REAL SPECTRA OF QUANTUM GROUPS
JAKOB CIMPRIC

ABSTRACT. The only noncommutative ring for which the real spec-
trum has been computed so far is the quantum affine ring R, [z, y],
see [19]. The aim of this paper is to describe the real spectra of
quantum affine rings kq[21, . . ., z,] where k is a formally real affine
R-algebra and q € M,,(R"). As a by-product we compute the real
spectra of quantized enveloping algebra U, (sl2(R)) and quantum
special linear group O,(SL2(R)). Formal reality and semireality is
characterized for the following classes of quantum groups: quan-
tum affine rings, quantized enveloping algebras, quantized function
algebras, quantized Weyl algebras.

1. INTRODUCTION

Let R be a ring. A subset P C R is an ordering if P- P C P,
P+PC P, PU—P=Rand PN—P is a prime ideal of R. The set of
all orderings of R is denoted by SperR and called the real spectrum of
R. The rings with nonempty real spectrum are called semireal rings.
The study of real spectra of noncommutative semireal rings is called
the noncommutative real algebraic geometry. The pioneering work in
this field has been done by Murray Marshall and his school, [15, 19, 20].

The mapping supp : SperR — SpecR defined by supp(P) = PN —P
is called the support. Prime ideals in the image of supp are called real
prime tdeals. They are always completely prime. If J is a real prime
ideal of R then the image and preimage of the canonical projection
R — R/J give a one-to-one correspondence between orderings of R
with support J and orderings of R/J with support zero. If R is a
Noetherian ring then R/J has a skew field of fractions Fract(R/J). In
this case, we also have a one-to-one correspondence between support
zero orderings of R/J and orderings of Fract(R/J). The problem of
computing the real spectrum of a Noetherian semireal ring R therefore
consists of two subproblems:

(1) Compute the real prime ideals of R.
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(2) For every real prime ideal J of R compute all orderings of
Fract(R/J).

Example. If R is the ring of all polynomial functions on a real
algebraic variety V' C R”, then its real prime ideals are in a one-to-one
correspondence with subvarieties of V. The description of orderings
of rational function fields of subvarieties of V' consists of the following
steps:

(1) Since every rational function field L is a finitely generated ex-
tension of R, it can be written as an algebraic extension of a
field F' which is a purely trancendental extension of R with a
finite trancendence degree.

(2) Orderings of F' are computed in [14].

(3) Orderings of Fract(R/J) can be computed in principle by the
general ramification theory of algebraic extensions.

A unital ring R is formally real if it has a support zero ordering.
Every formally real ring is a domain. A simple ring is formally real if
and only if it is semireal.

2. QUANTUM AFFINE SPACES

Let k£ be commutative unital ring, £* its set of invertible elements
n a nonnegative integer and q = (¢;;) € M, (k™) multiplicatively anti-
symmetric (i.e. ¢; = 1 and g;;q;; = 1 for every i,5 = 1,...,n). The
quantum affine space kqgz1,...,x,] is the k-algebra on n generators
Ti,...,T, with n? relations z;z; = gjz;x;. If k is a domain, then
kqlx1, .. .,2,] is an Ore domain. Its skew field of quotients is called
the quantum Weyl field kq(z1, . .., 7,). We denote by kq[zi', ..., 2]
the localization kq[z1,. .., Tnlsy,.zn C kq(Z1,...,2,). When n =2 we
write kg, [21, 22| instead of kqlz1, 22].

Proposition 1. The quantum affine space kq(x1, ..., y,] is semireal if
and only if the ring k is semareal. It is formally real if and only if k
has a support zero ordering such that q;; > 0 for all 1,5 =1,...,n.

Proof. A unital subring of a semireal ring is always semireal. In
particular if kq[z1, ..., z,] is semireal, then k is semireal, too. A ring
which has a unital homomorphism into a semireal ring is semireal. In
particular, sending ;1 — 0, ..., z, — 0 we get a unital ring homomor-
phism ¢ : kq[z1,...,2,] — k. If k£ is semireal, then kq[xq,...,x,] is
semireal, too.
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If kg[z1,...,2,] has a support zero ordering, then for every i,;j =
1,...,n the element z;x; and z;x; have the same sign. It follows that
gij > 0. Clearly, k has a support zero ordering, too.

Assume now that £ has a support zero ordering such that ¢;; > 0

for all 4,57 = 1,...,n. Every nonzero element z € kq[x1,...,2,] can be
written uniquely as z = 2221 ciM; where ¢; #0fori=1,...,r and M;
are standard monomials in x,...,x, such that M; < ... < M, with
respect to lexicographic ordering. Writing z > 0 if and only if ¢, > 0
defines a support zero ordering on kq[z1, .. ., T,]. O

The following two propositions are variants of [6], Theorem 2.1 and
(2], Theoreme I.1.

