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Abstract

We define and study the Milnor K-ring of a field F' modulo a sub-
group of the multiplicative group of F. We compute it in several
arithmetical situations, and study the reflection of orderings and
valuations in this ring.

Introduction

Let F be a field and let F'* be its multiplicative group. The Milnor K-ring KM (F) of F is
the tensor (graded) algebra of the Z-module F'* modulo the homogenous ideal generated
by all elements a1 ®- - - ®a,., where 1 = a; +a; for some 1 <i < j <r [Mi]. Alongside with
KM(F), the quotients KM(F)/m = KM(F)/mKM(F), where m is a positive integer,
also play an important role in many arithmetical questions. In this paper we study a
natural generalization of these two functors. Specifically, we consider a subgroup S of
F* and define the graded ring K (F)/S to be the quotient of the tensor algebra over
F>*/S modulo the homogeneous ideal generated by all elements a1.5 ® - -+ ® a,.S, where
1 € a;S + a;8S for some 1 < i < j < r. The graded rings KM (F) and KM (F)/m then
correspond to S = {1} and S = (F*)™, respectively.

The ring-theoretic structure of KM (F)/S reflects many of the main arithmetical
properties of F', especially those related to orderings and valuations. We illustrate this by

computing it in the following situations:

*) The research has been supported by the Israel Science Foundation grant No.
8008,/02-1
2000 Mathematics subject classification: Primary 19F99, Secondary 12J10, 12J15, 12E30
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(1) F*/Sis afinite cyclic group. Here, if F' has no orderings containing S then KM (F)/S
is trivial in degrees > 1. Otherwise KM (F)/S coincides in degrees > 1 with the tensor
algebra over {1} (Theorem 4.1). This includes as a special case the computation of the

Milnor K-ring of finite fields, which goes back to Steinberg and Milnor [Mi, Example 1.5].

(2) There is a (Krull) valuation v on F' whose 1-units are contained in S. We show that
under a mild assumption, KM (F)/S is then obtained from the corresponding K-ring of the
residue field and from v(F*)/v(S) by means of a natural algebraic construction analogous

to the construction of a polynomial ring over a given ring (§5).

(3) F*/S is finitely generated, and is generated by the 1-units of a rank-1 valuation v
such that S is open in the v-topology on F. We prove that then KM (F)/S is trivial in
degrees > 1 (Theorem 6.2).

(4) F*/S is finite, and there is a rank-1 valuation v on F' with mixed characteristics
(0, p) such that S = (F*)P(1+p?m,), where m, is the valuation ideal (when v is Henselian
the latter condition just means that S = (F*)P). We show that then KM (F)/S is either
the Milnor K-ring of a finite extension of Q,, or else it is trivial in degrees > 1 and v(F'*)
is p-divisible (Theorem 7.4). The proof is based on the vanishing theorem of (3) above.

These results are mostly of a local nature. In a forthcoming paper we compute the
functor KM (F)/S in global situations, where S is related to a family of orderings and
valuations.

Studying Milnor’s K-theory modulo a subgroup S by means of the functor KM (F)/S
resembles the reduced theory of quadratic forms: there one studies quadratic forms modulo
a preordering T on F' via the reduced Witt ring functor Wp(F'), rather than the classical
Witt ring — see [Lm], [BK] for details.

Furthermore, the celebrated Bloch-Kato—Milnor conjecture predicts that KM (F) is
isomorphic to the Galois cohomology of the absolute Galois group G of F with respect
to twisted cyclotomic actions [K]|. Similarly, when p is a prime number and F' contains
a primitive pth root of unity, KM (F)/p is related to the Galois cohomology ring of the
maximal pro-p Galois group Gp(p) of F with its trivial action on Z/p. From this view-

point, the generalized functor KM (F)/S serves in some sense as an analog of the Galois
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cohomology of an arbitrary relative Galois group Gal(E/F') of F.

1. k-structures

In this section we define a convenient target category for the Milnor K-ring functor. It is
a slight modification of the “k-Algebras”, as defined by Bass and Tate in [BaT].

Denote the tensor algebra of an abelian group I" by Tens(I'). We let k = @, kr =
Tens({£1}), and denote the nontrivial element of k1 = Z/2 by . Thus kg = Z and

kr =40,e"} 2 Z/2 for all r > 1.

DEFINITION 1.1: A k-structure consists of a graded ring A = @ -, A, and a graded
ring homomorphism x — A such that:

(i) Ap = Z and the homomorphism k — A is the identity in degree 0;

(ii) A; generates A as a ring;

(iii) the image €4 of € in A satisfies a® = c4a = ac for all a € A;.

