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1. Introduction

The ramification theory of valuations was developed classically in finite extensions
of rings of algebraic integers, and for mappings of algebraic curves. In these cases, the
corresponding homomorphisms of local rings of points are ramified maps R → S of
discrete (rank 1) valuation rings, R = V and S = V ∗. These valuation rings are local
Dedekind domains. Suppose that (y) is the maximal ideal of R, (x) is the maximal
ideal of S. We have an expression

y = xeδ (1)

where δ ∈ S is a unit. If the value groups are Γ∗ ∼= Z and Γ ∼= Z we have a
natural isomorphism Γ∗/Γ ∼= Ze. This theme is developed into the beautiful theory
of ramification of discrete (rank 1) valuation rings. If R contains a field k, we observe
that R̂ → Ŝ is the finite extension R/mR[[y]] → S/mS [[x]]. Suppose that k has
characteristic zero, and let k′ be an algebraic closure of S/mS . Then we have an
action of the finite Abelian group Hom(Γ∗/Γ, (k′)×) ∼= Γ∗/Γ on Ŝ ⊗S/mS

k′, and the
invariant ring is

(
Ŝ ⊗S/mS

k′
)Γ∗/Γ ∼= R̂⊗R/mR

k′ (2)

The theory of valuation rings in arbitrary fields, and the ramification theory of
valuations was initiated by Krull.

Suppose that R is a local domain. A monoidal transform R → R1 is a birational
extension of local domains such that R1 = R[P

x ]m where P is a regular prime ideal
of R, 0 6= x ∈ P and m is a prime ideal of R[P

x ] such that m ∩R = mR. If P = mR,
R → R1 is called a quadratic transform.

If R is regular, and R → R1 is a monoidal transform, then there exists a regular
system of parameters (x1, . . . , xn) of R and r ≤ n such that

R1 = R

[
x2

x1
, . . . ,

xr

x1

]

m

.

Suppose that ν is a valuation of the quotient field R which dominates R. Then
R → R1 is a monoidal transform along ν if ν dominates R1.

Suppose that K is an algebraic function field. If K has dimension ≥ 2, then K
has non Noetherian valuation rings. However, whenever there is a sufficiently strong
theory of resolution of singularities, the valuation rings of K can be written as unions
of algebraic regular local rings with quotient field K. When k has characteristic zero,
this follows from Zariski’s Theorem on local uniformization along a valuation [21]. A
stronger version of this theorem is proven in Theorem 6.2.
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In Chapters 2 to 6, we assume K has characteristic zero. Suppose that K∗ is a
finite extension of K, V ∗ is a valuation ring of K∗.

We show in Theorem 6.1 and Theorem 6.3 that we can express V → V ∗ as V = ∪Ri,
V ∗ = ∪Si so that Ri and Si are algebraic normal local rings with quotient fields K
and K∗ respectively, Si is regular and obtained from a fixed S0 by a product of
monoidal transforms along ν, Ri has toric singularities, and Si lies above Ri. If k′ is
an algebraic closure of V ∗/mV ∗ , then there is an action of the finite Abelian group
Γ∗/Γ on Ŝi ⊗Si/mSi

k′ such that

(
Ŝi ⊗Si/mSi

k′
)Γ∗/Γ ∼= R̂i ⊗Ri/mRi

k′

and these actions are compatible with inclusion of the Si. We thus obtain the strongest
possible generalization of the classical theory of equations (1) and (2) to algebraic
function fields of arbitrary dimension and characteristic zero. Such a statement was
unanticipated by previous work. It can be viewed as a relative local uniformization
theorem.

We also interpret the invariants of ramification of valuations and of the Galois
theory of ramification of valuations, to show that they also generalize from the classical
case of local Dedekind domains in the best possible way (Theorem 5.2 and Remark
6.4).

The first author’s proof of the “Weak simultaneous resolution conjecture” is the
main step in this construction. Abhyankar’s “Weak simultaneous resolution local
conjecture” (page 144 [6]), asserts that if we start with an algebraic regular local ring
S∗ with quotient field K∗ which is dominated by V ∗, then there exists a sequence of
monoidal transforms S∗ → S along V ∗ (blowups of regular primes, localized at the
center of V ∗) such that there exists an algebraic normal local ring R with quotient field
K such that S lies above R. Abhyankar has proven this theorem for two dimensional
function fields in all characteristics. It is a key step in his proof of resolution of
singularities of surface singularities in char ≥ 0. We have proven in [11] that the
“Weak simultaneous resolution local conjecture” is true in function fields of arbitrary
dimension and characteristic 0. We prove a stronger version of the Weak simultaneous
resolution local conjecture in Theorem 4.2. This theorem is a corollary of the local
monomialization theorem of [10]. The subtlety of the conjecture can be understood
by the fact that the “Global weak simultaneous local conjecture” (page 144 [6]) is
false, even in characteristic zero [12].

Suppose that k is a field of characteristic zero, S∗ is an algebraic regular local ring
with quotient field K∗ which is dominated by V ∗ and R∗ is an algebraic regular local
ring with quotient field K which is dominated by S∗. The local monomialization
theorem [10] proves that there then exist sequences of monoidal transforms R∗ → R0

and S∗ → S such that V ∗ dominates S, S dominates R0 and there are regular
parameters (x1, ...., xn) in R0, (y1, ..., yn) in S, units δ1, . . . , δn ∈ S and a matrix
A = (aij) of nonnegative integers such that det(A) 6= 0 and

x1 = ya11
1 · · · ya1n

n δ1

...
xn = yan1

1 · · · yann
n δn.

The difficulty in obtaining this result is to achieve the condition det(A) 6= 0.
A refinement of this Theorem is possible, giving a description of A depending on

invariants of V ∗, which we call Strong Monomialization. This is proven in Theorem
4.8. A further refinement is obtained in Theorem 4.9. Theorem 4.9 is necessary to
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prove Theorems 6.1 and 6.3.

Several hard facts make it difficult to extend the classical theory of equations
(1) and (2) to algebraic function fields of positive characteristic. First, the local
uniformization theorem has been proven sofar in characteristic p > 0 only when K
has dimension two ([1]), and when K has dimension three and p 6= 2, 3, 5 ([5]). Also,
equation (2) implies that the induced inclusion of function fields

QF
(
R̂⊗R/mR

k′
)
⊂ QF

(
Ŝ ⊗S/mS

k′
)

is cyclic Galois, whereas it need not even be Galois in positive characteristic (examples
2.1.5 and 2.1.6 [8]). Moreover, even in the Galois case, the local inertia group of (2) is
not in general Abelian (example 2.1.7 [8]). In particular, it is not in general isomorphic
to Γ∗/Γ.

In Chapter 7 we study the ramification in surfaces over a field of positive character-
istic. Most of this chapter is devoted to getting a right formulation of (1) in dimension
two. Suppose that K∗/K is a finite, separable extension of two dimensional algebraic
function fields, over an algebraically closed field k of characteristic p > 0. Suppose
that V ∗ is a valuation ring of K∗ and V = V ∗ ∩K. Let Γ∗ be the value group of V ∗,
Γ be the value group of V . We further consider a birational extension of algebraic
regular local rings R → S where R has quotient field K, S has quotient field K∗, and
V ∗ dominates R and S.

In Theorem 7.3, we prove that Strong Monomialization holds whenever Γ∗ is finitely
generated. Since K∗ is a two dimensional algebraic function field, this includes all
valuations of K∗ except those which are nondiscrete and rational.

We now restrict to the case where Γ∗ is nondiscrete and rational.
Simultaneous Resolution is the statement that there exists a commutative diagram

of algebraic regular local rings
R′ → S′

↑ ↑
R → S

such that the vertical arrows are products of monoidal transforms along V ∗, and
R′ → S′ is the localization of a finite map. Proving Simultaneous Resolution is
extremely useful for applications to local uniformization since it implies that local
uniformization “goes up” in a field extension ([1]).

In the case where k had characteristic zero, Simultaneous Resolution held along
V ∗. This is proven for rational valuations in algebraic function fields of dimension
2 and characteristic zero by Abhyankar (Theorem 2 [3]) and follows for rational val-
uations in algebraic function fields of arbitrary dimension and characteristic 0 from
Strong Monomialization in characteristic 0 (Theorem 4.8). An example of Abhyankar
(Theorem 12 [3]) shows that Simultaneous Resolution is in general false for valuations
of rational rank larger than 1. A direct consequence of (2) of Theorem 7.33 is that
Simultaneous Resolution is true in dimension two and characteristic p > 0 whenever
the nondiscrete rational group Γ is not p-divisible.

One essential new invariant to be considered in characteristic p > 0 is the defect
of V ∗ over V which is a power of p (cf. Definition 7.1). V ∗/V is defectless if k has
characteristic zero. We prove that V ∗/V is defectless (in characteristic p > 0) if Γ∗ is
finitely generated ((3) of Theorem 7.3, see also [15]). In Theorem 7.33 we obtain stable
forms for mappings R′ → S′ where S′ is a product of quadratic transforms along V ∗

and R → R′ is the maximal factorization by quadratic transforms of R → S′. The
ramification index and defect of V ∗ over V can be computed from the equations
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defining these mappings. In Theorem 7.35 we prove that Strong Monomialization
holds whenever V ∗/V is defectless.

In Theorem 7.38 we give an example of an extension of two dimensional algebraic
function fields with valuations V ∗/V such that V ∗/V has positive defect, and Strong
Monomialization does not hold.

2. notations

We will denote the maximal ideal of a local ring R by mR. We will denote the
quotient field of a domain R by QF (R). Suppose that R ⊂ S is an inclusion of local
rings. We will say that R dominates S if mS ∩ R = mR. Suppose that K is an
algebraic function field over a field k. We will say that a subring R of K is algebraic
if R is essentially of finite type over k. Suppose that K∗ is a finite extension of an
algebraic function field K, R is a local ring with QF (K) and S is a local ring with
QF (K∗). We will say that S lies over R and R lies below S if S is a localization at
a maximal ideal of the integral closure of R in K∗. If R is a local ring, R̂ will denote
the completion of R at its maximal ideal. If M is a finite field extension of a field L,
we will denote the group of L-automorphisms of M by Gal(M/L).

Good introductions to the valuation theory which we require in this paper can be
found in Chapter VI of [22] and in [4]. A valuation ν of K will be called a k-valuation
if ν(k) = 0. We will denote by Vν the associated valuation ring, which necessarily
contains k. A valuation ring V of K will be called a k-valuation ring if k ⊂ V . The
residue field V/mV of a valuation ring V will be denoted by k(ν). The value group of
a valuation ν will be denoted by Γν . If X is an integral k-scheme with function field
K, then a point p ∈ X is called a center of the valuation ν (or the valuation ring Vν)
if Vν dominates OX,p. If R is a subring of Vν then the center of ν (the center of Vν)
on R is the prime ideal R ∩mVν .

Suppose that R is a local domain. A monoidal transform R → R1 is a birational
extension of local domains such that R1 = R[P

x ]m where P is a regular prime ideal
of R, 0 6= x ∈ P and m is a prime ideal of R[P

x ] such that m ∩ R = mR. R → R1 is
called a quadratic transform if P = mR.

If R is regular, and R → R1 is a monoidal transform, then there exists a regular
system of parameters (x1, . . . , xn) in R and r ≤ n such that

R1 = R

[
x2

x1
, . . . ,

xr

x1

]

m

.

Suppose that ν is a valuation of the quotient field R with valuation ring Vν which
dominates R. Then R → R1 is a monoidal transform along ν (along Vν) if ν dominates
R1.

3. Conventions on valuations

We recall some classical invariants of valuations (Chapter VI, [22], [4]), and estab-
lish some notations which we will follow.

Suppose that K is a field of algebraic functions over a field k, and ν is a k-valuation
of K with valuation ring V and value group Γ.

The primes of V are a finite chain

0 = p0 ⊂ · · · ⊂ pr = mV ⊂ V.

The rank of V is the length r of this chain. r ≤ trdegkK < ∞ by Corollary, page 50,
Section 11, Chapter VI, [22]. The isolated subgroups of the value group Γ of V are

0 = ∆r ⊂ · · · ⊂ ∆0 = Γ.



RAMIFICATION OF VALUATIONS 5

The ∆i are defined as follows. Set Ui = {ν(a) | a ∈ pi}. ∆i is the complement of
Ui and −Ui in Γ. For i < j, (V/pi)pj

is a rank j − i valuation ring with value group
∆i/∆j and with quotient field (V/pi)pi . V is said to be composite with the valuations
(V/pi)pj

. Set
λi = trdegk(V/pi)pi

for 0 ≤ i ≤ r. The rational rank of (V/pi−1)pi is

si = ratrank(V/pi−1)pi
:= dimQ(∆i−1/∆i)⊗Q

for 1 ≤ i ≤ r. si and λi are < ∞ by Theorem 1 [2] or by Proposition 2, Appendix 2
[22].

Now suppose that K∗ is a finite extension of K, and ν∗ is an extension of ν to K∗.
Let V ∗ be the valuation ring of ν∗, and let Γ∗ be the value group. The primes of V ∗

are a finite chain
0 = p∗0 ⊂ · · · ⊂ p∗r ⊂ V ∗

with p∗i ∩ V = pi, 0 ≤ i ≤ r, and with isolated subgroups

0 = ∆∗
r ⊂ · · · ⊂ ∆∗

0 = Γ∗

which have the property that ∆∗
i ∩ Γ = ∆i for 0 ≤ i ≤ r and ∆∗

i /∆i is a finite
(Abelian) group for 0 ≤ i ≤ r (Section 11, Chapter VI [22]). We further have that

trdegk(V ∗/p∗i )p∗
i

= trdegk(V/pi)pi = λi

for 0 ≤ i ≤ r and

ratrank(V ∗/p∗i−1)p∗
i

= ratrank(V/pi−1)pi = si

for 1 ≤ i ≤ r. Set ti = λi−1 − λi for 1 ≤ i ≤ r.
The ramification index of ν∗ relative to ν is defined to be (page 53, Section 11,

Chapter VI, [22])

e = [Γ∗ : Γ]. (3)

The residue degree of ν∗ with respect to ν is defined to be (page 53, Section 11,
Chapter VI)

f = [V ∗/mV ∗ : V/mV ]. (4)

4. Ramification of valuations in algebraic function fields

Theorem 4.1. (Local Monomialization)(Theorem 1.1 [10]) Let k be a field of char-
acteristic zero, K an algebraic function field over k, K∗ a finite algebraic extension of
K, ν∗ a k-valuation of K∗. Suppose that S∗ is an algebraic regular local ring with quo-
tient field K∗ which is dominated by ν∗ and R∗ is an algebraic regular local ring with
quotient field K which is dominated by S∗. Then there exist sequences of monoidal
transforms R∗ → R0 and S∗ → S such that ν∗ dominates S, S dominates R0 and
there are regular parameters (x1, ...., xn) in R0, (y1, ..., yn) in S, units δ1, . . . , δn ∈ S
and a matrix A = (aij) of nonnegative integers such that det(A) 6= 0 and

x1 = ya11
1 · · · ya1n

n δ1

...
xn = yan1

1 · · · yann
n δn.

(5)

The standard theorems on resolution of singularities allow one to easily find R0

and S such that (5) holds, but, in general, we will not have the essential condition
det(aij) 6= 0. The difficulty in the proof of this Theorem is to achieve the condition
det(aij) 6= 0.
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Let αi be the images of δi in S/mS for 1 ≤ i ≤ n. Let C = (aij)−1, a matrix with
rational coefficients. Define regular parameters (y1, . . . , yn) in Ŝ by

yi =
(

δ1

α1

)ci1

· · ·
(

δn

αn

)cin

yi

for 1 ≤ i ≤ n. We thus have relations

xi = αiy
ai1
1 · · · yain

n (6)

with αi ∈ S/mS for 1 ≤ i ≤ n in

R̂0 = R0/mR0 [[x1, . . . , xn]] → Ŝ = S/mS [[y1, . . . , yn]].

Theorem 4.2. Let k be a field of characteristic zero, K an algebraic function field
over k, K∗ a finite algebraic extension of K, ν∗ a k-valuation of K∗. Suppose that
S∗ is an algebraic local ring with quotient field K∗ which is dominated by ν∗ and R∗

is an algebraic local ring with quotient field K which is dominated by S∗. Then there
exists a commutative diagram

R0 → R → S ⊂ Vν∗

↑ ↑
R∗ → S∗

(7)

where S∗ → S and R∗ → R0 are sequences of monoidal transforms along ν∗ such that
R0 → S have regular parameters of the form of the conclusions of Theorem 4.1, R is
an algebraic normal local ring with toric singularities which is the localization of the
blowup of an ideal in R0, and the regular local ring S is the localization at a maximal
ideal of the integral closure of R in K∗.

Proof. By resolution of singularities [14] (c.f. Theorem 2.6, Theorem 2.9 [10]), we
first reduce to the case where R∗ and S∗ are regular, and then construct, by the local
monomialization theorem, Theorem 4.1 a sequence of monoidal transforms along ν∗

R0 → S ⊂ Vν∗

↑ ↑
R∗ → S∗

(8)

so that R0 is a regular local ring with regular parameters (x1, . . . , xn), S is a regular
local ring with regular parameters (y1, . . . , yn), there are units δ1, . . . , δn in S, and a
matrix of natural numbers A = (aij) with nonzero determinant d such that

xi = δiy
ai1
1 · · · yain

n

for 1 ≤ i ≤ n. After possibly reindexing the yi we may assume that d > 0. Let (bij)
be the adjoint matrix of A. Set

fi =
n∏

j=1

x
bij

j = (
n∏

j=1

δ
bij

j )yd
i

for 1 ≤ i ≤ n. Let R be the integral closure of R0[f1, . . . , fn] in K, localized at the
center of ν∗. Since

√
mRS = mS , Zariski’s Main Theorem (10.9 [5]) shows that R is

an algebraic normal local ring with quotient field K such that S lies above R.
We thus have a sequence of the form (7). ¤

As an immediate consequence, we obtain a proof in characteristic zero of the “weak
simultaneous resolution local conjecture”. which is stated explicitly on page 144 of [6],
and is implicit in [3]. Abhyankar proves this for algebraic function fields of dimension
two and any characteristic in [1] and [4]. In the paper [11], we have given a direct
proof of this result, also as a consequence of Theorem 4.1.
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Corollary 4.3. (Theorem 1.1 [11]) Let k be a field of characteristic zero, K an
algebraic function field over k, K∗ a finite algebraic extension of K, ν∗ a k-valuation
of K∗, and S∗ an algebraic regular local ring with quotient field K∗ which is dominated
by ν∗. Then for some sequence of monoidal transforms S∗ → S along ν∗, there exists
a normal algebraic local ring R with quotient field K, such that the regular local ring
S is the localization at a maximal ideal of the integral closure of R in K∗.

Proof. There exists a normal algebraic local ring R∗ with quotient field K such that ν∗

dominates R∗ (take R∗ to be the local ring of the center of ν∗ on a normal projective
model of K). There exists a finite type k-algebra T such that the integral closure of
R∗ in K∗ is a localization of T , and T is generated over k by g1, . . . , gm ∈ V ∗ such
that ν∗(gi) ≥ 0 for all i. There exists a sequence of monoidal transforms S∗ → S1

along ν∗ such that T ⊂ S1 (Theorem 2.7 [10]). S1 dominates R. After replacing S∗

with S1, we can assume that S∗ dominates R∗. Theorem 4.2 applies to this situation,
so we can construct a diagram of the form (7). ¤

The sequence of monoidal transforms S∗ → S is necessary in Theorem 4.2 and
Corollary 4.3 as can be seen by the following simple example which was communicated
to us by William Heinzer. Let x, y be algebraically independent over a field k, and
let S∗ = k[x3, x2y](x3,x2y). Consider the automorphism of K∗ = k(x, y) over k that
maps x to y and y to x. The image of S∗ is the 2 dimensional regular local ring S′

where S′ = k[y3, y2x] localized at (y3, y2x). Regarding S∗ and S′ as subrings of the
formal power series k[[x, y]], we see that the intersection of S∗ and S′ is k. Hence if
K is the fixed field of the above automorphism, so that K = k(x + y, xy), we have
S∗ ∩K = S′ ∩K = k.

When K∗ is Galois over K, it is not difficult to construct using Galois theory and
resolution of singularities a regular local ring S with quotient field K∗ and a normal
local ring R with quotient field K such that S lies over R (Theorem 7 [3], Theorem
6.2), although even in the Galois case the full statements of Theorem 4.2 and Corol-
lary 4.3 do not follow from these results (Theorem 7 [3], Theorem 6.2). The general
case of non Galois extensions is much more subtle, and not as well behaved, as can be
seen from Theorem 3.1 of [12]. This Theorem shows that a generically finite morphism
of projective surfaces cannot in general be birationally modified to produce a proper
morphism from a nonsingular surface to a normal surface. Theorem 3.1 [12] is thus
a counterexample to Abhyankar’s “weak simultaneous resolution global conjecture”,
which is stated explicitely on page 144 of [6] and is implicit in [3].

The following lemma prepares the proof of our higher dimensional version of (2)
in the introduction.

