uσi . The
variety U is smooth if and only if the subdivision is regular.

We denote π−1(0) = ∪i=mi=1 E(Pi) where E(P1) = D1
2, E(P2) = D

′1
2 · · ·E(Pm) =

D
′m−1
2 .
The configuration graph of the exceptional divisor of π : U −→ C2

is a linear graph with m vertices. We will represent this graph on a
vertical line. We represent the divisors E(P1), · · · , E(Pm) from top to
bottom. We connect the vertices by a segment since the divisors inter-
sect. We add an edge at the top and at the bottom with arrows since
they represent E1 and E2 but not exceptional divisors. To keep the
information on the subdivision, we decorate the vertex corresponding
to E(Pi) with qi on the edge above the vertex and pi on the edge under
the vertex. Usually we don’t write the decorations for E1 and E2, but
they appear in the computations as (0, 1) and (1, 0). The number d

17



1

Π
σ

Π
σ

m

Figure 7

attached to a cone is computed as the edge determinant of the corre-
sponding edge, ie. the product of the numbers on the edge minus the
product of the numbers adjacent to the edge.

1

2

3

4

3

(0) 

(0) 

E2

E2

E1

E

Figure 8

Each edge of the dual graph corresponds to a quotient singularity,
of type the determinant of the edge. For the top and bottom edge it is
q1 and pm respectively.

Example 3.3. We start with a Newton polygon with two faces with
equations 3α + 2β = 12 and 3α + 4β = 21. We obtain the set of
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primitive vectors {P1 =t (3, 4), P2 =t (3, 2)}. We set as before P0 =
(0, 1) and P3 = (1, 0). We consider the cones σ2 = cone(P0, P2) and
σ′2 = cone(P2, P3). We have a toric variety U2 which is the gluing of
Uσ2 and Uσ′2 and a birational map π2 from U2 to C2 with one exceptional
divisor E2 and π2|E2 is the restriction of the morphism

C2 −→ Uσ2 −→ C2

(t1, t2) 7→ (x = t32, y = t1t
2
2)

Now we split the cone σ2 in σ1 = cone(P0, P1) and σ′1 = cone(P1, P2).
We have a toric variety U which is the gluing of Uσ1, Uσ′1 and Uσ′2 and

a birational map π from U to C2 with two exceptional divisors E1 and
E2 intersecting each other. The restriction of π to E2 is the restriction
of π2 to E2. The restriction of π to E1 is the restriction to E1 of the
morphism

C2 −→ Uσ1 −→ C2

(t1, t2) 7→ (x = t32, y = t1t
4
2)

The toric variety U is singular with 3 quotient singularities.
We represent the two exceptional divisors by two vertices with an

edge connecting them since they intersect. We represent the lines D1
2

on Uσ1 and D
′2
3 on Uσ′2 by an arrow decorated with (0). They are not

exceptional divisors.

3.2. Resolution of germs of plane curves. Let us begin by an
example:

Example 3.4. Consider the germ

f(x, y) = x3 − y2

The Newton polygon of f has one face with equation 2α + 3β =
6. We consider the two cones σ = cone(t(0, 1),t (2, 3)) and σ′ =
cone(t(2, 3),t (1, 0)). The gluing of Uσ and Uσ′ gives a toric variety
U and a birational morphism from U to C2. There is one exceptional
divisor E1 and the restriction of π on E1 is given by the restriction of
the morphism

C2 −→ Uσ −→ C2

(t1, t2) 7→ (x = t22, y = t1t
3
2)

We have

f(t22, t1t
3
2) = t62(1− t21)

which means

π∗f = C̃ + 6E(P1)
19



where C̃ is the proper transform which intersects transversally the di-
visor E1 in one point and is smooth.

The Newton tree associated to this germ is

(0)

(6)

2

3

(0)

Figure 9

The vertex represents the divisor E1. It is decorated with (6) which
is the multiplicity of f on this divisor. The numbers 2 and 3 represent
the quotient singularities in Uσ and Uσ′, and the arrow represents the
strict transform of C.

Let f be a given complex analytic function of two variables defined
on an open neighborhood of the origin such that f(0, 0) = 0.

We can consider the Newton polygon of f . Let S ∈ N (f). Assume
the line supporting S has equation pα + qβ = N , then we associate
to S the vector t(p, q). Then to N (f), we associate {P1, · · · , Pm}. It
gives us a simplicial cone subdivision Σ of N+. Then we can associate
a toric variety U and a birational morphism π : U → C2 such that
π−1(0) = ∪i=mi=1 E(Pi). Notice that if we forget about the decorations
of the arrows and of the vertices, the graph associated to the Newton
polygon of f is the graph dual to the divisor π−1(0) with two arrows
decorated with (0) at the top and the bottom.

Let infS = cxaSybS
∏kS

l=1(xq − µlyp)νl . The exceptional divisor inter-

sects the proper transform C̃ at kS points. Let C̃l be the union of the
components of C̃ which pass through (µl, 0). The divisor π∗f is given
by

π∗f =
m∑
i=1

ki∑
l=1

C̃i,l +
m−1∑
i=0

NiE(Pi).

If the germ is non degenerate, the components of the proper transform
are smooth and transversal to the E(Pi). And the vertices of Newton
tree of f represent the E(Pi) and the arrows not decorated with (0)
represent the components of C̃.
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If the germ is degenerate: Now if C̃l is not smooth or doesn’t in-
tersect transversally with E(P ), we consider (µl, 0) as the origin in C2

identifying E(P ) with E1. If Π∗(p,q,µl)(f) is not in good coordinates,

we perform a change of variables which leaves E(P ) fixed. We con-
sider the Newton polygon of fΠ(p,q,µl)

and the corresponding morphism
π1 : U1 → U . And we do the process again until we get the strict
transform of C, smooth and transverse to the exceptionnal divisor.

Now recall the following (cf. [13],[26]).

Definition 3.5. A toroidal variety is a pair (X,B) where X is an
algebraic variety and B a Zariski closed subset such that for any x ∈ X
there exist a toric variety (Vx, Dx) with a fixed 0-dimensional orbit x′

and neighbourhoods Ux, Ux′ in complex analytic topology of x and x′

respectively in X and Vx such that (Ux, Ux ∩B) = (Ux′ , Dx ∩ Ux′).

With his we have the following:

Theorem 3.6. There exists a toroidal variety U and a birational mor-
phism π : U → (C2, 0) such that

π∗f =
∑

C̃n +
∑

NmEm

such that the strict transforms of f are smooth, this divisor has normal
crossing and the Newton tree of f is the dual graph of this divisor and
the Nm are the decorations of the corresponding vertices. The singular-
ities of U are on the intersections of the divisors Em, they are quotient
singularities given by the edge determinant of the corresponding edge
in the Newton tree. In particular U (and the Newton tree) determine
the dual graph of smooth resolution via standard resolution of cyclic
quotient singularities of U

Proof. Let Ū be the variety obtained after the final step iteration of
toric blow ups corresponding to subdivisions of the first quadrant cor-
responding to the Newton diagrams and changes to good systems of
coordinates at the points intersection of the proper preimage of the
zero set of the power series which singularitiy get resolved with the ex-
ceptional set of the toric blow up. Let ∪Em be the union of the proper
preimages of the exceptional sets of all iterations. For each step, the
toric blow up preserves toric structure, but good change of coordinates
may destroy toric structure only at the smooth point of an exceptional
curve at which this coordinate change is made. Denote them P and
EP respectively. Toric blow up at P , produces toric variety with re-
spect to the toric structure in the new coordinate system. The proper
preimage of EP intersects the exceptional set of the toric blow up at
P at smooth point. The boundary divisor consists of two smooth at
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this point, curves (i.e. the proper preimage of EP and the exceptional
curve) and hence has obvious toric structure. �

Remark 3.7. The variety Ū together with the uniformization of sets
Uσ providing the cover of Ū also has the canonical structure of orbifold
(cf. [1]) or stack. The resulting orbifold is not a global quotient in gen-
eral. This provides the alternative category in which one has canonical
resolution of singularities of f

Remark 3.8. In the next section we shall consider the problem of
extendability of 2-forms on the abelian covers zmii = fi where fi are
irreducible components of a germ f = 0 (cf. 4.1). After pull back this
abelian cover on Ū the problem becomes about holomorphic extention
of forms on resolution of singularities of the abelian cover of Ū ram-
ified over the exceptional set of Ū . Since singularities of Ū are cyclic
quotients with exceptional curves near such singularity forming at most
two orbits in resolution, one adds to exceptional curves of Ū only curves
intersected by at most two other components of exceptional set i.e. res-
olution of quotient singularities does not add “rupture” curves. Such
components in smooth resolution do not add restrictions on extendabil-
ity (cf. [5]) Hence extendability of forms on abelian covers enough to
check only on the exceptional curves which appear on Ū .