For every a,b € A; we have ab+ ba = (a + b)*> — a®> — b? = 0, by (iii). Thus A is anti-
commutative. A morphism A — B of k-structures is a graded ring homomorphism which
commutes with the structural homomorphisms Kk — A, Kk — B.

The category of k-structures has direct products. Namely, the direct product [],.; A;
of k-structures A;, i € I, is defined by (J[,c; Ai)o = Z and ([[,c; Ai)r = [1;c1(As)r for
r > 1, with the natural multiplicative structure. The homomorphism &, — [],c;(A4s), is
given by € — (€4, )icr-

Recall that the tensor product in the category of graded rings is defined by A®y B =

D2 (DB, ;- Ai @z Bj), with the product given by
(a®b)(d @b) = (—l)i/jaa’ ® bb’

for a € A;, o’ € Ay, b € B,V € Bj;. Given k-structures A, B, we define their tensor
product in the category of k-structures to be A ®, B = (A ®z B)/I, where I is the
homogeneous ideal generated by eé4 ® 15 — 14 ® eg. The homomorphism v - A ®, B
is given by € — e4 ® 1p+1 = 14 ® egp + I. Since A, B are anti-commutative, so is

A ®z B. Further, given a € A; and b € B; we have (a ® 15)? = (64 ® 15)(a ® 15) and
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(1a®b)? = (14 ®ep)(la ®@b), so by the anti-commutativity,
(a®1p+140b0)°+I1=(ea®1p)(a®@1p+14®b)+ 1

in (A ®, B)2. This implies the first equality in (iii) for A ®, B. The second is proved
similarly, showing that A ®, B is a k-structure. There are canonical morphisms ¢: A —
A®, B, !: B— A®, B with respect to which A ®,. B is the coproduct of A and B in
the category of k-structures (in the sense of e.g. [Ln, Ch. I, §7]). One has A 2 A®,, k and
B = k ®,, B via these morphisms.

Next we construct free objects in this category. Let I' be an abelian group. We define
k[T'] to be the quotient of Tens(k; &T') by the homogeneous ideal generated by all elements
€E®y—v®~, where v € I'. Replacing v by € + «v one sees that this ideal also contains
Y®e —v®7. The obvious embedding k1 — k1 &I induces a graded ring homomorphism
k — k[[']. Then k[['] is a k-structure satisfying the following universal property (which
follows from the universal property of the tensor algebra):

For every k-structure B and an abelian group homomorphism 0: I' — B there exists
a unique morphism k[I'| — B extending 6.

Given a k-structure A, we call A[I'l = A ®, &[['] the extension of A by I'.. When
A = K it coincides with our previous notation. This extends Serre’s construction mentioned

in [Mi, p. 323]. We identify (A[l']); = A1 ®T. Let ©: A — A[T'] be the canonical morphism.

LEMMA 1.2: Let ¢: A — B be a morphism of k-structures and let §: I' — B be a
homomorphism of abelian groups. There exists a unique morphism A[l'| — B extending

0 which commutes with ¢ and t.

Proof: The universal property of k[I'] yields a unique morphism x[['] — B extending 6.

Now use the fact that the tensor product is a coproduct. O

COROLLARY 1.3: Given a k-structure A and abelian groups I'1,T'y one has (A[l'1])[T'2] &
A’y @ ).

ExamMPLE 1.4: Let A be a k-structure and let T be a cyclic group with generator ~.
For every i > 1, we have v° = ¢’y 'y in A[T], by (iii) of Definition 1.1. Tt follows that
(AT, =4, ® (A,_1 @) for r > 1.



2. The functor KM (F)/S

Let F be a field and let S be a subgroup of F*. For r > 0 let (F'*/S)®" = (F*/S) ®z
< ®gz (F*/S) (r times). Let Stp,(S) be the subgroup of (F*/S)®" generated by all
elements a15 ® --- ® a,S such that 1 € ;5 + a;S for some ¢ # j. Generalizing standard

terminology, we call such elements Steinberg elements. Let
KM(F)/S = (F*/S)®" [Stp.(S)

In particular, K}(F)/S = Z and KM (F)/S = F*/S. For 0 < t one has Stp,(S) ®z
(F*/8)®" C Stp,4+(S) and (F*/S)®" @z Stp,-(S) C Str,+4(S). Therefore

KX (F)/S =@ KN (F)/S

is a graded ring respect to the multiplication induced by the tensor product. We call it
the Milnor K-ring of F' modulo S. Given ay,...,a, € F* we denote the image of
a1S®- - ®a.Sin KM(F)/S by {ai,...,a,}s.