Lemma 4.4. Suppose that k1 → k2 is a finite extension of fields of characteristic
zero, A = (aij) is an n× n matrix of natural numbers with det(A) 6= 0 and

L = k1(x1, . . . , xn) → L1 = k2(x1, . . . , xn) → L∗ = k2(y1, . . . , yn)

are inclusions of rational function fields, given by

xi = αiy
ai1
1 · · · yain

n

with αi ∈ k2 for 1 ≤ i ≤ n. Then
(1) [L∗ : L] =| det(A) | [k2 : k1].
(2) L∗ is Galois over L if and only if the following conditions hold: k2 is Galois

over k1 and there is a primitive eth root of unity in k2 where

e = lcm{ord(b) | b ∈ Zn/AZn}.
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(3) If L∗ is Galois over L, then there is a natural exact sequence

0 → Gal(L∗/L1) ∼= Zn/AZn → Gal(L∗/L) → Gal(k2/k1) → 0. (9)

Proof. Let 0 6= d =| det(A) |. Set xi = xi

αi
∈ L1 for 1 ≤ i ≤ n. If v = (v1, . . . , vn) ∈

Zn, we will write
yv = yv1

1 · · · yvn
n .

Let e1, . . . , ed ∈ Zn be representatives of distinct cosets of Zn/AtZn. We will show
that {ye1 , . . . , yed} is a basis of L∗ over L1.

Suppose that there is a relation
m∑

i=1

fi(x)yei = 0

with fi(x) ∈ L1. After clearing denominators, we may assume that each fi(x) ∈
k2[x1, . . . , xn],

fi(x) =
∑

I

αi,Ix
I

with αi,I ∈ k2.

0 =
∑

i,I

αi,Iy
AtI+ei

AtI + ei = AtJ + ej implies ei = ej , and thus I = J so αi,I = 0 for all i, I, and
ye1 , . . . , yed are linearly independent over L.

Set B = (bij) = dA−1 = ±adj(A).

yd
i = xbi1

1 · · ·xbin
n ∈ L1

for 1 ≤ i ≤ n so that the monomials

yi1
1 · · · yin

n 0 ≤ ij ≤ d− 1

generate L∗ over L1 which thus implies ye1 , . . . , yed generate L∗ over L1. Thus

[L∗ : L1] =| Zn/AtZn |= d

and 1. of the Lemma follows.
Now suppose that k1 = k2 contains a primitive dth root of unity ω. Then xi ∈ L,

and yd
i ∈ L for 1 ≤ i ≤ n.

σ ∈ Gal(L∗/L) implies σ(yd
i ) = yd

i for 1 ≤ i ≤ n so that σ(yi) = ωciyi for some
ci ∈ Z.

Given c = (c1, . . . , cn) ∈ Zn, define a k2 algebra automorphism σc : L∗ → L∗ by
σc(yi) = ωciyi. σc is an L automorphism if and only if Ac ∈ dZn. Thus

Gal(L∗/L) ∼= {c ∈ Zn | Ac ∈ dZn}/dZn.

Define a group homomorphism

Ψ : Zn/AZn → Gal(L∗/L)

by Ψ(c) = Bc, where B = dA−1 = ±adj(A). Ψ is well defined and an isomorphism.
Thus | Gal(L∗/L) |= d. By 1. of this Lemma, L∗ is Galois over L.

Now consider the general case, with no restrictions on k1 and k2. Let ω be a
primitive dth root of unity in some extension field of k2. Set k′ = k2(ω). Set L0 =
k′(x1, . . . , xn), L′ = k′(y1, . . . , yn). By the argument for k1 = k2, we know that
L′/L0 is Galois with Gal(L′/L0) ∼= Zn/AZn.

Suppose that L∗/L is Galois. Then there is a natural homomorphism

Gal(L′/L0) → Gal(L∗/L)
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which is an inclusion since L′ is the join of L0 and L∗. If σ ∈ Gal(L′/L0) then for
1 ≤ i ≤ n, σ(yi)

yi
= ωλi ∈ k2 for some λi ∈ Z. σe = Id and ωλie = 1 and d

e | λi for

1 ≤ i ≤ n. There exists σ ∈ Gal(L′/L0) of order e. If σ(yi)
yi

= ωλi for 1 ≤ i ≤ n,

we then have gcd(λ1, . . . , λn) = d
e and thus ω

d
e ∈ k2 which is a primitive eth root of

unity.
L∗/L Galois implies the fixed field of the image of Gal(L∗/L) in Gal(k2/k1) by the

natural morphism is k1. Thus k2/k1 is Galois and the diagram (9) is short exact.
Now suppose that k2/k1 is Galois and k2 contains a primitive eth root of unity.

Then there is a natural inclusion

Zn/AZn ∼= Gal(L∗/L1) → Gal(L∗/L).

To show that L∗/L is Galois, is thus suffices to show that any σ ∈ Gal(k2/k1)
extends to an L automorphism of L∗. σ extends to an L automorphism of L1 such
that σ(xi) = xi for all i. Since L∗ is Galois over L1, σ extends to an L automorphism
of L∗. ¤

Remark 4.5. With the assumptions of Lemma 4.4, assume that L∗ is Galois over
L. Then Gal(L∗/L) acts faithfully on T = k2[y1, . . . , yn] by k1[x1, . . . , xn] automor-
phisms, and we have natural inclusions of invariant rings

k1[x1, . . . , xn] ⊂ TGal(L∗/L) ⊂ TZn/AZn ⊂ T. (10)

Suppose that τ ∈ k2 is a primitive eth root of unity, d =| det(A) | . To c ∈ Zn/AZn

the corresponding k2-algebra automorphism σc of T is defined by

σc(yi) = τ<Bi,c> e
d yi

for 1 ≤ i ≤ n, where Bi is the ith row of dA−1 = ±adj(A).

Theorem 4.6. Suppose that

R0 → R → S ⊂ Vν∗

is a sequence of the form of (7) of Theorem 4.2. Let k′ be an algebraic closure of
S/mS. Then

R̂⊗R/mR
k′ ∼= (Ŝ ⊗S/MS

k′)Z
n/AZn

by the faithful action of Zn/AZn on Ŝ ⊗S/mS
k′ of Remark 4.5. If

R̂⊗S/mS
k′ ∼= k′[[xe1 , . . . , xer ]],

then
R ∼= R0[xe1 , . . . , xer ]P ,

where P = (xe1 , . . . , xer ). In particular, R has normal toric singularities.

Proof. Set k1 = R0/mR0 , k2 = S/mS . From (6) we see that there are regular param-
eters y1, . . . , yn in Ŝ and αi ∈ k2 such that

xi = αiy
ai1
1 · · · yain

n

for 1 ≤ i ≤ n. Let d =| det(A) |> 0. Set F = Zn/AZn.
Set xi = xi

αi
, 1 ≤ i ≤ n. By Lemma 4.4, k′(y1, . . . , yn) is Galois over k′(x1, . . . , xn)

with Galois group F . By Remark 4.5, we have an expansion

k′[y1, . . . , yn]F = k′[yc1 , . . . , ycr ]
where ci ∈ Nr and yci = xei with ei ∈ Zn, and these invariants include x1, . . . , xn.

k′[yc1 , . . . , ycr ] = k′[xe1 , . . . , xer ]
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is normal, and thus k1[xe1 , . . . , xer ] is normal. We have xei = εiy
ci in K∗ where

εi ∈ S are units. R0[xe1 , . . . , xer ] has a maximal ideal m = (xe1 , . . . , xer ). Set
R1 = R0[xe1 , . . . , xer ]m. R1/mR1 = R0/mR0 . We have R0 ⊂ R1 ⊂ S. R̂1 =
k1[[xe1 , . . . , xer ]] is normal (Theorem 32, Section 13, Chapter VIII [22]), so R1 is
normal since R̂1 ∩K = R1 (by Lemma 2, [1]). Since

√
mR1S = mS , R1 lies below S

by Zariski’s Main Theorem (10.9 [5]). Thus R1 = S ∩K = R by Proposition 1 (iv)
[1]. ¤

Theorem 4.7. Suppose that assumptions are as in Theorem 4.2. Let k′ be an alge-
braic closure of V ∗/mV ∗ . Then there exists a sequence

R0 → R → S ⊂ Vν∗

of the form of (7) of Theorem 4.2, with the following property. Suppose that there is
a commutative diagram

R0(1) → R(1) → S(1) ⊂ Vν∗

↑ ↑ ↑
R0 → R → S

such that the top row is also a sequence of the form of (7) of Theorem 4.2, so that
there are regular parameters (x1(1), . . . , xn(1)) in R0(1), (y1(1), . . . , yn(1)) in S(1),
units δi(1) ∈ S(1) and a matrix A(1) of natural numbers (with nontrivial determinant)
such that

xi(1) = y1(1)ai1(1) · · · yn(1)ain(1)δi(1)

for 1 ≤ i ≤ n. Then
Zn/AZn ∼= Zn/A(1)Zn.

Let L be the quotient field of R̂⊗R/mR
k′, M be the quotient field of Ŝ⊗S/MS

k′, L1 be
the quotient field of R̂(1)⊗R(1)/mR(1)

k′, M1 be the quotient field of Ŝ(1)⊗S(1)/MS(1)
k′.

Then there are natural restriction maps of Galois groups

Gal(M1/L1) → Gal(M/L) (11)

which are isomorphisms.

Proof. Let
R0 → R → S ⊂ Vν∗

be a sequence of the form of (7) of Theorem 4.2. Let

R0(1) → R(1) → S(1) ⊂ Vν∗

↑ ↑ ↑
R0 → R → S

be a commutative diagram such that the top row is also a sequence of the form of (7)
of Theorem 4.2.

There exist ideals I ⊂ R and J ⊂ S, f ∈ I, g ∈ J , maximal ideals m1 in R[ I
f ] and

n1 in S[J
g ] such that R(1) = R[ I

f ]m1 , S(1) = S[J
g ]n1 .

Let R = R̂⊗R/mR
k′, S = Ŝ ⊗S/MS

k′, R1 = R̂(1)⊗R(1)/mR(1)
k′,

S1 = Ŝ(1)⊗S(1)/MS(1)
k′.

We have natural inclusions R[ I
f ] → R1 and S[J

g ] → S1. Let m = R[ I
f ] ∩ mR1

,
n = S[J

g ] ∩mS1
. Let R̃ = R[ I

f ]m, S̃ = S[J
g ]n. We have a commutative diagram of
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inclusions of local rings

R1 → S1

↑ ↑
R̃ → S̃
↑ ↑
R → S

.

By construction, R1 = ˆ̃R and S1 = ˆ̃S. Let L = QF(R), M = QF(S), L1 = QF(R1),
M1 = QF(S1). R̃ and S̃ are normal local rings, since R̃ = R1 ∩ L and S̃ = S1 ∩M ,
by Lemma 2 [1].

By Theorem 4.6, M is Galois over L and M1 is Galois over L1. There is a natural
isomorphism (the notation Gs is defined in Section 4)

Gal(M1/L1) ∼= Gs(S̃/R̃)

by Lemma 7 [1]. (The proof of this Lemma generalizes without difficulty to fields of
the form of M and L). In particular, there is a 1-1 restriction homomorphism

Gal(M1/L1) → Gal(M/L).

If this map is not an isomorphism, we can replace R0 → S with R0(1) → S(1). After
repeating this process a finite number of times, we will find an extension R0 → S
such that the conclusions of the Theorem hold. ¤

Theorem 4.8. (Strong Monomialization) Let k be a field of characteristic zero, K an
algebraic function field over k, K∗ a finite algebraic extension of K, ν∗ a k-valuation
of K∗. Suppose that S∗ is an algebraic local ring with quotient field K∗ which is
dominated by ν∗ and R∗ is an algebraic local ring with quotient field K which is
dominated by S∗. Let notation be as in Section 3 for V = Vν , V ∗ = Vν∗ . Then there
exists a commutative diagram

R0 → S ⊂ V ∗

↑ ↑
R∗ → S∗

(12)

such that R∗ → R0 and S∗ → S are sequences of monoidal transforms such that V ∗

dominates S, S dominates R0 and there are regular parameters (x1, ...., xn) in R0,
(y1, ..., yn) in S such that

pi ∩R0 = (x1, . . . , xt1+···+ti)
p∗i ∩ S = (y1, . . . , yt1+···+ti)
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for 1 ≤ i ≤ r and there are relations

x1 = y
g11(1)
1 · · · yg1s1 (1)

s1 y
h1,t1+1(1)
t1+1 · · · yh1m(1)

m δ11

...
xs1 = y

gs11(1)
1 · · · ygs1s1 (1)

s1 y
hs1,t1+1(1)
t1+1 · · · yhs1m(1)

m δ1s1

xs1+1 = ys1+1y
hs1+1,t1+1(1)
t1+1 · · · yhs1+1,m(1)

m δ1,s1+1

...
xt1 = yt1y

ht1,t1+1(1)
t1+1 · · · yht1n(1)

n δ1t1

xt1+1 = y
g11(2)
t1+1 · · · yg1s2 (2)

t1+s2
y

h1,t1+t2+1(2)
t1+t2+1 · · · yh1m(2)

m δ21

...
xt1+s2 = y

gs21(2)
t1+1 · · · ygs2s2 (2)

t1+s2
y

hs2,t1+t2+1(2)
t1+t2+1 · · · yhs2n(2)

n δ2s2

xt1+s2+1 = yt1+s2+1y
hs2+1,t1+t2+1(2)
t1+t2+1 · · ·whs2+1,m(2)

m δ2,s2+1

...
xt1+t2 = yt1+t2y

ht2,t1+t2+1(2)
t1+t2+1 · · · yht2m(2)

m δ2t2
...

xt1+···+tr−1+1 = y
g11(r)
t1+···+tr−1+1 · · · yg1sr (r)

t1+···+tr−1+sr
δr1

...
xt1+···+tr−1+sr = y

gsr1(r)
t1+···+tr−1+1 · · · ygsrsr (r)

t1+···+tr−1+sr
δrsr

xt1+···+tr−1+sr+1 = xt1+···+tr−1+sr+1δr,sr+1

...
xt1+···+tr = yt1+···+trδrtr

where m = t1 + · · ·+ tr−1 + sr and for 1 ≤ i ≤ r,

det




g11(i) · · · g1si(i)
...

...
gsi1(i) · · · gsisi(i)


 6= 0,

δij are units in S, hjk(i) are natural numbers such that for 1 ≤ l ≤ k ≤ r − 1,

hi,j(l) = 0 if 1 ≤ i ≤ tl and t1 + · · ·+ tk + sk+1 < j ≤ t1 + · · ·+ tk+1.

Let

T = {j | t1 + · · ·+ tk < j ≤ t1 + · · ·+ tk + sk+1 for some 0 ≤ k ≤ r − 1}.
Then {ν∗(yj) | j ∈ T} is a rational basis of Γ∗ ⊗Q, {ν∗(xj) | j ∈ T} is a rational
basis of Γ⊗Q.

Theorem 4.8 can be visualized as follows. For 1 ≤ i ≤ r there are ti × ti matrices

Mi =
(

(gjk(i)) 0
0 Iti−si

)

corresponding to the composite valuation rings (V/pi−1)pi , such that

A =




M1 ∗0 ∗0 · · · ∗0
M2 ∗0 · · · ∗0

M3 · · · ∗0
0 · · · ∗0

Mr




. (13)
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The smbols“∗0” in (13) denote ti × tj matrices whose last tj − sjcolumns are identi-
cally zero.

Proof. For valuations V of rank 1 this is immediate from Theorem 5.1 [10].
Suppose that V has rank r > 1 and that the Theorem is true for valuations of rank

less than r. To reach the conclusions of the Theorem, we need only modify the proof
of Theorem 5.3 [10] by observing that we can assume by induction that the upper
λ × λ matrix of exponents of (131) in the proof of Theorem 5.1 [10] has the desired
form, and notice that we actually have eij = 0 if j > λ + sr in (131). We can then
construct a sequence of monoidal transforms S(m′) → S(m′+1) along ν∗ by choosing

t > max{aij , gij(r)}
and defining

yi(m
′) =

{
yλ+1(m′ + 1)t · · · yλ+sr

(m′ + 1)tyi(m′ + 1) 1 ≤ i ≤ λ
yi(m′ + 1) λ + 1 ≤ i ≤ n

We then obtain the conclusions of Theorem 4.8. ¤

Theorem 4.9. With the assumptions of Theorem 4.8, further suppose that uj ∈ V ∗,
1 ≤ j ≤ l, and vj ∈ V , 1 ≤ j ≤ m. Then there exists a commutative diagram

R0 → S ⊂ V ∗

↑ ↑
R∗ → S∗

such that the conclusions of Theorem 4.8 hold and

(1) vj = x
bj1
1 · · ·xbjn

n δj ∈ R0 for 1 ≤ j ≤ m, where δj ∈ R0 is a unit, and bji = 0
if t1 + · · ·+ tl + sl < i ≤ i1 + · · ·+ tl+1 for some l.

(2) uj = y
dj1
1 · · · ydjn

n εj ∈ S for 1 ≤ j ≤ l, where εj ∈ S is a unit, and dji = 0 if
t1 + · · ·+ tl + sl < i ≤ t1 + · · ·+ tl+1 for some l.

Proof. First assume that ν has rank 1. As in the beginning of the proof of Theorem
5.1 [10], first construct a sequence of monoidal transforms R∗ → R1 along ν such that
R1/m1 → V/mV is algebraic, and there are regular parameters (x1(1), . . . , xn(1))
in R1 such that ν(x1(1)), . . . , ν(xs(1)) are a basis of Γ ⊗ Q. For 1 ≤ i ≤ m, write
vi = fi

gi
with fi, gi ∈ R1. By Theorem 4.8 [10] (with S = R, l = n, m = n) applied to

f = fi or f = gi in (60) and by (2) of Theorem 4.10 [10] (with S = R, l = n) we can
perform a sequence of monoidal transforms along ν R1 → R2 where R2 has regular
parameters (x1(2), . . . , xn(2)) such that ν(y1(2)), . . . , ν(ys(2)) are a basis of Γ ⊗ Q
and

fi = x1(2)ci1 · · ·xs(2)cisαi

gi = x1(2)di1 · · ·xs(2)disβi

where αi, βi are units in R2. We remark that (A3) on page 83 [10] implies ν(m(U(t))
of (64) in Theorem 4.8 [10] is a constant which does not depend on N for N ≥ N0.
Now by (25) of Lemma 4.2 [10], applied to the pair fi, gi we can perform a further
sequence of monoidal transforms R2 → R3 along ν to achieve that vi ∈ R3 for
1 ≤ i ≤ m, and there exist regular parameters (x1(3), . . . , xn(3)) in R3 such that
ν(x1(3)), . . . , ν(xs(3)) are a basis of Γ⊗Q,

vi = x1(3)d̃i1 · · ·xs(3)d̃isεi

for 1 ≤ i ≤ m where d̃i1, . . . , d̃is are natural numbers, εi are units in R3.
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Let S∗ → S2 be a sequence of monoidal transforms along ν∗ so that S2 dominates
R3. As in the proof of Theorem 5.1 [10], we can perform a sequence of monoidal
transforms S2 → S3 along ν∗ so that ui ∈ S3 for all i, S2 has a regular system of
parameters (y1(3), . . . , yn(3)) such that

xi = y1(3)ci1 · · · ys(3)cisφi

1 ≤ i ≤ s, φi are units in S2, (y1(3), . . . , ys(3)) is a basis of Γ∗ ⊗Q and det(cij) 6= 0.
By Theorem 5.1 [10], we can perform a sequence of monoidal transforms

R4 → S4

↑ ↑
R3 → S3

so that R4 has regular parameters (x1(4), . . . , xn(4)), S4 has regular parameters
(y1(4), . . . , yn(4)) such that

x1(4) = y1(4)e11 · · · ys(4)e1sδ1

...
xs(4) = y1(4)es1 · · · ys(4)essδs

xs+1(4) = ys+1(4)
...

xn(4) = yn(4)

where det(eij) 6= 0, δ1, . . . , δs are units in S4, (ν(x1(4)), . . . , ν(xs(4)) is a rational
basis of Γ⊗Q. We further have

vi = x1(4)di1 · · ·xs(4)disεi

1 ≤ i ≤ m, εi ∈ R4 units (since the monoidal transforms used in the proof of Theorem
5.1 [10] preserve this form) and ui ∈ S4, 1 ≤ i ≤ l.

Now by (60) of Theorem 4.8 and (2) of Theorem 4.10 [10], with l = n and m = n,
applied to R4 → S4 and f = u1 · · ·ul, we achieve a commutative diagram

R′ → S′

↑ ↑
R4 → S4

where the vertical arrows are sequences of monoidal transforms along ν∗ such that
the conclusions of the Theorem hold in R′ → S′.

Now assume that V has rank r > 1. For the general case of rank r > 1 we must
modify the proof of Theorem 5.3 [10]. We assume (by induction) that the Theorem
is true for valuations of rank < r.