Proposition 2. Let k be a commutative domain with a support zero
ordering P and q an n x n matriz such that ¢;; € P* := PN k> for
every i,j =1,...,n. Write R = kg[z7" ..., 2.

There exists a natural number 0 < r < n and integers k;;, 1, =
1,...,n such that the elements t; := xlfjl 28" have the following

properties:
(1) t1,...,t, belong to the center of R,
(2) If lyy1,. .-y 1ln € Z and ti’j{---tﬁ{” belongs to the center of R,
then l,;1 =...=1,=0.
(3) R = Kpltri1,t 1,y tasty'] where K = K[ty t7% ... b, ;]
and p is an (n —r) X (n — r) matriz with entries from P*.

Proof. Let us define a mapping
S 7" — (P)".

Q(in, .y in) = (@) - iy G- G)-
Note that ® is a group homomorphism from the additive abelian group

Z" into the multiplicative abelian group (P*)". Write N(®) for its
kernel.

Claim: P* has no roots of 1.

Take any x € P* which is a root of 1. If 22 = 1, then either z = 1
or x = —1. The second case is not possible, because P is an ordering.
If 2™ = 1 for some odd m then either z = 1 or 0 = 2(z™ ! + 2™ 2 +
oz 41) = (2™ Y22 (a2 322 4 4 (p41)2+ 1, which
is not possible because P is an ordering.

Claim: N(®) has a direct complement in Z".
By Corollary 28.3 in [5], it suffices to prove that N(¢) is a pure
subgroup of Z™. If m - (iy,...,i,) € N(®), then for every j =1,...,n
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we have that (q;'-l1 > q;’;l)m = 1. By the previous paragraph it follows
that g7 - - q;’;l =1 for every j =1,...,n. Hence, (i1,...,i,) € N(®).

Let k1, ..., k, be a basis of N(¢) and k.1, ..., k, a basis of a direct

complement. For every 7 =1,...,n write
tj = i -akin - where (kji, ..., ki) = k;.

Assertion 3. of the proposition follows from the fact that kq,...,k, is
a basis of Z". '
If (i1,...,%,) € N(®), then for every j =1,...,n. z; -2} - alr =

i1 in 01 i R T MO i, i}
g gnal -l -z = af xyr - xj. It follows that z] Tl is

central. Assertion 1 now follows from the definition of ¢,...,t,.
! k k .
The element ¢, 1] -+t = (z77 ™" gy Pl o (gt ghen )l g

. Kot11lt 1+ thnil Kt 1,nlrp1+ -t hnnl :
colinear to the element z;"*"'"*! [ A " which

belongs to the center if and only if I, 1k, 1 + ...+ l,k, € N(®). But
lri1key1 + ... + Ik, also belongs to a direct complement of N(®). It
follows that [, 1 = ... =1, = 0. This proves Assertion 2. O

An algebra is affine if it is commutative, finitely generated and has
no zero divisors. If K is formally real affine algebra and J is a real
prime ideal of K then K/J is formally real, too.

Recall the geometric description of all real prime ideals of a formally
real affine R-algebra from the introduction. Proposition 3 reduces the
computation of the real spectra of quantum affine rings over a formally
real affine algebras to the computation of support zero orderings of
quantum affine rings over (larger) formally real affine algebras.

Proposition 3. Let k be a formally real affine R-algebra. There exists
an algorithm which for every formally real quantum affine space over
k. gives all its real prime ideals.

For every formally real affine quantum ring R over k and every real
prime ideal J of R there exists a formally real affine R-algebra L and
a formally real affine quantum space S over L such the factor ring
Fract(R/J) is isomorphic to Fract(S).

Proof. Let < be an ordering on k. For every n € N write A(n) for
the set off multiplicatively antisymmetric n X n matrices over k with
positive entries.

If g € A(1), then kglz1] = k[z4] is also a formally real affine R-
algebra. Its real prime ideals are known. Their factor rings are formally
real affine R-algebras. Suppose now that we have found all real prime
ideals of all affine quantum rings corresponding to the matrices in A(n—
1) and that we know that their factor rings are as required. Pick any
matrix q € A(n) and any real prime ideal J of R = kq[z1, ..., Zy,).
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If z; € J for some 7, then J comes from a real prime ideal J' of the fac-
tor ring R/(z;) which is isomorphic to R' = kg, (21, ..., Zi—1, Tit1,- .-, Zn)
with q; the submatrix of q with i-th row and ¢-th column deleted. The
real prime ideals of R’ are known from the induction hypothesis. We
also know that R/J = R'/J' is as required.