When S = {1} we obtain the classical Milnor K-ring KM (F) = @2, KM(F) of F
as in [Mi]. In this case we write as usual {ay,...,a,} for {ay,...,a,}s. In general, we
have graded ring homomorphisms Tens(F>*/S) — KM (F)/S and KM (F) — KM (F)/S.

Next we define a graded ring homomorphism x — KM (F)/S by setting ¢ +— —S €
F>*/S. Since the identities {a,a}s = {—1,a}s = {a,—1}s of Definition 1.1(iii) are well-
known to hold when S = {1} [Mi, §1], they also hold in KM (F)/S. Hence KM (F)/S is a

k-structure.

PROPOSITION 2.1: For positive integers m,r and for S = (F*)™ we have KM (F)/S =
KM(F)/m.

Proof: There is an obvious graded ring homomorphism ¢: KM (F)/m — KM (F)/S which
commutes with the canonical projections from (F*)®". Conversely, suppose a,...,a, €
F*and 1S ® -+ ®a,S € Stp,(9), ie, 1 =a;a™ +a;5™ for some i < j and o, € F*.
Then

{ay,...,a,} € {ar,...,a;a™, ... a; ™, ..., a.} + mKM(F) = mKM(F)

We obtain a projection ¢: KM (F)/S — KM (F)/m which also commutes with the projec-

tions from (F*)®". Thus ¢ and 1 are converse maps, whence isomorphisms. O
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We consider the class of all pairs (F,S) where F' is a field and S < F* as cate-
gory, in which morphisms (F,S) — (Fy,S1) are pairs of compatible embeddings F' — F7,
S — S;. For such a pair and for r > 0 we have a group homomorphism (F*/S)®" —
(F{/S1)®" mapping Stp,(S) to Stp, (S1). It therefore induces a r-structure morphism
Res: KM(F)/S — KM(Fy)/S1, which we call the restriction morphism. The map
(F,S) — KM(F)/S is thus a covariant functor from the category of pairs (F,S) to the
category of k-structures.

A topology on a field F' is called a ring topology if the addition and multiplication

maps F' X F' — F are continuous. We will need:

ProOPOSITION 2.2: Let T be a ring topology on a field Fy and let F' be a subfield of F}
which is T-dense in Fy. Let S be a subgroup of F* and let S; be a T-open subgroup of F{*
containing S. Then Res: KM(F)/S — KM (Fy)/S; is an epimorphism. When S = F NSy,

it is an isomorphism.

Proof: For every a € F* we have FNaS; # () by the density assumption. Hence the natural
homomorphism F*/S — F/S; is surjective. Consequently, so is Res: KM (F)/S —
KM (F1)/Sh.

Suppose that S = F'N S;. For each r the induced map (F*/S)®" — (F[*/S1)®" is
an isomorphism. Therefore the injectivity of Res would follow by a snake lemma argument
once we show that the induced map Stz ,(S) — Stp, »(S1) is surjective. To this end we take
a generator a;51 ® - -+ ® a,S1 € Stp, »(S1), where ay,...,a, € F{* and 1 € ;51 + a;5;
for some distinct 4,j. By continuity, there exist nonempty 7-open subsets V,W of S,
such that a;V + a;W C S;. Using the density assumption we find zq,...,z, € F with
z; € a;V, zj € a;W, and z; € ;51 for all [ # 4,5. Then z; +2; € SiNF =5, so
218®---®z,.5 € Stp,(5). Furthermore, 2;S®---® x,,S maps to a; 51 ® - - - ® a,S1 under

the homomorphism above, as required. O



3. Orderings

Let again F' be a field, and let S be a subgroup of F'*. Following standard terminol-
ogy (see, e.g., [NSW, p. 191]), we call the map Bockrg: F*/S — K3 (F)/S, {r}s —
{x}% = {x,—1}s, the Bockstein operator of the subgroup S of F. It is clearly a group

homomorphism.
LEMMA 3.1: If Bockp s is injective then S is additively closed.

Proof: It suffices to show that 1 +.5 C S. To this end take s € S. Then
BOCkF’S({l + S}S) = {1 + s, —1}5 = {1 + s, —S}S =0

By the injectivity, {1 +s}s =0,s01+s€S. O

By an ordering on F' we mean an additively closed subgroup P of F'* such that
F* = P U — P. Recall that a ring is reduced if it has no nilpotent elements # 0. The
following fact is a variant of [BaT, I, Th. (3.1)].