We first construct (as in the proof of Theorem 5.3 [10]) sequences of monoidal
transforms

R(1) → S(1)
↑ ↑
R∗ → S∗

along ν∗ such that if pi(1) = pi ∩R(1), qi(1) = qi ∩ S(1) then

trdeg(R(1)/pi(1))pi(1)
(V ∗/pi)pi = 0

for 1 ≤ i ≤ r and (using the induction assumption) that the conclusions of the
Theorem hold for R(1)pr−1(1) → S(1)qr−1(1). Set

λ = t1 + · · ·+ tr−1.
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As in the proof of Theorem 5.3 [10], we can construct sequences of monoidal trans-
forms

R′′ → S′′

↑ ↑
R(1) → S(1)

along ν∗ such that if q′′r−1 = pr−1 ∩ S′′, p′′r−1 = pr−1 ∩ R′′, then R(1)pr−1(1) =
R′′p′′

r−1
, S(1)qr−1(1) = S′′q′′

r−1
, there exist regular parameters (x′′1 , . . . , x′′n) in R′′, (y′′1 , . . . , y′′n)

in S′′ such that, as in (129) of the proof of Theorem 5.3 [10],

x′′1 = ψ1(y′′1 )g11(1) · · · (y′′s1
)g1,s1 (1)(y′′t1+1)

h1,t1+1(1) · · · (y′′λ)h1λ(1)

...
x′′λ = ψλy′′λ

with ψ1, · · · , ψλ ∈ S′′ − q′′r−1, and

uj = γj(y
′′
1 )ej1 · · · (y′′λ)ejλ (14)

1 ≤ j ≤ l with γj ∈ S′′ − q′′r−1 and

vj = γj(x′′1)ej1 · · · (x′′λ)ejλ (15)

1 ≤ j ≤ m with γj ∈ R′′ − p′′r−1.
We further have that the exponents of y′′1 , . . . , y′′λ (respectively x′′1 , . . . , x′′λ ) in (14)

(respectively (15)) are of the form of the conclusions of the Theorem (by our induction
assumption on the rank), or uj = γj , vj = γj .

We now construct a sequence of monoidal transforms along ν∗ (as in the proof of
Theorem 5.3 [10]).

R(m′) → S(m′)
↑ ↑
R′′ → S′′

so that there exist regular parameters (y1(m′), . . . , yn(m′)) in S(m′), (x1(m′), . . . , xn(m′))
in R(m′) such that (as in (131) of page 121 of the proof of Theorem 5.3 [10])

x1(m′) = y1(m′)g11(1) · · · ys1
(m′)g1s1 (1)yt1+1(m′)h1,t1+1(1) · · · yλ(m′)h1λ(1)

·yλ+1(m′)e1,λ+1 · · · yλ+sr
(m′)e1,λ+sr ψ1

...
xλ(m′) = yλ(m′)yλ+1(m′)eλ,λ+1 · · · yλ+sr

(m′)eλ,λ+sr ψλ

xλ+1(m′) = yλ+1(m′)g11(r) · · · yλ+sr
(m′)gsrsr (r)δλ+1 + fλ+1

1 y1(m′) + · · ·+ fλ+1
λ yλ(m′)

...
xn(m′) = yn(m′)δn + fn

1 y1(m′) + · · ·+ fn
λ yλ(m′)

where δi are units in S(m′), f j
i ∈ S(m′) for 1 ≤ i ≤ λ,

ψi = u′iyλ+1(m
′)ai,λ+1 · · · yλ+sr

(m′)ai,λ+sr + hi
1y1(m

′) + · · ·+ hi
λyλ(m′)

where u′i are units in S(m′), and we further have

vj = αjx1(m′)ej1 · · ·xλ(m′)ejλ

1 ≤ j ≤ m, where eji = 0 if t1 + · · ·+ tl + sl < i ≤ t1 + · · ·+ tl+1 for some l.

uj = βjy1(m
′)fj1 · · · yλ(m′)fjλ

1 ≤ j ≤ l, where fji = 0 if t1 + · · ·+ tl + sl < i ≤ t1 + · · ·+ tl+1 for some l,
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αj = αjxλ+1(m′)aj,λ+1 · · ·xλ+sr (m
′)aj,λ+sr + h

j

1x1(m′) + · · ·+ h
j

λxλ(m′),
(16)

where αj are units in R(m′), h
j

i ∈ R(m′) and

βj = βjyλ+1(m
′)ãj,λ+1 · · · yλ+sr

(m′)ãj,λ+sr + h̃j
1y1(m

′) + · · ·+ h̃j
λy1(m

′) + · · ·+ h̃j
λyλ(m′)

(17)

where βj are units in S(m′), h̃j
i ∈ S(m′).

Set t1 = max{aji} in (16). Define a sequence of monoidal transforms along V

R(m′) → R(m′+1) where R(m′+1) has regular parameters (x1(m′+1), . . . , xn(m′+
1)) defined by by

xi(m′) =
{

xλ+1(m′ + 1)t1 · · ·xλ+sr (m
′ + 1)t1xi(m′ + 1) 1 ≤ i ≤ λ

xi(m′ + 1) λ + 1 ≤ i ≤ n

Set t2 = max{ãji, gij(r), aij , t1}. Now perform a sequence of monoidal transforms
along ν∗, S(m′) → S(m′ + 1) where S(m′ + 1) has regular parameters (y1(m′ +
1), . . . , yn(m′ + 1)) defined by

yi(m
′) =

{
yλ+1(m′ + 1)t2 · · · yλ+sr

(m′ + 1)t2yi(m′ + 1) 1 ≤ i ≤ λ
yi(m′ + 1) λ + 1 ≤ i ≤ n

Then S(m′ + 1) dominates R(m′ + 1) and the conclusions of the Theorem hold in
R(m′ + 1) → S(m′ + 1). ¤

Theorem 4.10. Suppose that assumptions are as in Theorem 4.2. Let k′ be an
algebraic closure of V ∗/mV ∗ . Then there exists a sequence

R0 → R → S ⊂ Vν∗

of the form of (7) of Theorem 4.2, which satisfies the conclusions of Theorem 4.7,
and with the following property. Suppose that there is a commutative diagram

R0(1) → R(1) → S(1) ⊂ Vν∗

↑ ↑ ↑
R0 → R → S

such that the top row is also a sequence of the form of (7) of Theorem 4.2, so that
there are regular parameters (x1(1), . . . , xn(1)) in R0(1), (y1(1), . . . , yn(1)) in S(1),
units δi(1) ∈ S(1) and a matrix A(1) of natural numbers (with nontrivial determinant)
such that

xi(1) = y1(1)ai1(1) · · · yn(1)ain(1)δi(1)

for 1 ≤ i ≤ n. Then there is an isomorphism of Abelian groups

Zn/A(1)Zn ∼= Γ∗/Γ.

Γ∗/Γ acts faithfully on Ŝ(1)⊗S(1)/mS(1)
k′ by k′-algebra automorphisms, and there is

an isomorphism

(Ŝ(1)⊗S(1)/mS(1)
k′)Γ

∗/Γ ∼= R̂(1)⊗R(1)/mR(1)
k′.

Proof. There exist u1, . . . , ul ∈ V ∗ such that Γ∗/Γ is generated by ν∗(u1, ), . . . , ν∗(ul).
By Theorem 4.9 and Theorem 4.7, there exists a sequence R0 → R → S of the form
of (7) of Theorem 4.2 such that the conclusions of Theorem 4.7 hold, and there are
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units βi ∈ S and natural numbers eij such that with the notation of Theorem 4.9
(and Theorem 4.8),

ui = βi

∏

j∈T

y
eij

j

for 1 ≤ i ≤ l.
Observe that Zn/AZn ∼= Zn/AtZn since A and At have the same invariant factors.

We will prove that Zn/AtZn ∼= Γ∗/Γ. Then the conclusions of the Theorem will follow
from Theorem 4.7 and 4.6.

We have a group homomorphism

Ψ : Zn → Γ∗/Γ

defined by
(b1, . . . , bn) 7→ b1ν

∗(y1) + · · ·+ bnν∗(yn).

Ψ is onto since {ν∗(ui) | 1 ≤ i ≤ l} generate Γ∗/Γ. By definition of A, Ψ(AtZn) ⊂ Γ.
Let {ei} be the standard basis of Zn.

Suppose that Ψ(
∑

λmem) = 0. Then
∑

λmν∗(ym) = ν(f)

for some f ∈ K. By Theorem 4.9, there exists a diagram

R0(1) → S(1)
↑ ↑
R0 → S

such that f ∈ R0(1) satisfies
f =

∏

l∈T

xl(1)blδ,

bl natural numbers, δ ∈ R0(1) a unit, and

yi =
∏

l∈T

yl(1)cilεi

for 1 ≤ i ≤ n, cil natural numbers, εi ∈ S(1) units.

ν∗(
∏

yλm
m ) = ν∗(

∏
l∈T yl(1)

∑
λmcml) = ν∗(f)

= ν∗(
∏

xm(1)bm) = ν∗
(∏

m(
∏

l∈T yl(1)aml(1))bm
)

implies ∑
m

λmcml =
∑
m

amlbm

for all l ∈ T since {ν∗(yl(1)) | l ∈ T} are linearly independent. Thus
∏

yλm
m = f δ̃

where δ̃ ∈ S(1) is a unit.
Set R(0) = R, S(0) = S. For j = 0, 1, let K(j) = QF(R̂(j) ⊗R(j)/mR(j)

k′),
L(j) = QF(Ŝ(j)⊗S(j)/mS(j)

k′). With notations as in (6), set

R(j) := R̂(j)⊗R(j)/mR(j)
k′ ∼= k′[[x1(j), . . . , xn(j)]]

and
S(j) := Ŝ(j)⊗S(j)/mS(j)

k′ ∼= k′[[y1(j), . . . , yn(j)]]

where
xi(j) = y1(j)

ai1(j) · · · yn(j)ain(j)
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for 1 ≤ i ≤ n. Let AT (j) be the | T | × | T | submatrix of A(j) which is the matrix
of exponents of

xi(j) =
∏

l∈T,l≥λk

yl(j)
ail(j)

for λk = t1 + · · · tk, λk < i ≤ λk + sk+1.
We have a commutative diagram

K(1) → L(1)
↑ ↑
K(0) → L(0)

where the horizontal arrows are finite Galois, with respective Galois groups

G1
∼= Z|T |/AT (1)Z|T |

and
G ∼= Z|T |/AT (0)Z|T |.

We have ∏
ym(0)λm = fδ

where δ ∈ S(1) is a unit.
Suppose that σ ∈ G ∼= G1. Then

σ(
∏

ym(0)λm)
σ(δ)

=
∏

ym(0)λm

δ
.

We can write δ = c + h with c ∈ k′, h ∈ mS(1). Thus σ(δ) ≡ δ mod mS(1).

σ(
∏

ym(0)λm) = ω
∏

ym(0)λm

for some dth root of unity ω ∈ k′, with d =| G |. Thus

σ(δ)
δ

= 1

and
σ(

∏
ym(0)λm) =

∏
ym(0)λm

implies
∏

ym(0)λm ∈ K(0), and
∏

ym(0)λm =
∏

xm(0)dm

for some dm ∈ Z. Thus
∑

λmem ∈ AtZn. In particular,

Zn/AtZn ∼= Γ∗/Γ.

¤

5. Ramification in Galois extensions

Let k be a field of characteristic zero, K an algebraic function field over k, K∗ a
finite Galois extension of K with Galois group G = Gal(K∗/K), ν∗ a k-valuation of
K∗, with value group Γ∗. Let ν be the restriction of ν∗ to K, and let Γ be the value
group of ν.

Let V ∗ be the valuation ring of ν∗ and V be the valuation ring of ν.
Suppose that R is a normal local ring with quotient field K and S is a normal

local ring with quotient field K∗ which lies above R. We can then define the splitting
groups and inertia groups

Gs(S/R) = {g ∈ G | g(S) = S},
Gi(S/R) = {g ∈ Gs(S/R) | g(u) ≡ u mod mS for all u ∈ S}.
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Gi(S/R) ⊂ Gs(S/R) ⊂ G.

Gi(S/R) is a normal subgroup of Gs(S/R) (Theorem 1.48 [4]). The splitting field Ks

of S over R is the fixed field of Gs(S/R). The inertia field Ki of S over R is the fixed
field of Gi(S/R). We have a corresponding sequence of fields

K → Ks → Ki → K∗.

Ks is the smallest subfield of K∗ such that S is the only local ring lying above S∩Ks

(Proposition 1.46 [4]). We have a sequence

R → Rs → Ri → S (18)

where Rs = S ∩Ks is the localization of the integral closure of R in Ks at the center
of ν∗. Ri = S∩Ki is the localization of the integral closure of R in Ki at the center of
ν∗. R → Rs is unramified, with R/mR = Rs/mRs , Rs → Ri is unramified, Ri/mRi

is Galois over Rs/mRs with Galois group Gs(S/R)/Gi(S/R) (by Theorem 1.48 [4]).
We will write Gs(ν∗/ν) = Gs(V ∗/V ), Gi(ν∗/ν) = Gi(V ∗/V ).

Since we are in characteristic zero, by Theorem 3 [16] or Corollary, Section 12,
Chapter VI [22], there is an isomorphism

Gi(ν∗/ν) ∼= Γ∗/Γ. (19)

Lemma 5.1. Let assumptions be as in Theorem 4.2. Suppose that K∗ is Galois over
K. Let t1, . . . , tf ∈ k(ν∗) be a k(ν) basis. Then there exists an algebraic regular local
ring R′ with quotient field K which is dominated by ν such that if R is an algebraic
normal local ring dominated by ν, R′ ⊂ R, S is the localization of the integral closure
of R in K∗ at the center of ν∗, then R/mR → k(ν) is algebraic, Gs(S/R) = Gs(ν∗/ν)
and Gi(S/R) = Gi(ν∗/ν). Further, [S/mS : R/mR] = f , and {t1, . . . , tf} is a basis
of S/mS over R/mR, where f = [k(ν∗) : k(ν)] is the residue degree of ν∗ with respect
to ν.

Proof. Let V ∗ = V1, V2, . . . , Vn be the distinct valuation rings of K∗ lying over V .
Then T = ∩n

i=1Vi is the integral closure of V in K∗ (by Propositions 2.36 and 2.38 [4]).
Let mi = mVi ∩ T be the maximal ideals of T . By the Chinese remainder theorem,
there exists u ∈ T such that u ∈ m1 and u 6∈ mi for i = 2, . . . , n. Let

um + a1u
m−1 + · · ·+ am = 0

be the equation of integral dependence of u over V . Let R0 ⊂ K be an algebraic
regular local ring with quotient field K which is dominated by ν. As a consequence of
resolution of singularities (cf. Theorem 2.7 [10]) there exists a sequence of monoidal
transforms R0 → R1 along ν such that ai ∈ R1 for 1 ≤ i ≤ n.

Let {w1, . . . , wr} be a transcendence basis of k(ν) = V/mV over k. r < ∞ by
Theorem 1 [7] or Appendix 2 [22]. Let w1, . . . , wr be lifts of the wi to V . wi ∈ V
implies there exists a sequence of monoidal transforms R1 → R2 along ν such that
wi ∈ R2 for all i (Theorem 2.7 [10]).

Suppose that R is an algebraic normal local ring with quotient field K such that
R2 ⊂ R and R is dominated by ν. Let W be the integral closure of R in K∗.
u ∈ W ∩ mV ∗ and u 6∈ W ∩ mVi for 2 ≤ i ≤ n. Let S be the localization of W at
the center of ν∗. g ∈ Gs(S/R) implies u ∈ g(mV ∗) and consequently g(V ∗) = V ∗, so
that g ∈ Gs(ν∗/ν). Thus Gs(S/R) ⊂ Gs(ν∗/ν). By Proposition 1.50 [4], Gs(S/R) =
Gs(ν∗/ν).

R2 ⊂ R implies k(w1, . . . , wr) ⊂ R/mR so that k(ν) is algebraic over R/mR.
k(ν∗) is finite over k(ν) by Corollary 2, Section 6, Chapter VI [22] (although k(ν)

need not be finite over k(w1, . . . , wr)). Let t1, . . . , tf ∈ k(ν∗) be a k(ν) basis. Let ti
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be lifts of the ti to T . Let

t
mi

i + a1it
mi−1
i + · · ·+ amii = 0, 1 ≤ i ≤ f

be equations of integral dependence of ti over V . There exists a sequence of monoidal
transforms R2 → R′ along ν such that aji ∈ R′ for all i, j.

Now suppose that R is an algebraic normal local ring such that R′ ⊂ R and R is
dominated by ν. Let S be the localization at the center of ν∗ of the integral closure
of R in K∗.

R2 ⊂ R implies Gs(S/R) = Gs(ν∗/ν). Gi(ν∗/ν) ⊂ Gi(S/R) by Proposition 1.50
[4]. By Theorem 1.48 [4] S/mS is Galois over R/mR and k(ν∗) is Galois over k(ν).
We have an exact diagram

0 0
↓ ↓

Gi(S/R) ← Gi(ν∗/ν) ← 0
↓ ↓

Gs(S/R) = Gs(ν∗/ν)
↓ ↓

0 ← Gal(S/mS/R/mR) ← Gal(k(ν∗)/k(ν))
↓ ↓
0 0

By construction, ti ∈ S for all i which implies that t1, . . . , tf ∈ S/mS . t1, . . . , tf
are necessarily linearly independent over R/mR. Thus

f ≤ [S/mS : R/mR] =| Gal(S/mS/R/mR) | .
f =| Gal(k(ν∗)/k(ν)) | = | Gal(S/mS/R/mR) | [Gi(S/R) : Gi(ν∗/ν)]

implies Gi(S/R) = Gi(ν∗/ν), and t1, . . . , tf is a R/mR basis of S/mS . ¤

Theorem 5.2. Let assumptions be as in Theorem 4.2. Suppose that K∗ is Galois
over K. Let t1, . . . , tf ∈ k(ν∗) be a k(ν) basis. Suppose that

R0 → R → S

is a sequence of the form of (7) of Theorem 1 such that the R′ of Lemma 5.1 is con-
tained in R0. Set k1 = R0/mR0 , k2 = S/mS. Then QF (Ŝ) is Galois over QF (R̂),
with Galois group Gs(ν∗/ν), k2 is Galois over k1 with Galois group Gs(ν∗/ν)/Gi(ν∗/ν).
With the notation of (6) and Theorem 4.6, the completion of the sequence of (18)

R̂0 → R̂ = R̂s → R̂i → Ŝ

is
R̂0 = k1[[x1, . . . , xn]] → R̂ = (Ŝ)Gs(ν∗/ν) = k1[[xe1 , . . . , xer ]] →
(Ŝ)Gi(ν∗/ν) = k2[[xe1 , . . . , xer ]] → Ŝ = k2[[y1, . . . , yn]]

.

with
xi = αiy

ai1
1 · · · yain

n

αi ∈ k2 for 1 ≤ i ≤ n. There is an exact sequence

0 → Gi(ν∗/ν) ∼= Zn/AZn → Gs(ν∗/ν) ∼= Gal(QF (Ŝ)/QF (R̂) → Gal(k2/k1) → 0.

f = [S/mS : R/mR], e =| det(A) |, [QF (Ŝ) : QF (R̂)] = ef and {t1, . . . , tf} is a basis
of k2 = S/mS over k1 = R/mR where e = [Γ∗/Γ] is the ramification index of ν∗ with
respect to ν, f = [k(ν∗) : k(ν)] is the residue degree of ν∗ with respect to ν.
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Proof. QF (Ŝ) is Galois over QF (R̂) = QF (R̂s) with Galois group Gs(S/R) by
Lemma 7 a), b) [1] and QF (Ŝ) is Galois over QF (R̂i) with Galois group Gi(S/R)
by Proposition 1.49 [4] and Lemma 7 a), b) [1] applied to K ⊂ Ki ⊂ K∗ and
R ⊂ Ri ⊂ S. R/mR = R0/mR0 by Theorem 4.6. With the notations of (6) and
Theorem 4.6, R̂0 = k1[[x1, . . . , xn]], R̂s = k1[[xe1 , . . . , xer ]], R̂i = k2[[xe1 , . . . , xer ]],
Ŝ = k2[[y1, . . . , yn]]. S/mS is Galois over R/mR = Rs/mRs implies k2 is Galois over
k1.

With the notations of Lemma 4.4, set

L = k1(x1, . . . , xn) ⊂ L1 = k2(x1, . . . , xn) ⊂ L∗ = k2(y1, . . . , yn).

We have that L∗/L is Galois with Gal(L∗/L) = HomR̂(Ŝ, Ŝ) = Gs(S/R). We further
have that L∗/L1 is Galois with Gal(L∗/L1) = HomR̂i(Ŝ, Ŝ) = Gi(S/R).

By Lemma 5.1, Gs(S/R) = Gs(ν∗/ν), Gi(S/R) = Gi(ν∗/ν) and [S/mS : R/mR] =
f . By (19) and Lemma 4.4, e =| det(A) | and [QF (Ŝ) : QF (R̂)] = ef . ¤

Lemma 5.3. Let k be a field of characteristic zero, K an algebraic function field
over k, K∗ a finite algebraic extension of K, ν∗ a k-valuation of K∗, ν = ν∗ | K.
Suppose that S0 is an algebraic normal local ring with quotient field K∗ such that S0

is dominated by ν∗. Then there exists an algebraic regular local ring R′ with quotient
field K which is dominated by ν such that if R is an algebraic normal local ring with
quotient field K, S is an algebraic regular local ring with quotient field K∗ such that
R contains R′ and S is dominated by V ∗, R is dominated by S, then S contains S0.

Proof. There exists a sequence of monoidal transforms S0 → S1 along ν∗ such that
S1 dominates an algebraic regular local ring R1 with quotient field K. Let U1 be the
integral closure of R1 in K∗. There exists f1, . . . , fm ∈ K∗ (with ν∗(fi) ≥ 0 for all i)
such that S1 is a localization of U1[f1, . . . , fm].