We shall finish this section with calculation in terms of the Newton
tree of the multiplicities of the pull back on the canonical resolution
Ū of holomorphic on C2 2-form. If v is a vertex on the Newton tree,
denote by νv = multEπ

∗(dx ∧ dy), if E is the divisor corresponding to
v.

Proposition 3.9. (1) If the vertex v corresponds to a face of the
Newton polygon of f and is decorated by (q, p) then νv = p+ q.

(2) If the vertex v with nearby decorations (q, p) has preceding vertex
v0 with nearby decorations (q0, p0), then νv = νv0p + δ, where
δ = q − pp0q0.

Proof. We can compute the differential using the Newton map.
Consider the Newton map:

x = xp1µ
p′

k , y = xq1(y1 + µq
′

k )

Then

dx = pxp−1
1 µp

′

k dx1, dy = qxq−1
1 (y1 + µq

′

k )dx1 + xq1dy1

Then

dx ∧ dy = pxp+q−1
1 µp

′

k dx1 ∧ dy1
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which proves the first part of the proposition and

xνv−1dx ∧ dy = pxνvp+δ−1
1 µp

′

k dx1 ∧ dy1

because the Newton map is in this case

x = xp1µ
p′

k , y = xq1(y1 + µq
′

k )

�

4. Polytopes of quasi-adjunction

In this section, we will show how to compute explicitly polytopes of
quasi-adjunction using Newton trees.

We first recall some definitions and results concerning polytopes of
quasi-adjunction [5].

4.1. Ideals and polytopes of quasi-adjunction. Let B be a small
ball about the origin in C2 and let C be a germ of a plane curve having
at 0 a singularity with r branches . Let f1(x, y) · · · fr(x, y) = 0 be
a local equation of this curve (each fi is assumed to be irreducible).
An abelian cover of type (m1, · · · ,mr) of ∂B is the link of complete
intersection surface singularity

(1) Vm1,··· ,mr : zm1
1 = f1(x, y), · · · , zmrr = fr(x, y)

The covering map is given by p : (z1, · · · , zr, x, y)→ (x, y).
An ideal of quasi-adjunction of type (j1, · · · , jr|m1, · · · ,mr) is the

ideal in the local ring of the singularity of C consisting of germs φ such
that the 2-form:

(2) ωφ =
φzj11 · · · zjrr dx ∧ dy
zm1−1

1 · · · zmr−1
r

extends to a holomorphic form on a resolution of the singularity of
Vm1,··· ,mr .

Let
U = {(x1, · · · , xr) ∈ Rr, 0 ≤ xi < 1}

be the unit cube with coordinates corresponding to f1, · · · , fr. Consider
an ideal of quasi-adjunction A. There is a unique polytope P(A) open-
subset in U such that: For (m1, · · · ,mr) ∈ Zr and (j1, · · · , jr) ∈ Zr
with 0 ≤ ji < mi, 1 ≤ i ≤ r

A ⊆ A(j1, ..., jr|m1, ...,mr)⇔ (
j1 + 1

m1

, · · · jr + 1

mr

) ∈ P(A)

A face of quasi-adjunction is a face of the boundary of the polytope
P(A). It follows that it can be characterized as follows. Let Ei be the

exceptional curves of an embedded resolution π : C̃2 → C2 of f1·...·fr =
23



0. Let Ni,k = multEkπ
∗(fi) be the multiplicity of pullback of fi to C̃2,

νk = multEkπ
∗(dx∧ dy) and for a germ φ ∈ OO, ek(φ) = multEkπ

∗(φ).
Then the face of quasi-adjunction containing ℘ = ( j1+1

m1
, ..., jr+1

mr
) ∈ U

is the face α of the boundary of the set of points satisfying:

(3)
∑
i

Ni,kxi >
∑
i

Ni,k − ek(φ)− νk − 1

for all φ in the ideal of quasi-adjunction A(j1, .., jr|m1, ...,mr) (and
such that ℘ ∈ α). In particular for (j′1, ..., j

′
r|m′1, ...,m′r) for which

the corresponding point satisfies (3) the form ωφ extends over all Ei.
However for (j′1, ..., j

′
r|m′1, ...,m′r) on the face itself there exist φ in the

ideal of quasi-adjunction for which ωφ has pole on one of the exceptional
curves.

4.2. Computation of faces of quasi-adjunction. Let f1, · · · , fr a
collection of irreducible germs. We consider the Newton tree associated
to f1f2 · · · fr. Denote by V the set of vertices of the Newton tree. To
each v ∈ V we associate the linear form

(4) lv(s) =
∑
i

Nv,i(si − 1) + νv

where Nv,i is the intersection multiplicity of fi with a curvette Cv and
νv is computed by Proposition 3.9.

Theorem 4.1. (1) Let φ be a germ, then the polytope of quasi-
adjunction associated to φ is defined by the set of inequalities

lv(s) > −ev(φ)

for all v ∈ V, where ev(φ) is the intersection multiplicity of φ
with a curvette Cv.

(2) For all v ∈ V there exist φ and a face of the polytope of quasi-
adjunction associated to φ with equation

lv(s) = −ev(φ)

.

The first part of the theorem is a consequence of the discussion of
part 3 which says that there is a bijection between the vertices of the
Newton tree and the rupture divisors in a resolution, and Proposition
3.1 of [5], which says that we only need those divisors to compute the
polytopes of quasi-adjunction.

The proof of the second part will occupy the remain of the section.
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4.2.1. The case r=1. As we have seen in [5], the polytopes of quasi-
adjunction c (which in this case are called the constant of quasi-adjunction)
are such that 1 − c is an exponent between 0 and 1. We will recover
Saito’s theorem. We will compute exponents instead of constants of
quasi-adjunction.

Let f be an irreducible germ. Its Newton tree is as Figure 10.

(0)

q

p

q1

p1

q2

p2

qr

pr

(0)

(0) (0) (0)

Figure 10

We denote (q, p) = (q0, p0), the decorations of the first vertex. We
assume q0 > p0. We denote δi = qi − pipi−1qi−1.

We have indexed the vertices from 0 to r. The first part of theorem
4.1 says that the constant of quasi-adjunction associated to φ is given
by 1− ε(φ) where

ε(φ) = min
i=0,··· ,r

νi + ei(φ)

piqi
∏r

i+1 pj
.

We denote by

εi(φ) =
νi + ei(φ)

piqi
∏r

i+1 pj
and we call it the invariant of the vertex vi associated to φ.

We will define a set of φ which gives all the exponents and such that
the invariant along the horizontal path is decreasing to the minimum
and then increasing. We need some technical lemma.

Lemma 4.2. For i from 0 to r, we have

piqi − νi > 0

Proof. For i = 0, we have p0q0 − ν0 = p0q0 − p0 − q0 > 0 since p0 ≥ 2.
Assume that piqi − νi > 0.

pi+1qi+1 − νi+1 = pi+1(qipipi+1 + δi+1)− (νipi+1 + δi+1)

pi+1qi+1 − νi+1 = pi+1(piqipi+1 − νi) + (pi+1 − 1)δi+1 > piqi − νi > 0
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Definition 4.3. We consider irreducible germs C ′0, C0, C1, · · · , Cr with
Newton trees as in Figure 11.

r

q

p

q1

p1

q2

p2

qr

pr

C’0

C0
C1 C2 C

Figure 11

We define

φ = C
′a
0 C

b
0C

c1
1 · · ·Ccr

r

We assume

∀i, 1 ≤ i ≤ r, 0 ≤ ci < pi

Define

A0 = ap0 + bq0

Ai+1 = Aipi+1 + ci+1qi+1, i = 0, · · · r − 1

Lemma 4.4. For i from 0 to r − 1, we have

εi(φ)− εi+1(φ) =
δi+1

qiqi+1

∏r
i pj

(νi − piqi + Ai)

Proof.