PRrROPOSITION 3.2: The following conditions are equivalent:
(a) KM(F)/S = k as k-structures;

(b) =S W —Sand KM(F)/S is reduced;

(c) =S WU —Sand{-1,-1}s #0;
)

(d) S is an ordering on F.

FX
FX

Proof: (a)=(b)=(c): Immediate.
(¢)=(d): By Lemma 3.1 and the assumptions, S is additively closed. The rest is clear.
(d)=(a): We first show that Stp,(5) is trivial for all » > 2. Indeed, take ay,...,a, € F'*
with 1 € a;5 + a;S for some distinct 1 <14,5 <. If a;,a; were both in —S then we would
get =1 € S48 C S5, a contradiction. Hence at least one of a;,a; must be in S. It follows
that 1S ® - ® a,S =1 in (F*/S)®", as claimed.

Consequently, KM(F)/S = Tens(F*/S) = Tens({#1}) = k as graded rings. Fur-

ther, this is a k-structure isomorphism. 0O

A preordering on F is an additively closed subgroup S of F'* containing (F*)?

but not —1. Preorderings can be characterized K-theoretically as follows.
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PROPOSITION 3.3: Suppose that (F*)? < S < F*. The following conditions are equiva-
lent:
(a) S is a preordering on F';

(b) Bockp s is injective.

Proof: (a)=>(b): Let z € F* satisfy {}% =0 and let P be an ordering on F' containing
S. Then {z}% = 0, and since KM (F)/P 2 k is reduced (Proposition 3.2), {x}p =0, i.e.,
x € P. Being a preordering, S is the intersection of all the orderings P containing it [Lm,
Th. 1.6]. Consequently, z € S, as desired.

(b)=(a): In light of Lemma 3.1, S is additively closed. By assumption, there exists
x € F*\ S. By the injectivity, {z, —1}s # 0. Hence —1 ¢ S, so S is a preordering. 0O

4. The cyclic case

Using the K-theoretic analysis of orderings obtained in the previous section, we can now

completely describe KM (F)/S when F*/S is a finite cyclic group.

THEOREM 4.1: Let F' be a field and let S be a subgroup of F* such that F'* /S is finite
and cyclic. Then one of following holds:
(a) KM(F)/S =0 for all r > 2;
(b) (F* :S) = 2m with m odd, and there exists a unique ordering P on F' containing
S, and furthermore, Res: KM(F)/S — KM(F)/P (= k) is an isomorphism in all

degrees r > 2.

Proof: Let p‘fl ---pln be the primary decomposition of (F'* : S). For each 1 < i < n
choose a; € F* such that the coset {a;}s generates the p;-primary part of F'*/S. Let
a = aj---a,. Then the coset {a}s generates F*/S, and one has {a,a}s = {a,—1}s =
>iei{ai, —1}s.

Assume that (a) does not hold, i.e., KM(F)/S # 0 for some r > 2. Since the
canonical map (F*/S)" — KM(F)/S is multi-linear, {a,...,a}s generates KM (F)/S.
Hence {a,...,a}s # 0, and therefore {a,a}s # 0. It follows that {a;,—1}s # 0 for
some 1 < i < n. We obtain that the orders of {a;,—1}s and of {—1}g are precisely 2.

Furthermore, pfi{ai, —1}g = 0, so we must have p; = 2. Therefore 2%~1{a;}g = {—1}g,
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and we get

2di71{ai’ _1}S — 2di*1{ai,ai}s = {Cli7 _1}5 7é 0

This implies that d; = 1. Consequently, (F* : S) = 2m, with m odd.

Let P be the unique subgroup of F'* of index 2 which contains S. Then P/S is cyclic
of order m, and is generated by {a?}s. Since {—1}g has order 2 in F'* /S, it is not in P/S.
Therefore FF* = P \J — P.

Next we claim that 1 + P C P. Indeed, suppose that x € P. In particular, x # —1.
Take s,t with —z € a®*S and 1 + 2 € a'S. Then

0={-z,1+2}s = {a*,a'}s = st{a,a}s

Now —z ¢ P, so s is odd. But {a,a}s = {a,—1}g has order 2. It follows that ¢ must be
even, i.e., 1 +x € P. Conclude that P is additively closed, whence an ordering.

Finally, for every r the functorial map KM (F)/S — KM (F)/P is clearly surjective.
When 2 < r the group KM(F)/S is generated by {a,a,...,a}s = {a,—1,...,—1}s,
whence has order at most 2. By Proposition 3.2, KM (F)/P has order 2. Consequently,
the above map is an isomorphism, and (b) holds.