Let T be the integral closure of V in K∗, so that V ∗ is the localization of T at
T ∩mV ∗ . Thus for 1 ≤ i ≤ m, fi = bi

ci
with bi, ci ∈ T , ν∗(bi) ≥ 0, ν∗(ci) = 0.

Let
bmi
i + di1b

mi−1
i + · · ·+ di,mi = 0

cni
i + ei1c

ni−1
i + · · ·+ eini = 0,

1 ≤ i ≤ m, be equations of integral dependence of bi, ci over V , so that all dij , eij ∈ V .
There exists a sequence of monoidal transforms R1 → R′ along ν such that all

dij , eij ∈ R′.
Suppose that R, S are as in the statement of the Lemma, so that R contains R′.

Then U1[b1, . . . , bm, c1, . . . , cm] is contained in S. ci ∈ S and ν∗(ci) = 0 implies
ci 6∈ mV ∗ ∩S = mS and ci is a unit in S. Thus fi ∈ S for 1 ≤ i ≤ m, and S1 ⊂ S. ¤

6. Extensions of valuation rings are toric

Theorem 6.1. Suppose that the assumptions of Theorem 4.2 hold. Let g1, . . . , gf be
a basis of V ∗/mV ∗ over V/mV . Then there exists an algebraic regular local ring R′

with quotient field K which is dominated by V , such that if R0 → R → S is of the
form of (7) of Theorem 4.2 and R′ ⊂ R0, then the conclusions of Theorem 4.10 hold
for R0 → R → S. Further, with the notations of (3) and (4),

[S/mS : R/mR] = f, | det(A) |= e, [QF (Ŝ) : QF (R̂)] = ef

and {g1, . . . , gf} is a basis of S/mS over R/mR = R0/mR0 .

Proof. As in the proof of Lemma 5.1, there exists an algebraic regular local ring R1

with quotient field K which is dominated by ν such that if R is an algebraic regular
local ring with quotient field K such that R1 ⊂ R and R is dominated by ν, then



22 STEVEN DALE CUTKOSKY AND OLIVIER PILTANT

g1, . . . , gf ∈ S/mS , where S is the localization of the integral closure of R in K∗ at
the center of ν∗. This argument does not require that K∗/K be Galois.

Let K ′ be a Galois closure of K∗ over K, ν′ be an extension of ν∗ to K ′. By
Lemma 5.1, there exists an algebraic regular local ring S0 with quotient field K∗

which is dominated by ν∗ such that if S is a normal algebraic local ring of K∗ which
contains S0 and S′ is the localization of the integral closure of S in K ′ at the center of
ν′, then Gs(S′/S) = Gs(ν′/ν) and Gi(S′/S) = Gi(ν′/ν). By Lemma 5.3 and Lemma
5.1, there exists an algebraic regular local ring R′′ which is dominated by ν and has
quotient field K, such that if R is an algebraic local ring with quotient field K which
is dominated by ν, R′′ ⊂ R, and S lies above R in K∗ and is dominated by ν∗, S′ lies
above R in K ′ and is dominated by ν′, then

Gs(S′/R) = Gs(ν′/ν) Gi(S′/R) = Gi(ν′/ν),
Gs(S′/S) = Gs(ν′/ν∗) Gi(S′/S) = Gi(ν′/ν∗) .

By Theorem 4.10 and Lemma 5.3, there exists an algebraic regular local ring R′ with
quotient field K which contains R′′ and is dominated by ν∗ such that if R0 → R → S
is a sequence of the form (7), then the conclusions of Theorem 4.10 hold. Since
R′′ ⊂ R0, we further have

[S/mS : R/mR] = [S′/mS′ : R/mR]/[S′/mS′ : S/mS ]
= [Gs(S′/R) : Gi(S′/R)]/[Gs(S′/S) : Gi(S′/S)]
= [Gs(ν′/ν) : Gi(ν′/ν)]/[Gs(ν′/ν∗) : Gi(ν′/ν∗)]
= [k(ν′) : k(ν)]/[k(ν′) : k(ν∗)] = [k(ν∗) : k(ν)] = f

Since g1, . . . , gf ∈ S/mS , we have that g1, . . . , gf is an R/mR basis of S/mS . Since
the conclusions of Theorem 4.10 hold (and by (19)), e =| det(A) |. By Theorem 4.6,
R̂ → Ŝ is the completion of the finite extension

k1[xe1 , . . . , xer ] → k2[y1, . . . , yn]

where k1 = R/mR, k2 = S/mS , so that with the notation of Lemma 4.4, [QF (Ŝ) :
QF (R̂)] = [L∗ : L]. By Lemma 4.4,

[QF (Ŝ) : QF (R̂)] = [S/mS : R/mR] | det(A) |= fe.

¤

Theorem 6.2 is essentially proven by Zariski in [21]. Certainly the expression of V
as a union of algebraic regular local rings follows easily from the results of [21]. The
remaining statements follow easily from Zariski’s results when V has rank 1, and can
be deduced with some effort for higher rank.

Theorem 6.2. Let k be a field of characteristic zero, K an algebraic function field
over k, V a k-valuation ring of K. Then there exists a partially ordered set I and
algebraic regular local rings {R(i) | i ∈ I} with quotient field K which are dominated
by V such that

V = lim
→

R(j) = ∪j∈IR(j)

and such that, with the notations on V defined in Section 3, R(j) has regular param-
eters (x1(j), . . . , xn(j)) such that

(1) pi(j) = pi ∩R(j) = (x1(j), . . . , xt1+···+ti(j)) for 1 ≤ i ≤ r and

{ν(xt1+···+ti−1+1(j)), . . . , ν(xt1+...+ti−1+si(j)}
is a rational basis of (∆i−1/∆i)⊗Q for 1 ≤ i ≤ r.
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(2) Let

T = {j | t1 + · · ·+ tk < j ≤ t1 + · · ·+ tk + sk+1 for some 0 ≤ k ≤ r − 1}.
If j < k ∈ I then there are relations

xi(j) =
∏

c∈T,c>t1+···+ta

xc(k)dicδi (20)

where dic are natural numbers and δi ∈ R(k) is a unit for i = t1+· · ·+ta+b ∈
T with 1 ≤ b ≤ sa+1. If D(j, k) is the | T | × | T | matrix (dic) of (20) then
det(D(j, k)) 6= 0.

(3) For j ∈ I, let Λj be the free Z-module Λj =
∑

i∈T ν(xi(j))Z. Then

Γ = lim
→

Λj = ∪j∈IΛj .

Proof. Let R∗ be an algebraic regular local ring such that V dominates R∗. By
Theorem 4.8 (with S∗ = R∗) there exists a sequence of monoidal transforms R∗ →
R(0) along V such that 1. of this theorem holds on R(0).

Suppose that m is a positive integer and f = (f1, . . . , fm) ∈ V m. We will construct
a sequence of monoidal transforms R0 → R(f) along V such that f1, . . . , fm ∈ R(f),
1. of this theorem holds for R(f) and 2. of this theorem holds for R0 → R(f). We
will further have ν(f) ∈ Λf .

By Theorem 4.9, with the R∗, S∗ of the statement of Theorem 4.9 set as R∗ =
S∗ = R(0), and vi = xi(0) if i ∈ T , and v|T |+1 = f1, . . . , v|T |+m = fm, there exists a
sequence of monoidal transforms R(0) → R(f) along V such that 1. of this theorem
holds for R(f) , 2. of this theorem holds for R(0) → R(f), f ∈ R(f) and ν(f) ∈ Λf .
DetD(0, f) 6= 0 since {ν(xi(0) | i ∈ T} and {ν(xi(f)) | i ∈ T} are two bases of Γ⊗Q.

Let I = tm∈N+V m be the disjoint union. For f ∈ I we construct R(f) as above.
If f = 0 we let R(0) be the R(0) constructed above. Define a partial order on I by
f ≤ g if R(f) ⊂ R(g).

Suppose that R(α) ⊂ R(β). We have R(0) ⊂ R(α) ⊂ R(β).

xi(0) =
∏

j∈T

xj(α)cij δi

for i ∈ T with δi a unit in R(α) and

xi(0) =
∏

j∈T

xj(β)dij εi

for i ∈ T with εi a unit in R(β). Thus in R(β) there are factorizations

xi(α) =
∏

j∈T

xj(β)eij λi

for i ∈ T and λi a unit in R(β). We have det(D(α, β)) 6= 0 since 1. holds for R(α)
and R(β). Thus 2. holds for R(α) → R(β). To show that V = lim→R(j), we must
verify that I is a directed set. That is, for α, β ∈ I, there exists γ ∈ I such that
R(α) ⊂ R(γ) and R(β) ⊂ R(γ).

There exists f1, . . . , fm ∈ V such that if A = k[f1, . . . , fm], m = A ∩ mV1 then
R(α) = Am. There exists g1, . . . , gn ∈ V such that if B = k[g1, . . . , gn], n = B ∩mV1

then R(β) = Bn. Set γ = (f1, . . . , fm, g1, . . . , gn). By construction, A,B ⊂ R(γ).
Since mV ∩R(γ) = mγ is the maximal ideal of R(γ), we have R(α), R(β) ⊂ R(γ).

3. holds by our construction,since ν(f) ∈ Λf if f ∈ V . ¤
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Theorem 6.3. Let k be a field of characteristic zero, K an algebraic function field
over k, K∗ a finite algebraic extension of K, V ∗ a k-valuation ring of K∗, V = V ∗∩K.
Let

e = [Γ∗/Γ]
be the ramification index of V ∗ relative to V ,

f = [V ∗/mV ∗ : V/mV ]

be the residue degree of V ∗ relative to V , and let τ be a primitive element of V ∗/mV ∗

over V/mV . Then there exists a partially ordered set I and algebraic regular local rings
{S(i) | i ∈ I} with quotient field K∗ which are dominated by V ∗ such that with the
notations on V ∗ defined in Section 3, S(j) has regular parameters (y1(j), . . . , yn(j))
such that

(1) p∗i (j) = p∗i ∩ S(j) = (y1(j), . . . , yt1+···+ti(j)) for 1 ≤ i ≤ r and

{ν∗(yt1+···+ti−1+1(j)), . . . , ν∗(yt1+...+ti−1+si(j)}
is a rational basis of (∆∗

i−1/∆∗
i )⊗Q for 1 ≤ i ≤ r.

(2) For all k ∈ I there exist algebraic regular local rings R0(k) with quotient field
K which are dominated by V such that there exist factorizations

R0(k) → R(k) → S(k)

of the form of (7) so that there are regular parameters (x1(k), ...., xn(k)) in
R0(k), units δ1(k), . . . , δn(k) ∈ S(k) and a matrix A(k) = (aij(k)) of non-
negative integers such that det(A(k)) 6= 0 and

x1(k) = y1(k)a11(k) · · · yn(k)a1n(k)δ1(k)
...

xn(k) = y
an1(k)
1 · · · yann(k)

n δn(k)

(21)

has the form of the conclusions of Theorem 4.8. Furthermore, there are iso-
morphisms of abelian groups

Γ∗/Γ ∼= Zn/A(k)Zn,

and

[S(k)/mS(k) : R(k)/mR(k)] = f, | det(A(k)) |= e, [QF (Ŝ(k)) : QF (R̂(k))] = ef

and S(k)/mS(k) = R(k)/mR(k)[τ ].
(3) Let

T = {j | t1 + · · ·+ tk < j ≤ t1 + · · ·+ tk + sk+1 for some 0 ≤ k ≤ r − 1},
k′ be an algebraic closure of V ∗/mV ∗ . Suppose that j < k ∈ I.
(a) There are relations

yi(j) =
∏

c∈T,c>t1+···+ta

yc(k)dicεi (22)

where dic are natural numbers and εi ∈ S(k) is a unit for i = t1 + · · ·+
ta + b ∈ T with 1 ≤ b ≤ sa+1. Let D(j, k) be the | T | × | T | matrix of
(22). Then det(D(j, k)) 6= 0

(b) There exists a commutative diagram

R(k) → S(k)
↑ ↑
R(j) → S(j)

(23)
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(c) Further, we have actions of Γ∗/Γ on Ŝ(j)⊗S(j)/mS(j)
k′ such that

(Ŝ(j)⊗S(j)/mS(j)
k′)Γ

∗/Γ ∼= R̂(j)⊗R(j)/mR(j)
k′

for all j, and this action is compatible with restriction in the diagram
(23).

(4)
V ∗ = lim

→
S(j) = ∪j∈IS(j)

and
V = lim

→
R(j) = ∪j∈IR(j).

For j ∈ I, let Λj be the free Z module Λj =
∑

i∈T ν(xi(j))Z, and let Ωj be
the free Z module Ωj =

∑
i∈T ν∗(yi(j))Z. Then

Γ = lim
→

Λj = ∪j∈IΛj

and
Γ∗ = lim

→
Ωj = ∪j∈IΩj

Proof. Suppose that R′ is the regular local ring of Theorem 6.1. By Theorem 6.1,
there exists a sequence of local rings

R0(0) → R(0) → S(0)

such that R′ ⊂ R0(0) and the conclusions of Theorem 6.1 hold for this sequence. In
particular, 1. and 2. of the theorem hold for R0(0) → R(0) → S(0).

Suppose that m is a positive integer, f = (f1, . . . , fm) ∈ (V ∗)m. Set ui = yi(0),
1 ≤ i ≤ n. Set un+i = fi for 1 ≤ i ≤ m. If fi ∈ V ∗ ∩K = V , also set vi = fi.

By Theorem 4.9 and Theorem 6.1, with the R∗, S∗ in the assumptions of Theorem
4.9 set as R∗ = R0(0), S∗ = S(0), and with the {ui} and {vi} as defined above, there
exists a commutative diagram

R0(f) → R(f) → S(f)
↑ ↑
R0(0) → S̃

such that the vertical arrows are sequences of monoidal transforms along V ∗, 1. and
2. of this theorem hold for

R0(f) → R(f) → S(f)

and 3. (a) of this theorem holds for

R(f) → S(f)
↑ ↑
R(0) → S(0)

.

det(D(0, f)) 6= 0 since 1. holds for S(0) and S(f). Define a partial ordering on
I = tm∈N+(V ∗)m by f ≤ g if S(f) ⊂ S(g). We will associate to 0 ∈ V ∗ the sequence
R0(0) → R(0) → S(0) constructed in the beginning of the proof. Suppose that α ≤ β.
We have

S(0) ⊂ S(α) ⊂ S(β)
so the proof of 2. of Theorem 6.2 shows that 3. (a) of this Theorem holds for α, β.
3. (b) holds since

R(α) = S(α) ∩K ⊂ S(β) ∩K = R(β).
3. (c) is immediate, since the conclusions of Theorem 6.1 hold. In particular, (11)
holds.
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Finally, we will establish 4. of the Theorem. By construction, V ∗ = ∪j∈IS(j).
If f ∈ V , we have f ∈ S(f) ∩ K = R(f), thus V = ∪j∈IR(j). By construction,
∪j∈IΩj = Γ∗, since ν∗(f) ∈ Ωf for f ∈ V ∗. We also have ∪j∈IΛj = Γ, since
ν(f) ∈ Λf for f ∈ V . I is a directed set as shown in the proof of Theorem 6.2. ¤

Remark 6.4. If K∗ is Galois over K, then 3. (c) of Theorem 6.3 can be strengthened
to the conclusions of Theorem 5.2.

7. Ramification in function fields of surfaces of positive
characteristic.

In this section, k is an algebraically closed field of characteristic p > 0, and K∗/K
is a finite and separable extension of function fields of transcendence degree two over
k. Let ν be a k-valuation of K, with valuation ring V and value group Γ, and ν∗ be
an extension of ν to K∗, with valuation ring V ∗ and value group Γ∗.

It follows from the local uniformization theorem ([1] top of p.492) that there exists
an algebraic regular local ring S (resp. R) with quotient field K∗ (resp. K) which is
dominated by ν∗ (resp. ν).

Let S < S1 < · · · < Ss < · · · be the quadratic sequence along V ∗ and R < R1 <
· · · < Rr < · · · be the quadratic sequence along V . A basic result ([1] lemma 10) is
that V ∗ =

⋃
j>0 Sj and V =

⋃
i>0 Ri. This local result on elimination of indetermi-

nacies implies that there exists a pair of regular local rings (R, S) as before with S
furthermore dominating R. These notations will be kept all along this section.

Abhyankar’s inequality ([22] proposition 1 p.330) states that

ratrank(V ) + trdegk(V/mV ) ≤ trdegkK = 2.

Moreover, Γ (and Γ∗) are finitely generated except possibly when ratrank(V ) = 1 and
trdegk(V/mV ) = 0 (thus V/mV ' k since k is algebraically closed). In case Γ is not
finitely generated, Γ is thus isomorphic to a nondiscrete subgroup of Q.

In section 7.2, it is proved that most of the characteristic zero results of the pre-
vious sections extend in a satisfactory way to valuation rings with finitely generated
value group in function fields of surfaces of positive characteristic.

The case of valuation rings whose value group is isomorphic to a nondiscrete sub-
group of Q is much more subtle and is the purpose of all remaining subsections. It is
well known that this case is also the hard part in the proof of the local uniformization
theorem: most of the content of [1] is indeed devoted to the local uniformization of
valuations whose value group is isomorphic to a nondiscrete subgroup of Q. Basically,
we prove that the pair (R, S) can be replaced by another pair (R′, S′) from which the
ramification index and the defect of ν∗ relative to ν can be read off (theorem 7.33).

In theorem 7.35, we prove that most of the characteristic zero statements in the
previous sections extend to finite and separable extensions of function fields of tran-
scendence degree two over k whenever V ∗/V is defectless (see definition in section
7.1). On the other hand, we prove that the conclusion of the stronger form of the
monomialization theorem (theorem 4.8) may be false when V ∗/V has nontrivial defect
(theorem 7.38). We do not know if the weaker form of the monomialization theorem
(theorem 4.1) holds in this case.
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Notations. We freely use the following notation: if A is a commutative ring which
is a UFD, f ∈ A is a nonunit and g ∈ A, then the largest power of f which divides g
is denoted by ordf (g).

7.1. Ramification theory of local rings. In this section, we recall the definition
of ramification groups as can be found in pp. 50-82 of [22].

Suppose that R is a normal local ring with quotient field K which is dominated
by V , and R∗ is a normal local ring with quotient field K∗ which lies above R and
is dominated by V ∗. Let f(R∗/R) be the degree of the residue extension R∗

mR∗
/ R

mR
.

In case K∗ is a finite Galois extension of K with Galois group G = Gal(K∗/K), one
can consider the splitting and inertia groups of R∗ over R as in section 5.

Notice that in case trdegk(R/mR) = 0, we have R/mR
∼= k, since k is algebraically

closed. Consequently,
Gi(R∗/R) = Gs(R∗/R)

by theorem 1.48 [4]. In particular, this holds when R is a two dimensional algebraic
normal local ring or when R is a valuation ring V such that trdegk(V/mV ) = 0.

The inertia group Gi(V ∗/V ) has a natural normal subgroup Gr(V ∗/V ), called the
ramification group of V ∗ over V , and defined by

Gr(V ∗/V ) := {g ∈ Gi(V ∗/V ) | ν∗
(

g(x)
x

− 1
)

> 0 for all x ∈ K∗/{0}} ⊆ Gi(V ∗/V ).

It is proved in theorems 24 and 25 of [22] that Gr(V ∗/V ) is the unique p-Sylow
subgroup of Gi(V ∗/V ) and that

Gi(V ∗/V )/Gr(V ∗/V ) ' (Γ∗/Γ)(p) (:= the prime to p part of Γ∗/Γ).
(24)

Let pw0(V
∗/V ) be the order of the wild part of Γ∗/Γ, that is

| Γ∗/Γ |= pw0(V
∗/V ) | (Γ∗/Γ)(p) | .

By the corollary on p.78 of [22], we have

| Gr(V ∗/V ) |= pw0(V
∗/V )+δ0(V

∗/V ), (25)

where δ0(V ∗/V ) ≥ 0. The previous considerations yield the formula

| Gs(V ∗/V ) |= f(V ∗/V )pδ0(V
∗/V ) | Γ∗/Γ | .

Finally, one extends the definition of the integer δ0(V ∗/V ) to an arbitrary finite
and separable extension K∗ of K by taking a Galois closure K ′/K of K∗/K, choosing
an extension V ′ of V to K ′ which dominates V ∗ and letting

δ0(V ∗/V ) := δ0(V ′/V )− δ0(V ′/V ∗) ≥ 0. (26)

It is easily checked using multiplicativity of ramification index, residue degree and
degree of field extensions that

[K∗
s : Ks] = f(V ∗/V )pδ0(V

∗/V ) | Γ∗/Γ |,
where Ks (resp. K∗

s ) denotes the splitting field of V ′ over V (resp. over V ∗).
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Definition 7.1. With notations as above, the integer pδ0(V
∗/V ) is called the defect

of V ∗ over V . The extension of valuation rings V ∗/V is said to be defectless if
δ0(V ∗/V ) = 0.
Finally, V ∗/V is said to be tamely ramified if p does not divide e(V ∗/V ) and V ∗/V is
defectless. If K∗/K is Galois, V ∗/V is tamely ramified if and only if Gr(V ∗/V ) = (1).

We conclude this section by stating the following extension of lemma 2 of [13].