If JN{zy,...,z,} = 0, then J extends uniquely to a real prime
ideal I of S = kg[o7',...,22!. Let t1,...,t, be as in Proposition
2. We claim that I = (I N K) - S, where K = k[t',... tF']. If
z =Y ¢ty 1y € I, where ¢; € K, then we can group the terms
of z as 2 = z1 + ... + 2, where z;-s g-commute with ¢, for paiwise
distinct g-s. By conjugating z with ¢, for j = 0,...,m we get a linear
system for zy, ..., z, with nonzero determinant which is homogeneous
modulo 7. It follows that zi,..., 2, € I. For every ¢ group the terms
of z; as z; = zj1 +. ..+ ziy, Where z;;-s g-commute with ¢, for pairwise
distinct g-s. As above, it follows that z;; € I for all 7, 5. We can do
the same with #,43,...,%,. At the end we get z = > 2, ;. , where
Ziy,...im € I is @ monomial by assertion 2 of Proposition 2.

Since I N {t,11,...,t,} = 0, it follows that ¢; € I for every i. The
claim is proved. The method of the proof will be referred to as the
conjugation trick in the sequel.

Let ¢ : S = Kpltily,...,t5] — (K/K N 1)pltle, ..., tEY] be the
natural homomorphism. Clearly, ¢ is onto. Its kernel is the ideal
(I N K)S which is equal to I by the claim above. Since R/J = S/I,
it follows that Fract(R/J) is isomorphic to the Fract(Lp[t 11, ..., tn]),
where L = K/K N1 is a formally real affine R-algebra.

Example. Let A = Rt],[x1,22] with ¢ € R". The method from
Proposition 3 gives the complete list of real prime ideals of A and their
factor domains.

o J=(0), A/J = A.

o J=(x1), A/J = R[t, 5]

o J=(13), A/J ZRt, z1].

o J=(t—a) (aeR), A/J = R,[x1,xs).

o J = (z1,9(t,x2)) (g(t,z2) irreducible with real zero), A/J =
R[t, 2]/ (g(t,22)). If g has degree zero in xs, then g(t,z5) =

t — «, for some o € R and A/J = Rzs]. If g has degree > 1 in
T9, then A/J is an algebraic extension of R[t].

o J = (x9, f(t,21)) (f(t,21) irreducible with real zero), A/J
R[t, z1]/(f(t,z1)). If f has degree zero in xq, then f(t,z1) =
t — a for some o € R and A/J = R[z4]. If f has degree > 1 in
x1, then A/J is an algebraic extension of R[t].

1%
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o J=(t—a,z1,20—1n) (,n € R), A/J =R
o J=(t—a,z1—&x9) (0, €R), A/J =R

Let P be a support zero ordering on a domain A. For any a € A write
la| = a if a € P and |a| = —a otherwise. For any a,b € A := A\ {0}
write aLb if there exist » € N such that |b| < r|a|. Since L is transitive
and reflexive it defines an equivalence relation ~ by a ~ b if and only
if aLb and bLa. Write I'p for the factor set A/ ~. Let vp : A — I'p
be the natural projection. Since aLb implies that acLbc and caLcbh it
follows that I'p has the structure of an ordered semigroup. Note that
I'p is also cancellative. It is known that vp is a valuation on A. It is
called the natural valuation of the ordering P.

Theorem 4 completes the classification of orderings of quantum affine
rings over formally real affine real algebras and with ¢;; € R*.

Theorem 4. Let K be a formally real affine R-algebra, p € Ms(R")

a matriz such that p;; = 1 and pijpj; = 1 for every i,j =1,...,s and
let R = K[z, ..., 2] be such that 2} - -+ 2% is central if and only if
Lhi=...=1,=0.

For every support zero ordering Q of K there exists a natural one-
to-one correspondence between the set Ordg(R) of all support zero or-
derings of R which extend Q) and the set Tot(I'g x Z°) x {—1,1}* where
Tot(I'g x Z°) is the set of all total orderings of the commutative semi-
group I'q x Z° which extend the natural ordering of I'g.

Proof. The most difficult part of the proof is to show that there is a
one-to-one correspondence between the set V;; of equivalence classses of
natural valuations of orderings from Ordg(R) and the set Tot(I'g x Z°*).

Claim: For every ordering P € Ordg(R), any ¢,d € K and any
iye ey is J1, ...y Js € Z we have vp(c2lt - 2%) = vp(dzlt -+ - 2¢) if and
only if vp(c) = vp(d) and (i1, ...,4s) = (ji,-- -, Js)- .

