QUOTIENTS OF MILNOR K-RINGS, ORDERINGS, AND VALUATIONS

Ido Efrat
Department of Mathematics
Ben-Gurion University of the Negev
P.O. Box 653, Be'er-Sheva 84105
ISRAEL
E-mail: efrat@math.bgu.ac.il

Abstract

We define and study the Milnor K-ring of a field F modulo a subgroup of the multiplicative group of F. We compute it in several arithmetical situations, and study the reflection of orderings and valuations in this ring.

Introduction

Let F be a field and let F^{\times}be its multiplicative group. The Milnor K-ring $K_{*}^{M}(F)$ of F is the tensor (graded) algebra of the \mathbb{Z}-module F^{\times}modulo the homogenous ideal generated by all elements $a_{1} \otimes \cdots \otimes a_{r}$, where $1=a_{i}+a_{j}$ for some $1 \leq i<j \leq r$ [Mi]. Alongside with $K_{*}^{M}(F)$, the quotients $K_{*}^{M}(F) / m=K_{*}^{M}(F) / m K_{*}^{M}(F)$, where m is a positive integer, also play an important role in many arithmetical questions. In this paper we study a natural generalization of these two functors. Specifically, we consider a subgroup S of F^{\times}and define the graded ring $K_{*}^{M}(F) / S$ to be the quotient of the tensor algebra over F^{\times} / S modulo the homogeneous ideal generated by all elements $a_{1} S \otimes \cdots \otimes a_{r} S$, where $1 \in a_{i} S+a_{j} S$ for some $1 \leq i<j \leq r$. The graded rings $K_{*}^{M}(F)$ and $K_{*}^{M}(F) / m$ then correspond to $S=\{1\}$ and $S=\left(F^{\times}\right)^{m}$, respectively.

The ring-theoretic structure of $K_{*}^{M}(F) / S$ reflects many of the main arithmetical properties of F, especially those related to orderings and valuations. We illustrate this by computing it in the following situations:
*) The research has been supported by the Israel Science Foundation grant No. 8008/02-1

2000 Mathematics subject classification: Primary 19F99, Secondary 12J10, 12J15, 12E30
(1) $\quad F^{\times} / S$ is a finite cyclic group. Here, if F has no orderings containing S then $K_{*}^{M}(F) / S$ is trivial in degrees >1. Otherwise $K_{*}^{M}(F) / S$ coincides in degrees >1 with the tensor algebra over $\{ \pm 1\}$ (Theorem 4.1). This includes as a special case the computation of the Milnor K-ring of finite fields, which goes back to Steinberg and Milnor [Mi, Example 1.5].
(2) There is a (Krull) valuation v on F whose 1-units are contained in S. We show that under a mild assumption, $K_{*}^{M}(F) / S$ is then obtained from the corresponding K-ring of the residue field and from $v\left(F^{\times}\right) / v(S)$ by means of a natural algebraic construction analogous to the construction of a polynomial ring over a given ring (§5).
(3) $\quad F^{\times} / S$ is finitely generated, and is generated by the 1 -units of a rank- 1 valuation v such that S is open in the v-topology on F. We prove that then $K_{*}^{M}(F) / S$ is trivial in degrees >1 (Theorem 6.2).
(4) F^{\times} / S is finite, and there is a rank- 1 valuation v on F with mixed characteristics $(0, p)$ such that $S=\left(F^{\times}\right)^{p}\left(1+p^{2} \mathfrak{m}_{v}\right)$, where \mathfrak{m}_{v} is the valuation ideal (when v is Henselian the latter condition just means that $\left.S=\left(F^{\times}\right)^{p}\right)$. We show that then $K_{*}^{M}(F) / S$ is either the Milnor K-ring of a finite extension of \mathbb{Q}_{p}, or else it is trivial in degrees >1 and $v\left(F^{\times}\right)$ is p-divisible (Theorem 7.4). The proof is based on the vanishing theorem of (3) above.

These results are mostly of a local nature. In a forthcoming paper we compute the functor $K_{*}^{M}(F) / S$ in global situations, where S is related to a family of orderings and valuations.

Studying Milnor's K-theory modulo a subgroup S by means of the functor $K_{*}^{M}(F) / S$ resembles the reduced theory of quadratic forms: there one studies quadratic forms modulo a preordering T on F via the reduced Witt ring functor $W_{T}(F)$, rather than the classical Witt ring - see [Lm], [BK] for details.