Proposition 7.2. Let R ⊂ S be an inclusion of two dimensional algebraic regular
local rings over k, with K∗/K := QF (S)/QF (R) finite and separable. Let S∗ be
the unique two dimensional algebraic normal local ring over k lying above R with
QF (S∗) = K∗ and S∗ ⊂ S. Assume that R has a r.s.p. (u, v), S has a r.s.p. (x, y),
and there is an expression

u = xafu

v = xbfv,

where a, b > 0, x does not divide fufv. Assume moreover that either (1) or (2) below
holds.

(1) fu is a unit in S and fv is not a unit in S.
(2) fu = γyc, fv = γ′yd, where γ, γ′ ∈ S are units and ad− bc 6= 0.

Then there exists a diagram

S∗ → S
↑ ↑
R → R0

(27)

of local inclusions with the following properties: R0 is a two dimensional algebraic
normal local ring over k, with QF (R0) = K such that S lies above R0. Let ν be the
natural valuation of the DVR S

(x) . Then we have

[Ŝ : R̂0] := [QF (Ŝ) : QF (R̂0)] = ad,

with d := ν(fv mod x) in case (1) and

[Ŝ : R̂0] := [QF (Ŝ) : QF (R̂0)] =| ad− bc |,
in case (2).

Proof. We review the proof of lemma 2 of [13] and point out the appropriate changes.

First assume that assumption (1) holds. Let δ := g.c.d(a, b), and ϕ :=
v

a
δ

u
b
δ

. We

have ϕ ∈ S and ϕ is not a unit in S.
Let I ⊂ R be the integral closure of the ideal (u

b
δ , v

a
δ ). Then I is a simple complete

mR-primary ideal (p.385, appendix 5 of [22]). There are local inclusions

R ⊂ R0 := RP ⊂ S,

where R := R[ I

u
b
δ

] and P := mS ∩ R. R0 is normal by Zariski’s theory of complete

ideals ([22] appendix 5). By construction, ϕ ∈ R and neither is a unit nor is divisible
by x in S. This implies that ht((x) ∩R) = 1. Clearly, (27) holds.

Let W ∗ := S(x) and W := R(x)∩R. Then W and W ∗ are divisorial valuation rings
and W ∗ ∩K = W . The argument in the proof of lemma 2 of [13] now shows that the
ramification index e(W ∗/W ) of W ∗/W is δ and that there is an inclusion

R

(x) ∩R
= k[ϕ] ⊂ S

(x)
, (28)
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where ϕ is the image of ϕ in the ring to the left. We claim that W has a unique
extension Ŵ to QF (R̂0), Ŵ has a unique extension Ŵ ∗ to QF (Ŝ), and that

e(Ŵ ∗/Ŵ ) = δ, f(Ŵ ∗/Ŵ ) =
ad

δ
.

Notice that this implies proposition 7.2, since we then get

[Ŝ : R̂0] = e(Ŵ ∗/Ŵ )f(Ŵ ∗/Ŵ ) = ad

by [22] theorem 20 p.60 and remark at the bottom of p.63.

To prove that the extension of W to QF (R̂0) is unique, it must be proved that the
prime (x)∩R0 does not split in R̂0. By proposition 21.3 and following remark of [17],
the reduced exceptional divisor of the blow-up X := Proj(

⊕
n≥0I

n) → SpecR is an
irreducible curve F ' P1

k. In particular, R0
(x)∩R0

is a regular algebraic local ring (of

dimension one) and therefore (x) ∩R0 does not split in R̂0.
To prove that the extension of Ŵ to QF (Ŝ) is unique, it is sufficient to prove that

(x) is the unique height one prime (f) of S such that (f) ∩ R0 = (x) ∩ R0, since (x)
does not split in Ŝ. Let (f) be a height one prime of S containing (x) ∩ R0. Then
mR ⊇ (f) ∩R = (x) ∩R = mR. In particular, f divides u in S. Assumption (1) now
implies that (f) = (x). This proves that (x) is the unique height one prime of S such
that (f) ∩R0 = (x) ∩R0.

By (28), we get

f(Ŵ ∗/Ŵ ) =

[
QF (

Ŝ

(x)
) : QF (

R̂0

(x) ∩R0
)

]
= [ k[[y]] : k[[ϕ]] ] = ν(ϕ) =

ad

δ
.

But e(Ŵ ∗/Ŵ ) = e(W ∗/W ) = δ since algebraic local rings are analytically unrami-
fied, and this concludes the proof under assumption (1).

We now sketch the proof under assumption (2). One reduces to assumption (1) if
c = 0 or d = 0, so assume c > 0, d > 0. By possibly exchanging x and y, it can also
be assumed that ad − bc > 0. Let δ := g.c.d(a, b) and δ′ := g.c.d(c, d). Let I ⊂ R

(resp. I ′ ⊂ R) be the integral closure of the ideal (u
b
δ , v

a
δ ) (resp. (u

d
δ′ , v

c
δ′ )). Then

each of I, I ′ is a simple complete ideal and I 6= I ′. We have

IS = (x
ab
δ y

bc
δ ) = (u

b
δ )S,

and
I ′S = (x

bc
δ′ y

cd
δ′ ) = (v

c
δ′ )S.

In particular, II ′S is a principal ideal. There are local inclusions

R ⊂ R0 := RP ⊂ S,

where R := R[ II′

u
b
δ v

c
δ′

] and P := mS∩R. As in the proof in case 1, we have ht((x)∩R) =

ht((y) ∩R) = 1, so that by construction (27) holds.
One introduces the divisorial valuation rings W ∗ := S(x) and W := R(x)∩R as in

case (1). Then W has a unique extension Ŵ to QF (R̂0), Ŵ has a unique extension
Ŵ ∗ to QF (Ŝ), and we have

e(Ŵ ∗/Ŵ ) = δ, f(Ŵ ∗/Ŵ ) =
ad− bc

δ
.

One concludes as before, by noticing that

[Ŝ : R̂0] = e(Ŵ ∗/Ŵ )f(Ŵ ∗/Ŵ ) = ad− bc.
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¤

7.2. Valuation rings with finitely generated value group. In this section, we
prove that theorem 4.8 extends to positive characteristic and dimension two if V ∗ has
finitely generated value group (theorem 7.3). We also prove that, in this case, V ∗/V
is defectless.

First consider the case when V ∗ is divisorial. By definition, this means that
ratrank(V ) = trdegk(V/mV ) = 1. By proposition 4.4 [2], ν and ν∗ are discrete,
and V (resp. V ∗) itself is an iterated quadratic transform of R (resp. S). Let x (resp.
y) be a regular parameter of V (resp. V ∗). There is a relation

x = γye,

where γ ∈ V ∗ is a unit, and e ≥ 1. Clearly,

Γ∗/ Γ ' Z/eZ.

From now on, till the end of this section, it is assumed that V is not divisorial, that
is, trdegk(V/mV ) = 0. Since k is algebraically closed, this implies that V/mV ' k.
The main result is

Theorem 7.3. Assume that V/mV ' k and that Γ is finitely generated. The following
holds.

(1) There exist iterated quadratic transforms R′ of R along ν and S′ of S along
ν∗ with R′ ⊂ S′, such that R′ has a r.s.p. (u, v), S′ has a r.s.p. (x, y), and
there is a relation

u = γxayc

v = δxbyd,

where γ, δ ∈ S′ are units, a, b, c, d ≥ 0 and ad − bc 6= 0. Moreover, Γ∗/ Γ '
Z2/AZ2, where

A =
(

a c
b d

)
.

(2) If ν has rank two, there exist R′ and S′ as in (1) and such that

A =
(

a b
0 d

)
.

If ν is discrete, there exist R′ and S′ as in (1) and such that

A =
(

1 0
0 d

)
.

(3) The extension of valuation rings V ∗/V is defectless.

Proof. First assume that ν has rational rank two. Theorem 4.7 of [2], implies that
there exists an iterated quadratic transform R′ of R along ν, with r.s.p. (u, v) such
that Γ = Zν(u) + Zν(v) (and ν(v) = (0, 1)Γ if Γ ' Z2 with lexicographical ordering).
There exists an iterated quadratic transform S1 of S along ν∗ such that R′ ⊂ S1.

Apply again theorem 4.7 of [2] to the algebraic regular local ring of dimension two
S1, and f := uv ∈ S1. Then there exists an iterated quadratic transform S′ of S1

along ν∗, with r.s.p. (x, y) such that Γ∗ = Zν∗(x) + Zν∗(y) (and ν∗(y) = (0, 1)Γ∗ if
Γ∗ ' Z2 with lexicographical ordering) and

uv = γxmyn,

where γ ∈ S′ is a unit and m, n ≥ 0. Since S′ is a UFD, we have u = γxayc,
v = δxbyd, where γ, δ ∈ S′ are units and a, b, c, d ≥ 0, a+ b = m, c+d = n (and b = 0
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if Γ∗ is lexicographically ordered). Since ν∗(u) and ν∗(v) are rationally independent,
we have ad− bc 6= 0. Moreover,

Γ∗/ Γ = Z2/(Zν∗(u) + Zν∗(v)) ' Z2/AZ2.

This proves (1) and (2) if ν has rational rank two.

Assume now that ν is discrete. Since R is two dimensional and regular, there is a
1-1 correspondence between iterated quadratic transforms of R and iterated quadratic
transforms of R̂. By [19] theorem 3.1 and case 4.2 p.154, ν has a unique extension
ν̂ to K̂ := QF (R̂), and ν̂ has value group Z ⊕ Γ with lexicographical ordering. By
Zariski’s subspace theorem ([5] theorem 10.13), the natural map R̂ → Ŝ is an inclusion.
Similarly, let ν̂∗ be the unique extension of ν∗ to K̂∗ := QF (Ŝ).

Since ν̂∗ and ν̂ have rank two, it follows from the above construction that there
exists an iterated quadratic transform S′1 of Ŝ along ν̂∗ (corresponding to an iterated
quadratic transform S1 of S along ν) and an iterated quadratic transform R′1 of R̂
along ν̂ (corresponding to an R1) with the following property: S′1 has a r.s.p. (x1, y1)
with y1 ∈ S1, such that we have ν̂∗(y1) = (0, 1), ν̂∗(x1) = (1, h) in Z ⊕ Γ∗, R′1 has
a r.s.p. (u1, v1) with v1 ∈ R1, such that ν̂(v1) = (0, 1), ν̂(u1) = (1, g) in Z ⊕ Γ, and
there is a relation:

u1 = γ1x
a1
1 yc1

1

v1 = δ1y
d1
1 ,

(29)

where γ1 ∈ S′1 and δ1 ∈ S1 are units, a1, d1 > 0 and c1 ≥ 0. We now compute the
Jacobian determinant

J :=
∂u1

∂x1

∂v1

∂y1
− ∂u1

∂y1

∂v1

∂x1
∈ Ŝ′1 ' k[[x1, y1]].

By standard arguments, the support of div(J) ↪→ SpecŜ′1 is contained in SpecS1.
Since ν̂∗(K\{0}) = (0) ⊕ Γ∗ ⊂ Z ⊕ Γ∗, we have (x1) ∩ S1 = (0). Therefore x1 does
not divide J and this implies that a1 = 1. Thus (29) reduces to

u1 = γ1x1y
c1
1

v1 = δ1y
d1
1 .

Let c1 = q1d1 + r1 be the Euclidian division. The inclusion

R′2 := R′1[u2](u2,v1) ⊂ S′2 := S′1[x2](x2,y1),

where u2 := u1

v
q1+1
1

, x2 := x1

y
d1−r1
1

, is given by an expression

u2 = γ2x2

v1 = δ1y
d1
1 ,

where γ2 ∈ S′2 is a unit. R′2 (resp. S′2) corresponds to an iterated quadratic transform
R′ (resp. S′) of R (resp. S). The pair (R′, S′) satisfies the conclusion of (2) in the
theorem, with v := v1, y := y1, and any u ∈ R′ such that (u, v) is a r.s.p. by letting
x := u ∈ S′. This concludes the proof of (1) and (2).

Now assume that K∗/K is Galois. After possibly replacing R with an iterated
quadratic transform along ν and S by an iterated quadratic transform along ν∗, it
can be assumed that ν∗ is the unique extension of ν which is centered in S.

Pick R′, S′ as in the conclusion of (1) of theorem 7.3. If A is a diagonal matrix,
then R′ ⊂ S′ is the localization of a finite map. Moreover Ŝ′ ' k[[x, y]] is clearly a
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free R̂′-module (R̂′ ' k[[u, v]]) with basis

B := {xiyj , 0 ≤ i ≤ a− 1, 0 ≤ j ≤ d− 1}.
Therefore [QF (Ŝ′) : QF (R̂′)] = ad. Assume now that A is not diagonal, say a > 0
and b > 0. Then assumption (1) or assumption (2) of proposition 7.2 is satisfied by
the pair R′ ⊂ S′. Then there exists R0 ⊂ S′ as in the conclusion of proposition 7.2
such that

[Ŝ′ : R̂0] =| ad− bc | .
On the other hand, we have

| Gi(V ∗/V ) |= [K∗ : Ki] = [Ŝ′ : R̂0] =| ad− bc |,
since ν∗ is the unique extension of ν which is centered in S′.

By (1) of theorem 7.3, we have | Γ∗/Γ |=| det(A) |=| ad − bc |. Comparing with
(24) and (25), this proves that the defect of V ∗/V is pt0 = 1, and V ∗/V is defectless
as stated. Equation (26) implies that (3) remains true for K∗/K separable, but not
necessarily Galois.

¤

Remark 7.4. Statement (3) of theorem 7.3 holds in a more general context. See [18]
theorem 5 p.264 for valuations whose group is an integral direct sum. See also [15]
theorem 3.1 for the case of valuations of maximal rational rank and ibid. theorem 1.1
for applications to local uniformization.

7.3. Prepared pairs and admissible coordinates. In this section, we introduce
notions which are needed in order to deal with the remaining case, that is, when the
value group of ν (and ν∗) is a nondiscrete subgroup of Q.

Let S (resp. R) be an algebraic regular local ring with quotient field K∗ (resp. K)
which is dominated by ν∗ (resp. ν). We also assume that S dominates R. We restrict
our attention to certain such pairs R ⊂ S which are called prepared pairs.

Definition 7.5. With notations as before,
(1) Given an index i ≥ 1, Ri (resp. Si) is said to be “free” if the reduced excep-

tional locus Ei (resp. Fi) of SpecRi → SpecR (resp. SpecSi → SpecS) has
precisely one irreducible component.

(2) Given a pair (r, s) of positive integers, the pair (Rr, Ss) is said to be prepared
if the following properties hold:
(i) Ss dominates Rr.
(ii) Both of Rr and Ss are free.
(iii) The critical locus of SpecSs → SpecRr is contained in Fs.
(iv) We have u = γxa, where u (resp. x) is a regular parameter of Rr (resp.

Ss) whose support is Er (resp. Fs), and γ is a unit in Ss.

Proposition 7.6. Assume that the value group of ν (and ν∗) is a nondiscrete sub-
group of Q.
The set of prepared pairs is cofinal in the set of all pairs (Rr, Ss). Given a prepared
pair (Rr, Ss), any pair (Rr′ , Ss′) with r′ ≥ r, s′ ≥ s, and such that both of Rr′ and
Ss′ are free and Ss′ dominates Rr′ is also prepared.

Proof. Since the value group of V is a nondiscrete subgroup of Q it is true that the
set of free Rr (resp. Ss) is cofinal in the set of all Rr (resp. Ss) ([1] theorem 4.7(A)).

Since L/K is separable, the critical locus of the map SpecSs → SpecRr is a (pos-
sibly empty) curve Cr,s in SpecSs.
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If C is a curve in SpecSs, its total transform in SpecSs′ is contained in Fs′ for all
large enough s′ ([1] ibid.). Applying this statement to Er, and to Cr,s for a given pair
(Rr, Ss) satisfying (i) and (ii) of definition 7.5, one gets that (iii) and (iv) hold for all
pairs (Rr′ , Ss′) satisfying (i) and (ii) and with r′ and s′ large enough.

¤

Lemma 7.7. Assume that the value group of V (and V ∗) is a nondiscrete subgroup
of Q.
There exists α ∈ Γ such that ν(v) ≤ α for all regular parameters v of R.

Proof. Assume not. We fix a regular parameter u of R such that

ν(u) = minu′∈mR
{ν(u′)}.

Notice that ν(v) = ν(u) unless possibly if (u, v) is a r.s.p. of R. Let f ∈ R be
a nonunit and choose a regular parameter v of R such that ν(v) > ν(f). By the
Weierstrass preparation theorem, there is an expansion

f = γf


vdf −

df∑

i=1

ai(u)vdf−i


 , (30)

with γf ∈ R̂ = k[[u, v]] a unit, and ai(u) ∈ k[[u]] a nonunit for 1 ≤ i ≤ df . All
terms in (30) have value larger than ν(v) except possibly adf

(u). This implies that
ν(f) = ν(adf

(u)) = ν(u)orduadf
. Since this holds for every f ∈ R, we get that

Γ = Zν(u). This is a contradiction, since ν is not discrete. ¤

Since R is Noetherian, and ν has rank one, every subset of the semigroup Φ :=
ν(R\{0}) which is bounded from above is finite ([22] top of p.332). By lemma 7.7,
any prepared pair (Rr, Ss) has an admissible r.s.p. as defined below.

Definition 7.8. (Choice of coordinates) Let (Rr, Ss) be prepared. A r.s.p. (u, v) of
Rr is said to be admissible if the support of u is equal to Er and if ν(v) is maximal
among all such r.s.p. containing u.

7.4. The algorithm and the complexity. From now on, it is assumed that the
value group of V (and V ∗) is a nondiscrete subgroup of Q.

We fix a prepared pair (R,S) =: (Rr0 , Ss0) such that mRS is not a principal ideal.
By induction on n ≥ 0, we associate with a given prepared pair (Rrn , Ssn) such that
mRrn

Ssn is not a principal ideal, a new prepared pair (Rrn+1 , Ssn+1), with rn+1 > rn,
sn+1 > sn, and such that mRrn+1

Ssn+1 is not a principal ideal.

Let (urn , vrn) be an admissible r.s.p. of Rrn . Let (xsn , ysn) be a r.s.p. of Ssn such
that the support of xsn is Fsn . There are relations

urn = γnxan
sn

vrn = xbn
sn

fn,

where γn is a unit in Ssn , and xsn does not divide fn. Also fn is not a unit, since
mRrn

Ssn is not a principal ideal. Among all s ≥ sn, there is a least integer sn+1

such that Ssn+1 is free and the strict transform of div(fn) in Ssn+1 is empty. We have
sn+1 > sn.

By construction, mRrn
Ssn+1 is a principal ideal. The nonempty set of integers

r > rn such that Ssn+1 dominates Rrn has a maximal element which is denoted by
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rn+1. This completes the definition of the pair (Rrn+1 , Ssn+1). We postpone to section
7.6 the proof of the facts that Rrn+1 is free (and hence that (Rrn+1 , Ssn+1) is prepared
by proposition 7.6) and that Rrn+1 is independent of the choice of the admissible r.s.p.
(urn

, vrn
) of Rrn

.

Let now (Rr, Ss) be a prepared pair, such that Rr has a r.s.p. (u, v), Ss has a r.s.p.
(x, y) with u and x satisfying property (2.iv) of definition 7.5. We assume that there
is an expression

u = γxa

v = xbf,
(31)

where f ∈ Ss is a nonunit which is not divisible by x. Let v′ be a regular parameter
of Rr which is transversal to u. By the Weierstrass preparation theorem, there is an
equation

δv′ = v − P (u),

where δ is a unit and P ∈ k[[u]]. Let νs be the natural valuation of the DVR Ss

(x) .
Comparing with (31), we get that either

v′ = γ′xb′ ,

where γ′ is a unit and b′ ≤ b, or
v′ = xbf ′,

where νs(f ′ mod x) = νs(f mod x). Hence the triple of integers (a, b, νs(f) mod x)
is independent of the choice of a r.s.p. of Rr such that f is not a unit in (31). Also
notice that f is not a unit if mRrSs is not a principal ideal (this holds in particular if
(r, s) = (rn, sn) for some n ≥ 0). Therefore the complexity introduced below is well
defined.

Definition 7.9. (The complexity) Let (Rr, Ss) be a prepared pair such that there
exists an expression (31), where f ∈ Ss is a nonunit which is not divisible by x. Let

d(= dr,s) := νs(f mod x) > 0,

where νs denotes the natural valuation of the DVR Ss

(x) as before. The complexity of
the prepared pair (Rr, Ss) is defined to be cr,s := ad > 0.
The complexity of the prepared pair (Rrn , Ssn) is denoted by cn(:= crn,sn).

Remark 7.10. The integer ir,s can be interpreted as a ramification index as follows:
let ν′s be the rank two valuation of K∗ which is composed of the DVR of ordx and of
νs. Then cr,s is the ramification index of ν′s relative to its restriction to K since,

ν′s(K∗) = Z2
lex,

and
ν′s(K) = Zν′s(u)⊕ Zν′s(v) = Z(a, 0)⊕ Z(b, d).

In particular, this shows that cr,s does not depend on r.

7.5. The generating sequence of a valuation: an overview. In this section, we
collect and recall the necessary material about generating sequences of a valuation
centered in a regular local ring of dimension two, as can be found in [19]. See also [9].