νiqi+1 − νi+1piqi = νi(piqipi+1 + δi+1)− (νipi+1 + δi+1)piqi

νiqi+1 − νi+1piqi = δi+1(νi − piqi)
We have to compute qi+1ei(φ)− piqiei+1(φ).

ei(φ) = (ap0+bq0)
i∏
1

pj+q1c1

i∏
2

pj+· · ·+qici+piqi(ci+1+· · ·+cr
r−1∏
i+1

pj)

ei+1(φ) = (ap0 + bq0)
i+1∏

1

pj + q1c1

i+1∏
2

pj + · · ·+ qicipi+1 + qi+1ci+1
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+pi+1qi+1(ci+2 + · · ·+ cr

r−1∏
i+2

pj)

Then
qi+1ei(φ)− piqiei+1(φ) = δi+1Ai

�

Lemma 4.5. If Ai0 < pi0qi0 − νi0, then ∀i, i0 ≤ i ≤ r, Ai < piqi − νi.

Proof. Assume Ai < piqi − νi.
Ai+1 = Aipi+1 + ci+1qi+1 < (piqi − νi)pi+1 + qi+1(pi+1 − 1) =

qi+1 − νi+1 + pi+1qi+1 − qi+1 = pi+1qi+1 − νi+1

�

Next proposition will be used in all the remain of the article.

Proposition 4.6. Let φ be as in definition 4.3. Then

ε(φ) = εi0(φ)

where i0 is such that for 0 ≤ i < i0, Ai > piqi−νi and Ai0 < pi0qi0−νi0 .
Moreover, the sequence εi(φ) is decreasing for i ≤ i0 and increasing for
i ≥ i0.

Proof. If, for 0 ≤ i ≤ i0 − 1, we have Ai > piqi − νi, then

εi(φ) > εi+1(φ)

Then for 0 ≤ i ≤ i0 − 1
εi(φ) > εi0(φ)

We have for i0 ≤ i ≤ r, Ai < piqi − νi and

εi(φ) < εi+1(φ)

�

M. Saito [23] has proven the following

Theorem 4.7. Let f be an irreducible plane singularity with Newton
tree as in Figure 10

Then the exponents between 0 and 1 are given by the following for-
mula

ei(k1, k2, k3) =
1∏r
i+1 pj

(
k1

pi
+
k2

qi
) +

k3∏r
i+1 pj

where 0 < k1 < pi, 0 < k2 < qi,
k1
pi

+ k2
qi
< 1, 0 ≤ k3 <

∏r
i+1 pj for

0 ≤ i ≤ r.

We prove that
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Proposition 4.8. For each i and k1, k2, k3, there exists φ as in propo-
sition 4.6 such that ei(k1, k2, k3) = εi(φ) = ε(φ).

Proof. We have to prove that for each i, 0 ≤ i ≤ r and for each
(k1, k2, k3) there exists φ such that

1∏r
i+1 pj

(
k1

pi
+
k2

qi
) +

k3∏r
i+1 pj

= εi(φ)

and

εi(φ) = ε(φ)

We can write

νi = qi − pi(pi−1qi−1 − νi−1)

ei(φ) = αipi + βiqi + γipiqi

Then

νi + ei(φ)

piqi
∏r

i+1 pj
=

1∏r
i+1 pj

(
βi + 1

pi
+
αi − pi−1qi−1 + νi−1

qi
+ γi)

Let

αi = pi−1qi−1 − νi−1 + k2, βi = k1 − 1, γi = k3.

We have

αipi + βiqi = k2pi + k1qi − νi < piqi − νi
Now we show that we can find (a, b, c1, · · · , cr) with 0 ≤ ci < pi for

1 ≤ i ≤ r, such that

φ = C
′a
0 C

b
0C

c1
1 · · ·Ccr

r .

We have 0 ≤ k3 <
∏r

i+1 pj, then we can write

γi = ci+1 + ci+2pi+1 + · · ·+ crpi+1 · · · pr−1

with 0 ≤ cl < pl for i+ 1 ≤ l ≤ r.
We will show that there exists (a, b, c1, · · · , ci) positive integers such

that αi = Ai and we set βi = ci < pi. We need the following

Lemma 4.9. Let p, q positive integers prime to each other. Let a be
a positive integer a = pq + k with −p − q < k. Then there exist
0 ≤ n, 0 ≤ m < p such that a = np+mq.

Proof. Choose a pair (n,m) ∈ Z2 such that a = np + mq. One can
choose m such that 0 ≤ m < p. If a = pq + k with k > −p − q then
n ≥ 0. �

Lemma 4.10. For 0 ≤ i ≤ r, we have νi ≤ pi + qi.
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Proof. For i = 0, we have ν0 = p0 + q0. For 0 < i,

νi = νi−1pi+δi−1 = νi−1pi+qi−pi−1qi−1pi = (νi−1−pi−1qi−1)pi+qi ≤ pi+qi

�

We have
αi = pi−1qi−1 − νi−1 + k2.

with k2 ≥ 0. Then the equation αi = αi,1pi−1 + βi,1qi−1 admits a
solution in positive integers with βi−1 < pi−1.

We have
αi,1 > pi−2qi−2 − νi−2

Since
αi,1pi−1 + βi,1qi−1 > pi−1qi−1 − νi−1

αi,1pi−1 > (pi−1 − βi,1)qi−1 − νi−1

αi,1pi−1 > (pi−1 − βi,1)(pi−2qi−2pi−1 + δi−1)− (νi−2pi−1 + δi−1)

αi,1pi−1 > (pi−1 − βi,1 − 1)δi−1 + (pi−2qi−2 − νi−2)pi−1

Then we can write

αi,1 = αi,2pi−2 + βi,2qi−2

with 0 ≤ βi,2 < pi−2 and αi,2 > pi−3qi−3 − νi−3.
We define αi = Ai−1, βi = ci, αi,1 = Ai−2, βi,1 = ci−1 · · ·αi,i−1 =

A0, βi,i−1 = c1. We have A0 > p0q0 − ν0 and we write A0 = ap0 + bq0.
�

Remark 4.11. (1) The last proposition prove that the numbers ei(k1, k2, k3)
are exponents between 0 and 1. Then the bounds for k1, k2, k3

imply that they are all the exponents between 0 and 1 and then
we have a new proof of Saito theorem.

(2) We have

min
i

νi
piqi

∏
i+1 pj

=
ν0

p0q0

∏
1 pj

= ε0(1) = ε(1).

This is the minimum of the exponents and is called the log-
canonical threshold.

(3) For all i 6= 0 1− νi
piqi

∏
i+1 pj

= 1− εi(1) is an exponent. In fact

we can write

piqi
∏
i+1

pj−qi+pi(pi−1qi−1−νi−1) = qi(pi−1)+pi(pi−1qi−1−νi−1)+piqi(
∏
i+1

pj−1)

This is not true that for any φ the minimum νi+ei(φ)
piqi

∏
i+1 pj

is

an exponent and 1 − νl+el(φ)
plql

∏
l+1 pj

is an exponent for l 6= i. One

example is given by (p0, q0) = (2, 3), (p1, q1) = (2, 13), (p2, q2) =
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(2, 53) and φ = C1C2. We have 23/24 < 50/52 < 102/106,
23/24 is an exponent, but 2/52 and 4/106 are not. This remark
is connected to the monodromy conjecture and the recent work
of Nemethi and Veys [20].

We can show that for each vertex there is an exponent obtained by
this vertex and no other.

Proposition 4.12. For each i, there exist φ such that εi(φ) = ε(φ) and
for all φ′ and j 6= i, ε(φ) 6= εj(φ

′).

To prove this result we need some lemma.

