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Abstract. In this article we further develop the theory of valuation independence and
study its relation with classical notions in valuation theory such as immediate and defectless
extensions. We use this general theory to settle two open questions regarding vector space
defectless extensions of valued fields. Additionally, we provide a characterization of such
extensions within various classes of valued fields, extending results of Françoise Delon.

Valuation independence is a natural relation which strengthens linear independence in the
framework of valued fields and valued vector spaces. Its definition appears in many different
contexts of valuation theory and can be traced back to work of Robert [27], which was based
on work by Cohen and Monna [4, 23, 24].

In this article we further develop the theory of valuation independence for general valued
fields in the sense of Krull (i.e., of arbitrary rank) and study its relation with various classical
notions in valuation theory such as immediate extensions and defectless extensions, among
others. We use this general theory to settle two open questions regarding vs-defectless (short
for: vector-space defectless) extensions of valued fields, a type of extension introduced –in its
most general form– by Baur [2] (under the name “separated extension”) and further studied
by Delon in [6].

In the following section we present the main concepts and results of the article.

1. Main results

Let (K, v) be a valued field. We use the notation vK for the value group, OK for the
valuation ring, Kv for the residue field and res for the residue map. By (L|K, v) we denote an
extension of valued fields: L|K is a field extension, v is a valuation on L and K is equipped
with the restriction of v to K. Every such extension induces canonical embeddings of vK
into vL and of Kv into Lv. Recall that if the canonical embeddings are onto, then the
extension (L|K, v) is called immediate. In other words, (L|K, v) is an immediate extension if
the corresponding value group and residue field extensions are trivial.

Throughout we will work over a valued field extension (L|K, v) unless otherwise stated.
Let W ⊆ V be K-vector spaces with V ⊆ L. The valuation and the residue map induce
respectively a totally ordered subset vV := v(V ) \ {∞} of vL and a Kv-vector subspace
V v := res(OV ) of Lv where OV := {a ∈ V | v(a) ≥ 0}. We say that the K-vector space
extension W ⊆ V is finite if dimK V/W is finite.

Definition 1.1. A subset B ⊆ V \ {0} is (K, v)-valuation independent over W if for every
finite K-linear combination

∑n
i=1 cibi of (pairwise distinct) elements bi ∈ B and every a ∈W ,
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we have that

v

(
n∑
i=1

cibi + a

)
= min

16i6n
{v(cibi), v(a)}.

a

Remark 1.2. Note that if B is (K, v)-valuation independent over W then it is K-linearly
independent over W . Indeed, for any a ∈ W and a finite K-linear combination b := Σn

i=1cibi
with bi ∈ B and ci ∈ K such that b+ a = 0 we have that

∞ = v(0) = v

(
n∑
i=1

cibi + a

)
= min

16i6n
{v(cibi), v(a)},

which imposes that a = 0 and all ci = 0. That the converse does not hold will be later shown
as a special case of Lemma 2.4.

As usual, given a (K, v)-valuation independent set B ⊆ V , if V = SpanK(B) ⊕W we say
that B is a (K, v)-valuation basis of V over W . The set B is (K, v)-valuation independent
(resp. a (K, v)-valuation basis of V ) if it is (K, v)-valuation independent over W = {0} (resp.
a (K, v)-valuation basis of V over {0}). It is called (K, v)-valuation dependent over W if it
is not (K, v)-valuation independent over W . When the valued field (K, v) in consideration is
clear from the context, we will often omit (K, v) and simply say K-valuation independent,
K-valuation basis, etc.

In Section 2, the general theory of the notion of valuation independence is developed. Some
of the results hold in a slightly more general context which is presented in the Appendix. A
dagger sign (†) will be added in front of those results which hold in this broader setting. In
those cases, the same proofs work with minor modifications.

Various results in this section can be found in the literature but, more often than not,
whithin a less general setting (for example, they are proved only for rank 1 valued fields as in
[3], or only for valued vector spaces where the scalar field K is trivially valued as in [9, 20]).
The benefit of gathering these results here is twofold. On the one hand, the common general
framework we provide unifies results and terminology which radically change from author
to author, making it easier to establish the subject’s state of the art. On the other hand,
all our proofs (in Sections 2 and 3) rely only on algebraic methods and basic knowledge of
valuation theory, reducing the background needed to prove them. Some of our contributions
in Section 2 include the introduction of the notion of normalized valuation independent set
(see Subsection 2.2) and the following characterization of immediate extensions:

Proposition (Later Proposition 2.27). Take a valued field extension (M |K, v). Then the
following are equivalent:

(1) (M,v) is an immediate extension,
(2) for every subset {b1, . . . , bn} of some valued field extension of (M, v), if b1, . . . , bn are

K-valuation independent, then they are also M -valuation independent.

Let us now recall the definition of vs-defectless extensions.

Definition 1.3. The extension (L|K, v) is called vs-defectless if every finitely generated K-
vector subspace of L has a K-valuation basis. a

Remark 1.4. The previous definition is due to Baur [2], who originally called such extensions
separated extensions. Unfortunately, the choice of terminology conflicts with standard vocab-
ulary from other areas of mathematics which have a strong connection to valuation theory
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(in particular, algebraic geometry and model theory). The term ‘vs-defectless’ chosen in this
article was coined during the eighties by Roquette’s group in Heidelberg. Green, Matignon
and Pop in [10] introduced a vector space defect for valued function fields in one variable; it
is trivial if and only if the function field is a vs-defectless extension.

Section 3 is devoted to the study of defectless and vs-defectless extensions of valued fields
using the tools introduced in Section 2. In the first part of Section 3, we provide the following
characterization of defectless extensions (all terms to be later defined).

Proposition (Later Proposition 3.4). Assume that the extension (L|K, v) is finite. Then the
following conditions are equivalent.

(1) [L : K] = (vL : vK)[Lv : Kv],
(2) (L|K, v) admits a standard K-valuation basis,
(3) (L|K, v) admits a K-valuation basis,
(4) (L|K, v) is a vs-defectless extension.

The second part of Section 3 deals with arbitrary vs-defectless extensions (not necessarily
finite). In particular, we study the implications between the following properties of a valued
field extension (L|K, v):

(A) the extension (L|K, v) is vs-defectless;
(B) for every K-vector space V ⊆ L of finite dimension and every a ∈ L, the set {v(a−x) |

x ∈ V } has a maximal element;
(C) L is linearly disjoint over K from every immediate extension M of K in every common

field extension.

In [6], Delon proved the following theorem.

Theorem (Delon). For any valued field extension (L|K, v), (B)⇒ (A)⇒ (C).

Delon’s proof of (A) ⇒ (C) uses tools from the model theory of pairs of valued fields as
studied by Baur in [2]. It remained open whether implications (A) ⇒ (B) and (C) ⇒ (A)
hold in general. We answer both questions by showing that the former implication does hold
in general, while the latter does not. An example of a valued field extension that does not
satisfy the implication (C) ⇒ (A) is given in Proposition 3.9. The general theory developed
in Section 2 allows us to provide a fully algebraic proof of the following:

Theorem (Later Theorem 3.7). Let (L|K, v) be an extension of valued fields. Then (A) ⇔
(B)⇒ (C).

In Section 4 we study various instances where the implication (C)⇒ (A) does hold. A first
example was already given by Delon in [6], where she showed that if (K, v) is an algebraically
maximal Kaplansky field, then (C) ⇒ (A) for any valued field extension (L|K, v). Unfortu-
nately, a gap was found in her proof. However, we recover her theorem as a special case of
the following abstract criterion (thus preventing a snowball effect, as her result was used by
the second author and Delon in [5]).