For the uniqueness part of (b), assume that S < P’ < F* is another ordering on F.
Then 4|(F* : PN P")|(F* : S) = 2m, contrary to the fact that m is odd. O

COROLLARY 4.2: Let S be a subgroup of F* with F* /S cyclic of prime power order.
Then either KM (F)/S =0 for all r > 2, or S is an ordering (whence KM(F)/S = k).

As mentioned in the introduction, Theorem 4.1 generalizes the well-known fact that
KM(F) =0 for a finite field F' ([Mi, Example 1.5], [FV, Ch. IX, Prop. 1.3]). Indeed, F*
is cyclic [Ln, Ch. VII, §5, Th. 11] and since char F' > 0, there are no orderings on F.



5. S-compatible valuations

Recall that a (Krull) valuation on a field F' is a group homomorphism v from F* into
an ordered abelian group (I", <) such that v(x +y) > min{v(x),v(y)} for all z,y € F with
x # —y. One defines v(0) to be a formal value 400 which is strictly larger than every
value in I'. Let O, be the valuation ring of v, and m, its maximal ideal. Thus z € F lies
in O, (resp., m,) if and only if v(z) > 0 (resp., v(z) > 0). Let O be the unit group of
O,, let G, = 1 +m, be the group of principal units of v, let F, = O, /m, be the residue
field of v, and m,: O, — F,, a — @, the canonical projection.

Let S a subgroup of FX. Its push-down S, = 7,(S N OX) under v is a subgroup of

F*. The maps v and 7, induce short exact sequences of abelian groups:
1 - Snof - S %ws) -0 , 1 - 8NG, - SNOX ™8, — 1 . (51)

In particular, this holds for S = F*. The snake lemma therefore gives rise to canonical

exact sequences

1 — 0X/(SN0X) — F*/S s o(F*)/u(S) — 0 (5.2)
1 = Gu/(SNG,) — OX/(SNOX) ™ FX/§, — 1 . (5.3)

Following [AEJ], we say that the valuation v is S-compatible if G, < S (when
S = (F*)P for p prime and char F, # p, this is a weak form of Hensel’s lemma [Wd, Prop.

1.2]). Then the sequences (5.2)—(5.3) combine to a single canonical short exact sequence
1 — FX/8, -5 F* /S 25 o(F*)/u(S) — 0 (5.4)

where for a € O;F with residue a we set n({a}s, ) = {a}s.

We will be interested in situations where (5.2) splits. For example, this is so in the
following cases:
(1) o(F*)=Zand S = {1}. Then a section of v* corresponds to a choice of a uniformizer
for v.
(2) (F*)P < S for some prime number p. In fact, then F*/S and v(F*)/v(S) are free

Z/p-modules.
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(3) (F*)1 <S8 < (FX)0), where ¢ = p® is a prime power. Indeed, the group v(F*)
is torsion-free, whence a flat Z-module. Therefore v(F*)/v(S) = v(F*)/q is a flat Z/q-

module. Since Z/q is a nilpotent local ring, it is a consequence of the Nakayama lemma

[Ma, 3.G| that v(F*)/q is a free Z/q-module.

We now obtain a connection between valuations and extensions of k-structures, in

the sense of §1.

THEOREM 5.1: Let F be a field and let S be a subgroup of F*. Every section of (5.2)

induces canonically an epimorphism of k-structures
KM (F)/S — (KM(F,)/S)[w(F*)/v(9)]

Moreover, this morphism is injective if and only if v is S-compatible.

Proof: Let 6: v(F*)/v(S) — F*/S be a section of v*. Take S < A < F* with A/S =
Im(#). Then F*/S = (SO /S) x (A/S). Thus every x € F'* can be written as x = ab
with @ € O and b € A. We set a = m,(a) and write [v(b)]s for the coset of v(b) in

v(F*)/v(S). We obtain a well-defined group epimorphism
F*[S — (FS/Sy) & (v(F*)/v(8)) , A{z}s—{als, + )]s - (5.5)
This abelian group epimorphism uniquely extends to a graded ring epimorphism
A: Tens(F* /S) — (K (Fy)/Su)[v(F>)/v(S)]

We claim that A is trivial on Stg,.(S) for all r. It suffices to show that A({z}s ®
{y}s) = 0 when z,y € F* and 1 € £S+yS. We may assume that 1 = z+y. Write x = ab
and y = cd, with a,c € O and b,d € A. Then

ANzS®yS) = ({a}s, + [v(d)]s) - ({c}s, + [v(d)]s)

={a,c}s, + ({a}s, - [v(d)]s — {c}s, - [v(b)]s) + [0(b)]s - [v(d)]s
To show that this expression vanishes we distinguish between four cases:
Case I: z € G,. Here we can take a = 2 and b = 1. Then {a}g = 0 and [v(b)]s = 0,

so the assertion is clear.
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Case II: z €m,. Thenyec G,,so we can take ¢ =y and d = 1. Hence {¢}5 = 0 and
[v(d)]s = 0, and we are done again.