The only if part is trivial. Write y; = czi* - - - 2% and y, = dz]* - - - 2s.
Write 2 1= yoy; b = ped=2]' ™" - - - 20~% where p € R*. If 2 is central
in A, then by the assumption on R we have that i; = ji,...,i; = J,.
Since vp(z) = 0 and vp(p) = 0, it follows that vp(c) = vp(d). If z is
not central, then there exists ¢ € {z1,...,2s} such that tz # zt. We
know that tzt~! = gz for some ¢ € R, ¢ # 1. Replacing t by ¢t~ if
necessary we may assume that ¢ < 1. Since vp(q) = 0, it follows that
vp(z) = vp(tzt™1). Since vp(z) = vp(1) = 0, there exists r € Q such
that |z| < r. Tt follows that |z| = ¢!|t ‘2t!| < ¢'r for every i € N.
Hence |z| < € for every € € QF. In other words, we get vp(z) > 0, a
contradiction.
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Every element a € R can be expressed uniquely asa = ) _, ¢;2{"" - - - 20"
The claim implies that vp(a) = min; vp(c;2]"" - --2M=). In particu-
lar vp(K),vp(21), ..., vp(2) are Z-linearly independent and they span
I'p. The natural embedding of I'g into I'p identifies I'g with its image
vp(K). Hence there exists an isomorphism ¢ : I'p — I'y x Z* such
that ¢(vp(czl* ---20+)) = (vg(c),j1,---,Js). The natural ordering of
I'p defines via ¢ a total ordering F'(vp) of I'g x Z° which extends the
natural ordering of I'g. If P’ € Ordg(R) is such that vps is equivalent
to vp, then I'p = I'p and vp = vp. Hence, vp — F(vp) is a well
defined mapping from Vp to Tot(I'g x Z*).
Conversely, take any O € Tot(I'g x Z°) and define a valuation G(O)

from R to the ordered group (I'gxZ*, O) by G(O)(z:i.:1 Ciz e e ) =
ming{(vg(ci), ma, - .., m4s), @ =1,...,1}. Note that G(O) is the nat-
ural valuation of the ordering Pp := {0} U {cz® - 2% 4+ h| ¢ € Q and
G(O)(cz -+ 2%) < G(O)(h)}. Hence O — G(O) defines a mapping
from Tot(I'g x Z°*) to Vp.

Clearly, F(G(O)) = O for every O € Tot(I'g x Z*). For every
P € Ordg(R) we have G(F(vp)) = ¢ o vp, where ¢ : I'p — I'g x Z°
is the isomorphisms from above. Hence, the valuation G(F(vp)) is
equivalent to vp. Therefore, F' and G give a one-to-one correspondence
between Vg and Tot(I'g x Z*).

The sign of an element z € R with respect to an ordering P €
Ordg(R) is equal to the sign of the lowest (with respect to vp) mono-
mial of z. Therefore, P is uniquely determined by vp and the signs of
Z1,...,%s. It follows that for every v € Vj; there exists a one-to-one
correspondence between orderings P € Ordg(R) such that vp = v and
the set {—1,1}°. The one-to-one corresponcence is given explicitly by
Tot(I'g x Z°) x {—1,1}* — Ordg(R), (O,01,...,05) = Pog,,..00 =
{cit - 2o +h| col -+ 0% € Q and G(O)(c2 -+ 2¥#) < G(O)(h)}. O

Example. Let A be as in the previous example. We want to com-
pute the real spectrum of A. Note that the classification of orderings
on Fract(A/J) is known for all real prime ideals J except for J = (0).
(see [14] for R(¢, ), [19] or our Theorem 4 for R, (z1,z2), [13] or our
comments below for R(¢). The classification of orderings on an alge-
braic extension of R(x) can be obtained in principle by the extension
theory for valuations. Finally, R has exactly one ordering.)

It remains to describe orderings with zero support. For each a €
R U {oc} we define a valuation v, : R[t] \ {0} — Z: v, = —deg and
va(f(t)) = m if fD(a) = 0 fori = 0,1,...,m — 1 and f™(a) # 0.
The natural valuation of every support zero ordering on R[¢] is equal
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to one of v,. For every v,, there exist exactly two orderings with
vp = v,. Let O be an ordering on R?, which extends the natural
ordering on the first factor (this means that (1,0,0) € O) and let
a € RUoco. The valuation v, is defined by ve,0(3_; jea Tij (1) 212 ) =
ming{(ve(ri5(t)),4,7), (4,5) € A} where r;;(t) # 0 for all (4, j) € A. For
each v, o, there are exactly eight orderings with vp = v, 0.

3. QUANTIZED ENVELOPING ALGEBRAS

Let g be a complex semisimple Lie algebra. Let ® be the root system
of g and let A = {ay,...,a,} be a system of simple roots in ®. Write
d; = (i, ) /2 € {1,2 3} and a;; = (o, ) /d; € Zfor i, j =1,.