Theorem (Later Theorem 4.5). Suppose K is an elementary class of valued fields having the
following properties:

(P1) every member of K is existentially closed in each of its maximal immediate extensions,
(P2) all maximal immediate extensions of members of K are again members of K,
(P3) if (K, v) ∈ K and (F, v) is a relatively algebraically closed subfield such that (K|F, v)

is immediate, then (F, v) ∈ K.
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Then, for all (K, v) ∈ K, every extension (L|K, v) satisfies the implication (C)⇒ (A).

Classes K satisfying the conditions of the previous theorem include:

• the class of all tame valued fields (which includes the class of all algebraically maximal
Kaplansky fields),
• the class of all henselian finitely ramified fields (which includes the class of all ℘-

adically closed fields).

To conclude, we show the following result which in particular covers the situation of rank
1 discretely valued fields.

Theorem (Later Theorem 4.6). Let (L|K, v) be such that:

(1) K̂ (the completion of K) is the maximal immediate extension of K and
(2) vK (the value group of K) is cofinal in vL.

Then (C)⇒ (A).

We would like to acknowledge that very recently, Romain Rioux obtained independently a
proof of implication (A)⇒ (B) for arbitrary valued field extensions as a byproduct of results
in his PhD thesis [26]. Although the result does not appear in [26], he communicated to us
that the key propositions from which it can be derived are [26, Propositions 2.3.13 and 2.3.16].
However, his approach is different from ours.

2. Valuation independence in valued vector spaces

We work over a valued field extension (L|K, v). For subsets X,Y of L and a ∈ L, we define

v(X) := {v(x) | x ∈ X}; v(X) + v(Y ) := {v(x) + v(y) | x ∈ X, y ∈ Y };
res(X, a) := {res(a′/a) | a′ ∈ X and v(a′) = v(a)}.

We let Res(X, a) denote the multiset {res(a′/a) | a′ ∈ X and v(a′) = v(a)}, that is, we allow
repetition of elements. This distinction between res(X, a) and Res(X, a) will be particularly
useful concerning linear independence, as it may well be the case that res(X, a) is a K-linearly
independent set while Res(X, a) is not (for instance when res(X, a) contains a unique element
which is repeated in Res(X, a)). Note that the identity

SpanKv(res(X, a)) = SpanKv(Res(X, a)),

always holds.
For the rest of this section we let W ⊆ V be K-vector spaces with V ⊆ L.

2.1. Basic properties. The next lemma follows immediately from the definition of a valua-
tion basis.

Lemma 2.1. For every K-valuation basis B := {bi | i ∈ I} of V and a ∈ L we have

(1) (†) v(V ) = v(K) + v(B),
(2) res(V, a) = SpanKv(res(B, a)),
(3) (†) for every {ci | i ∈ I} ⊆ K× the system {cibi | i ∈ I} is a K-valuation basis of V .

An important example of a valuation independent set is given by the following result.

Lemma 2.2 ([7, Lemma 3.2.2 ]). Let X ⊆ L be such that for any two elements in X, their
image under the valuation belong to distinct cosets modulo vK. Let Y ⊆ OL be such that
Res(Y, 1) is Kv-linearly independent. Then the set B := {xy | x ∈ X, y ∈ Y } is K-valuation
independent.
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Definition 2.3. Let X,Y and B be as in Lemma 2.2. If in addition 1 ∈ X and 1 ∈ Y , then
the set B is called a standard K-valuation independent set. When SpanK(B) = L we say that
B is a standard K-valuation basis of L. a

Compare the situation of Lemma 2.2 with the following lemma.

Lemma 2.4. Assume that (L|K, v) is an immediate extension of valued fields. Then every
two elements a, b ∈ L× are K-valuation dependent.

Proof. Take a, b ∈ L×. Since by assumption vL = vK, there is c ∈ K such that v(ca) = v(b).
Hence, v( cab ) = 0. As Lv = Kv, there is an element x ∈ K such that res( cab ) = res(x). Then
v( cab − x) > 0 and consequently

v(ca− xb) > vb = min{v(ca), v(xb)}.

This shows that a, b are K-valuation dependent. �

Definition 2.5 (†). An extension W ⊆ V is called immediate if for all a ∈ V \ {0} there is
b ∈W such that v(a− b) > v(a). a

For a ∈ V we set

v(a−W ) := {v(a− b) | b ∈W}.

Lemma 2.6 (†). An extension W ⊆ V is immediate if and only if for all a ∈ V \W the set
v(a−W ) has no maximal element.

Proof. Assume that the extension W ⊆ V is immediate. Fix a ∈ V \W and take c ∈W . Then
a− c ∈ V , so by definition of immediate extensions, there is b ∈ W such that v(a− c− b) >
v(a− c). Since c+ b ∈W , this shows that v(a−W ) has no maximal element.

For the converse, take a ∈ V \ {0}. We wish to find b ∈ W such that v(a − b) > v(a). If
a ∈W , then obviously v(a− a) > v(a). Otherwise, by assumption v(a−W ) has no maximal
element, so in particular there is b ∈W such that v(a− b) > v(a− 0) = v(a). �

Remark 2.7. Note that for all a ∈ L, if v(a−W ) has no maximal element, then v(a−W ) ⊆
vW . Indeed, for any element b ∈ W we can find c ∈ W such that v(a− b) < v(a− c). Thus,
v(a− b) = v(a− b− (a− c)) = v(c− b) ∈ vW .

Lemma 2.8. If the extension W ⊆ V is immediate, then

(1) (†) vW = vV ;
(2) Wv = V v.

Proof. Assume that W ⊆ V is an immediate extension. Take an element a ∈ V \W . Then by
definition the set v(a−W ) admits no maximal element. By the previous remark, this yields
that v(a−W ) ⊆ vW . Hence, v(a) = v(a−0) ∈ vW . If moreover v(a) = 0, then since v(a−W )
admits no maximal element, v(a− b) > 0 for some b ∈W . Thus, res(a) = res(b) ∈Wv. �

The converse of the previous lemma is not true, as the following example shows:

Example 2.9. Let K = Fp(t) with the t-adic valuation. Let y be transcendental over K.
Then there is a unique extension of v to K(y) with v(y) = 0 and res(y) transcendental over
Kv (the Gauss valuation) determined by

v

(
n∑
i=0

aiy
i

)
= min

0≤i≤n
{v(ai)}.
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Set W := Fp[t] and V := W ⊕ SpanK(ty). The reader can easily show that N = vW = vV
and that Fp = Wv = V v. On the other hand, for every element a =

∑n
i=0 cit

i ∈ W we have
that

v(ty − a) = v

(
ty −

n∑
i=0

cit
i

)
= min

{
v(t), v

(
n∑
i=0

cit
i

)}
6 1 = v(ty),

which shows that W ⊆ V is not immediate.

In the case where W = K and V = L, the above lemma together with [11, Theorem 1] of
Kaplansky, gives the following classical characterization of immediate extensions.

Theorem 2.10. Let (L|K, v) be a valued field extension. Then the extension is immediate if
and only if for every a ∈ L \K the set v(a−K) has no maximal element.