Lemma 4.13. For all j > i, and all k < i, we have

1∏
i+1 pl

(
1

pi
+

1

qi
) 6= 1∏

j+1 pl
(
k1

pj
+
k2

qj
+ k3)

and
1∏
i+1 pl

(
1

pi
+

1

qi
) 6= 1∏

k+1 pl
(
k1

pk
+
k2

qk
+ k3)

Proof. Assume that there exists (k1, k2, k3) such that

1∏
i+1 pl

(
1

pi
+

1

qi
) =

1∏
j+1 pl

(
k1

pj
+
k2

qj
+ k3)

that is
1∏j
i+1 pl

(
1

pi
+

1

qi
) = (

k1

pj
+
k2

qj
+ k3)

We have k1
pj

+ k2
qj

+ k3 ≥ 1
pj

and 1∏j
i+1 pl

( 1
pi

+ 1
qi

) < 1
pj

. Then the first

assertion is proved.
Assume that there exists (k1, k2, k3) such that

1∏
i+1 pl

(
1

pi
+

1

qi
) =

1∏
k+1 pl

(
k1

pk
+
k2

qk
+ k3),

that is
1

pi
+

1

qi
=

1∏i
k+1 pl

(
k1

pk
+
k2

qk
+ k3).

On the left hand side, the denominator is piqi. On the right hand side,
the denominator is a divisor of qk

∏i
k pl. But piqi > qk

∏i
k pl. The

second assertion is proved. �

Now we can prove proposition
30



Proof. Consider a vertex of the Newton tree v decorated with (pi, qi).
Consider the exponent 1∏

i+1 pl
( 1
pi

+ 1
qi

). We found a φ such that

1∏
i+1 pl

(
1

pi
+

1

qi
) =

νi + ei(φ)

piqi
∏

i+1 pl
<

νj + ej(φ)

pjqj
∏

j+1 pl

for j 6= i. Assume there exits m 6= i and φ′ such that

1∏
i+1 pl

(
1

pi
+

1

qi
) =

νm + em(φ′)

pmqm
∏

m+1 pl
<

νj + ej(φ
′)

pjqj
∏

j+1 pl

for j 6= m. Since νm+em(φ′)
pmqm

∏
m+1 pl

is 1 − c with c a constant of quasi-

adjunction, it is an exponent and so can be written 1∏
j+1 pl

(k1
pj

+ k2
qj

+k3).

This is not possible using the previous lemma. Then the exponent
1∏
i+1 pl

( 1
pi

+ 1
qi

) is given by the vertex v and no other.

�

4.2.2. Induction step. We want to prove the theorem by induction. We
need the following proposition.

Proposition 4.14. The intersection of the polytopes of quasi-adjunction
of f1 · · · fr with the hyperplane s1 = 1 are the polytopes of quasi-
adjunction of f2 · · · fr.

Proof. The polytopes of quasi-adjunction of f1 · · · fr are given by in-
equalities

r∑
i

Nv,i(si − 1) + νv + ev(φ) > 0

where v runs over all the vertices of the Newton tree of f1 · · · fr. We
have to show that when s1 = 1 we only need inequalities with v running
over the vertices of the Newton tree of f2 · · · fr.

To delete f1 we cut an horizontal edge e arising from a vertex v. We
have two cases. Either the edge e ends by an arrow and we do not
delete any vertices except eventually v, or we delete a line of vertices.
We study this case.

Let v and v′ be the two vertices ending e. If we cut e the vertex v′

is deleted. We prove that the inequality
r∑
2

Nv,i(si − 1) + νv + ev(φ) > 0

implies
r∑
2

Nv′,i(si − 1) + νv′ + ev′(φ) > 0
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1

v

q

p

q’

p’

v’

f

Figure 12

The vertex v is decorated with (q, p) (neither one on e) and the vertex v′

is decorated with (q′, p′) (with q′ on e), we denote by δ = q′− pqp′ > 0.
We have, for i 6= 1, Nv′,i = p′Nv,i, νv′ = νvp

′ + δ, and we can write

ev(φ) = a+ βbpq + cpq, ev′(φ) = ap′ + αbp′ + cq′

r∑
2

Nv′,i(si − 1) + νv′ + ev′(φ)

= (
r∑
2

Nv,i(si − 1) + νv + ev(φ))p′ + p′b(α− βpq) + (c+ 1)δ

>
r∑
2

Nv,i(si − 1) + νv + ev(φ)

for all φ. The same computation shows that if v′′ is the vertex attached
to v′ on the Newton tree of f1, we have the inequality

r∑
2

Nv′,i(si − 1) + νv′ + ev′(φ) > 0

implies
r∑
2

Nv′′,i(si − 1) + νv′′ + ev′′(φ) > 0

Now if v is not a vertex on the Newton tree of f2 · · · fr the inequality
corresponding to v is not needed from Proposition 3.1 in [5].

�

Now we can prove the theorem. We use induction on the number r
of irreducible branches. It is true for r = 1. Assume it is true for any
set of r − 1 of irreducible functions. Consider f1, · · · fr. We consider
the intersection of the polytopes of quasi-adjunction of f1 · · · fr with
the hyperplane s1 = 1. This gives the polytopes of quasi-adjunction of
f2 · · · fr. Then all the vertices on the Newton tree of f2 · · · fr contribute.
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If we have all the vertices of f1 · · · fr we are done. Otherwise we consider
all the possible choices of r − 1 functions amongst f1, · · · , fr. All the
vertices of the Newton tree of f1 · · · fr will appear except in the two
cases:

(1) r = 2 and v is decorated with (q, 1)
(2) r = 3 and v is decorated with (1, 1).

4.2.3. Exceptional cases. The rest of the section is devoted to the proof
of these particular cases.

We have to consider those cases separately.
Case I.1
This is the case where v is connected by an edge to the arrows rep-

resenting f1 and f2.
We consider first the case where we have only one vertex.

(0)

q

(0)

Figure 13

The log canonical threshold is q(s1 − 1) + q(s2 − 1) + q + 1 > 0.

(0)

qr

pr

q

(0)

Figure 14

The polytopes of quasi-adjunction are given by the following inequal-
ities:

q0p0

∏r
1 pj(s1 − 1) +q0p0

∏r
1 pj(s2 − 1) +ν0 +e0(φ) > 0

...
qrpr(s1 − 1) +qrpr(s2 − 1) +νr +er(φ) > 0
q(s1 − 1) +q(s2 − 1) +ν +e(φ) > 0

All the hyperplanes defined by the equality are parallel.
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If we could erase the last inequality, we would have the inequalities
defining the polytopes of quasi-adjunction in the case the two germs
separate on the vertex decorated with (qr, pr) (Figure 15).

(0)

qr

pr

(0)

Figure 15

But we know that the number of intersections of the polytopes of
quasi-adjunction with the line s1 = s2 inside the cube is the Milnor
number. The Milnor numbers of the two singularities differ by q−prqr.
Then we need all the inequalities.

Example 4.15. (see Figure 16)

2

3

2

13

2
2

53 107

C’
0

C
0

C
1

C

Figure 16

The polytopes of quasi-adjunction are given by

24(s1 − 1) + 24(s2 − 1) + 5 + e0(φ) > 0
52(s1 − 1) + 52(s2 − 1) + 11 + e1(φ) > 0

106(s1 − 1) + 106(s2 − 1) + 23 + e2(φ) > 0
107(s1 − 1) + 107(s2 − 1) + 24 + e(φ) > 0

We take φ = C ′0C1C2 and the corresponding face of quasi-adjunction is
given by

107(s1 − 1) + 107(s2 − 1) + 111 = 0

Case I.2
We first consider the following case (see Figure 17).
We consider φ = 1.
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(0)

(0)

(0) (0)

q

q0

p0

f1

f

Figure 17

We have the set of following inequalities to compute the log-canonical
wall.

q
∏r

0 pj(s1 − 1) +q(s2 − 1) +ν > 0
q0p0

∏r
1 pj(s1 − 1) +qp0(s2 − 1) +ν0 > 0

qipi
∏r

i+1 pj(s1 − 1) +q
∏i

0 pj(s2 − 1) +νi > 0

Since we have for all i from 0 to r − 1,

1− νi
piqi

∏
i+1 pj

> 1− νi+1

pi+1qi+1

∏
i+2 pj

and

1− νi

q
∏i

0 pj
> 1− νi+1

q
∏i+1

0 pj

the inequality q0p0

∏r
1 pj(s1 − 1) + qp0(s2 − 1) + ν0 > 0 implies the

inequalities qipi
∏r

i+1 pj(s1 − 1) + q
∏i

0 pj(s2 − 1) + νi > 0 for i from 1
to r. We are left with the two inequalities

q
∏r

0 pj(s1 − 1) +q(s2 − 1) +ν > 0
q0p0

∏r
1 pj(s1 − 1) +qp0(s2 − 1) +ν0 > 0

We compute the intersection of the two lines q
∏r

0 pj(s1 − 1) + q(s2 −
1) + ν = 0 and q0p0

∏r
1 pj(s1 − 1) + qp0(s2 − 1) + ν0 = 0, which is

(s1 = 1− 1∏r
0 pj
, s2 = 1− 1

q
), which means that the log-canonical wall is

a breaking line and that the equation q
∏r

0 pj(s1−1)+q(s2−1)+ν = 0
does occur.