Let k£ be a field and ¢ an nonzero element of £ which is not a root of
1. Write ¢; = ¢%, [n]; = ¢ '+ ¢ +...+¢7 ", [n];! = [1)i[2]; - - - [n);,

n [n];!
)=

Then U,(g) is the associative unital £ algebra with 4n generators
E;, F;, K;, K;! subject to the following relations

KK '=K 'K,=1, KK;=K;K;,
EiK; = q; “”K E;, KF;=q, ""FK,

FiF — F;F: = by If]%fff,

Y= (O [ BTN TR ET =0, (i 9),
e e e Y e I G

Let U™ be a unital subalgebra of U,(g) generated by E;, i = 1,...,n,
U~ a unital subalgebra generated by Fj, i = 1,...,n and U° a unital
subalgebra generated by K; and K; ', i=1,...,n. Note that U and
U~ are antiisomorphic.

Proposition 5. Let k, q, g and U™ be as above. The ring UT is
semireal if and only if k is formally real. The ring U™ is formally
real if and only if k has an ordering such that ¢'®%) > 0 for every
,7=1,...,n

Proof. Since k is a unital subring of U" and there exists a unital
homomorphism ¢ : Ut — k (defined by F; — 0 for i = 1,...,n), it
follows that U™ is semireal if and only if k£ is semireal.

By example 3 in [23], Fract(U™) is a quantum Weyl field with ¢;; =
g~ BB for i, = 1,...,N. By Proposition 1, it follows that U™t is
formally real if and only if k is formally real and ¢;; > 0. O
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If £ = R, then we can compute in principle all support zero orderings
of U™ by the results from section 1. The problem of computing all real
prime ideals of U™ remains open.

Example. Assuming that U* is formally real, we will construct two
support zero orderings on U™. Let us recall briefly the construction of
the PBW basis of UT. If s;, - --s;, is the longest reduced expression
in the Weyl group W (®), then the elements 3, = s;; ---s;,,_, ()
(m =1,...,N) are different and exhaust all positive roots of ®. For
every m=1,..., N we define Eg =T, ---T; _, (E;,) where T; is the
automorphism 7}, of U™ as defined in [18], 37.1.3. By [17], the mono-
mials E? := Eg! --- Eg¥ (a = (a1,...ay) € NV) are a k-vector space
basis of U™ and by [16] we have the following g-commuting relations:
Eg, Bp, = ¢7 Eg Eg, + Zcm Byt Eg
where ¢;;, € k and a,; € N. These relatlons are homogeneous in the
sense that all terms in each of them have the same weight.

Assume now that & has an ordering such that ¢(®-®) > 0 for all 4, j =
1,...,n. Let < be the lexicographic ordering on N'. Every element
xz € UT can be written uniquely as x = Z:Zl c. E™ where ¢1,...,cs €
k and m; <jy ... <px m,. Write P = {0y u{> 5 _ ., E™| cs >
0}. The g-commuting relations imply that for any i,j € N we have
E'-E} = ¢®FE' + 0 where « is a Z-linear combination of (ay, o) and o
is a k-linear combination of monomials E¥ with k <je, i+ j. It follows
that P is a support zero ordering on U™.

For every element v = ZZ L m;oy of the root lattice we define its
level by 1(~y ) S m;. For every a = (ai,...,ay) € NV we write
l(a) = Z(Z . a;3;). Define an ordering <; of NV by a < b if and only
if either {(a) < I(b) or I(a) = I(b) and a; < by or ...or [(a) = I(b)
and a; = by and ...and ay_; = by_1; and anxy < by. Write P =
{0tu{d_aE™| m < ... <, mg and ¢, > 0}. As above, we see
that P’ is a support zero ordering on U™.

Proposition 6. Let k, q, g and U,(g) be as above. The ring U,(g) is
semireal if and only if k is formally real. The ring U,(g) is formally
real if and only if k has an ordering such that ¢'®%) > 0 for every
,j=1,....n

Proof. k is a unital subring of U,(g) and there exist a unital homomor-
phism ¢ : U,(g) — k defined by ¢(E;) = 0, ¢(F;) = 0, ¢(K;) = 1 for
i=1,...,n. If follows that U,(g) is semireal if and only if £ is. If U,(g)
has a support zero ordering, then for every 7,7 = 1,...,n the elements
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E;K; and K;E; have the same sign with respect to this ordering. It
follows that ¢~(*»%) = ¢ */ > 0 for every 4,5 =1,...,n.