Lemma 2.11 (†). A set B ⊆ V is K-valuation independent over W if and only if for every
b =

∑n
i=1 cibi + a with ci ∈ K, bi ∈ B and a ∈W , we have that

(E1) max v(b−W ) = min
16i6n

{v(cibi)}.

If (E1) holds and b is of the above form, then v(b− a) = max(v(b−W )).

Proof. Suppose first that B is K-valuation independent over W . Set I := {1, . . . , n}. Then

max(v(b−W )) = max
x∈W

v

(∑
i∈I

cibi + x

)
= max

x∈W
min
i∈I
{v(cibi), v(x)} = min

i∈I
{v(cibi)}.

For the converse, suppose that equation (E1) holds for all b ∈ SpanK(B) ⊕W . In this case,
for b =

∑
i∈I cibi + a we have that

v(b) = v

(∑
i∈I

cibi + a

)
6 max(v(b−W )) = min

i∈I
{v(cibi)}.

The ultrametric inequality implies that v(b) = mini∈I{v(cibi), v(a)}. The last assertion follows
directly using (E1) and the assumption that B is K-valuation independent. �

Corollary 2.12 (†). If V admits a K-valuation basis over W then for every a ∈ V \W the
set v(a−W ) has a maximal element. �

Lemma 2.13 (†). Assume that B,B′ ⊆ V . Then B ∪B′ is K-valuation independent over W
if and only if B is K-valuation independent over W and B′ is K-valuation independent over
W + SpanK(B).

Proof. Straightforward. �

Lemma 2.14 (†). Assume that V admits a K-valuation basis B over W . Then for any
element x ∈ V \W there are b ∈ B and a ∈W such that {x− a} is K-valuation independent
over W and B \ {b} is a K-valuation basis of V over W ⊕ SpanK(x).

Proof. Set B = {bi | i ∈ I}. Take an element x ∈ V \W . Then x = a +
∑
i∈I

cibi for some

a ∈W and ci ∈ K all but finitely many equal to zero. Set y = x− a =
∑
i∈I

cibi. Since x /∈W ,
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we have that y 6= 0. As B is K-valuation independent over W , for every w ∈ W and c ∈ K
we have that

(E2) v(cy + w) = v

(∑
i∈I

ccibi + w

)
= min

i∈I
{v(ccibi), v(w)} = min{v(cy), v(w)}.

Hence, {y} is K-valuation independent over W .
Choose an index j ∈ I such that cjbj is of minimal value among the summands cibi, i ∈ I.

We show that then B′ = B \ {bj} is a K-valuation basis of V over W ⊕SpanK(x). Since then
cj 6= 0, we have that

W + SpanK(x) + SpanK(B′) = W + SpanK(B) = V.

Hence, it is enough to show that B′ is K-valuation independent over the vector subspace
W ⊕ SpanK(x) = W ⊕ SpanK(y) of V . Take c′i ∈ K, i ∈ I, all but finitely many equal to zero
and w + cy ∈W ⊕ SpanK(y) with w ∈W and c ∈ K. Assume first that

v(cy) 6= v

 ∑
i∈I\{j}

c′ibi + w

 .

Then equation (E2) together with the K-valuation independence of B over W yields that

v

 ∑
i∈I\{j}

c′ibi + (cy + w)

 = min

v(cy), v

 ∑
i∈I\{j}

c′ibi + w


= min

i∈I\{j}
{v(c′ibi), v(w), v(cy)} = min

i∈I\{j}
{v(c′ibi), v(cy + w)}.

Assume now that

v(cy) = v

 ∑
i∈I\{j}

c′ibi + w

 = min
i∈I\{j}

{v(c′ibi), v(w)}.

We wish to show that

v

 ∑
i∈I\{j}

c′ibi + (cy + w)

 = min
i∈I\{j}

{v(c′ibi), v(cy + w)} = v(cy),

where the last equality follows from our assumption together with equation (E2). From the
K-valuation independence of B over W we obtain that

v

 ∑
i∈I\{j}

c′ibi + (cy + w)

 = v

 ∑
i∈I\{j}

(c′i + cci)bi + ccjbj + w

(E3)

= min
i∈I\{j}

{v((c′i + cci)bi), v(ccjbj), v(w)}.

Note that by assumption v(w) ≥ v(cy) and v(c′ibi) ≥ v(cy) for every i ∈ I \ {j}. In addition,
since

v(y) = v

(∑
i∈I

cibi

)
= min

i∈I
v(cibi) = v(cjbj),

we have that v(cy) = v(ccjbj), and hence v(w) > v(ccjbj). Also, for all i ∈ I \ {j}
v((c′i + cci)bi) ≥ min{v(c′ibi), v(ccibi)} ≥ min{v(cy), v(ccjbj)} = v(cy).
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Together with equation (E3) this yields that

v

 ∑
i∈I\{j}

c′ibi + (cy + w)

 = v(cy).

Hence, we obtain that B′ is K-valuation independent over W ⊕ SpanK(x) and thus, it is a
K-valuation basis of V over W ⊕ SpanK(x). �

Lemma 2.15 (†). Assume that V admits a K-valuation basis B over W . If W ⊆ W ′ is a
finite subextension of W ⊆ V , then W ′ admits a K-valuation basis over W . Moreover, there
is B′ ⊆ B which is a K-valuation basis of V over W ′.

Proof. Take any x ∈ W ′ \W . Then, by Lemma 2.14 there is b1 ∈ B and a1 ∈ W such that
x1 := x − a1 forms a valuation basis of W1 := W ⊕ SpanK(x) = W ⊕ SpanK(x1) ⊆ W ′ over
W and B1 := B \ {b1} is a valuation basis of V over W1.

Take s 6dimKW
′/W . Suppose we have chosen x1, . . . , xs ∈ W ′ which are K-valuation

independent over W and b1, . . . , bs ∈ B such that Bs := B \ {b1, . . . , bs} is a K-valuation
basis of V over Ws := W ⊕ SpanK(x1, . . . , xs). If s =dimKW

′/W , then Ws = W ′. Hence,
A = {x1, . . . , xs} and B′ = Bs satisfy the assertion of the lemma. Otherwise, there is some
x′ ∈ W ′ \Ws. Since x′ ∈ V \Ws, by Lemma 2.14 we have that there is some as+1 ∈ Ws and
bs+1 ∈ Bs such that for xs+1 = x′ − as+1 the set {xs+1} is K-valuation independent over Ws

and Bs+1 := Bs \ {bs+1} = B \ {b1, . . . , bs+1} form a K-valuation basis of V over

Ws+1 := Ws ⊕ SpanK(x′) = Ws ⊕ SpanK(xs+1) = W ⊕ SpanK(x1, . . . , xs+1).

By Lemma 2.13 the elements x1, . . . , xs+1 form a K-valuation basis of Ws+1 over W .
Since dimKW

′/W is finite, the above construction finishes after finitely many steps. �

Continuing the construction given in the previous proof by induction yields the following:

Corollary 2.16 (†). Assume that V admits a K-valuation basis over W . Then every subspace
W ′ of V which contains W and such that dimKW

′/W is countable admits a K-valuation basis
over W . �

In contrast, the finiteness assumption on W ′/W is necessary to ensure the existence of a
K-valuation basis of (V, v) over W ′ as is shown by the following example (cf. [14, Example
3.62]). Let K be a trivially valued field and L = K((t)) with the t-adic valuation. Let
V := SpanK(ti | i ∈ N) and V ′ := SpanK(ti − ti+1 | i ∈ N). It is easy to check that t ∈ V \ V ′
and furthermore that v(t−V ′) has no maximal element. By Corollary 2.12, V does not admit
a K-valuation basis over V ′. Nonetheless, the set {ti | i ∈ N} is a K-valuation basis of V .