Now we consider (see Figure 18)
We chose φ as in proposition 4.6 such that

max
j

(1− νj + ej(φ)

pjqj
∏

j+1 pl
) = 1− 1∏

i+2 pl
(

1

qi+1

+
1

pi+1

)

That means that with the notation of Definition 4.3 we have φ =
C
′a
0 C

b
0C

c1
1 · · ·C

ci
i , ei(φ) = Ai = piqi − νi + 1.
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(0)

qi

pi

q

qi+1
pi+1

(0)

Figure 18

We have to consider

qjpj
∏

j+1 pl(s1 − 1) + qjpj
∏i

j+1 pl(s2 − 1) + νj + ej(φ) > 0, j < i
qipi

∏
i+1 pl(s1 − 1) + qipi(s2 − 1) + νi + ei(φ) > 0

q
∏

i+1 pl(s1 − 1) + q(s2 − 1) + ν + e(φ) > 0
qi+1pi+1

∏
i+2 pl(s1 − 1) + qpi+1(s2 − 1) + νi+1 + ei+1(φ) > 0

qjpj
∏

j+1 pl(s1 − 1) + q
∏j

i+1 pl(s2 − 1) + νj + ej(φ) > 0, j > i+ 1

Since, for j ≥ i+ 1

1− νj + ej(φ)

pjqj
∏

j+1 pl
> 1− νj+1 + ej+1(φ)

pj+1qj+1

∏
j+2 pl

and

1− νj + ej(φ)

q
∏j

i+1 pl
> 1− νj+1 + ej+1(φ)

q
∏j+1

i+1 pl
,

because νj+1 + ej+1(φ)− (νj + ej(φ))pj+1 = δj+1. Then the inequality
qi+1pi+1

∏
i+2 pl(s1− 1) + qpi+1(s2− 1) + νi+1 + ei+1(φ) > 0 implies the

inequalities qjpj
∏

j+1 pl(s1−1) + q
∏j

i+1 pl(s2−1) +νj + ej(φ) > 0, j >
i+ 1.

We have, for j ≤ i,

1− νj + ej(φ)

pjqj
∏r

j+1 pl
> 1− νj−1 + ej−1(φ)

pj−1qj−1

∏r
j pl

1− νj + ej(φ)

pjqj
∏i

j+1 pl
> 1− νj−1 + ej−1(φ)

pj−1qj−1

∏i
j pl

Then the inequality qipi
∏

i+1 pl(s1 − 1) + qipi(s2 − 1) + νi + ei(φ) > 0

implies the inequalities qjpj
∏

j+1 pl(s1−1)+qjpj
∏i

j+1 pl(s2−1)+νj +

ej(φ) > 0, j < i.
Then we are left with the inequalities

qipi
∏

i+1 pl(s1 − 1) + qipi(s2 − 1) + νi + ei(φ) > 0
q
∏

i+1 pl(s1 − 1) + q(s2 − 1) + ν + e(φ) > 0
qi+1pi+1

∏
i+2 pl(s1 − 1) + qpi+1(s2 − 1) + νi+1 + ei+1(φ) > 0
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The second one implies the first one. In fact since ei(φ) = piqi−νi+1 =
e(φ), we have

1− νi + ei(φ)

piqi
∏r

i+1 pl
< 1− ν + e(φ)

q
∏r

i+1 pl

1− νi + ei(φ)

piqi
< 1− ν + e(φ)

q

Then finally we have to consider two inequalities

q
∏

i+1 pl(s1 − 1) + q(s2 − 1) + ν + e(φ) > 0
qi+1pi+1

∏
i+2 pl(s1 − 1) + qpi+1(s2 − 1) + νi+1 + ei+1(φ) > 0

The intersection point of the lines q
∏

i+1 pl(s1− 1) + q(s2− 1) + ν +
e(φ) = 0 and qi+1pi+1

∏
i+2 pl(s1−1)+qpi+1(s2−1)+νi+1 +ei+1(φ) = 0

is (s1 = 1 − 1∏r
i+1 pj

, s2 = 1 − 1
q
). Then we have a polytope of quasi-

adjunction with a broken line as face and the inequality q
∏

i+1 pl(s1−
1) + q(s2 − 1) + ν + e(φ) = 0 does occur.

Example 4.16. (see Figure 19)

2

(0)

(0)

(0) (0)

3

2

7

15
2

61

Figure 19

We have a face of quasi-adjunction given by

28(s1 − 1) + 7(s2 − 1) + 8 > 0, 60(s1 − 1) + 14(s2 − 1) + 17 > 0

Case I.3 (See Figure 20)
The log-canonical wall is given by the equations

q
∏r1

0 p1
l (s1 − 1) +q

∏r2

0 p2
l (s2 − 1) +ν > 0

p1
0q

1
0

∏r1

1 p1
l (s1 − 1) +qp1

0

∏r2

0 p2
l (s2 − 1) +ν1

0 > 0

p1
jq

1
j

∏r1

j+1 p
1
l (s1 − 1) +q

∏j
0 p

1
l

∏r2

0 p2
l (s2 − 1) +ν1

j > 0, 0 < j < r1

qp2
0

∏r1

0 p1
l (s1 − 1) +p2

0q
2
0

∏r2

1 p2
l (s2 − 1) +ν2

0 > 0

q
∏k

0 p
2
l

∏r1

0 p1
l (s1 − 1) +p2

kq
2
k

∏r2

k+1 p
2
l (s2 − 1) +ν2

k > 0, 0 < k < r2
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p0
2
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(0)

(0)

(0)

(0)

(0)

Figure 20

We have

1−
ν1
j

p1
jq

1
j

∏
j+1 p

1
l

> 1−
ν1
j+1

p1
j+1q

1
j+1

∏
j+2 p

1
l

and

1−
ν1
j

q
∏j

0 p
1
l

∏r2

0 p2
l

> 1−
ν1
j+1

q
∏j+1

0 p1
l

∏r2

0 p2
l

Then we have to consider the three inequalities

q
∏r1

0 p1
l (s1 − 1) +q

∏r2

0 p2
l (s2 − 1) +ν > 0

p1
0q

1
0

∏r1

1 p1
l (s1 − 1) +qp1

0

∏r2

0 p2
l (s2 − 1) +ν1

0 > 0

qp2
0

∏r1

0 p1
l (s1 − 1) +p2

0q
2
0

∏r2

1 p2
l (s2 − 1) +ν2

0 > 0

We show that the three lines

(0) q
∏r1

0 p1
l (s1 − 1) +q

∏r2

0 p2
l (s2 − 1) +ν = 0

(1) p1
0q

1
0

∏r1

1 p1
l (s1 − 1) +qp1

0

∏r2

0 p2
l (s2 − 1) +ν1

0 = 0

(2) qp2
0

∏r1

0 p1
l (s1 − 1) +p2

0q
2
0

∏r2

1 p2
l (s2 − 1) +ν2

0 = 0

constitute the log-canonical wall.
We have

1− ν1
0

p1
0q

1
0

∏r1

1 p1
l

> 1− ν

q
∏r1

0 p1
l

Then the intersection of the line (1) with the line {s2 = 1} is greater
than the intersection of the line (0) with {s2 = 1}. The same for the
intersection of (2) and {s1 = 1}.