Let R(= Rr0) be free. We fix a regular parameter u ∈ R, whose support is equal to
Er0 . By proposition 7.6, the set of free Rr is infinite. Therefore, the integers (r′i+1, ri)
considered below are well defined.
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Definition 7.11. Let r′1 = r0 := r0. For all i ≥ 1, let (r′i+1, ri) be the pair of integers
with the following properties:

(1) ri is the largest integer r ≥ r′i such that Rr′ is free for all r′ with r′i ≤ r′ ≤ r.
(2) r′i+1 is the smallest integer r > ri such that Rr is free.

Let P0 := u and let P1 = v be any regular parameter of S, transversal to u, and
such that the strict transform of div(v) in Rr1 is not empty. For each i ≥ 1, there
exists Pi+1 ∈ R such that div(Pi+1) is an analytically irreducible curve in SpecR,
and such that the strict transform of div(Pi+1) in SpecRri+1 is smooth and transver-
sal to Eri+1 (with notations as in [19] remark 7.5, Pi+1 is the local equation of any
curve Ci ∈ Ci (resp. Ci−1 ∈ Ci−1) if div(P2) is singular (resp. nonsingular)). Such a
sequence (Pi)i≥0 is called a generating sequence of ν (see [19] definition 1.1 for expla-
nations about this terminology).

Given f ∈ R, one defines

degf := νr0(f mod u),

where νr0 denotes the natural valuation of the DVR R
(u) . Let m0 := 1, m1 := deg(P2),

and mi := deg(Pi+1)
deg(Pi)

. Then mi ∈ N and mi ≥ 2 for all i ≥ 1. Moreover, the mi’s
do not depend on the choice of the Pi’s with the properties listed above (this follows
from (7.3) of [19]). By definition, we have

degPi+1 =
i∏

i′=0

mi′ for all i ≥ 0.

Let now Rr be an iterated quadratic transform of R along V and which is free (we
assume that Rr 6= R). Let ur ∈ Rr be a regular parameter with support equal to
Er. There is an associated divisorial valuation of K, νr := ordEr . By definition, the
following holds.

Let vr :=
Pg+1

u
νr(Pg+1)
r

∈ Rr. Then (ur, vr) is an admissible r.s.p. of Rr.
(32)

Let g ≥ 0 be the smallest integer i ≥ 0 such that the strict transform of div(Pi+1)
in SpecRr is nonempty. We thus have r′g+1 ≤ r ≤ rg+1. The values of the Pi’s w.r.t.
νr have the following classical properties.

Proposition 7.12. The following holds.
(1) νr(u) =

∏g
i=0 mi.

(2) Let Γi :=< {νr(Pi′)}0≤i′≤i >, for 0 ≤ i ≤ g. Then

Γi =

(
g∏

i′=i+1

mi′

)
Z.

(3) There are inequalities

νr(Pi+1) > miνr(Pi) for 1 ≤ i < g.

Proof. By [19] proposition 7.7,

νr(u) = degPi+1 =
g∏

i=0

mi.
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Statement (2) follows from remark 6.1 and the last statement in corollary 8.4 of [19]
applied to the valuation νr. Statement (3) is (2) of remark 6.2 of [19]. ¤

We now introduce monomial expansions in terms of the Pi’s. Similar considerations
appear in [9] proposition 1.

Lemma 7.13. Let g ≥ 0 be an integer. Any integer d ≥ 0 has a unique writing

d =
g∑

i=0

di+1

(
i∏

i′=0

mi′

)
,

with dg+1 ≥ 0 and 0 ≤ di+1 < mi+1 for 0 ≤ i < g.

Proof. Consecutive Euclidian divisions.
¤

Definition 7.14. Let g ≥ 0 be a fixed integer. For each d ≥ 0, we define

Md :=
g∏

i=0

P
di+1
i+1 ,

where the di’s are those integers in Lemma 7.13.

Let f ∈ R. Assume that u does not divide f and that d := degf > 0. The
set of monomials (Md′)0≤d′<d forms a basis of the free k[[u]]-module R̂

(f) = k[[u,v]]
(f) .

Consequently, there exists a unique writing

δf = Md +
d−1∑

d′=0

λd′(u)Md′ , (33)

where δ ∈ k[[u, v]] is a unit and λd′(u) ∈ k[[u]] satisfies orduλd′ > 0 for all d′. The
expansion (33) depends on a choice of g ≥ 0 and of the Pi’s, for 0 ≤ i ≤ g + 1. Let
also λd := 1.

Proposition 7.15. Let Rr and g be as above. The following holds:
(1) Let f ∈ R be such that u does not divide f and d := degf > 0. There is a

expansion of f as in (33). We have

νr(f) = mind′{νr(λd′(u)Md′)},
and

νr

(
f

u
νr(f)
r

)
= mind′{d′g+1 / νr(λd′(u)Md′) = νr(f)},

where νr is the natural valuation of the DVR Rr

(ur) . In particular, the strict

transform of div(f) in SpecRr is empty if and only if νr

(
f

u
νr(f)
r

)
= 0, hence

if and only if νr(f) = νr(λd′(u)Md′) for some d′ with d′ < degPg+1.

(2) With notations as in (1), there is an inequality
(

g∏

i=0

mi

)
νr

(
f

u
νr(f)
r

)
≤ d.

Equality holds if and only if νr(Md) < νr(λd′(u)Md′) for all d′, 0 ≤ d′ ≤ d−1.
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Proof. By definition of νr and νr, there are expansions

f = γdu
νr(Md)
r vdg+1

r +
d−1∑

d′=0

γd′u
νr(λd′ (u)Md′ )
r v

d′g+1
r (34)

in Rr, where the γd′ ’s are units. Let 0 ≤ d′, d′′ ≤ d, with d′ 6= d′′. By (2) of
proposition 7.12 and the inequalities in Lemma 7.13, we have that

νr(λd′(u)Md′) = νr(λd′′(u)Md′′) =⇒ d′g+1 6= d′′g+1. (35)

Let α be the minimal value w.r.t. νr of all monomials λd′(u)Md′ appearing
in the expansion (33) of f . Among all monomials in (33) satisfying the equality
νr(λd′(u)Md′) = α, there is a unique one with d′g+1 minimal by (35). Let δ ≥ 0 be
this minimal value of d′g+1. Then (34) can be rewritten as

f = γuα
r

(
vδ

r(1 + vrf1(ur, vr)) + urf2(ur, vr)
)
,

where γ is a unit. This proves (1). Then (2) follows from the obvious inequality

δ

(
g∏

i=0

mi

)
≤ d.

¤

Proposition 7.15 is a useful tool in order to compute values w.r.t. the initial valution
ν:

Proposition 7.16. The following holds.
(1) Let f ∈ R. For any r such that Rr is free and the strict transform of div(f)

in SpecRr is empty, we have

νr(f) =
ν(f)
ν(ur)

.

(2) The value group of V is Γ =
⋃

g≥0

Z∏g
i=0 mi

ν(u).

Proof. The assumption in (1) implies that f = γu
νr(f)
r , where γ ∈ Rr is a unit. Hence

ν(f) = ν(uνr(f)
r ) = νr(f)ν(ur),

and this proves (1).
Let f ∈ R. We may choose r large enough so that the strict transform of div(f)

in Spec(Rr) is empty. We may assume that Rr is free after possibly choosing some
larger r. By (1), we have ν(f) ∈ Zν(ur). On the other hand, (1), together with (1)
of proposition 7.12 imply that

ν(ur) =
ν(u)∏g
i=0 mi

for some g. This proves (2). ¤

Given an admissible r.s.p. (u, v) = (P0, P1) of R (see definition 7.8), one can
choose equations for the Pi’s in Weierstrass form as follows (this follows from the last
statement in corollary 8.4 and theorem 8.6 of [19]):

P2 := vm1 − λ1u
l1,0 −

∑

l′1

λ1,l′1v
l′1,1ul′1,0 , (E1)
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Pi+1 = Pmi
i − λiMi −

∑

l′
i

λi,l′
i
Mi,l′

i
. (Ei)

Here, Mi is a monomial in u, v, P2, . . . , Pi−1, and each Mi,l′
i
is a monomial in u, v, P2, . . . , Pi.

They do satify conditions similar to those in lemma 7.13:

Mi :=
i−1∏

i′=0

P
li,i′
i′ , and Mi,l′

i
:=

i∏

i′=0

P
l′
i,i′

i′ , (Fi)

with 0 ≤ li,i′ , l
′
i,i′ < mi′ for 1 ≤ i′ ≤ i, and li,0, l

′
i,0 ≥ 0 arbitrary. Moreover, if

Γi :=< {ν(Pi′)}0≤i′≤i >, then for i ≥ 1,

ν(Mi) has order precisely mi in
Γi−1

miΓi−1
' Z

miZ
. (Gi)

The λi, λi,l′
i

are constants, with λi 6= 0. We have

ν(Pi+1) > ν(Pmi
i ) = ν(Mi) (Hi)

and

ν(Mi,l′
i
) > ν(Pmi

i ) (H ′
i)

for i ≥ 1 and for all l′i’s.

Remark 7.17. Conversely, given a sequence of Weierstrass polynomials (Pi+1)i≥1

given by relations (Ei), (Fi) for all i ≥ 1, let β0 := 1, and define by induction on
i ≥ 1

βi :=
1

mi

i−1∑

i′=0

li,i′βi′ .

Let Γi :=< {βi′}0≤i′≤i >. Then (Pi)i≥0 is a generating sequence of a (uniquely
determined) valuation ring V of R̂ = k[[u, v]] whose value group is a nondiscrete
subgroup of Q if the βi’s satisfy the following three properties:

i−1∑

i′=0

li,i′βi′ has order precisely mi in
Γi−1

miΓi−1
for all i ≥ 1,

βi+1 > miβi for all i ≥ 1,

and
i∑

i′=0

l′i,i′βi′ > miβi for all i ≥ 1 and for all l′i.

This is a rephrasing of the irreducibility criterion ([9] 7.2). This fact is extremely
useful to build up explicit examples and will be used in section 7.11.

7.6. Consistency of the definition of the algorithm. In this section, we prove
that the algorithm in section 7.4 is well defined. This fact is a consequene of some of
the considerations introduced in section 7.5.

Proposition 7.18. The pair (rn+1, sn+1) in the definition of the algorithm does not
depend on the choice of an admissible r.s.p. (urn , vrn) of Rrn . Moreover Rrn+1 is
free, and (Rrn+1 , Ssn+1) is prepared.
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Proof. We may clearly assume that n = 0. Since r1 is determined by s1, it is sufficient
to prove that s1 does not depend on the choice of an admissible r.s.p. (urn

, vrn
) of

Rrn in order to prove the first statement. Fix a choice of an admissible r.s.p. (u, v) of
Rr0 . The algorithm produces a value of s1 associated with (u, v). Let v′ be another
regular parameter such that ν(v′) = ν(v).

By the Weierstrass preparation theorem, we have

δv′ = v − P (u),

where δ is a unit, P ∈ k[[u]] has order n ≥ 1, and nν(u) > ν(v). We have an
expression

u = γxa

v = xbf,

where γ is a unit in Ss0 , and x does not divide f . We now apply (1) of proposition
7.16, with R replaced with Ss0 , V replaced with V ∗, and Rr replaced with Ss1 . We
get ν∗(v) = νs1(v)ν∗(xs1), since the strict transform of div(f) in SpecSs1 is empty.
Similarly,

nν∗(u) = nνs1(u)ν∗(xs1).
It follows that nνs1(u) > νs1(v), and

νs1(v) = νs1(v
′). (36)

Consequently, δv′ = γ′xνs1 (v)
s1 , where γ′ ∈ Ss1 is a unit. This proves that the

strict transform of v′ in SpecSs1 is empty and by symmetry, the first statement in the
proposition is proved.

In order to prove that Rr1 is free, recall from definition 7.11 the integers (r′i+1, ri).
There is a uniquely determined integer i ≥ 1 such that

r′i ≤ r1 < r′i+1.

By definition, Rr1 is free if r′i ≤ r1 ≤ ri. Assume that ri < r1 < r′i+1. Recall that Rr′
i

has a r.s.p. obtained as in (32). There is an expression

ur′
i

= γ′xa′
s1

vr′
i

= xb′
s1

f ′,
(37)

where xs1 does not divide f ′ in Ss1 . We now claim that f ′ is a unit in Ss1 . Actually,
a r.s.p. of Rri

is given by
uri

= ur′
i

vri
= vr′

i
/u

ri−r′i
r′

i
.

We have ν(vri
) < ν(uri

) because Rri+1 is not free. This proves that

uri
= γ′xa′

s1

vri
= γ′r

′
i−rixb

s1
f ′,

with 0 < b < a. Since it is assumed that ri < r1, mRri
Ss1 is invertible, and conse-

quently f ′ is a unit and the claim is proved.
Now, Rr1 has a r.s.p. ur1 = uα0

r′
i
vα1

r′
i
, vr1 = uβ0

r′
i
vβ1

r′
i
, with α0β1−α1β0 = 1. By (37),

this implies that (ur1 , vr1)Ss1 is a principal ideal. This contradicts the definition of
r1 and thus proves the second statement in the proposition. Finally, the fact that Rr1

is free implies that (Rrn+1 , Ssn+1) is prepared follows from proposition 7.6. ¤
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7.7. Behaviour of the complexity under blowing up. In this section, it is proved
that whenever there is a diagram

Ssn → Ss′ → Ssn+1

↑ ↑ ↑
Rrn = Rrn → Rrn+1 ,

such that (Rrn
, Ss′) is prepared, the complexity of (Rrn

, Ss′) is not greater than that
of (Rrn

, Ssn
).

Proposition 7.19. Let n ≥ 0 and let s′ be an integer satisfying the inequality
sn ≤ s′ < sn+1. Assume that Ss′ is free.
Let c′ := crn,s′ be the complexity of the pair (Rrn

, Ss′). Then 0 < c′ ≤ cn.

Proof. Let (urn
, vrn

) be an admissible r.s.p. of Rrn
, and (x, y) be a r.s.p. of Ss′

satisfying property (2.iv) of definition 7.5. There are expressions

urn
= γnxan

sn

vrn = xbn
sn

fn,
(38)

and
urn = γ′xa′

vrn = xb′f ′.
By definition of rn+1, f ′ is not a unit. With notations as in definition 7.9, let dn =
νsn(fn mod xsn) and d′ = νs′(f ′ mod xs′), so that cn = andn and c′ = a′d′.

We now apply the results of section 7.5 with R replaced with Ssn , V replaced with
V ∗, and Rr replaced with Ss′ . The corresponding integer g is denoted by h, and the
mi’s are called nj ’s to avoid confusions. Then (1) of proposition 7.12 reads

a′ = an




h∏

j=0

nj


 , (39)

and (2) of proposition 7.15 reads

d′




h∏

j=0

nj


 ≤ dn, (40)

and the conclusion follows. ¤
7.8. Behaviour of the complexity under factoring down. In this section, we
prove that the complexity function n 7→ cn is non-increasing and study cases of
equality.

Recall from (38) that the inclusion Rrn ⊂ Ssn is given by an expression

urn = γnxan
sn

vrn = xbn
sn

fn,

and that dn = νsn(fn mod xsn) > 0 as before. The complexity of the prepared pair
(Rrn , Ssn) is denoted by cn. Proposition 7.12 will be used repeatedly in this section,
with R replaced with Rrn , and Rr replaced with Rrn+1 . The corresponding integer g
in proposition 7.12 is denoted by gn. We have gn ≥ 1. By definition 7.11, there is a
sequence of integers

rn = r′1 < r′2 < · · · < r′gn+1 ≤ rn+1.

Given a positive integer N , the prime to p part of N is denoted by N(p), that is,
N(p) is the largest prime to p integer dividing N .
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Theorem 7.20. Let n ≥ 0. The following holds.
(1) 0 < cn+1 ≤ cn.
(2) if equality holds in (1), then (dn+1)(p) divides (dn)(p), and

gn−1∏

i=0

mi = pt

for some t ≥ 0.
(3) if equality holds in (1) and if Rrn+1 ⊂ Ssn+1 is not the localization of a finite

map then
gn∏

i=0

mi = pt

for some t ≥ 1.

Proof. We break it up in several steps.

Step 1. Assume that there is a diagram

Ssn → Ss′ → Ssn+1

↑ ↑ ↑
Rrn = Rrn → Rrn+1 ,

for some s′, sn ≤ s′ < sn+1 such that Ss′ is free as in section 7.7. The complexity c′

of (Rrn , Ss′) is not greater than cn by proposition 7.19. Also, equality holds in (40)
if c′ = cn, and thus d′ divides dn.

Let now s′ be chosen so that Ss′′ is not free for all s′′ with s′ < s′′ < sn+1. By
what preceeds, it is sufficient to prove that cn+1 ≤ c′, that (dn+1)(p) divides (d′)(p) if
cn+1 = c′, and to prove both statements on the mi’s.

Let (x, y) be a r.s.p. of Ss′ satisfying property (2.iv) of definition 7.5. Notice that
µ := νsn+1 is then a monomial valuation in x, y (i.e. the value w.r.t. µ of a series in
x, y is the minimal of the values of its monomials in x, y). We consider two cases:

Case 1: sn+1 = s′ + 1. We have µ(x) = µ(y) = 1, and Ssn+1 has a regular
parameter ysn+1 := y

x transversal to xsn+1 .
Case 2: sn+1 > s′ + 1. We have µ(x) =: n1 > 1, µ(y) =: q1 ≥ 1, with

g.c.d.(n1, q1) = 1. Ssn+1 has a regular parameter ysn+1 := yn1−θxq1

xq1 transversal to
xsn+1 , where θ ∈ k, θ 6= 0.

Step 2. Newton polygons: the leftmost vertex.

From now on till the end of the proof of theorem 7.20, we further simplify notations
by writing the equations defining the inclusion Rrn ⊂ Ss′ in the form

u = γxa

v = xbf,
(41)

with γ a unit. Also write d := νsn(f mod x) > 0 and g := gn ≥ 1 for short.

Definition 7.21. Let F ∈ Rrn . The leading form of F is the unique polynomial
l(F ) ∈ k[x, y], homogeneous for the monomial valuation µ of weight µ(F ) such that
µ(F − l(F )) > µ(F ).

Notice that by (36), l(v) is independent of the choice of an admissible r.s.p. (u, v)
of Rrn . Apply (1) of proposition 7.15 with R replaced with Ss′ and Rr replaced with
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Ssn+1 . Then degyl(v) ≤ d, and degyl(v) = d only if l′(v) := l(v)
xb is unitary in y of

degree d.
Recall now the definition of the Pi’s, 0 ≤ i ≤ g + 1 (beginning of section 7.5), and

that they can be chosen in Weierstrass form (equation (Ei) of section 7.5).

Definition 7.22. Let i, 0 ≤ i ≤ g + 1. Pi is said to be bad if its leading form l(Pi)
w.r.t. µ is of the form l(Pi) = θix

Li for some θi ∈ k, θi 6= 0. Otherwise, Pi is said to
be good.

Remark 7.23. By definition of g, Pg+1 is good . This follows from the last statement
in (1) of proposition 7.15. Clearly, P0 = u is bad.

Let i, 0 ≤ i ≤ g + 1. We write

Pi = xbifi ∈ Ss′ ,

where x does not divide fi. Let

∆i :=< {µ(Pi′)}0≤i′≤i > and Γi :=< µ(x), {µ(fi′)}0≤i′≤i > .

Each of ∆i, Γi is a subgroup of the value group Γµ ' Z of µ. There is an obvious
inclusion ∆i ⊆ Γi. Let

ei := [Γi : ∆i].
Write Γi = Zξi, with ξi ∈ N. Let

τi :=
µ(x)
ξi

∈ N.

Lemma 7.24. Let i, 1 ≤ i ≤ g. Assume that Pi′ is bad (definition 7.22) for 0 ≤ i′ ≤
i− 1. The following properties hold:

(1) Replace µ with ν in the definition of ∆i and Γi, and let eν
i , τν

i be the resulting
values of ei, τi. Then eν

i = ei, τ
ν
i = τi.

Moreover, τi = µ(x)
g.c.d.(µ(fi),µ(x)) .

(2) e0 = a and ei | ei−1.
(3) mi = τi

ei−1
ei

≥ 2.
(4) Let ur′

i+1
∈ Rr′

i+1
be a regular parameter with support Er′

i+1
(definition 7.11).

We have

ur′
i+1

= γr′
i+1

x
ei

µ(x)
τi

sn+1 ∈ Ssn+1 ,

where γr′
i+1

is a unit.
(5) Assume furthermore that Pi is bad. Then

L1

b
> 1, (42)

and, if i ≥ 2,
Li

Li−1
> mi−1. (43)

Proof. Let F be any of the Pi′ , fi′ ’s for some i′, 0 ≤ i′ ≤ i. By definition of g, the
strict transform of F in SpecSsn+1 is empty. By (1) of proposition 7.16, ν(F ) =
µ(F )ν(xsn+1). This proves the first statement in (1). The second statement in (1) is
obvious, since µ(fi′) ∈ Zµ(x) for 0 ≤ i′ ≤ i− 1 by assumption.