Lemma 2.17 (†). Assume that for x ∈ V \W the set v(x −W ) admits a maximum. Then
the space SpanK(x) admits a K-valuation basis over W . In particular, if for every x ∈ V \W
the set v(x−W ) admits a maximum, then every K-subspace W ′ of V of dimension 1 over W
admits a K-valuation basis over W .

Proof. Take an element a ∈ W such that v(x − a) = max v(x −W ) and set b := x − a. We
show that {b} is K-valuation independent over W , that is,

(E4) v(cb+ w) = min{v(cb), v(w)}
for every w ∈ W and c ∈ K. Dividing if necessary by c, it is enough to prove equality (E4)
for c = 1. If v(b) 6= v(w), then obviously equality (E4) holds. If v(w) = v(b), then

v(b) = min{v(w), v(b)} 6 v(b+ w) = v(x− (a− w)) 6 max v(x−W ) = v(b),
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as a− w ∈W . Thus, equality (E4) also holds. �

Corollary 2.18 (†). Let B = {b1, . . . , bn} ⊆ V be a K-valuation independent set. Let
W := SpanK(B), b ∈ V \W and a ∈ W be such that v(b − a) = max v(b −W ). Then, for
bn+1 := b− a, B ∪ {bn+1} is K-valuation independent.

Proof. By Lemma 2.17, {bn+1} is K-valuation independent over W . To conclude, using
Lemma 2.13, we have that the set B ∪ {bn+1} is K-valuation independent. �

Corollary 2.19 (†). There is a K-subvector space W ′ such that W ⊆W ′ ⊆ V , W ′ admits a
K-valuation basis over W and W ′ ⊆ V is an immediate extension. Every maximal subset of
V with respect to the property of being K-valuation independent over W generates a K-vector
space W ′ over W with the above properties.

Proof. It suffices to prove the second assertion. Let B denote the collection of all subsets of
V which are K-valuation independent over W . Note that B is non-empty as the empty set
is K-valuation independent over W . By Zorn’s lemma, let B ∈ B be a maximal subset. We
show the result for W ′ := W ⊕ SpanK(B). It remains to show that W ′ ⊆ V is immediate.
Suppose for a contradiction it is not. By Lemma 2.6, there is b ∈ V such that v(b−W ′) has a
maximal element. Then by Lemma 2.17, there is c ∈ V such {c} is K-valuation independent
over W ′. Finally by Lemma 2.13 this implies that B ∪ {c} is K-valuation independent over
W which contradicts the maximality of B. �

2.2. Normalized valuation bases. Take a subset B of V and consider the following condi-
tions:

(N1) for every b, b′ ∈ B, if v(b) and v(b′) lie in the same coset modulo vK, then v(b) = v(b′);
(N2) for every b ∈ B the system Res(B, b) is Kv-linearly independent;
(N3) if b ∈ B and v(b) ∈ vK, then v(b) = 0;
(N4) if b ∈ B and res(b) ∈ Kv, then res(b) = 1.

Lemma 2.20. Assume that a subset B of V satisfies conditions (N1) and (N2). Then B is
a K-valuation independent set.

Proof. Take c1, . . . , cn ∈ K, b1, . . . , bn ∈ B and let I := {1, . . . , n}. Let i1 ∈ I be such that
v(ci1bi1) = min{v(cibi) | i ∈ I}. Define J := {i ∈ I | v(cibi) = v(ci1bi1)}. We have that

(E5) v

(∑
i∈I

cibi

)
= v(ci1bi1) + v

(∑
i∈I

cibi
ci1bi1

)
.

By the choice of i1, we have that v
(

cibi
ci1bi1

)
≥ 0. For i ∈ J , we have v(bi) = v(bi1). Indeed,

if v(bi) 6= v(bi1), then (N1) yields that v(cibi) = v(ci) + v(bi) 6= v(ci1) + v(bi1) = v(ci1bi1),
contradicting that i ∈ J . Note that this also shows that v(ci) = v(ci1) for every i ∈ J . If

i ∈ I \ J , then v(cibi) 6= v(ci1bi1). Therefore, for every i ∈ I \ J , we have that v
(

cibi
ci1bi1

)
> 0,

and consequently res
(

cibi
ci1bi1

)
= 0. This yields the following identity:

res

(∑
i∈I

cibi
ci1bi1

)
= res

(∑
i∈J

cibi
ci1bi1

)
=
∑
i∈J

res

(
ci
ci1

)
res

(
bi
bi1

)
.
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Since i1 ∈ J , one of the coefficients of the linear combination on the right hand side is equal
to 1. Therefore, by condition (N2), the whole linear combination is nonzero. Hence,

v

(
n∑
i∈I

cibi
ci1bi1

)
= 0,

which, together with equation (E5), completes the proof. �

Definition 2.21. In view of Lemma 2.20, a set B ⊆ V which satisfies conditions (N1)-(N4)
will be called a normalized K-valuation independent set. If in addition B is a basis of V , then
B is called a normalized K-valuation basis of V . a

Lemma 2.22. Let u1, . . . , un and w1, . . . , wn be elements of L. If {u1, . . . , un} is a normalized
K-valuation independent set and v(ui − wi) > v(ui) for 1 6 i 6 n, then {w1, . . . , wn} is a
normalized K-valuation independent set.

Proof. Straightforward. �

The next lemma shows that condition (N2) can be replaced by the assumption that B is
K-valuation independent.

Lemma 2.23. Assume that B ⊆ V is a K-valuation independent set. Then B satisfies
condition (N2).

Proof. Take b, b1, . . . , bn ∈ B such that v(bi) = v(b) for all 1 6 i 6 n. Let I denote the set
{1, . . . , n}. Suppose that ∑

i∈I
res(ci) res

(
bi
b

)
= 0

for ci ∈ OK . Then

v

(∑
i∈I

ci
bi
b

)
> 0.

Since the set B is K-valuation independent, there is i1 ∈ I such that

v

(∑
i∈I

cibi

)
= v(ci1bi1) = min

i∈I
{v(cibi)}.

Therefore, since v(bi) = v(b) for all i ∈ I, we have that

0 < v

(∑
i∈I

ci
bi
b

)
= v

(∑
i∈I

cibi

)
− v(b) = v(ci1bi1)− v(b) 6 v(cibi)− v(b) = v(ci).

Thus, v(ci) > 0 and consequently res(ci) = 0 for every i ∈ I. �

Lemma 2.24. Let B = {bi | i ∈ I} ⊆ V be a K-valuation independent set. Then there is a
set {ci | i ∈ I} ⊆ K× such that B′ := {cibi | i ∈ I} is a normalized K-valuation independent
set.

Proof. Take a subset J of I such that the values of the elements bj ∈ B, j ∈ J are represen-
tatives of the cosets v(b) + vK, b ∈ B. Then for every j ∈ J such that v(bj) /∈ vK set cj = 1.
If i ∈ I \ J is such that v(bi) /∈ vK, take any ci ∈ K such that v(ci) + v(bi) = v(bj) for some
j ∈ J . It remains to consider the elements bi ∈ B with v(bi) ∈ vK. For every such bi, take
xi ∈ K such that v(bi) = −v(xi). If res(xibi) /∈ Kv, set ci = xi. Otherwise, choose ai ∈ K
such that res(xibi) = res(ai) and set ci = xi

ai
. By construction, B′ = {cibi | i ∈ I} satisfies
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conditions (N1), (N3) and (N4). Since ci 6= 0 for all i ∈ I, by part (3) of Lemma 2.1, the set
B′ is K-valuation independent. Therefore, by Lemma 2.23, condition (N2) holds. �

Note that every standard K-valuation independent set is also a normalized valuation inde-
pendent set. The next lemma says more about the relation between these two notions.