Now we show that the intersection of the lines (1) and (2) is on the
same side of the line (0) than the origin. The intersection of (1) and
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(2)

(1)(0)

Figure 21

(2) is given by

(q1
0q

2
0 − q2p1

0p
2
0)

r1∏
0

p1
l (s1 − 1) + ν1

0q
2
0 − ν2

0qp
1
0 = 0

(q1
0q

2
0 − q2p1

0p
2
0)

r2∏
0

p2
l (s2 − 1) + ν2

0q
1
0 − ν1

0qp
2
0 = 0

We have

(q1
0q

2
0 − q2p1

0p
2
0) = q(δ1p2

0 + δ2p1
0) + δ1δ2

ν1
0q

2
0 − ν2

0qp
1
0 = q(δ1p2

0 − δ2p1
0) + δ1δ2 + νp1

0δ
2

A simple computation gives the result.
Then the log canonical wall is given by the three lines

(0) q
∏r1

0 p1
l (s1 − 1) +q

∏r2

0 p2
l (s2 − 1) +ν = 0

(1) p1
0q

1
0

∏r1

1 p1
l (s1 − 1) +qp1

0

∏r2

0 p2
l (s2 − 1) +ν1

0 = 0

(2) qp2
0

∏r1

0 p1
l (s1 − 1) +p2

0q
2
0

∏r2

1 p2
l (s2 − 1) +ν2

0 = 0

and the first vertex does occur.

Example 4.17. (see Figure 22)
The log-canonical wall is given by the three inequalities

4(s1 − 1) + 4(s2 − 1) + 2 > 0
10(s1 − 1) + 8(s2 − 1) + 5 > 0
8(s1 − 1) + 10(s2 − 1) + 5 > 0

Now we study the case where the separation occurs as in Figure 23.
We consider φ such that

1− 1∏r1

i+2 p
1
l

(
1

q1
i+1

+
1

p1
i+1

) = 1−
ν1
i+1 + e1

i+1(φ)

q1
i+1p

1
i+1

∏r1

i+2 p
1
l
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(0)

(0)

f1
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is max0≤j≤r1 1− ν1j+e1j (φ)

q1j p
1
j

∏r1

j+1 p
1
l

and

1− 1∏r2

i+2 p
2
l

(
1

q2
i+1

+
1

p2
i+2

) = 1−
ν2
i+1 + e2

i+1(φ)

q2
i+1p

2
i+1

∏r2

i+2 p
2
l

is max0≤j≤r2 1− ν2j+e2j (φ)

q2j p
2
j

∏r2

j+1 p
2
l

.

This can be achieve with φ = C
′a
0 C

b
0 · · ·C

ci
i with Ai = piqi − νi + 1

with notations of 4.6.
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We have to consider the inequalities

qjpj
∏r1

j+1 p
1
l (s1 − 1) + qjpj

∏r2

j+1 p
2
l (s2 − 1) + νj + ej(φ) > 0, 0 ≤ j < i

qipi
∏r1

i+1 p
1
l (s1 − 1) + qipi

∏r2

i+1 p
2
l (s2 − 1) + νi + ei(φ) > 0

q
∏r1

i+1 p
1
l (s1 − 1) + q

∏r2

i+1 p
2
l (s2 − 1) + ν + e(φ) > 0

q1
i+1p

1
i+1

∏r1

i+2 p
1
l (s1 − 1) + qp1

i+1

∏r2

i+1 p
2
l (s2 − 1) + ν1

i+1 + e1
i+1(φ) > 0

qp2
i+1

∏r1

i+1 p
1
l (s1 − 1) + q2

i+1p
2
i+1

∏r2

i+2 p
2
l (s2 − 1) + ν2

i+1 + e2
i+1(φ) > 0

q1
np

1
n

∏r1

n+1 p
1
l (s1 − 1) + q

∏n
i+1 p

1
l

∏r2

i+1 p
2
l (s2 − 1) + ν1

n + e1
n(φ) > 0, i+ 1 < n ≤ r1

q
∏m

i+1 p
2
l

∏r1

i+1 p
1
l (s1 − 1) + qmp

2
m

∏r2

m+1 p
2
l (s2 − 1) + ν2

m + e2
m(φ) > 0, i+ 1 < m ≤ r2

where for 0 ≤ j < i pj = p1
j = p2

j and qj = q1
j = q2

j .
As before, we don’t need the two last sets of inequalities.
We have

1− νj + ej(φ)

qjpj
∏r1

j+1 p
1
l

> 1− νj−1 + ej−1(φ)

qj−1pj−1

∏r1

j p
1
l

and

1− νj + ej(φ)

qjpj
∏r2

j+1 p
2
l

> 1− νj−1 + ej−1(φ)

qj−1pj−1

∏r2
j p

2
l

Then we don’t need either the first set of inequalities. We are left
with

qipi
∏r1

i+1 p
1
l (s1 − 1) + qipi

∏r2

i+1 p
2
l (s2 − 1) + νi + ei(φ) > 0

q
∏r1

i+1 p
1
l (s1 − 1) + q

∏r2

i+1 p
2
l (s2 − 1) + ν + e(φ) > 0

q1
i+1p

1
i+1

∏r1

i+2 p
1
l (s1 − 1) + qp1

i+1

∏r2

i+1 p
2
l (s2 − 1) + ν1

i+1 + e1
i+1(φ) > 0

qp2
i+1

∏r1

i+1 p
1
l (s1 − 1) + q2

i+1p
2
i+1

∏r2

i+2 p
2
l (s2 − 1) + ν2

i+1 + e2
i+1(φ) > 0

We show that we don’t need the first inequality and that the three
last give a polytope of quasi-adjunction. Then the second inequality
does occur.

We have

1− νi + ei(φ)

qipi
∏r1

i+1 p
1
l

< 1− ν + e(φ)

q
∏r1

i+1 p
1
l

1− νi + ei(φ)

qipi
∏r2

i+1 p
2
l

< 1− ν + e(φ)

q
∏r2

i+1 p
2
l

then the second inequality implies the first one.
We consider

(0)q
∏r1

i+1 p
1
l (s1 − 1) + q

∏r2

i+1 p
2
l (s2 − 1) + ν + e(φ) = 0

(1)q1
i+1p

1
i+1

∏r1

i+2 p
1
l (s1 − 1) + qp1

i+1

∏r2

i+1 p
2
l (s2 − 1) + ν1

i+1 + e1
i+1(φ) = 0

(2)qp2
i+1

∏r1

i+1 p
1
l (s1 − 1) + q2

i+1p
2
i+1

∏r2

i+2 p
2
l (s2 − 1) + ν2

i+1 + e2
i+1(φ) = 0
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As before, we show that the abscissa of the intersection of line (1)
with {s2 = 1} is greater than the abscissa of the intersection of line (0)
with {s2 = 1}. In fact, we have

1− νi+1 + ei+1(φ)

qi+1pi+1

∏r1

i+2 p
1
l

> 1− ν + e(φ)

q
∏r1

i+1 p
1
l

since

(ν + e(φ))q1
i+1 − q(νi+1 + ei+1(φ)) = δ1(e(φ) + ν − q) = δ1

since e(φ) = piqi − νi + 1. Now, the intersection point of (1) and (2) is
given by

(q1
i+1q

2
i+1 − q2p1

i+1p
2
i+1)

r1∏
i+1

p1
l (s1 − 1)+

q2
i+1ν

1
i+1 − qp1

i+1ν
2
i+1) + e1

i+1(φ)q2
i+1 − e2

i+1(φ)qp1
i+1 = 0

(q1
i+1q

2
i+1 − q2p1

i+1p
2
i+1)

r2∏
i+1

p2
l (s2 − 1)+

q1
i+1ν

2
i+1 − qp2

i+1ν
1
i+1) + e2

i+1(φ)q1
i+1 − e1

i+1(φ)qp2
i+1 = 0

We have

q1
i+1q

2
i+1 − q2p1

i+1p
2
i+1 = q(δ1p2

i+1 + δ2p1
i+1) + δ1δ2

q2
i+1ν

1
i+1 − qp1

i+1ν
2
i+1) = δ1p2

i+1(ν − q) + δ2qp1
i+1 + δ1δ2

e1
i+1(φ)q2

i+1 − e2
i+1(φ)qp1

i+1 = e(φ)p1
i+1δ

2

using the fact that e(φ) = piqi−νi+1, we can show that the intersection
point of the two lines (1) and (2) is on the same side of the line (0)
than the origin.