Assume now that k has an ordering such that ¢(®%) > 0 for every
i, =1,...,n. Let Fg_ be the image of Eg, under the antiisomorphism
of U~ and U*. Write F® := F¥ ... F}! for every b € N¥ and K™ =
K™ ---Km™ for every m € Z". The monomials FPK™E? form a
PBW basis of U,(g). We define an ordering of PBW monomials by
FPK™E2 <« FY' K™ E2" if and only ifa <, a’ ora=a’ and b <; b’ or
a=a’ and b=Db’ and m <j, m’. We claim that the set

{0}U> e F> K™ E>| FP K™ E™ < ... < F»*K™ E* and ¢, > 0}
r=1
is a support zero ordering on U,(g). It is enough to verify that
FmeEa . Fb’Km’Ea' — quFb+b’ Km—|—m’Ea—|—a’ +o
where v € Z is a Z-linear combination of (a;, ;) and o is a k-linear
combination of smaller PBW monomials.

By [8], Lemma 1 we have that Eg, Fjs, = Fj, Es, +0 where § is a linear
combination of monomials FPK™E? with I(b) < I(8;) and I(a) <
1(B;). Tt follows that FPK™E2. P K™ pa’ = pbgm Y pagm pa’ 4 of
where o is a k-linear combination of PBW monomials F?’ K™ Fa"
with [(a") < l(a)+[(a") and I(b") < {(b)+{(b’). From the third and the
fourth defining relation of U,(g) it follows that FPK™F® FaK™ F2' =
@ FPFY Km+m papa’ where § is a Z-linear combination of (o, ;).
By the example, the last expression is equal to ¢ FPtP' mtm’' pata’ 4
0" where 7 is a Z-linear combination of (o, ;) and 0" is a k-linear
combination of smaller PBW monomials. This proves the claim. [

Not much is known about the field of fractions of U,(g). The quan-
tum Gelfand-Kirillov conjecture says that it is a quantum Weyl field.
The structure theory of the prime spectrum is very developed but a
complete description is known only in specal cases.

Example. Let ¢ € R\{0,1} and let A = U,(sl3(R)) be the R-algebra
with generators F, F, K, K ! and relations:
KK = KK =1,
KEK™' = @E, KFK-'=¢F
EF — FE = KK

g—q* -
Let J be a real prime ideal of A. If F ¢ J, then J extends to a
prime ideal of Ag. Note that A = R[C]z[K*', E*'] where C =

EF + % =FFE + % is the quantum Casimir element.
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By the example after Proposition 3, it follows that either J = (0) or
J=(C-XN,ANeR). If Ee€J, then K- K= (qg—q¢")EF -
FE) € J. It follows that either K —1 € J or K +1 € J. Since
(- VO)KF=FK—-KF=F(K+1)—(K+1)F € Jand K ¢ J, it
follows that F' € J. Hence, J = (E,F,K + 1) or J = (E,F,K —1).

The description of Sper(A) consists of a complete list of real prime
ideals and a complete list of orderings of the skew field of fractions of
each factor domain:

elf J=(E,F,K+1)or J=(E,F,K—1) then Fract(A/J) = R
has exactly one ordering.

e If J = (C — )\) where A € R then Fract(A4/J) = Rp (K, E) and
we have a four-to-one correspondence between the orderings of
R,2 (K, E) and the orderings of the abelian group Z x Z.

o If J = (0) then Fract(A/J) = R(C), (K, E) and we have an
eight-to-one correspondence between the orderings of R(C) 2 (K, E)
and the cartesian product of the set RU{oo} and the set of all
orderings of the abelian group Z x Z x Z which contain (1, 0,0).

4. QUANTIZED FUNCTION ALGEBRAS

Let g be a semisimple Lie algebra, & a field and ¢ a nonzero element
of k. For every dominant weight A, write L,(\) for the unique simple
left U,(g)-module with highest weight A and let L,(A\)* be its vector
space dual considered as a right U,(g)-module. For every dominant
weight A, every £ € L,(A)* and every m € L,()\) we define an element
cg,m € UQ(g)* by

*

cg, (a) =&(am), a € Uylg).
)

The k-subspace of U,(g)* spanned by all Cgm is called the quantized
function algebra k [G] (G is the simply connected Lie group of g.)
Many authors write O,(G) instead of k,[G].

The dual U,(g)* has an algebra structure defined by

cd(a) = Zc(a(l))c’(a@ if A(a Za ®ae

where A : U,(g) — U,(g) ® U,(g) is the comultlphcatlon of U,(g).
The counit € : Uy(g) — k plays the role of 1 in U,(g)*. It turns out
that k,[G] is a unital subalgebra of U,(g)*. The dual U,(g)* also has a
U,(g) — U,(g) bimodule structure defined by

v-c-u(a) = cluav), u,v,a € Uy(g), c € Uy(g)".