Lemma 2.25. Let B = {bi ∈ L | i ∈ I} be a normalized K-valuation basis of L. Then

(1) there are subsets X,Y ⊆ B such that:
(i) v(X) forms a system of representatives of the cosets of vL modulo vK and there

is a bijection between X and v(X);
(ii) the image of Y under the residue map forms a basis of the extension Lv|Kv and

there is a bijection between Y and res(Y ),
(2) if L|K is a finite extension and X,Y are as in part (1), then the set B′ := {xy | x ∈

X, y ∈ Y } is a K-valuation basis of L. In particular, if 1 ∈ X, 1 ∈ Y , then B′ is a
standard K-valuation basis of (L|K, v).

Proof. From part (1) of Lemma 2.1 we infer that v(L) = v(K) + v(B). This shows the
existence of the set X. Part (2) of Lemma 2.1 implies that

Lv = res(L, 1) = SpanKv(res(B, 1)),

which proves the existence of the set Y . This shows part (1).
Assume now that L|K is a finite extension. Set e = (vL : vK) and f = [Lv : Kv]. By part

(1), we have that |X| = e and |Y | = f . By Lemma 2.2, the set B′ is K-valuation independent.
Let us show that |B′| = ef . Clearly |B′| 6 ef . Now for i = 1, 2, let xi ∈ X and yi ∈ Y be
such that x1y1 = x2y2. This implies that v(x1) = v(x1y2) = v(x2y2) = v(x2), and since we
have a bijection between X and v(X), we must have that x1 = x2. Since L is a field, this
implies that y1 = y2, showing that |B′| = |X||Y | = ef .

It remains to show that SpanK(B′) = L. Take any element b of B. Then there is x ∈ X
such that v(b) ∈ v(x) + vK. By condition (N1) this means that v(b) = v(x). Hence, B is the
disjoint union of the sets Bx = {b ∈ B | v(b) = v(x)} where x ranges in X. Fix x ∈ X and

let b1, b2 ∈ Bx. Condition (N2) implies that res( b1x ) 6= res( b2x ). Thus,

|Bx| =
∣∣∣∣{res

(
b

x

)
| v(b) ∈ Bx

}∣∣∣∣ = |res(B, x)| 6 |Y | = e.

This shows that

[L : K] = |B| =
∑
x∈X
|Bx| 6 e · f = |B′| = dimK SpanK(B′),

and consequently that SpanK(B′) = L. The last assertion follows immediately. This shows
part (2). �

Note that if {bi | i ∈ I} is a K-valuation basis of L, then for any nonzero element b of L the

set { bib | i ∈ I} is also a K-valuation basis of L. Thus, if L admits a K-valuation basis, then
it admits also a K-valuation basis containing the unity.

Assume that L|K is a finite extension and L admits a K-valuation basis B. Lemma 2.24
yields that L admits a normalized K-valuation basis B′. Moreover, since we can assume that
B contains 1, without loss of generality we can assume that B′ also contains 1 (cf. the proof
of Lemma 2.24). Hence, by part (2) of Lemma 2.25 we obtain that L admits a standard
K-valuation basis. In view of Lemma 2.2 we just proved the following corollary:
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Corollary 2.26. Assume that the extension (L|K, v) is finite. Then L admits a K-valuation
basis if and only if it admits a standard K-valuation basis. �

We finish this section with the following characterization of immediate extensions.

Proposition 2.27. Take a valued field extension (M |K, v). Then the following are equivalent:

(1) (M,v) is an immediate extension,
(2) for every subset {b1, . . . , bn} of some valued field extension of (M,v), if b1, . . . , bn are

K-valuation independent, then they are also M -valuation independent.

Proof. Suppose (M |K, v) is an immediate extension and let B = {b1, . . . , bn} be a K-valuation
independent set. By Lemma 2.24, there are c1, . . . , cn ∈ K× such that B′ = {c1b1, . . . , cnbn}
is a normalized K-valuation independent set. It is enough to show that B′ is M -valuation
independent. Indeed, if it is, then for a1, . . . , an ∈M we have that

v

(
n∑
i=1

aibi

)
= v

(
n∑
i=1

(aic
−1
i )cibi

)
= min

16i6n
{v((aic

−1
i )cibi)} = min

16i6n
{v(aibi)}.

Since (M |K, v) is immediate, we have that vK = vM and that Kv = Mv, hence B′ also
satisfies all properties (N1)-(N4) with respect to the valued field (M, v). Therefore, by Lemma
2.20, B′ is M -valuation independent.

For the converse, suppose that (M |K, v) is not an immediate extension and let a ∈M \K
be such that max v(a − K) = v(a − b) for some b ∈ K (by Lemma 2.6 or Theorem 2.10).
Since {1} is a K-valuation independent set, by Corollary 2.18, {a− b, 1} is also K-valuation
independent. Nevertheless, {a− b, 1} is not M -valuation independent as

v((a− b)−1(a− b) + (−1)(1)) = v(0) > min(v(a− b), v(1)),

which completes the proof. �

3. Defectless and vs-defectless extensions

Let (L|K, v) be a finite valued field extension. Lemma 2.2 shows in particular that

(E6) [L : K] ≥ (vL : vK)[Lv : Kv].

In fact, if v = v1, . . . , vm are the distinct extensions of the valuation v on K to the field
L, the so-called Lemma of Ostrowski (see [31, Chapter VI, §12, Corollary to Theorem 25])
establishes that

(E7) [L : K] =

m∑
i=1

pni(viL : viK)[Lvi : Kvi],

where p denotes the characteristic exponent of Kv (that is, p = charKv if it is positive and
p = 1 otherwise) and for each i ∈ {1, . . . ,m}, ni is a non-negative integer. Let us give some
definitions using the identity stated in (E7).

Definition 3.1. Let (L|K, v) be as above. For each i ∈ {1, . . . ,m}, the factor pni in (E7) is
called the defect of the valued field extension (L|K, vi). When pni = 1 for all i ∈ {1, . . . ,m}, we
say that L is a defectless field extension of (K, v). Otherwise we call it a defect extension. a

Note that every subextension of a finite defectless extension is again defectless. We will
center our study of defectless extensions to the particular case where m = 1, that is, where
the valuation v extends uniquely to L.
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Definition 3.2. An infinite algebraic extension (L|K, v) such that the valuation v admits
a unique extension from K to L is called defectless if every finite subextension (F |K, v) of
(L|K, v) is defectless. a

Similarly as before, observe that if (F |K, v) is a subextension of an infinite defectless
extension (L|K, v), then (F |K, v) is defectless. However, the extension (L|F, v) may not be
defectless.

Definition 3.3. A valued field (K, v) is called a defectless field if every finite extension of K
is defectless. If (K, v) is a henselian defectless field, it is called algebraically complete. a

By the Lemma of Ostrowski, any valued field (K, v) of residue characteristic zero is a
defectless field. The following proposition shows the relation between defectless and vs-
defectless extensions (see Definition 1.3).