CAse III: x € OX\G,. Theny=1—2x¢€ O}, so we can take a =z, b= 1, c =y, and
d = 1. Hence \(zS ® yS) = {x 1-— x}s = 0 once again.

Case IV: z7! € m,. For any a,b as above, y = a(z™* — 1) - b, with a(z™* - 1) €
O). Thus we may take ¢ = a(x™" — 1) and d = b. Then {c}5 = {—a}s,. Further,

v

{a}s, —{—a}s, = {-1}5, and {@,—a}g, = 0. It follows that

AMzS®@yS) = {-1}5, - ()]s + [v(®)]s - [v(D)]s =0 ,

using property (iii) of Definition 1.1.

This proves the claim. Consequently, A induces an epimorphism of k-structures
X KM(F)/S — (KM(F,)/S,)[o(F*)[o(S)]

as desired.

For the second assertion of the theorem, suppose that v is S-compatible. Then (5.4)
is exact. The abelian group monomorphism 7 of (5.4) induces a morphism Tens(E</S,) —
Tens(F*/S) of graded rings. Since G, < S, it maps Stz ,.(S,) into St (S) for every
r > 1. Hence it induces a k-structure morphism KM (F,)/S, — KM (F)/S. By the
universal property of extensions (Lemma 1.2), there exists a unique k-structure morphism
v which extends the section 6 and for which the following diagram commutes (where ¢ is
the canonical morphism as in §1):

EM(E)/Sy — (KM (F,)/S0)[o(F*)/v(S)]
N v |
KM(F)/S
In degree 1, v coincides with the isomorphism 7 & 6. Hence it is surjective in all degrees.
By construction, A is given in degree 1 by the map (5.5). It follows that Ao 7 = id in
degree 1, and therefore in all degrees. This proves that v is injective. Therefore both v
and A are isomorphisms.

Conversely, suppose that \ is an isomorphism. Its definition in degree 1 shows that

it maps G, S/S trivially. Hence G, < S, as required. 0O

12



REMARK 5.2: When v is a discrete valuation and S = {1}, the first part of Theorem 5.1
is due to Bass and Tate [BaT, I, Prop. 4.3]. They also prove its second part when (F,v)
is a complete discretely valued field with positive residue characteristic prime to m and
when S = (F*)™ [BaT, I, Cor. 4.7]. Note that in the latter case v is S-compatible by
Hensel’s lemma. Wadsworth [Wd, §2] proves Theorem 5.1 for any valued field (F,v) when
S = (F*)1G, and q is a prime power.

REMARK 5.3:  The epimorphism of Theorem 5.1 is functorial in the following sense: sup-
pose that (Fy,v) is a valued field extension of (F,v), that S < F* S < F{*, S < 51, and
that there exist homomorphic sections 6,6, of the projections v*: F*/S — v(F*)/v(S),
v FY/S1 — v1(F{Y)/v1(S1) induced by v, vy, respectively. Moreover, suppose that the

following square commutes:

w(E(S) L FX/S

l l

0 (F)/m(S1) 2 FX/S .

Then the epimorphisms given in Theorem 5.2 and the restriction morphisms induce a

square:

KX (F)/S  — (K (Fo)/So)o(F) /v(8)]

l _

KX (F)/S1 — (KX ((F)u)/(S0)v) 01 (F) for(S1)] -

This square commutes in degree 1, hence in all degrees.

REMARK 5.4:  There are partially converse results to Theorem 5.1. Namely, if S =
(F*)P for a prime number p and if KM (F)/S is an extension of some k-structure by
(Z/p)¢ then (apart from some well-understood exceptional cases) F' is equipped with an
S-compatible valuation v with v(EF>*)/pv(F*) 22 (Z/p)?. Indeed, this follows from results
of Arason, Elman, Hwang, Jacob, and Ware ([J], [Wr], [AEJ], [HJ]); see [E2] for a K-

theoretic formulation of this line of results.
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6. A vanishing theorem

Recall that a valuation v on F' induces a ring topology 7, on F', with basis consisting of

all sets a + bO,,, where a,b € F and b # 0. For 0 < v € v(F*) the set
Wyz{xeFX |v(1—x)2’y}

is a 7,-open subgroup of G, =1+ m,.