Since v - ¢},, - U = 2y, it follows that k4[G] is a subbimodule of
Uq(g)"-
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Write A, for the root lattice, A for the weight lattice and A™ for the
set of dominant weights. If A € AT then L,(\) = @,eaLy(N), where
Ly\),={me L, | K,m = ¢¥")m for all v € A, }.
and Ly(A\)* = @uen(Lg(A)*), where
(Lq(A))u = {f € Ly(N)* [ f(Lq(A),) = O for all v # p}.
If £ € (Lg(N)*), and m € Lg()),, then we sometimes write ¢}, , instead
of 2, If v,u € WA, then dim(Lg(A)*), = dim Ly()), = 1, so that
cﬁ,u is unique up to a scalar multiple.

Let aq,...,qa, be a base of the root system ®, s,...,s, the corre-
sponding reflections (s;(3) = 3 — %ai), and \i,..., )\, the corre-
2a;

sponding fundamental weights ((\;, W) = 0;;). Let wo = si, -+ - iy
be the longest reduced expression in W. Write yo = Id and y, =
Siy -+ 8, for every k = 1,...,N. The elements 1 = yo(a, ), =
y1(iy), ..., By = yn—1(ay, ) are distinct positive roots and every posi-
tive root is one of them. Write p =1 | A =137 | ;.

In section 3.3 of [1], Caldero defines elements ¢; = cq’}jo)\i’/\i, 1 =
L..oon, di = ¢y 1pyp @ = 1,...,Nand d; = ¢, 4 , 0 =
1,..., N and proves that they generate a quantum affine ring whose
skew field of fractions is isomorphic to Fract(k,[G]). One can obtain
explicit g-commutation relations between the elements ¢;, d;, d,. By
9.1.6(**) in [10], we have cxc; = ¢, for all k.1 =1,...,n. By 9.1.4(ii)
in [10], we have

dpc; = q*(ykm)\l)*(yk—lp,wo)\z)cldk’
dc; = q—(yk_1p,/\z)—(yk_1p,wo>\z)cld;c'
From (1.5.1) in [1] we obtain
did) = q(ykf1p,y171p)—(ykp,yzflp)dgdk it k> 1,
dkd; — q—(yk_1p,yz_1p)+(ykp,yz_1p)d;dk if k<1,
dyd; = q(yk_lp,yz_1p)—(ykp,yzp)dldk it k> 1,
dd = did.
All exponents of ¢ are integers. We claim that at least one of them is
odd. Let dyc; = ¢™*edy, where m(k,1) = —(yrp, \t) — (Yr—1p, Wo1).
Forevery k =1,...,N wehave ', m(k,l) = —(ykp, p)— (Yx—1p, wop).
Since yxp = yk—1p — Br and wop = —p, it follows that Y -, m(k,l) =
(Bk, p)- If k is such that fy is a short simple root, then > ) | m(k,l) = 1.

It follows that that at least one m(k,[) is odd. The following proposi-
tion is an easy consequence.
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Proposition 7. Let k be a field, g € k and G a simply connected Lie
group. The ring k(G| is semireal if and only if k is a formally real
field. The ring koG] is formally real if and only if k has an ordering
such that q¢ > 0.

Example. If k=R g >0, G = SL,(R) and R = k,[G](=
O,(SL,(R))), then Sper(R) can be completely described. The ring
R has generators a, b, ¢, d and relations

ab = gba, ac = qca, bd = qdb, cd = qdc, bc = cb,

ad — gbc = da — ¢ the =1
A prime ideal which contains a, contains also b or ¢, therefore it contains
1. So there is a one-to-one correspondence between SperR and SperR,.
But R, has generators a, b, c and relations ab = gba, ac = qca, bc = cb,
hence it is a quantum affine ring over R. If a prime ideal J contains
b, then R,/J is a factor domain of R,[a*!,c]. If b & J, every ordering
with support J extends uniquely to R, = R[t],[a*!, b*!] (t = cb™!).
The orderings Ry [a, ¢] are known and the orderings of R[t],[a, b] were
computed in section 1.

Example. It has been proved in [2], that for every prime ideal J
of k,JGL(n)], Fract(k,[GL(n)]/J) is a quantum Weyl field. If £ = R,
then in principle we can describe orderings with a given support J.
However, the classification of prime ideals of k,[GL(n)] is not known
yet.

5. QUANTIZED WEYL ALGEBRAS

Let k£ be a field @ = (q1,--.,¢n) € (K*)" and let ' = (7;;) be a mul-
tiplicatively antisymmetric n X n matrix over k. The multiparameter
quantized Weyl algebra of degree n over k is the k-algebra A9! gener-

ated by elements x1,y1, ..., Ty, ¥, subject to the following relations
Yili = YijY;Yi (all 4, 7)
Tilj = GiYij T i (2 <J)
TilYj = VjiYiTi (1 <7)
TiYj = q57iY;Ti (i >7)
ziy; = 1+ qy;z; + (@ — Dy (all j)

Proposition 8. The k-algebra R = A" has a support zero ordering
if and only if k has an ordering such that ¢; > 0 and ~;; > 0 for every
,7=1,...,n.
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The k-algebra R is semireal if and only if k is semireal and for every
m € {2,...,n} such that ¢ = q2 = ... = @1 = 1 we have v;; > 0 for
alli,7=1,...,m.