Proposition 3.4. Assume that the extension (L|K, v) is finite. Then the following conditions
are equivalent.

(1) [L : K] = (vL : vK)[Lv : Kv],
(2) (L|K, v) admits a standard K-valuation basis,
(3) (L|K, v) admits a K-valuation basis,
(4) (L|K, v) is a vs-defectless extension.

Proof. (1) ⇒ (2) : Set e = (vL : vK), f = [Lv : Kv] and assume that [L : K] = ef . Take
x1, . . . , xe ∈ L with x1 = 1 such that their values form a set of representatives of the cosets of
vL modulo vK and y1, . . . , yf ∈ OL with y1 = 1 be such that their residues form a basis of the
extension Lv|Kv. By Lemma 2.2, {xiyj | 1 6 i 6 e, 1 6 j 6 f} forms a standard K-valuation
independent set. Since the set contains ef = [L : K] elements, it is a basis of L|K, which
proves (2).

(2)⇒ (3) : Trivial.
(3)⇒ (4) : This follows by Lemma 2.15.
(4) ⇒ (1) : Since the extension is finite, L admits a K-valuation basis. Then by Corol-

lary 2.26, it admits a standard K-valuation basis B. From the definition of the standard
K-valuation independent set it follows that |B| = (vL : vK)[Lv : Kv]. As B is a basis of L as
a K-vector space, (1) holds. �

Note that condition (1) of the proposition implies that the valuation v extends in a unique
way from K to L and that (L|K, v) is defectless.

Corollary 3.5. Assume that the extension L|K is algebraic. Then (L|K, v) is vs-defectless
if and only if v extends in a unique way from K to L and (L|K, v) is defectless.

Proof. The assertion follows directly from Proposition 3.4 together with the definition of
defectless extension in the case of infinite algebraic extensions of valued fields. �

Note that the above corollary yields the following characterization of algebraically complete
fields.

Corollary 3.6. A valued field (K, v) is algebraically complete if and only if every finite
extension of K admits a K-valuation basis. �

Let us now present and prove the main theorem of this section.

Theorem 3.7. Consider the following properties of a valued field extension (L|K, v):

(A) the extension (L|K, v) is vs-defectless;
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(B) for every K-vector space V ⊆ L of finite dimension and every a ∈ L, the set {v(a− x) |
x ∈ V } has a maximal element;

(C) L is linearly disjoint over K from every immediate extension M of K in every common
field extension.

Then (A)⇔ (B)⇒ (C).

Proof. (A)⇒ (B) : Let W be a finitely generated K-vector subspace of L and b ∈ L. If b ∈W ,
then ∞ is the maximal element of v(b−W ). So suppose that b /∈ W and set V := W ⊕Kb.
By assumption, V has a K-valuation basis. By Lemma 2.15, V has a K-valuation basis over
W . Therefore, v(b−W ) has a maximal element by Corollary 2.12.

(B) ⇒ (A) : Let V ⊆ L be a K-vector space of dimension n ≥ 1. We prove that V has
a K-valuation basis by induction on n. For n = 1 there is nothing to prove as any non-zero
vector of V is a K-valuation basis. Suppose that dim(V ) = n + 1 and let W ⊆ V be a
subspace of dimension n. Let B = {b1, . . . , bn} be a K-valuation basis of W and a ∈ V \W .
By assumption, there exists w ∈W such that v(a−w) = max v(a−W ). Then, by Corollary
2.18, the set {b1, . . . , bn+1} where bn+1 = a−w, is K-valuation independent, which completes
the proof.

(A) ⇒ (C) : Let B ⊆ L be a finite K-linearly independent set. To show that B is M -
linearly independent it is enough to show that there is an M -linearly independent basis of
W := SpanK(B). By assumption, W has a K-valuation basis B′. Then by Proposition 2.27
B′ is also M -valuation independent, hence M -linearly independent by Remark 1.2. �

We finish this section by showing that the implication (C)⇒ (A) does not hold in general.
First, let us recall the definition of being “algebraically maximal”.

Definition 3.8. A valued field (K, v) is said to be algebraically maximal if it does not admit
any proper immediate algebraic extension. a

Proposition 3.9. Take a valued field (K, v) which is not algebraically maximal. Then there
exists a simple transcendental extension (K(x)|K, v) which is linearly disjoint from each max-
imal immediate extension of (K, v) in every common valued field extension, although the
K-vector space generated by 1 and x does not admit a K-valuation basis.

Proof. By our assumption there exists a nontrivial immediate algebraic extension (K(a)|K, v).
Take an extension (K(a, y)|K(a), v) such that v(y) > vK and set x := a+y. Then v(x−K) =
v(a − K) has no maximal element (by Theorem 2.10) and therefore, by Theorem 3.7 the
extension (K(x)|K, v) is not vs-defectless (in fact, by Corollary 2.12 and Lemma 2.15, the
K-vector space generated by 1 and x does not admit a K-valuation basis). On the other hand,
K(x) is linearly disjoint from each maximal immediate extension of (K, v) since otherwise, by
[21, VIII, §3, Proposition 3.3], x would be algebraic over some such extension (M,v). But this
is impossible because if f is the minimal polynomial of a over K, then v(f(x)) > vK = vM ,
so vM(x) would contain an element that is not torsion over vM . �

4. Instances of (C)⇒ (A)

The aim of this section is to show that various natural classes of valued fields do satisfy
the implication (C)⇒ (A). We will need the following theorem from [2]:

Theorem 4.1 (Baur). Let (K, v) be maximal. Then every extension (L|K, v) is vs-defectless.
In particular, every algebraic extension is defectless.
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Remark 4.2. Baur’s theorem is an enhanced version of the following theorem:

If (K, v) is a maximal field and (L|K, v) is a finite extension, then also (L, v) is a maximal
field, and the extension (L|K, v) admits a valuation basis.

The history of this theorem is not entirely clear. In the past, we have worked with the following
two references: Warner’s book on Topological Fields ([29, Theorems 31.21 and 31.22]), and
Ribenboim’s 1968 monograph on Valuation Theory ([25, Théorème 1, p. 230]). Ribenboim
credits Krull, and the same is done in [1]. But although Krull was apparently the first to prove
the existence of maximal immediate extensions in [12], we did not find the above theorem in
that paper. In contrast, Warner credits Kaplansky for proving the theorem in his thesis, but
apparently this part of the thesis was never published.

Ribenboim in his proof uses the fact that a valued field is maximal if and only if every pseudo
Cauchy sequence has a limit. The proof is relatively straightforward, but very technical.
Warner uses the notion of “linearly compact module”. In more modern terms, this translates
to the notion of spherical completeness, and one can use that valued fields are maximal if and
only if their underlying ultrametric spaces are spherically complete. It turns out that the gist
of the two proofs actually is the fact that finite products of spherically complete ultrametric
spaces are again spherically complete, as proven in [17, Proposition 10]. In that paper, this
is used to prove that the multidimensional Hensel’s Lemma holds for every maximal valued
field, which then by a quick argument implies that it also holds in every henselian field. In
their recent book [1], in Corollary 3.2.26, Aschenbrenner, van den Dries and van der Hoeven
use the theorem on products of spherically complete ultrametric spaces to give a short and
elegant proof of Baur’s theorem, and thereby a nice alternative to the proofs by Ribenboim
and Warner of the theorem stated at the beginning of this remark.