LEMMA 6.1: Let v be a valuation on the field F. Let S be a subgroup of F'* such that
G,/(SNG,) is a finitely generated group. Then there exists 0 < v € v(F*) such that:
(i) SGy = SWy;
(ii) if char F, = p then 1+ pO, < w,.
Proof: We choose ay,...,a, € m, such that the cosets of 1 — a;, © = 1,...,n, gener-
ate G, /(S NG,). Hence (1 —a;)S, ¢ = 1,...,n, generate SG,/S. Take any 0 < v <
min{v(ai),...,v(an)}. Then 1 —a; € W,, i =1,...,n. Combined with W,, < G,, this
shows that SW., /S = SG,/S. When char F,, = p we take

~v =min{v(p),v(ai),...,v(ay)} . O
One says that the valuation v on F' has rank 1 if v(F'*) embeds in R as an ordered
abelian group.

THEOREM 6.2: Let v be a valuation of rank 1 on the field F'. Let S be a 7,-open subgroup
of F* such that F*/S is finitely generated and F* = SG,. Then KM(F)/S = 0 for all

r>2.

Proof: 1t suffices to show that aS ® bS € Stp2(S) for a,b € G,. Suppose that this
is not the case. In particular, a,b ¢ S. Lemma 6.1 yields 0 < v € v(F*) such that
F* =5G, =SW,.

We define inductively a sequence ¢y, co, ... € G, such that for each 1,
1—¢; € (1 — b)(l — Wy)i_l , aS ® bCi_IS € StF’Q(S)

We can take ¢; = b. Next suppose that ¢; has already been constructed. Since a.S ® bS &
Str2(S) we have ¢; # 1. We choose y; € S such that a/(1 —c; ') € y;W,. Asa ¢ S and
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y; € S, we may define ¢;;1 = ci(l—yi_la). Since ¢; € G, we have yl-_la € (l—cfl)Wv Cm,.
Hence ¢;41 € G,,. Now

1 —cip y; la
S R S A

so by the induction hypothesis, 1 — ¢;11 € (1 — b)(1 — W,)". Furthermore,

aS®@bc 1S =aS®bc;'S —aS® (1—y; 'a)s

=aS®bc; 'S —y; taS® (1 —y; 'a)S € Stra(S)

This completes the inductive construction.

Since v has rank 1, the sets (1-W,)*, s =1,2,3, ..., form a local basis for 7, at 0. As
b# 1, the set (1—b)~1(1—.9) is a 7,-open neighborhood of 0. Hence there exists a positive
integer ¢ such that (1—W,)* C (1—-b)"1(1—S). Then 1—c¢;4q € (1-b)(1—-W,)! C1-8,
s0 ¢iy1 € S. We conclude that aS ® bS = aS ® bc;rlls € Str2(5), a contradiction. O

7. Wild valuations of rank 1

In this section we study KM (F) when F is a field of characteristic 0 equipped with a
valuation v with char F, = p > 0. First we assume that v is a discrete valuation. Thus
m, = a0, for some a € m,. For i > 1 the map 1 +m! — F,, 1+ a’b > m,(b), is a group

homomorphism with kernel 1 4+ mi*?.

LEMMA 7.1: Let (E,u)/(F,v) be an extension of discrete valued fields with the same value
group and residue field. Then:
(a) (1+m?)/(1+m!)= EX/F* canonically for all i > 1;

(b) for every T,-open subgroup S of E* one has E* = F*S.

Proof: (a) For i =1 this follows from the exact sequences (5.2)—(5.3) (for the subgroup

F* of E*). For 1 < i the preceding remark gives a commutative diagram with exact rows:

0 - 1+mHt - 1+m! — F, — 1
| | ||
0 — 1+mitt — 1+mi — E, — 1

15



The snake lemma gives rise to a canonical isomorphism
L+ m )/ +m ) = 1 +m)/(1+m)

so we are done by induction.
(b) Since u is discrete, the subgroups 1 +m?, i =1,2,3,..., form a local basis for 7,, at

1. Hence there exists ¢ with 1 +m{, < S. By (a), EX = F*(1+m!),so EX = F*S. 0O
Now let p be a prime number and let ¢ = p? be a p-power, d > 1.

PROPOSITION 7.2: Let v be a discrete valuation on a field F' such that char F' = 0 and
char F, = p. Let (E,u) be the completion of (F,v) and let S = (F*)4(1 + ¢*m,). Then
Res: KM(F)/S — KM(FE)/q is an isomorphism.