By definition, e0 = [Zµ(x) : Zµ(u)] = a. Since Pi′ is bad for 0 ≤ i′ ≤ i − 1,
we have Γi−1 = Zµ(x). Hence, ei−1µ(fi) = ei−1µ(Pi) − biei−1µ(x) ∈ ∆i. Since
Γi = Γi−1 + Zµ(fi), we have ei−1Γi ⊆ ∆i. This proves (2).

There is a diagram
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Γi−1 = Zµ(x) τi−−−−−→ Γi

ei−1

x ei

x
∆i−1

mi−−−−−→ ∆i.

All maps are inclusions of subgroups of Γµ whose index is as indicated. This proves
(3).

By (1) of proposition 7.12, with Rr replaced with Rr′
i+1

, we have u = δr′
i+1

u

∏i

i′=0
mi′

r′
i+1

,

where δr′
i+1

is a unit in Rr′
i+1

. By definition, x = εx
µ(x)
sn+1 , where ε is a unit. Since

u = γxa, we get

ur′
i+1

= γr′
i+1

x

aµ(x)∏i

i=0
m

i′
sn+1 , (44)

where γr′
i+1

∈ Ssn+1 is a unit. We have τi′ = 1 for 0 ≤ i′ ≤ i − 1, since Pi′ is bad.
Hence

i∏

i′=0

mi′ = a
τi

ei

by (3). Comparing with (44), we get the formula in (4).
Statement (42) in (5) is trivial. Assume i ≥ 2. By (3) of proposition 7.12, we have

µ(Pi)
µ(Pi−1)

> mi−1.

Since both of Pi−1, Pi are bad, we have

µ(Pi)
µ(Pi−1)

=
µ(xLi)

µ(xLi−1)
=

Li

Li−1
.

This proves (43).
¤

Let i, 0 ≤ i ≤ g +1. The Newton polygon of Pi in the coordinates (x, y) is denoted
by NP (Pi).

Lemma 7.25. Let i, 0 ≤ i ≤ g. Assume that Pi′ is bad (definition 7.22) for 0 ≤ i′ ≤ i.
Let V0 := (b, d). The leftmost vertex of NP (Pi+1) is

(
i∏

i′=0

mi′

)
V0 :=

(
b

i∏

i′=0

mi′ , d

i∏

i′=0

mi′

)
.

Proof. Induction on i. It follows from the definitions that the leftmost vertex of
NP (v) is V0 = (b, d). Let i ≥ 1 and recall expression (Ei) of Pi+1. The induction
step implies that

ordxMi = bli,i−1

i−2∏

j=0

mj +
i−2∑

i′=1

bli,i′
i′−1∏

j=0

mj + li,0a. (45)

Since Pi′ is bad for 0 ≤ i′ ≤ i, we have µ(Pi′) = Li′µ(x). Hence by (Hi′), we get
the equality
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miLi =
i−1∑

i′=1

li,i′Li′ + li,0a. (46)

Substituting in (45) the value of li,i−1 obtained from (46), we get

ordxMi = b

(
mi

Li

Li−1

) i−2∏

j=0

mj+
i−2∑

i′=1

bli,i′


1− Li′

Li−1

i−2∏

j=i′
mj




i′−1∏

j=0

mj+ali,0


1− b

Li−1

i−2∏

j=0

mj


 .

Applying inequalities (42) and (43), we get

ordxMi > b

i∏

i′=0

mi′ + 0 + 0 = ordxPmi
i . (47)

Similarly, using (H ′
i′) instead of (Hi′), we get

ordxMi,l′
i
> ordxPmi

i (48)

for all indices l′i appearing in (Ei).
By (47) and (48), we get from expression (Ei) that NP (Pi+1) and NP (Pmi

i ) have
the same leftmost vertex. ¤

Step 3. The good case.

Lemma 7.26. Let i, 1 ≤ i ≤ g. Assume that Pi is good. Then i = g.
With notations as in (Hi), we have

l(Pi+1) = l(Pi)mi − λil(Mi). (49)

Moreover, rn+1 = r′g+1 (definition 7.11) and Rrn+1 ⊂ Ssn+1 is the localization of a
finite map.

Proof. By induction on i, it can be assumed that Pi′ is bad for 0 ≤ i′ ≤ i− 1. Recall
expression (Ei). By definition of g, the strict transform of div(Pi′), 0 ≤ i′ ≤ g, in
SpecSsn+1 is empty. Then (1) of proposition 7.16 implies that

µ(Pi) =
ν(Pi)

ν(xsn+1)
.

Equality (Hi) and inequality (H ′
i) therefore imply that

l(Pi+1) = l(Pi)mi − λil(Mi)

provided the right hand side is not zero. Since Pi is good and Pi′ is bad for 0 ≤ i′ ≤
i− 1, this holds and (49) is proved. In particular

µ(Pi+1) = miµ(Pi). (50)

By (Hi) and (H ′
i), we have ν(Pi+1) > miν(Pi). By (1) of proposition 7.16, this

is not compatible with (50) unless the strict transform of (at least one of) div(Pi),
div(Pi+1) in Spec(Ssn+1) is nonempty. By definition of g, this forces i = g.

By (4) of lemma 7.24, the inclusion Rrn+1 < Ssn+1 has a local expression
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ur′
g+1

= γr′
g+1

x
eg

µ(x)
τg

sn+1

vr′
g+1

= Fr′
g+1

,

where γr′
g+1

is a unit, and

µ(Fr′
g+1

) = µ(
Pg+1

P
mg
g

) = 0

by (50).
Therefore xsn+1 does not divide Fr′

g+1
in Ssn+1 . Consequently, Rrn+1 ⊂ Ssn+1 is

the localization of a finite map and rn+1 = r′g+1. ¤

Step 4. The bad case.

In case v is bad, it is convenient to introduce another vertex of NP (v) as illustrated
in the following picture (see below for a formal definition). We extend the notion to
all Pi’s, for 1 ≤ i ≤ g.

y
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-
b

d
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◦

◦
◦
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@
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Let F ∈ Rrn have an expansion

F =
∑

α,β

θα,βxαyβ ∈ k[[x, y]],

where θα,β ∈ k. Let V0(F ) be the leftmost vertex of NP (F ).

Definition 7.27. Let F ∈ Rrn be such that NP (F ) is not a translate of R2
+.

Let V (F ) be the vertex of NP (F ) defined as follows: among all (α, β), distinct from
V0(F ), lying in a compact face of NP (F ) and such that θα,β 6= 0, V (F ) has α minimal.

Let ϕ be a linear form on R2 which is nonnegative on R2
+. Then ϕ has a minimal

value ϕ(F ) on NP (F ). Clearly, ϕ(F1F2) = ϕ(F1) + ϕ(F2).
Let i, 1 ≤ i ≤ g. From now on till the end of this step, it is assumed that Pi is

bad. By lemma 7.26, this implies that Pi′ is bad for 1 ≤ i′ ≤ i. Notice that, since Pi

is bad, NP (Pi) is not a translate of R2
+.

In what follows, we choose ϕ 6= 0 which is constant on the first edge of NP (Pi).
That is, by lemma 7.25, ϕ satisfies

(
i−1∏

i′=0

mi′

)
ϕ(V0) = ϕ (V (Pi))
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Lemma 7.28. Let i, 1 ≤ i ≤ g. Assume that Pi is bad. The following holds:

(1) Assume that either mi is not a power of p or that V (Pi) 6= (Li, 0).
Then the first edge of NP (Pi+1) and that of NP (Pmi

i ) have the same slope.
Moreover, the first edge of NP (Pi+1) does not intersect the x-axis.

(2) Assume that mi is a power of p and that V (Pi) = (Li, 0).
Then NP (Pi+1) ⊂ NP (Pmi

i ) and
(∏i

i′=0 mi′
)

V0 is the unique point of
NP (Pi+1) lying in the unique compact face of NP (Pmi

i ).

Proof. Induction on i. Let i0 be the largest integer i′, 0 ≤ i′ ≤ i − 1, such that
V (Pi′) = (Li′ , 0).

All indices i′ with i0 + 1 ≤ i′ ≤ i − 1 satisfy by definition assumption (1) of the
lemma. The induction step thus implies that

ϕ(Pi′) =
ϕ(Pi)∏i−1
j=i′ mj

for i0 + 1 ≤ i′ ≤ i− 1. (51)

By statement (1) of the induction step applied consecutively to all indices i′ with
1 ≤ i′ ≤ i0 − 1, we get that all indices i′ with 1 ≤ i′ ≤ i0 − 1 satisfy assumption (2)
of the lemma. The index i0 may satisfy either assumption (1) or (2). In any case, we
get

ϕ(Pi′) = ϕ(xLi′ ) for 1 ≤ i′ ≤ i0. (52)

Recall expression (Ei). By (51) and (52), we get

ϕ(Mi) =

(
i0∑

i′=1

li,i′Li′ + li,0a

)
ϕ(x) +

i−1∑

i′=i0+1

li,i′
ϕ(Pi)∏i−1
j=i′ mj

.

By definition of ϕ, we have ϕ(Pi) ≤ ϕ(xLi). Hence

ϕ(Mi) ≥
(

i0∑

i′=1

li,i′
Li′

Li
+ li,0

a

Li
+

i−1∑

i′=i0+1

li,i′∏i−1
j=i′ mj

)
ϕ(Pi) (53)

Since Pi′ is bad for 0 ≤ i′ ≤ i, we have µ(Pi′) = Li′µ(x). Hence by (Hi), we get
the equality

miLi =
i−1∑

i′=1

li,i′Li′ + li,0a.

Substituting in (53), we get

ϕ(Mi) ≥ miϕ(Pi) + ϕ(Pi)
i−1∑

i′=i0+1

li,i′

(
1∏i−1

j=i′ mj

− Li′

Li

)
. (54)

By (42) and (43), this implies that ϕ(Mi) ≥ miϕ(Pi). Similarly, using (H ′
i) instead

of (Hi), we get
ϕ(Mi,l′

i
) > miϕ(Pi)

for all indices l′i.
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Given F ∈ Rrn , let inϕF ∈ k[x, y] denote the unique ϕ-homogeneous polynomial
such that ϕ(F − inϕF ) > ϕ(F ). Comparing with expression (Ei), we get from the
previous considerations that

inϕPi+1 = (inϕPi)
mi (55)

if inequality is strict in (54), and

inϕPi+1 = (inϕPi)
mi − λiinϕMi (56)

if equality holds in (54).

First assume that ϕ(Pi) < Liϕ(x). This assumption precisely means that NP (Pi)
has more than one compact edge. Therefore assumption (1) of the lemma holds and
this shows that inequality is strict in (54). The conclusion then follows from (55).

Assume now that ϕ(Pi) = Liϕ(x). This assumption means that NP (Pi) has
precisely one compact edge. The induction step applied consecutively to all indices
i′ with 1 ≤ i′ ≤ i − 1 implies that mi′ is a power of p and that V (Pi′) = (Li′ , 0). In
particular, i0 = i− 1 and equality holds in (54). Statement (2) of the induction step
applied consecutively to all indices i′ with 1 ≤ i′ ≤ i− 1 now shows that

inϕMi = ηx
∑i−1

i′=1
li,i′Li′+li,0a,

with η ∈ k, η 6= 0. Under assumption (1), inϕPi+1 contains at least two monomials,
and none lying on the x-axis by (56), and the conclusion follows. Under assumption
(2), we have

inϕPi+1 = η′(xbyd)
∏i

i′=0
mi′ ,

with η′ ∈ k, η′ 6= 0, and the conclusion follows. This concludes the proof. ¤

Step 5. The proof of theorem 7.20.

We first prove statement (1). Recall cases 1 and 2 considered in step 1.
Case 1 By (1) of proposition 7.15 and (4) of lemma 7.24, we have

0 < cn+1 = ordyl(Pg+1)eg ≤ degyl(Pg+1)eg. (57)

By lemma 7.25 if Pg is bad, or by (49) if Pg is good, we have

degyl(Pg+1) ≤ d

g∏

i=0

mi. (58)

Thus

0 < cn+1 ≤ deg

g∏

i=0

mi = deg
a

eg
= c′

by (3) of lemma 7.24.
Case 2 Similarly, we have

0 < cn+1 = ordyn1−θxq1 l(Pg+1)eg
n1

τg
≤

[
degyl(Pg+1)

n1

]
eg

n1

τg
≤ eg

n1

τg

d

n1

g∏

i=0

mi = c′.

We now prove (2) of theorem 7.20 by analysing under which conditions equal-
ity holds in both of (57) and (58). The following lemma gives a refined version of
statement (2) of theorem 7.20.
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Lemma 7.29. With notations as above, assume that cn+1 = c′. The following holds.
(1) If Pg is bad, then (

∏g
i=0 mi)(p) = 1. We have (dn+1)(p) = d(p) in case 1 and

d(p) = (n1)(p)(dn+1)(p) in case 2.
(2) If Pg is good, then (

∏g−1
i=0 mi)(p) = 1.

In case 1, (mg)(p) = 1 and (dn+1)(p) = d(p).
In case 2, either (mg)(p) = 1 and d(p) = (n1)(p)(dn+1)(p), or (dn+1)(p) = 1
and d(p)(mg)(p) = (n1)(p).

Proof. First assume that Pg is bad.
Case 1 Equality holds in both of (57) and (58) if and only if

l(Pg+1) = η(xbyd)
∏g

i=0
mi , (59)

with η ∈ k, η 6= 0. Since Pg is bad, we have

µ(xLg ) < µ(xbyd)
g−1∏

i=0

mi = µ(V0(Pg)). (60)

If assumption (1) of lemma 7.28 holds, (60) implies that

mgµ(xLg ) < µ(V (Pg+1)) < µ(xbyd)
g∏

i=0

mi = µ(V0(Pg+1)),

so that inequality is strict in (58). Hence cn+1 = c′ implies that assumption (2) of
lemma 7.28 holds, so that

g∏

i=0

mi = pt

for some t ≥ 1. Moreover, we have dn+1 = dpt by (59).
Case 2 Similarly, (59) is replaced with

l(Pg+1) = ηxb
∏g

i=0
mi(yn1 − θxq1)

d
n1

∏g

i=0
mi , (61)

and one gets that d(p) = (n1)(p)(dn+1)(p) if cn+1 = c′.

Now assume that Pg is good and that cn+1 = c′. A similar argument shows that
Pg−1 satisfies assumption (2) of lemma 7.28, hence

g−1∏

i=0

mi = pt

for some t ≥ 0. In case 1, comparison of formulae (49) and (59) shows that mg is a
power of p and that

l(Pg) = ηxbpt

(y − η′x)dpt

,

with η, η′ ∈ k and η, η′ 6= 0.
In case 2, comparison of formulae (49) and (61) shows that either mg is a power

of p and

l(Pg) = ηxbpt

(
(yn1 − θxq1)

dpt

n1 + η′x
dptq1

n1

)
,

with η, η′ ∈ k and η, η′ 6= 0, or dn+1 is a power of p and

l(Pg) = ηxbpt

ydpt

,

with dpt < n1 and
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dptmg = n1dn+1. (62)

This proves the lemma, and therefore completes the proof of (2) of theorem 7.20. ¤

There remains to prove (3) of theorem 7.20. Assume that Rrn+1 ⊂ Ssn+1 is not the
localization of a finite map. By lemma 7.26, this implies that Pg is bad. If cn+1 = c′,
we get

g∏

i=0

mi = pt

for some t ≥ 1 by (1) of lemma 7.29. ¤

Theorem 7.20 has the following immediate corollary.

Corollary 7.30. There exist positive integers a, d prime to p such that for all n >> 0,
the inclusion Rrn

⊂ Ssn
is given by

urn = γnxapαn

sn

vrn
= xbn

sn
fn,

(63)

where γn ∈ Ssn is a unit, dn := νsn(fn mod xsn) = dpβn , with bn, αn, βn ≥ 0, and
αn + βn does not depend on n.

Remark 7.31. It is interesting to compare both statements in proposition 7.2 and
in corollary 7.30. That the complexity cn = andn is eventually constant along the
algorithm is an easy consequence of proposition 7.2. But the argument in proposition
7.2 does not prove that the integers (an)(p) and (dn)(p) are eventually constant.

7.9. Stable form of the equations. It has been proved in corollary 7.30 that the
equation (63) defining the inclusion Rrn ⊂ Ssn gets a stable form. In this section, we
refine corollary 7.30 and prove that the invariants of the extension of valuation rings
V ∗/V (see section 7.1) can be recovered from this stable form.

Recall that, given a prime number p, an abelian group Γ is said to be p-divisible if
pΓ = Γ.

By (2) of proposition 7.16, the value group Γ of V can be computed from the mi’s
through the formula

Γ =
⋃

g≥0

Z∏g
i=0 mi

ν(u).

The following lemma is elementary and the proof is left to the reader.

Lemma 7.32. The following holds.
(1) Γ is p-divisible if and only if p divides infinitely many of the mi’s.
(2) Γ is isomorphic to

⋃
g≥0

Z
pg if and only if ∀i >> 0, mi is a power of p. Γ is

then said to be “simply p-divisible”.
(3) Let Γ′ be a torsion free group containing Γ and such that Γ has finite index

in Γ′. Then Γ is (simply) p-divisible if and only if Γ′ is (simply) p-divisible.

Recall from section 7.1 the basic definitions of the ramification theory of V ∗ over
V .

Theorem 7.33. (Stable form of the equations) Let the inclusion Rrn ⊂ Ssn be given
for n >> 0 by formula (63) of corollary 7.30. The following holds.

(1) d = 1 (that is, dn = pβn).
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(2) Assume that Γ is not p-divisible. Then Rrn ⊂ Ssn is the localization of a
finite map (that is, bn = 0), and (αn, βn, gn) takes a constant value (α, β, 1)
for n >> 0, so that (63) reduces to

urn = γnxapα

sn

vrn = fn ,

where γn ∈ Ssn
is a unit, dn = νsn

(fn mod xsn
) = pβ, α, β ≥ 0 and a ≥ 1, p

does not divide a.
Moreover,

Γ∗/ Γ ' Z/apαZ,

and the defect of V ∗ over V is equal to pβ.
(3) Assume that Γ is p-divisible. Then,

Γ∗/ Γ ' Z/aZ,

and the defect of V ∗ over V is equal to pαn+βn .
If Γ is not simply p-divisible, Rrn ⊂ Ssn is the localization of a finite map
(that is, bn = 0) for infinitely many values of n.

Proof. Recall the definition of the integer gn ≥ 0 associated with the inclusion Rrn ⊂
Rrn+1 (beginning of section 7.8). By lemma 7.26, Rrn+1 ⊂ Ssn+1 is the localization of
a finite map if Pgn is good. By (1) of lemma 7.29, Pgn is good except possibly if

ordurn+1
urn =

g0+···+gn∏

i=g0+···+gn−1+1

mi = ptn (64)

for some tn ≥ 1.
By lemma 7.32, the left hand side of (64) is not a power of p for infinitely many

(resp. all large enough) values of n if Γ is not simply p-divisible (resp. not p-divisible).
We then get from (2) of lemma 7.29 that d = 1 if Γ is not simply p-divisible.

We now prove (2). Since Γ is not p-divisible, (2) of lemma 7.29 implies that gn = 1
for n >> 0. Let hn be the value of the integer h in proposition 7.19 (formulae (39)
and (40)) associated with the pair (Rrn , Ssn). Since cn+1 = cn, equality holds in (40),
and therefore

(
hn∏

j=0

nj)(p) = 1,

since (dn)(p) = 1. On the other hand, (1) and (3) of lemma 7.32 imply that p does
not divide nj for j >> 0. Consequently hn = 0 for n >> 0.

Now replace (R, S) with (Rrn , Ssn) and renumber the ri’s of the algorithm accord-
ingly. Equation (62) now reads

pβ0m1 = n1p
β1 . (65)

Since both of m1 and n1 are prime to p, this proves that m1 = n1 and β0 = β1.
Similarly, we get mi = ni and βi = βi+1 for all i ≥ 1.

There remains to prove the last two statements in (2). From what preceeds,

Γ =
⋃

g≥0

Z∏g
i=0 mi

ν(u) ⊂ Γ∗ =
⋃

g≥0

Z∏g
i=0 mi

ν∗(x). (66)

Since ν∗(u) = apαν∗(x), and all mi’s in (66) are prime to p, we have
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ordp | Γ∗/ Γ |= α. (67)

Assume that K∗/K is Galois. Let Ki be the inertia field of V ∗ over V . Let
Rrn

:= Ssn
∩Ki. With notations as in section 5, Ki is the inertia field of Ssn

over
Rrn for n >> 0. Moreover, mRrn

= mRrn
. Therefore the local expression of the

inclusion Rrn ⊆ Ssn is still given by

urn
= γnxapα

sn

vrn
= fn ,

(68)

where γn ∈ Ssn
is a unit, νsn

(fn mod xsn
) = pβ . By (68), Ŝsn

is a free R̂rn
-module

of rank apα+β . Hence

[K∗ : Ki] = rk(Ŝsn/R̂rn) = apα+β . (69)

Equation (24) then reads

[K∗ : Ki](p) =| Γ∗/ Γ |(p)= a.

Equation (25) then reads

ordp[K∗ : Ki] = α + δ0 = α + β.

This proves (2) in the Galois case.

One reduces to the Galois case as follows; let K ′/K be a Galois closure of K∗/K.
We fix an extension ν′ of ν∗ to K ′ with valuation ring V ′ and group Γ′. By (3) of
lemma 7.32, Γ′ is not p-divisible.