Corollary 4.3. A valued field is maximal if and only if every valued field extension of the
field is vs-defectless.

Proof. The implication from left to right is Baur’s theorem. For the converse, suppose that
(K, v) is not maximal, so it admits a nontrivial immediate extension (L|K, v). Since by
Lemma 2.4 every two elements of L are K-valuation dependent, the extension is not vs-
defectless. �

Remark 4.4. In the majority of the known cases where an extension (L|K, v) admits a
valuation basis, the extension is finite. However, also infinite such extensions are known and
have interesting applications. For example, in [19] it is proved that certain infinite extensions
of countable subfields of general power series fields admit valuation bases. This can be applied
to the construction of restricted exponential functions on certain countable real closed fields.

4.1. Abstract criterion. We are ready to prove the sufficiency of the abstract criterion
mentioned in the introduction. Standard results in model theory will be involved in the proof
and we refer the reader to [28] for the necessary background.

Theorem 4.5. Consider an elementary class K of valued fields having the following proper-
ties:

(P1) every member of K is existentially closed in each of its maximal immediate extensions,
(P2) all maximal immediate extensions of members of K are again members of K,
(P3) if (K, v) ∈ K and (F, v) is a relatively algebraically closed subfield such that (K|F, v)

is immediate, then (F, v) ∈ K.

Take (K, v) ∈ K. Then every valued field extension (L|K, v) satisfies (C)⇒ (A).
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Proof. Take a highly saturated elementary extension (L∗|K∗, v) of (L|K, v). Then also (K∗, v)
is a highly saturated elementary extension of (K, v). Since (K, v) is existentially closed in each
maximal immediate extension, every such extension embeds in (K∗, v) over K. So we may
assume that there is a maximal immediate extension (M,v) of (K, v) inside of (K∗, v). We
note that (M, v) ∈ K by property (P2) of K. We wish to show that (L.M |L, v) is an immediate
extension.

By Zorn’s Lemma, there exists a subextension (M0, v) of (K, v) in (M,v) maximal with
the property that (L.M0|L, v) is an immediate extension. We show first that M0 is relatively
algebraically closed in M . Take M1 to be the relative algebraic closure of M0 in M . Then
(L.M1|L.M0, v) is an algebraic extension within (L∗, v), so v(L.M1)/v(L.M0) is a torsion
group and (L.M1)v|(L.M0)v is an algebraic extension. Since (L.M0|L, v) is immediate, it
follows that v(L.M1)/vL is a torsion group and (L.M1)v|Lv is an algebraic extension. But as
(L∗, v) is an elementary extension of (L, v), also vL∗ is an elementary extension of vL and L∗v
is an elementary extension of Lv. It follows that vL∗/vL is torsionfree and L∗v|Lv is regular,
so v(L.M1) = vL and (L.M1)v = Lv, showing that (L.M1|L, v) is an immediate extension.
Hence, M1 = M0 by the maximality of M0 , i.e., M0 is relatively algebraically closed in M .
Since (M |M0, v) is immediate like (M |K, v), we obtain from property (P3) of the class K that
(M0, v) ∈ K.

Suppose that there is some x ∈M \M0 . Then by [11, Theorem 1], x is the limit of a pseudo
Cauchy sequence in (M0, v) that does not have a limit in M0 . If this sequence would be of
algebraic type, then by [11, Theorem 3] there would exist a nontrivial immediate algebraic
extension of (M0, v). Passing to some maximal immediate extension thereof, we would obtain
a maximal immediate extension of (M0, v) in which M0 is not relatively algebraically closed.
But this contradicts property (P1). We conclude that the pseudo Cauchy sequence is of
transcendental type.

Suppose that the pseudo Cauchy sequence has a limit y in (L.M0, v). Then from [11, The-
orem 2] it follows that (M0(y)|M0, v) is immediate. Take any maximal immediate extension
(M ′, v) of (M0(y), v); since (M0(y)|M0, v) and (M0|K, v) are immediate, (M ′, v) is also a
maximal immediate extension of (K, v). But M0(y) is not linearly disjoint from M ′ over M0

and thus L is not linearly disjoint from M ′ over K (see [21, VIII, §3, Proposition 3.1]), which
contradicts our assumptions. We have shown that the pseudo Cauchy sequence has no limit
in (L.M0, v).

Again, [11, Theorem 2] implies that (L.M0(x)|L.M0, v) is immediate. As also (L.M0|L, v)
is immediate, we find that (L.M0(x)|L, v) is immediate. But since x /∈ M0, the extension
M0(x)|M0 is nontrivial, which contradicts the maximality of M0 . We conclude that there is
no such x, so M0 = M and (L.M |L, v) is immediate.

Now take any u1, . . . , un ∈ L that are K-linearly independent, and denote the K-vector
space they generate by V . By our assumptions, they remain M -linearly independent. By
Theorem 4.1, the M -vector space generated by them admits an M -valuation basis, and hence
by Lemma 2.24 also a normalized M -valuation basis u′1, . . . , u

′
n ∈ SpanM (u1, . . . , un) ⊆ L.M .

We write

u′i =

n∑
j=1

dijuj (1 ≤ i ≤ n)

with dij ∈M ⊆ K∗. Since (L.M |L, v) is immediate, by Theorem 2.10, we can choose elements
w′1, . . . , w

′
n ∈ L such that v(u′i − w′i) > v(u′i) = v(w′i) for 1 ≤ i ≤ n. As u′1, . . . , u

′
n are in

particular normalizedK-valuation independent, the same holds for w′1, . . . , w
′
n by Lemma 2.22.
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Let E denote the predicate for the smaller field in the pairs (L∗|K∗, v) and (L|K, v). Con-
sider the existential sentence stating the existence of elements xij with E(xij), 1 ≤ i, j ≤ n,
and such that

(E8) v

 n∑
j=1

xijuj − w′i

 > vw′i (1 ≤ i ≤ n)

with parameters ui and w′i in (L|K, v). It holds in (L∗|K∗, v) for xij = dij , and since (L∗|K∗, v)
is an elementary extension of (L|K, v), it also holds in (L|K, v). That is, there are cij ∈ K
such that the equations (E8) hold with xij = cij . We set

wi :=
n∑
j=1

cijuj ∈ V (1 ≤ i ≤ n).

We have that v(wi − w′i) > v(w′i) for 1 ≤ i ≤ n, hence it follows from Lemma 2.22 that
w1, . . . , wn are normalized K-valuation independent and hence form a normalized K-valuation
basis for V . We have now proved that the extension (L|K, v) is vs-defectless. �

Classes K that satisfy the hypothesis of the previous theorem include:

• The class of all tame valued fields. The fact that they form an elementary class and
properties (P1)-(P3) follow from results by the third author in [18] (see in particular
Lemma 3.7 and Theorems 1.4 and 3.2). By [18, Corollary 3.3], the class of tame fields
includes all algebraically maximal Kaplansky fields (see Definition 4.7 below), hence
in particular all henselian valued fields of residue characteristic 0. Note moreover that
all algebraically closed valued fields are examples of algebraically maximal Kaplansky
fields.
• The class of all henselian finitely ramified fields (which includes the class of all ℘-

adically closed fields). The key property to show is (P1) which can be found in [15,
Corollary. 8.23] (see also [15, Theorem 8.9] which builds on work of Ershov [8] and
Ziegler [32]).

4.2. Two further cases. We finish with two further cases where implication (C) ⇒ (A)
holds. The first one includes the case of discretely valued field extensions of rank 1.