Proof: By the Hensel-Rychlik lemma [FV, Ch. II, (1.3), Cor. 2], 1 + ¢*m, < (E*)%.
In particular, (E*)? is 7,-open in E. By Lemma 7.1(b), E* = F*(1 4+ gqm,). Hence
(EX)? = (F*)9(1 + ¢*m,,). It follows that ' N (E*)? = (F*)(1 + ¢’m,) = S.

Since F' is 7,-dense in F, the assertion now follows from Proposition 2.2. O

Note that here the field E is a complete discrete valued field of characteristic 0 and
finite residue field of characteristic p. Therefore it is a finite extension of Q,. For a detailed
analysis of the Milnor K-ring of such fields we refer to [FV, Ch. IX].

The following theorem extends arguments of Pop, which are implicit in the proof of
[P, Kor. 2.7]. In Theorem 7.4 below we use it in conjunction with Theorem 6.2 to compute

the functor KM (F)/S in another mixed characteristic situation.

THEOREM 7.3: Let v be a valuation of rank 1 on a field F' such that char ' = 0 and
char F, = p. Suppose that F* /(F*)P(1 + pm,) is finite. Then either:
(a) v(FX) is discrete and F, is finite; or

(b) v(F*) is p-divisible and F, is perfect.

Proof: Let S = (F*)P(1 + pm,). We break the argument into five steps.

PARrT I: F, is perfect. Indeed, S, = (F)P. By the exact sequences (5.2)—(5.3),
FX/(FX)P is finite. Since char F, = p, this quotient must be trivial [E3, Cor. 1.6], as

desired.
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Parr II: SNG, = GE(1+pm,). Consider the commutative diagram of exponentiations

by p:
1 - G, — 0 — FEX — 1
S
1 - G, — Of — FX — 1

Since char F,, = p, the right vertical map is injective. By the snake lemma, (OX)? NG, =

GP. Hence also (F*)? NG, = GP. Since 1+ pm, < G, we obtain

SN Gy = (FX)P NGy (1 + pmy) = GP(1 + pm,)

Parr III: SNG, € (1—-5)(1+pm,). Recall that p| (f) fori=1,...,p—1. Hence for

every a € m, we have
(1—-a)? €l —a"+pm, =(1-a")(1+pm,) C (1-25)(1+pm,)

Thus G? C (1 — S)(1 + pm,). Now use Part II.

PART IV: v(F™) is either discrete or p-divisible. ~ In view of the structure of the ordered
group R, it suffices to find 0 < v € v(F*) such that for every b € F with 0 < v(b) < ~
one has v(b) € pv(F*). Since F*/S is finite, the sequences (5.2)—(5.3) imply that so is
G,/(SNGy). Hence we may take v as in Lemma 6.1. By property (i) of W5, and since
W, <G, we have 1 —b € G, = (SW,) NG, = (SN G,)W,. It therefore follows from
part IIT and from property (ii) of W, that 1 —b € (1 — S)W,. So choose s € S with
1-be(1l—-s)W,. AsW, <G, we get 1 —s € G,. Hence

v<b—s)=v(i’:z> :v<1—%i’) >

Since v(b) < v, necessarily v(b) = v(s) € v(S) = pv(F*), as desired.

PART V: When v(F*) is discrete, F, is finite. ~ As we have observed, in this case
Gy/(1+m2) = (1+m,)/(1+m2) = F,. Using again that p|<f) for1 <i<p-—1, we
get GP(1 + pm,) < 1+ m2. In light of Part II, this gives rise to a group epimorphism
G,/(SNG,) — F,. We have already noted that G, /(S N G,) is finite. Conclude that so
is F,. O

17



THEOREM 7.4: Let v be a valuation of rank 1 on a field F' such that char ' = 0 and
char F\, = p. Let S = (F*)4(1 + ¢*m,) and suppose that (F* : S) < co. Then one of the
following holds:

(a) v(F*) is discrete, F, is finite, and KM(F)/S = KM (FE)/q for the completion E of

F with respect to v;

(b) v(F>) is p-divisible and KM (F)/S =0 for all r > 2.
Proof: We have v(S) = qu(F*) and S, = (F*)4. Since (F*)4(1+¢*m,) < (F*)P(1+pm,),
the finiteness assumption implies that (F* : (F*)P(1 4+ pm,)) < co. By Theorem 7.3, one

of the following cases occurs:

CAsE (1): v(FX) is discrete and F, is finite. =~ Then we apply Proposition 7.2.

CASE (11): v(FX) is p-divisible and F,, is perfect. ~ Then v(S) = v(F*) and S, = FX.
The exact sequences (5.2)—(5.3) therefore show that F* = SG,. Since S is 7,-open in F,
Theorem 6.2 implies that KM (F)/S =0 forr >2. O
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