Example 4.18. (see Figure 24)
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C’0

(0)

(0)

(0)

3

2

7

15

2

15

Figure 24
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The three inequalities give a polytope of quasi-adjunction.

14(s1 − 1) + 14(s2 − 1) + 8 > 0
30(s1 − 1) + 28(s2 − 1) + 17 > 0
28(s1 − 1) + 30(s2 − 1) + 17 > 0

Then Case I is proved
Case II
We study the case where r = 3 and the three germs are connected

by a vertex decorated by (1, 1).

(0)

q1
1

p1
1

q1
2

p1
2

q1
3

p1
3

(0)

(0)

(0)

(0)

Figure 25

We compute the log-canonical wall. We have to consider the follow-
ing inequalities.∏r1

1 p1
l (s1 − 1) +

∏r2

1 p2
l (s2 − 1) +

∏r3

1 p3
l (s3 − 1) + 2 > 0

q1
1p

1
1

∏r1

2 p1
l (s1 − 1) + p1

1

∏r2

1 p2
l (s2 − 1) + p1

1

∏r3

1 p3
l (s3 − 1) + ν1

1 > 0

p2
1

∏r1

1 p1
l (s1 − 1) + q2

1p
2
1

∏r2

2 p2
l (s2 − 1) + p2

1

∏r3

1 p3
l (s3 − 1) + ν2

1 > 0

p3
1

∏r1

1 p1
l (s1 − 1) + p3

1

∏r2

1 p2
l (s2 − 1) + q3

1p
3
1

∏r3

2 p3
l (s3 − 1) + ν3

1 > 0

q1
i p

1
i

∏r1

i+1 p
1
l (s1 − 1) +

∏i
1 p

1
l

∏r2

1 p2
l (s2 − 1) +

∏i
1 p

1
l

∏r3

1 p3
l (s3 − 1) + ν1

i > 0, 2 ≤ i ≤ r1∏j
1 p

2
l

∏r1

1 p1
l (s1 − 1) + q2

jp
2
j

∏r2

j+1 p
2
l (s2 − 1) +

∏j
1 p

2
l

∏r3

1 p3
l (s3 − 1) + ν2

j > 0, 2 ≤ j ≤ r2∏k
1 p

3
l

∏r1

1 p1
l (s1 − 1) +

∏k
1 p

3
l

∏r2

1 p2
l (s2 − 1) + q3

kp
3
k

∏r3

k+1 p
3
l (s3 − 1) + ν3

k > 0, 2 ≤ k ≤ r3

It is easy to check that the three last sets of inequality do not contribute
to the log-canonical wall. We show that the four remaining inequalities
all contribute to the log-canonical wall. Let

(0)
∏r1

1 p1
l (s1 − 1) +

∏r2

1 p2
l (s2 − 1) +

∏r3

1 p3
l (s3 − 1) + 2 = 0

(1)q1
1p

1
1

∏r1

2 p1
l (s1 − 1) + p1

1

∏r2

1 p2
l (s2 − 1) + p1

1

∏r3

1 p3
l (s3 − 1) + ν1

1 = 0

(2)p2
1

∏r1

1 p1
l (s1 − 1) + q2

1p
2
1

∏r2

2 p2
l (s2 − 1) + p2

1

∏r3

1 p3
l (s3 − 1) + ν2

1 = 0

(3)p3
1

∏r1

1 p1
l (s1 − 1) + p3

1

∏r2

1 p2
l (s2 − 1) + q3

1p
3
1

∏r3

2 p3
l (s3 − 1) + ν3

1 = 0
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We consider the intersection of the planes (0), (1), (2) with {s3 = 1}. It
is easy to verify that the trace of the log-canonical wall is given by (1)
and (2) and that the the three lines intersect. Then the first inequality
does occur in the log-canonical wall.

(2)

(0) (1)

Figure 26

Figure 27

We have finished the proof of Theorem 4.1 (see Figure 27).

4.3. Computation of the log-canonical wall.

Definition 4.19. The Newton nest of a Newton tree is the set of
vertices v whose set of preceding vertices Sv is empty or satisfies, for
all v′ ∈ Sv with nearby decorations (q′, p′) either p′ = 1 or q′ = 1.

Remark 4.20. The Newton nest of a Newton tree doesn’t depend on
the system of coordinates since for all vertex in the Newton tree there
exists a system of coordinates such that this vertex is on the Newton
polygon. Note that there doesn’t exist in general a system of coordinates
such that all vertices are on the Newton polygon.
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Example 4.21. (see figure 28)
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Figure 28

In this example all vertices of the Newton tree belong to the Newton
nest of the Newton tree. On the right hand side of the figure we show
the Newton tree in a different system of coordinates.

Theorem 4.22. (1) The log-canonical wall is given by the set of
inequalities ∑

Ni,v(si − 1) + νv > 0

where v runs through the Newton nest of f1 · · · fr.
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(2) For each v in the Newton nest of f1 · · · fr there exists a face of
the log canonical wall with equation∑

Ni,v(si − 1) + νv = 0

Corollary 4.23. The product of
∑
Ni,v(si− 1) + νv where v runs over

the Newton nest divides all polynomials in the Bernstein ideal.

The corollary is a consequence of Theorem 4.22 and [5].

Proof. The log-canonical wall is given by the inequalities∑
Ni,v(si − 1) + νv > 0

where v runs through all the vertices of the Newton tree. We first prove
that if v doesn’t belong to the Newton nest, then the corresponding
inequality is implied by the inequalities with v in the Newton nest. A
vertex doesn’t belong to the Newton nest if its set of preceding vertices
Sv is not empty and if there exists v′ ∈ Sv with nearby decorations
(q′, p′) with p′ > 1 and q′ > 1. Let v with nearby decorations (q, p)
be a vertex not in the Newton nest, {v0, · · · , vk, v} its set of preceding
vertices. Let j be the biggest index such that the nearby decorations
of vj are (qj, pj) with pj > 1 and qj > 1.

We have

q = qkp+ δ1, qk = qk−1 + δ2, · · · qj+1 = qjpj + δk−j+1

Then q = qjpjp+ δ1 + p(δ2 + · · ·+ δk−j+1 = qjpjp+ ∆.

νv = νvkp+ δ1, νvk = νvk−1
+ δ2, · · · , νvj−1

= νvj + δk−j+1, νv = νvjp+ ∆

We have
νvqjpj − νvjq = ∆(pjqj − νj)

Consider 1 ≤ i ≤ r. We have 3 cases: The intersection of the path
between vj and the arrow representing fi and the path between vj and
v is

(1) empty
(2) is the path between vj and v
(3) is a non empty part of the path between vj and v

(1) In this case, we have Ni,v = pNi,vj , νv > νvjp. Then νv
Ni,v

>
νvj
Ni,vj

.

(2) In this case, we have Ni,vjq = pjqjNv and since pj > 1 and

qj > 1, pjqj − νj > 0 we deduce that νv
Ni,v

>
νvj
Ni,vj

.

(3) We denote by V the vertex where fi separates from the path
between vj and v. We assume that V has nearby decorations
(Q,P ). We denote by vl−1 the preceding vertex of V . We have
Ni,vj = pjqjPN and Ni,v = pQN .
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We have qP − Qp > 0, then pjqjNi,v < qNi,vj . Finally νv
Ni,v

>
νvj
Ni,vj

.

Then we have proved that the inequality for v is implied by the in-
equality for vj.

Now we have to prove that indeed all inequalities for v in the Newton
nest occur in the log-canonical wall. We use induction on r. The trace
of the log-canonical wall on the hyperplane {s1 = 1} is the log-canonical
wall of f2, · · · , fr.