With obvious notations, we get as in (66) that

Γ′ =
⋃

g≥0

Z∏g
i=0 mi

ν′(x′),

where ν′(x) = a′pα′ν′(x′). Also the integer a(V ′/V ) associated with the extension
V ′/V is the product aa′ (by e.g. remark 7.10). From the Galois case, we have the
following exact diagram:

0 → Γ∗
Γ −−−−−→ Γ′

Γ → Γ′
Γ∗ → 0x

x

x
0 → Z

apαZ

× a′−−−−−→ Z
aa′pα+α′Z

→ Z
a′pα′Z

→ 0,

where the center and right vertical arrows are isomorphisms. Therefore
Γ∗

Γ
' Z

apαZ
.

Similarly, we have
β(V ′/V ) = β(V ∗/V ) + β(V ′/V ∗)

by applying multiplicativity of degree and ramification index in field extensions to
(69). Comparing with (26), this completes the proof of (2).

We now sketch the argument for (3). By (3) of lemma 7.32, both Γ∗ and Γ are
p-divisible. Since the calculations of the non p-divisible case hold up to powers of p,
formula (66) remains true. Therefore (67) is replaced with

ordp | Γ∗/ Γ |= 0.
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The argument for the non p-divisible case extends when Γ is not simply p-divisible
by writing (68) for those values of n only such that bn = 0. Equation (24) reads

[K∗ : Ki](p) =| Γ∗/ Γ |(p)= a.

as in the proof of (2). Equation (25) now reads

ordp[K∗ : Ki] = αn + βn = δ0.

Finally, let Γ be simply p-divisible. We have (mi)(p) = 1 for i >> 0 and (nj)(p) = 1
for j >> 0 by (2) of lemma 7.32. Obviously

Γ∗

Γ
=

⋃

g≥0

Z
pg

/
⋃

g≥0

Z
apg

' Z
aZ

.

There remains to prove that d = 1. In the Galois case, proposition 7.2 applied to the
pair Rrn

⊂ Ssn
for n >> 0 implies that

[K∗ : Ki] = cn = dapαn+βn .

Equation (24) reads
[K∗ : Ki](p) =| Γ∗/ Γ |(p)= a.

Hence d = 1. Equation (25) reads

ordp[K∗ : Ki] = δ0 = αn + βn.

One reduces to the Galois case as before. ¤

Remark 7.34. We do not know if (αn, βn, bn, gn) also takes a constant value (α, β, 0, 1)
for n >> 0 when Γ is p-divisible.

7.10. Ramification in defectless extensions. In this section, We assume that
V ∗/V is defectless. Under this assumption, theorem 7.33 can be restated as:

Theorem 7.35. [Strong monomialization] Let V ∗/V be defectless.
The inclusion Rrn ⊂ Ssn is given for n >> 0 by

urn
= γnxapα

sn

vrn = ysn ,

where γn ∈ Ssn is a unit, α ≥ 0 and (xsn , ysn) is an admissible r.s.p. of Ssn . We
have α = 0 if Γ is p-divisible. Moreover,

Γ∗

Γ
' Z

apαZ
.

Proof. Theorem 7.33 clearly implies that βn = 0, and that αn = 0 for n >> 0 if Γ
is p-divisible when V ∗/V is defectless. In particular, this proves that l(vrn) is good,
and therefore that gn = 0, bn = 0 for n >> 0 by lemma 7.26. Finally, (xsn , ysn) is an
admissible r.s.p. of Ssn since νsn+1(fn+1 mod xsn+1) = m1 > 1 in case 1. ¤

Remark 7.36. The first statement in theorem 7.35 is the exact analogue of theorem
4.8 in dimension two and positive characteristic. In characteristic zero, all extensions
V ∗/V of valuation rings as considered in sections 3 to 6 are defectless by theorem 24
of [22].
See next section for an example with nontrivial defect which does not satisfy the con-
clusion of theorem 7.35.
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7.11. Extensions with non trivial defect. In this section, we give examples of
valuations with nontrivial defect.

The following example is apparently due to Ostrowski ([18] (t)-adic version of
example 2 p.246) and was communicated to us by F.V. Kuhlmann.

Let k0 be a perfect field of characteristic p > 0, t be an indeterminate, and

K := ∪n≥0k0((t
1

pn )).

Then
V := ∪n≥0k0[[t

1
pn ]]

is the valuation ring of the k0-valuation ν := ordt of K. The value group of ν is⋃
n≥0

Z
pn . Let x be a root of the polynomial

F (X) := Xp −X − 1
t
.

See [18], example 2 p.246 for the ingredients of the proof of the following proposi-
tion.

Proposition 7.37. There exists a unique extension ν∗ of ν to the degree p Galois
extension K(x)/K. Let d, e, f be respectively the defect, ramification index and residue
degree of ν∗ over ν. Then

d = p, e = 1 and f = 1.

The remaining part of this section is devoted to constructing an extension V ∗/V
with nontrivial defect in a two dimensional function field, and analyzing the corre-
sponding algorithm of section 7.4. The main result is

Theorem 7.38. There exists an inclusion R ⊂ S of algebraic regular local rings of
dimension two over k such that K∗/K := QF (S)/QF (R) is a tower of two Galois
extensions of degree p, and a k-valuation ν∗ of K∗ with valuation ring V ∗ with the
following properties.

(1) The value group Γ∗ of ν∗ is simply p-divisible. The extension of valuation
rings V ∗/V := V ∗/V ∗ ∩K has defect d = p2, ramification index e = 1 and
residue degree f = 1. V ∗ is the unique extension of V to K∗.

(2) For all n ≥ 0, the equation (63) of the inclusion Rrn ⊂ Ssn of the algorithm
is given by

urn = γnxp
sn

vrn = fn ,

where γn ∈ Ssn is a unit and dn = νsn(fn mod xsn) = p. Hence αn = βn = 1
with notations as in theorem 7.33.

(3) Let Rr be an iterated quadratic transform of R and Ss be an iterated quadratic
transform of S such that Rr ⊂ Ss. Assume that Rr ⊂ Ss is the localization
of a finite map.
Then, either (r, s) = (rn, sn) for some n ≥ 0, or Rr has a r.s.p. (ur, vr) and
Ss has a r.s.p. (xs, ys) such that there is an expression

ur = γr,sx
p
s

vr = δr,sy
p
s ,

where γr,s, δr,s ∈ Ss are units. In particuler, strong monomialization in the
sense of theorem 4.8 does not hold for the pair R ⊂ S w.r.t. the extension of
valuation rings V ∗/V .
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Let c ≥ 1, K∗ := k(x, y) and K := k(u, v), where

u := xp / (1− xp−1)
v := yp − xcy .

(70)

Proposition 7.39. With notations as above, K∗/K is a finite, separable extension
of degree p2. K∗/K is a tower of two Artin-Schreier extensions of degree p if p−1 | c.
Proof. Let K1 := k(x, v) = K(x). Then K1/K is an Artin-Schreier extension of
degree p. The minimal polynomial of 1

x is

F (X) := Xp −X − 1
u

.

The generator g of Gal(K(x)/K) = Z/pZ is determined by the relation

g(x) :=
x

1 + x
.

Similarly, K∗/K1 = K1(y)/K1 is a separable extension of degree p. The minimal
polynomial of y is

G(Y ) := Y p − xcY − v.

If p−1 | c, K∗/K1 is also an Artin-Schreier extension. The generator g1 of Gal(K∗/K1) =
Z/pZ is determined by the relation

g1(y) := y + x
c

p−1 .

¤

Let now R := k[u, v](u,v) and S := k[x, y](x,y). We now define a k-valuation ν∗ of
K∗ by using remark 7.17. Let:

Q0 := x
Q1 := y

Q2 := yp2 − x

Qj+1 := Qp2

j − xp2j−2
Qj−1 for j ≥ 2.

(71)

Proposition 7.40. The sequence (Qj)j≥0 is the generating sequence of a unique
k-valuation ν∗ of K∗. Explicitly, the valuation ring V ∗ of ν∗ is

V ∗ :=
⋃

j≥1

Ss′
j
,

where each Ss′
j
is an algebraic regular local ring of dimension two with r.s.p. (xs′

j
, ys′

j
).

The Ss′
j
’s are defined inductively by Ss′1 := S, and

Ss′
j+1

:= Ss′
j
[ys′

j+1
](xs′

j+1
,ys′

j+1
)

for j ≥ 1. The (xs′
j
, ys′

j
)’s are defined inductively by xs′2 := y, ys′2 := Q2

x , and

ys′
j+1

:=
Qj+1

xp2j−2Qj−1
, xs′

j+1
:= ys′

j

for j ≥ 2.
The value group Γ∗ = of ν∗ is isomorphic to

⋃
n≥0

Z
pn .
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Proof. With the notation of remark 7.17, we get nj = p2 for all j ≥ 1 from (71). Let
β0 := 1, β1 := 1

p2 , and

βj :=
1
p2

(p2j−2 + βj−1)

for j ≥ 2. By induction on j, we have

βj+1 = p2j−2

j∑

j′=0

1
p4j′ (72)

for j ≥ 0.
To prove that (Qj)j≥0 is the generating sequence of a unique k-valuation ν∗, it

must be checked that

p2j−2 + βj−1 has order precisely p2 in
Γj−1

p2Γj−1

for j ≥ 2, where Γj :=< {βj′}0≤j′≤j >, and that

βj+1 > p2βj

for j ≥ 1 (see remark 7.17). By (72), we have

Γj−1 =
Z

p2j−2

for j ≥ 2, so that by (72), p2j−2 + βj−1 has order precisely p2 in Γj−1/p2Γj−1 as
asserted. Moreover,

βj+1 − p2βj =
1

p2j+2
> 0 (73)

for j ≥ 1. This proves the first statement in the proposition.
By (2) of proposition 7.16,

Γ∗ =
⋃

j≥0

Z
p2j

ν∗(x) '
⋃

n≥0

Z
pn

.

Finally, one computes explicitly the quadratic sequence Ss′
j
⊂ Ss′

j+1
from the min-

imal resolution of div(Qj+1) in the following way.
Let Xj → SpecS be the minimal embedded resolution of div(Qj) (of div(xQ2) if

j = 2). Let ηj ∈ Xj be the unique point on the strict transform of div(Qj). By
definition, Ss′

j
:= OXj ,ηj . Clearly,

Ss′2 = S

[
Q2

x

]

(y,
Q2
x )

.

Let now j ≥ 2 and let (xj , yj) be an admissible r.s.p. of Ss′
j
. Any equation of the

strict transform of div(Qj+1) in SpecSs′
j+1

is a possible choice for yj+1, so that we
may choose

yj+1 :=
Qj+1

xp2j−2Qj−1
.

By (71), there is a relation

Qj+1 = γx
p2ordxj

(Qj)

j yp2

j + γ′x
p2j−2ordxj

(x)+ordxj
(Qj−1)

j , (74)

where γ, γ′ ∈ Ss′
j

are units.
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By (1) of proposition 7.12, we have ordxj
(x) = p2j−2. By proposition 7.15,

ordxj
(Q2) = ordx2(x), ordxj

(Qj−1) = βj−1ordxj
(x),

and, for j ≥ 3,

ordxj
(Qj) = ordxj

(xp2j−4
Qj−2) = p2j−4ordxj

(x) + βj−2ordxj
(x).

By (73), p2j−2(βj−1 − p2βj−2) = 1 for j ≥ 3. Hence, (74) can be rewritten for j ≥ 2
as

Qj+1 = γx
p2ordxj

(Qj)

j (yp2

j + δxj), (75)

where γ, δ ∈ Ss′
j

are units. Thus

Ss′
j+1

= Ss′
j
[yj+1](yj ,yj+1)

.

A particular choice of xj+1 is therefore obtained by letting xj+1 := yj . This concludes
the proof.

¤

We now compute the valuation ring V ∗ ∩K. Let

P0 := u
P1 := v

P2 := vp2 − u

Pi+1 := P p2

i − up2i−2
Pi−1 for i ≥ 2.

(76)

Since the equations defining the Pi’s in terms of u, v are the same as those defining
the Qj ’s in terms of x, y, we have

Corollary 7.41. The sequence (Pi)i≥0 is the generating sequence of a unique k-
valuation ν of K. The valuation ring V of ν is

V :=
⋃

i≥1

Rr′
i
,

where the Rr′
i

are defined in terms of u, v by the same equations as in proposition
7.40.
The value group Γ of ν is isomorphic to

⋃
n≥0

Z
pn .

We now prove that V ∗ ∩K = V .

Lemma 7.42. Let j ≥ 1. There exists a relation

Pj+1 = Qp
j+1 + x

p2j−1
∑k

j′=0
1

p4j′ fj+1(x, y), (77)

where k := j−1
2 (resp. k := j

2 − 1) if j is odd (resp. if j is even), fj+1(x, y) ∈ k[[x]][y]
with

degyfj+1 < p2j+1 = degyQp
j+1 and x | fj+1.

Proof. Induction on j. By (70), (71) and (76),We have

P2 = (yp − xcy)p2 − xp

1− xp−1
= Qp

2 − xcp2
yp2 − x2p−1

1− xp−1
.

Since min{cp2, 2p− 1} ≥ p + 1, (77) holds for j = 1.
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Let now j ≥ 2. Similarly,

Pj+1 = Qp3

j + x
p2j−1

∑k′
j′=0

1
p4j′ fj(x, y)p2 −

(
xp

1− xp−1

)p2j−2

(Qp
j−1 + gj−1(x, y)),

where k′ is the integer k associated with j − 1, g1(x, y) := −xcy, and

gj−1(x, y) := x
p2j−5

∑k−1

j′=0
1

p4j′ fj−1(x, y)

for j ≥ 3. We have 4k = 2j − 2, 4k′ = 2j − 6 if j is odd, and 4k = 4k′ = 2j − 4 if j is
even. In both cases, we get

Pj+1 =
(
Qp2

j − xp2j−2
Qj−1

)p

+ x
p2j−1

∑k

j′=0
1

p4j′ fj+1(x, y)

as required, using the inequalities

p2j−1 + (p− 1)p2j−2 > p2j−1(1 +
2
p4

) + 1 > p2j−1
k∑

j′=0

1
p4j′ + 1,

and
ordx(fj(x, y)p2

) ≥ p2 ≥ p2j−1−(2j−2) + 1 = p + 1.

¤

Proposition 7.43. We have V = V ∗ ∩K.

Proof. With the notation of corollary 7.41, it is sufficient to prove that Rr′
i
⊂ V ∗ for

all i ≥ 1. Clearly, R ⊂ S ⊂ V ∗. Let i ≥ 1. We have

Rr′
i+1

:= Rr′
i
[vr′

i+1
](ur′

i+1
,vr′

i+1
),

where the (ur′
i
, vr′

i
)’s are defined inductively by ur′2 := v, vr′2 := P2

u , and

vr′
i+1

:=
Pi+1

up2i−2Pi−1
, ur′

i+1
:= vr′

i

for i ≥ 2. There remains to prove that ν∗(vr′
i
) > 0 for all i ≥ 2. By (72), we have

ν∗(Qp
j+1) = pβj+1 < 1 + p2j−1

k∑

j′=0

1
p4j′

for j ≥ 1, where k is defined as in lemma 7.42. Therefore

ν∗(Qp
j+1) = pβj+1ν

∗(x) < ν∗
(

x
p2j−1

∑k

j′=0
1

p4j′ fj+1(x, y)
)

(78)

in (77). Consequently,

ν∗(Pj+1) = ν∗(Qp
j+1), (79)

for j ≥ 1. We get

ν∗(vr′2) = ν∗
(

P2

u

)
= pν∗

(
Q2

x

)
= pν∗(ys′2) > 0,

and

ν∗(vr′
i+1

) = ν∗
(

Pi+1

up2i−2Pi−1

)
= pν∗

(
Qi+1

xp2i−2Qi−1

)
= pν∗(ys′

i+1
) > 0.

¤
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Proof of theorem 7.38. Choose c to be a multiple of p− 1 so that K∗/K is a tower
of two Galois extensions of degree p by proposition 7.39.

We first prove (2). We have

∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
=

xc+2p−2

(1− xp−1)2
,

so that SpecS → SpecR is ramified precisely above div(u). Therefore, if R ⊂ Rr and
S ⊂ Ss are any quadratic sequences along ν∗ such that Rr ⊂ Ss, the pair (Rr, Ss) is
prepared if and only if both Rr and Ss are free by proposition 7.6.

The strict transform of div(Qj+1) in SpecSs′
j

is tangent to div(xj) by (71) if j = 1
or by (75) if j ≥ 1. Therefore, Ss′

j
+1 is not free. This implies that {Ss′

j
} is the list

of all free iterated quadratic transforms of S along V ∗. Similarly, {Rr′
i
} is the list

of all free iterated quadratic transforms of R along V . In particular, the notation r′i
is compatible with that of definition 7.11, and similarly for the analogous integers s′j
associated with S. With notations as in definition 7.11, we also have ri+1 = r′i+1 for
all i ≥ 1 (and similarly sj+1 = s′j+1 with obvious notations).

Let (xs′
j+1

, ys′
j+1

) be as in proposition 7.40. We have

ordxs′
j+1

(Qp
j+1) = p3ordxs′

j+1
(Qj) < pβj+1ordxs′

j+1
(x).

Comparing with (78), we get

ordxs′
j+1

(Qp
j+1) < ordxs′

j+1

(
x

p2j−1
∑k

j′=0
1

p4j′ fj+1(x, y)
)

, (80)

and therefore
ordxs′

j+1
(Pj+1) = ordxs′

j+1
(Qp

j+1)

and
ordxs′

j+1
(Pj′) = ordxs′

j+1
(Qp

j′)

for 0 ≤ j′ ≤ j by (77). Hence

ur′
j

= γjx
p
s′

j

vr′
j

= γ′j(y
p
s′

j
+ xs′

j
fj(xs′

j
, ys′

j
)) ,

(81)

for all j ≥ 1, where γj , γ
′
j ∈ Ss′

j
are units, and fj(xs′

j
, ys′

j
) ∈ Ss′

j
. This proves that

rj = r′j+1, sj = s′j+1 for all j ≥ 1 and therefore completes the proof of (2).

We now prove (1). That Γ∗ is simply p-divisible has been proved in proposition 7.40.
We have f = 1, since k = V/mV is algebraically closed. We have e | [K∗ : K] = p2.
But Γ∗ is simply p-divisible, so that p does not divide e. Therefore e = 1. By (2) of
theorem 7.38, α = β = 1. Thus (3) of theorem 7.33 implies that d = p2. Then

def = [K∗ : K] = p2,

so V ∗ is the unique extension of V to K∗.

Finally, let Rr ⊂ Ss as in (3). Let j ≥ 0 be the unique integer such that rj ≤ r <
rj+1. Then

Rrj ⊂ Ssj ⊆ Ss (82)
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since Ssj lies above Rrj .
First assume that r = rj . Then s = sj since Rr ⊂ Ss is the localization of a finite

map.
Assume now that rj < r < rj+1. Similarly, (82) implies that s > sj . By definition

of sj+1, we have Rr+1 ⊂ Ssj+1 , and this proves that s < sj+1, since Rr ⊂ Ss is the
localization of a finite map. Then Ss has a r.s.p. (xs, ys) given by

xsj
=: xsy

s−sj
s

ysj =: ys ,

and Rr has a r.s.p. given by

urj
=: urv

r−rj
r

vrj =: vr .

Since p− 1 | c, we have ord(x,y)(xcy) ≥ p. Similarly, refining inequality (80), one gets
for j ≥ 1 that

ordxs′
j+1

(
x

p2j−1
∑k

j′=0
1

p4j′ fj+1(x, y)
)
− ordxs′

j+1
(Qp

j+1) ≥ p.

Consequently, since Rr ⊂ Ss is the localization of a finite map, we have s−sj = r−rj

and
ur = γr,sx

p
s

vr = δr,sy
p
s ,

where γr,s, δr,s ∈ Ss are units, as required.

Remark 7.44. Theorem 7.38 has an interesting formulation in the language of [20].
Let ν∗j (resp. νj) be the mSsj

-adic order (resp. mRrj
-adic order) on K∗ (resp. K)

for j ≥ 1. Then ν∗j and νj are valuations and ν∗j is an extension of νj to K∗.
Thus for all g ≥ 1, there is an inclusion of graded algebras associated with the

corresponding filtrations

grνg
(R) ⊂ grν∗g

(S). (83)

These algebras are toric. Explicitly ([19] theorem 8.6 and remark 6.2), there is a
presentation

grνg
(R) ' k[U0, U1, . . . , Ug]

(Up2

1 − U0, {Up2

j − Up2j−2

0 Uj−1}2≤j≤g)
,

where Uj := inνj (Pj). Similarly,

grν∗g
(S) ' k[X0, X1, . . . , Xg]

(Xp2

1 −X0, {Xp2

j −Xp2j−2

0 Xj−1}2≤j≤g)
,

where Xj := inν∗
j
(Qj). It follows from (70) and (79) that (83) is obtained from the

pth -power map Uj 7→ Xp
j . Notice that the defect d = p2 of V ∗/V also appears in (83)

through the fact that the inclusion

QF (grνg
(R)) ⊂ QF (grν∗g

(S))

is purely inseparable of degree p2.
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45, avenue des Etats-Unis, Bâtiment Fermat
78035 Versailles, FRANCE
piltant@math.uvsq.fr