Proof. If R has a support zero ordering P then v;; € PNk for 4,5 =
1,...,n since y;y; and y;y; have the same sign. Write z; = z;y; — y;2;
for 2 = 1,...,n and note that z;y; = ¢;;2;. Since y;z; has the same
sign as z;y;, it follows that ¢; € PNk* fori=1,...,n.

If k is formally, ¢; > 0 and 7;; > 0 for all ¢, j, then

P:={0}U{X;_ ciyrt - -yirmal -zl
(ill, ... ;jln) <lex - - - <lex (i817 ... ;jsn) and Cs > 0}

is a support zero ordering of R.

Assume now that R is semireal. Clearly, k£ is semireal, too. For
every m such that ¢ = ... = ¢—1 = 1, we have z;y; = 1 + qy;7;
for 5 = 1,...,m. By definition, R has a proper real prime ideal J.
If v;; < 0 for some 7,5 = 1,...,m then it follows from vy;y; = vy,
that either y; € J or y; € J, a contradiction with z;y; = 1 + g;y;x; or
z;y; = 1+ g;y;x;. Therefore, v;; > 0 for 4,57 =1,...,m.

To prove the converse, we assume that k is semireal and for every
m € {2,...,n} such that ¢; = ¢ = ... = ¢,_1 = 1 we have 7;; > 0 for
all 4,7 = 1,...,m. If such an m does not exist, then ¢; # 1. We can
define a unital homomorphism ¢ : R — k by ¢(z1) = 1, ¢(y1) = a
and ¢(z;) = ¢(y;) = 0 for i > 1. Hence, R is semireal. If ¢y = ... =
gn = 1, then 7;; > 0 for all 4,7 = 1,...,n. In the first paragraph
we proved that R has a support zero ordering in this case. Again,

R is semireal. It remains to study the case ¢ = ... = ¢,1 = 1,
gm # 1 where m € {2,...,n}. Let S be a k-algebra with generators
T1y--vsTme1sZms Y1y -- -3 Ym_1 and defining relations

fifj = ’)/Z'jfjfi ’L,j = 1, R

Eiyj:'yjiyﬁi i=1,...,m, j=1,...,m—1,

Ty, =1+ym; j=1,....,m—1
Since 7;; > 0 for all 2,7 = 1,...,m, we can construct a support zero
ordering of S as above. This ordering extends uniquely to the local-

ization Sz,,. We have a unital homomorphism ¢ : R — Sz, defined
by

(b(fL'Z) :fia qs(yz) :yia 1= 1;"'am_1a
(b(xm) = Ty, (b(ym) = 1_1quT—nl’
d(z;) =0,  o(y;) =0, j=m+1,...,n.

Hence, R is semireal. O
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The classification of prime ideals of algebras A9 is not known. How-
everifq, #1,...,¢, # 1, then for every prime ideal J of A9 the skew
field Fract(A9"/P) is a quantum Weyl field over a finitely generated
extension of k, see [2]. Therefore, in case £ = R the computation of
the real spectrum reduces to the computation of the prime spectrum.

6. FINAL COMMENTS AND OPEN PROBLEMS

(1) The quantum Gelfand-Kirilllov conjecture says that the field of
fractions of a quantum group is always a quantum Weyl field.
If this is true then the results of this section give a classification
of support zero orderings of all quantum groups over R. See [6],
Section 2.3 for a report on the present status of this conjecture.

(2) The classification of orderings in the quantum case is much
easier than in the classical case. Find all orderings on the Weyl
algebra A;(R) = R(z,y)/(yxr —zy — 1) and U(sl3(R)), see [20].

(3) As noted by Ringel, [25], U,(g) is an iterated skew polynomial
ring so further analysis is possible. What are the best results
for minimal generation of basic semialgebraic sets?

(4) Quantum groups usually have nontrivial involutions. Can the
results of this paper be extended to *-orderings? See, [22, 21, 4].

(5) The results of this paper can probably be extended to orderings
of higher level. See [3] for the classification of orderings of higher
level on quantum polynomials. See also [24].

(6) Quantized enveloping algebras are graded by their root lattice.
Positivstellensatze for noncommutative graded rings have been
developed by Igor Klep, see [11].

(7) Is there a reasonable stratification theory for real spectra of
quantum groups? See [6].

(8) Let A and B be unital k-algebras with with support zero order-
ings which induce the same ordering on k. Is it always true that
A ®y B has a support zero ordering extending the orderings on
A and B?
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