Theorem 4.6. Let (L|K, v) be such that:

(1) the completion K̂ of K is the maximal immediate extension of K, and
(2) vK is cofinal in vL.

Then (C)⇒ (A).

Proof. Suppose that (C) holds and let V ⊆ L be a K-vector space such that dimK(V ) = n.

Let {b1, . . . , bn} be a K-basis of V . By condition (C), we have that {b1, . . . , bn} is also K̂-

linearly independent. Let W := Span
K̂

(b1, . . . , bn). Since K̂ is maximal, by Theorem 4.1, W

has a K̂-valuation basis {b′1, . . . , b′n}. Let I denote the set {1, . . . , n}. For i ∈ I, let cij ∈ K̂
be such that b′i =

∑
j∈I cijbj .

For each pair (i, j) ∈ I2, there is a Cauchy sequence (cαij)α<λij in K with limit cij . Since

vK is cofinal in vL and the values in {v((cαij − cij)bj) | α < λij} are either cofinal in vL or
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contain {∞}, for each pair (i, j) ∈ I2, there is αij < λij such that

(E9) min
j∈I
{v((c

αij

ij − cij)bj)} > v

∑
j∈I

cijbj

 = v(b′i).

Set b∗i :=
∑

j∈I c
αij

ij bj . Note that inequality (E9) implies in particular that for each i ∈ I,

v(b∗i − b′i) > v(b∗i ) = v(b′i). Indeed, we have that

(E10) v(b∗i − b′i) = v

∑
j∈I

(c
αij

ij − cij)bj

 > min
j∈I
{v((c

αij

ij − cij)bj)} > v(b′i).

We claim that b∗i is a K-valuation basis of V . Let a1, . . . , an ∈ K. From (E10) it follows that

(E11) v

(∑
i∈I

ai(b
∗
i − b′i)

)
> min

i∈I
{v(ai(b

∗
i − b′i))} > min

i∈I
{v(aib

′
i)} = v

(∑
i∈I

aib
′
i

)
,

where the last equality holds since b′i are K̂-valuation independent. We therefore have that

v

(∑
i∈I

aib
∗
i

)
= v

(∑
i∈I

aib
∗
i −

∑
i∈I

aib
′
i +
∑
i∈I

aib
′
i

)

= v

(∑
i∈I

ai(b
∗
i − b′i) +

∑
i∈I

aib
′
i

)
= v

(∑
i∈I

aib
′
i

)
by (E11)

= min{v(a1b
′
1), . . . , v(anb

′
n)} = min{v(a1b

∗
1), . . . , v(anb

∗
n)}.

�

Finally, our second case deals with algebraic extensions of Kaplansky fields. Let us recall
their definition.

Definition 4.7. A valued field (K, v) of residue characteristic p > 0 is called a Kaplansky
field if it satisfies:

(K1) if p > 0 then the value group vK is p-divisible,
(K2) the residue field Kv is perfect,
(K3) the residue field Kv admits no finite separable extension of degree divisible by p.

a

The original “hypothesis A” assumed by Kaplansky consisted of condition (K1) and the
following property:

(K2’) for every additive polynomial f(X) ∈ Kv[X] and c ∈ Kv the polynomial f(X) + c
has a root in Kv.

Whaples later clarified the meaning of condition (K2’) proving that it holds if and only if Kv
admits no finite extensions of degree divisible by p [30, Theorem 1]. A simple proof was later
found by Kaplansky himself in collaboration with D. Leep, see [16, Section 9]. This shows
the equivalence of conditions (K1)-(K3) with “hypothesis A”.

We will need the following Theorem about algebraically maximal Kaplansky fields.

Theorem 4.8 ([13, Theorem 1.1]). Take an algebraically maximal Kaplansky field (L, v)
and a subfield K of L. Then L contains a maximal immediate algebraic extension of (K, v).
Moreover, if (L, v) is maximal, then it also contains a maximal immediate extension of (K, v).
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Theorem 4.9. Assume that (K, v) is a Kaplansky field. If (L, v) is an algebraic extension of
(K, v), then (C)⇒ (A) holds.

Proof. Assume that L|K is linearly disjoint from any immediate extension F |K. We wish to
show that (L|K, v) is vs-defectless. Note that every finitely generated K-vector subspace of
L is contained in some finite field subextension E of L|K. Hence, by Lemma 2.15 it is enough
to show that every finite field subextension E|K of L|K is vs-defectless.

Take a finite subextension (E|K, v) of (L|K, v). Since (E, v) is an algebraic extension of
a Kaplansky field, it is also a Kaplansky field. Take (ME , v) to be a maximal immediate
extension of (E, v). By Theorem 4.8, the field ME contains a maximal immediate extension
MK of K. Thus, it contains also MK .E. By our assumptions, MK and E are linearly disjoint
over K. Moreover, as the field (MK , v) is maximal, Theorem 4.1 together with Proposition 3.4
yields that [MK .E : MK ] = (vMK .E : vMK)[(MK .E)v : MKv]. We thus obtain that

(E12) (vE : vK)[Ev : Kv] 6 [E : K] = [MK .E : MK ] = (vMK .E : vMK)[(MK .E)v : MKv].

Since (ME |E, v) is immediate, also the subextension (MK .E|E, v) is immediate. Thus,

(E13) (vMK .E : vMK)[(MK .E)v : MKv] = (vE : vK)[Ev : Kv].

Equations (E12) and (E13) yield that [E : K] = (vE : vK)[Ev : Kv]. By Proposition 3.4 we
obtain that the extension (E|K, v) is vs-defectless. �

B Theorem 4.5, the implication (C) ⇒ (A) holds in particular for any extension (L, v) of
an algebraically maximal Kaplansky field (K, v). The theorem shows that we can omit the
assumption of being algebraically maximal in the case of algebraic extensions.

Appendix

Given a totally ordered set S, we denote by S∞ the set S together with a new element ∞
such that s <∞ for all s ∈ S.

Definition 4.10. Let (K, v) be a valued field and S be a totally ordered set. A valued
(K, v)-vector space W is a K-vector space together with a map θ : W → S∞ and an action of
vK on S∞ satisfying

(1) θ(x) =∞ if and only x = 0 for all x ∈W
(2) θ(x+ y) > min{θ(x), θ(y)} for all x, y ∈W
(3) θ(ax) = v(a)(θ(x)) for all a ∈ K× and all x ∈W
(4) for all γ ∈ vK and s1, s2 ∈ S, if s1 < s2 then γ(s1) < γ(s2).
(5) for all γ1, γ2 ∈ vK and s ∈ S, if γ1 < γ2 then γ1(s) < γ2(s).
(6) v(a)(∞) =∞ for all a ∈ K×.

a

The definitions of a valued vector space as given in [9, 20] correspond to the special case of
Definition 4.10 where v is the trivial valuation on K and the action of vK on S is also trivial,
that is, θ(ax) = θ(x) for all a ∈ K× and all x ∈ W . More general frameworks can also be
found in [22].

In this article we have worked in the special situation where the valued (K, v)-vector spaces
come from a valued field extension. Let (L|K, v) be any such extension. Any K-vector
space W ⊆ L can be endowed with the structure of a valued (K, v)-vector space by taking
θ = v, S = vW and the action of vK on S∞ as addition, i.e., v(a)(v(x)) = v(a) + v(x) for
all a ∈ K× and x ∈W .
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