If r = 1, the Newton nest consists in one vertex, the first one. Then
the result is proved in this case. Assume that it is true for r − 1.
Consider f1, · · · , fr. The Newton nest of f1 · · · fr is the union of the
Newton nests of f1 · · · fi−1fi+1 · · · fr for all i except in the exceptional
cases. But we already proved that in these cases the log canonical wall
is given by the Newton nest. �

Example 4.24.

f1 = y2 − x5, f2 = x4 − y3

The inequalities to be satisfied are

10s1 + 8s2 > 11− (5a+ 2b) (8s1 + 12s2 > 13− (4a+ 3b)

for all (a, b) ∈ N2.
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There are three pairs of half faces of quasi-adjunction given as the
boundary of the sets

10s1 + 8s2 ≥ 11, 8s1 + 12s2 ≥ 13

10s1 + 8s2 ≥ 9, 8s1 + 12s2 ≥ 10

10s1 + 8s2 ≥ 7, 8s1 + 12s2 ≥ 7

The other faces of quasi-adjunction are:

10s1 + 8s2 = 5, 10s1 + 8s2 = 3, 10s1 + 8s2 = 1

8s1+12s2 = 9, 8s1+12s2 = 6, 8s1+12s2 = 5, 8s1+12s2 = 3, 8s1+12s2 = 2, 8s1+12s2 = 1

Any polynomial in the Bernstein ideal Bf1,f2 is divisible by

i=8∏
i=3

(10s1+8s2+2i+1)(8s1+12s2+7)(8s1+12s2+10)(8s1+12s2+11)(8s1+12s2+13)

(8s1+12s2+14)(8s1+12s2+15)(8s1+12s2+17)(8s1+12s2+18)(8s1+12s2+19)

Example 4.25. The following example is degenerate.

f1 = (x3 − y4), f2 = ((x2 − y3)2 + x3y2)

The log canonical wall is given by the two inequalities:

12s1 + 8s2 > 15 16s1 + 12s2 > 21

There are two interesting features to notice in this example.
First we have a polytope of quasi-adjunction given by the three in-

equalities
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Figure 31
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12s1 + 8s2 > 13 26s1 + 16s2 > 27 16s1 + 12s2 > 18

Second, we have a polytope of quasi-adjunction given by

16s1 + 12s2 > 17 26s1 + 16s2 > 25

which shows that the set of vertices given a polytope of quasi-adjunction
is not always connected in the Newton tree.
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5. Distribution of constant and polytopes of
quasi-adjunction

Shokurov made the conjecture and prove it in dimension two, that
the set of log canonical thresholds satisfy the ACC condition. This
means that there are no strictly increasing sequences of log canonical
thresholds. More over it is proven also that the set of limits of strictly
decreasing sequences of log canonical thresholds is the set {0, 1/n}, n ∈
N.

One can ask the question for other constant of quasi-adjunction. We
can answer this question for the constants of quasi-adjunction associ-
ated to φ = xαyβ.

Let f be any germ in C[[x, y]]. Consider its Newton tree, and denote
by V the set of vertices of its Newton tree. Then the constant of quasi-
adjunction of f associated to φ is

min
v∈V

νv + ev(φ)

Nv

If φ = 1, i.e. α = β = 0, it is the log canonical threshold.
First, we will give an example of a sequence of f ’s and φ for which

the sequence of constants of quasi-adjunction is increasing.

Example 5.1. Consider a germ with the following Newton tree.

2

(0)

(0) (0)

q0

2

4q0 +9

Figure 33

Let φ = y2. Then the associated constant of quasi-adjunction is

min{2 + 3q0

4q0

,
13 + 6q0

18 + 8q0

} =
13 + 6q0

18 + 8q0

When q0 goes to infinity 13+6q0
18+8q0

is an increasing sequence which con-

verges to 3
4
.

In [18], it is proven that the Ascending Chain Condition holds for
LCT-polytopes, that is that all increasing chain of LCT-polytopes is
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eventually stationary. We give an example to show that it is no more
true for the polytopes of quasi-adjunction associated to a φ 6= 1.

Example 5.2. We consider the germ with two irreducible components
whose Newton tree is the following.
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2
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2

13

2
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Figure 34

We take φ = y2. we have the four inequalities

(1) 12(s1 − 1)+ 8(s2 − 1) > −9
(2) 26(s1 − 1)+ 16(s2 − 1) > −19
(3) 8(s1 − 1)+ 4q(s2 − 1) > −(2 + 3q)
(4) 16(s1 − 1)+ 2(4q + 9)(s2 − 1) > −(13 + 6q)

The polytope of quasi-adjunction is given by the three lines

(1) 12(s1 − 1)+ 8(s2 − 1) = −9
(2) 26(s1 − 1)+ 16(s2 − 1) = −19
(4) 16(s1 − 1)+ 2(4q + 9)(s2 − 1) = −(13 + 6q)

When q goes to infinity, the two first lines are fixed and the third one
tends to the line s2 = 1/4. Then we have a non stationary increasing
sequence of polytopes.

Proposition 5.3. Consider a germ f ∈ C[[x, y]]. Assume that the
nearby decorations of the vertex connected by an edge to the upper
arrow are (q0, p0) and that q0 goes to infinity. Then the constant of
quasi-adjunction associated to φ = xαyβ tends to β+1

n
, where n is the

multiplicity of f .

Remark 5.4. We retrieve the result for the log canonical threshold
that is when α = 0, β = 0 the limit is 1

n
proven by [12].
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Proof. Let V be the set of vertices of the Newton tree. We have to
consider

min
V

νv + ev(φ)

Nv

We will show that for all v ∈ V , νv+ev(φ)
Nv

tends to β
n

when q0 goes to
infinity.

We prove the result by induction on the number of successive vertical
lines of the Newton tree.

Consider a vertex on the first vertical line.
For each vertex vi of the first vertical line, we define by ni the sum

of the products of the numbers adjacent to the paths containing the
horizontal edges issued from vi, between vi and the arrows. We have

n =
∑
i

pjnj

We have

νi + ei(φ) = (α + 1)pi + (β + 1)qi
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and

Ni = qi

r∑
i

pjnj + pi

i−1∑
1

qjnj

We denote by δi the edge determinant between vi−1 and vi. We can
write

qj = q0pj/p0 + fj(δ, p)

where fj depends only on the δ’s and p’s. We have q1p0 − q0p1 = δ1.
Then q1 = q0p1/p0 + δ1/p0. Assume qj = q0pj/p0 + fj(δ, p). We have
qj+1pj−qjpj+1 = δj+1, then qj+1 = q0pj+1/p0 +fj(δ, p)pj+1/pj+δj+1/pj,
then qj+1 = q0pj+1/pj + fj+1(δ, p). We can write

Ni = q0pi/p0

r∑
i

pjnj + pi

i−1∑
1

(q0pj/p0 + fj(δ, p))nj

Ni = q0pi/p0n+ pi

i−1∑
1

fj(δ, p)nj

νi + ei(φ) = (α + 1)pi + (β + 1)(q0pi/p0 + fi(δ, p)

Then the assertion is proved for every vertex on the first vertical line.
We assume now that the assertion is true for all the vertices of the

k-th vertical line.
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We consider a vertex v on the k-th vertical line and we assume that
for this vertex

lim
q0→∞

ν + e(φ)

N
=
β + 1

n
Consider a vertex vi on a k + 1-th vertical line issued from v. We

have
νi + ei(φ) = νpi + δ′i + e(φ)pi

where δ′i = qi − qppi. We can write

N = N ′ + pq
r∑
1

pjnj

Then

Ni = N ′pi + pi

i−1∑
1

qjnj + qi

r∑
i

pjnj

Ni = N ′pi + pi

i−1∑
1

(qppj + δ′j)nj + (qppi + δ′i)
r∑
i

pjnj

Ni = piN + pi

i−1∑
1

δ′jnj + δ′i

r∑
i

pjnj

Then
νi + ei(φ)

Ni

=
(ν + e(φ))pi + δ′i

piN + pi
∑i−1

1 δ′jnj + δ′i
∑r

i pjnj
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Then the result is proved. �
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