Furthermore, the celebrated Bloch-Kato-Milnor conjecture predicts that $K_{*}^{M}(F)$ is isomorphic to the Galois cohomology of the absolute Galois group G_{F} of F with respect to twisted cyclotomic actions $[\mathrm{K}]$. Similarly, when p is a prime number and F contains a primitive p th root of unity, $K_{*}^{M}(F) / p$ is related to the Galois cohomology ring of the maximal pro- p Galois group $G_{F}(p)$ of F with its trivial action on \mathbb{Z} / p. From this viewpoint, the generalized functor $K_{*}^{M}(F) / S$ serves in some sense as an analog of the Galois
cohomology of an arbitrary relative Galois $\operatorname{group} \operatorname{Gal}(E / F)$ of F.

1. κ-structures

In this section we define a convenient target category for the Milnor K-ring functor. It is a slight modification of the " κ-Algebras", as defined by Bass and Tate in $[\mathrm{BaT}]$.

Denote the tensor algebra of an abelian group Γ by $\operatorname{Tens}(\Gamma)$. We let $\kappa=\bigoplus_{r=0}^{\infty} \kappa_{r}=$ $\operatorname{Tens}(\{ \pm 1\})$, and denote the nontrivial element of $\kappa_{1} \cong \mathbb{Z} / 2$ by ε. Thus $\kappa_{0}=\mathbb{Z}$ and $\kappa_{r}=\left\{0, \varepsilon^{r}\right\} \cong \mathbb{Z} / 2$ for all $r \geq 1$.

Definition 1.1: A κ-structure consists of a graded ring $A=\bigoplus_{r=0}^{\infty} A_{r}$ and a graded ring homomorphism $\kappa \rightarrow A$ such that:
(i) $A_{0}=\mathbb{Z}$ and the homomorphism $\kappa \rightarrow A$ is the identity in degree 0 ;
(ii) A_{1} generates A as a ring;
(iii) the image ε_{A} of ε in A satisfies $a^{2}=\varepsilon_{A} a=a \varepsilon_{A}$ for all $a \in A_{1}$.

For every $a, b \in A_{1}$ we have $a b+b a=(a+b)^{2}-a^{2}-b^{2}=0$, by (iii). Thus A is anticommutative. A morphism $A \rightarrow B$ of κ-structures is a graded ring homomorphism which commutes with the structural homomorphisms $\kappa \rightarrow A, \kappa \rightarrow B$.

The category of κ-structures has direct products. Namely, the direct product $\prod_{i \in I} A_{i}$ of κ-structures $A_{i}, i \in I$, is defined by $\left(\prod_{i \in I} A_{i}\right)_{0}=\mathbb{Z}$ and $\left(\prod_{i \in I} A_{i}\right)_{r}=\prod_{i \in I}\left(A_{i}\right)_{r}$ for $r \geq 1$, with the natural multiplicative structure. The homomorphism $\kappa_{r} \rightarrow \prod_{i \in I}\left(A_{i}\right)_{r}$ is given by $\varepsilon \mapsto\left(\varepsilon_{A_{i}}\right)_{i \in I}$.

Recall that the tensor product in the category of graded rings is defined by $A \otimes_{\mathbb{Z}} B=$ $\bigoplus_{r=0}^{\infty}\left(\bigoplus_{i+j=r} A_{i} \otimes_{\mathbb{Z}} B_{j}\right)$, with the product given by

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=(-1)^{i^{\prime} j} a a^{\prime} \otimes b b^{\prime}
$$

for $a \in A_{i}, a^{\prime} \in A_{i^{\prime}}, b \in B_{j}, b^{\prime} \in B_{j^{\prime}}$. Given κ-structures A, B, we define their tensor product in the category of κ-structures to be $A \otimes_{\kappa} B=\left(A \otimes_{\mathbb{Z}} B\right) / I$, where I is the homogeneous ideal generated by $\varepsilon_{A} \otimes 1_{B}-1_{A} \otimes \varepsilon_{B}$. The homomorphism $\kappa \rightarrow A \otimes_{\kappa} B$ is given by $\varepsilon \mapsto \varepsilon_{A} \otimes 1_{B}+I=1_{A} \otimes \varepsilon_{B}+I$. Since A, B are anti-commutative, so is $A \otimes_{\mathbb{Z}} B$. Further, given $a \in A_{1}$ and $b \in B_{1}$ we have $\left(a \otimes 1_{B}\right)^{2}=\left(\varepsilon_{A} \otimes 1_{B}\right)\left(a \otimes 1_{B}\right)$ and
$\left(1_{A} \otimes b\right)^{2}=\left(1_{A} \otimes \varepsilon_{B}\right)\left(1_{A} \otimes b\right)$, so by the anti-commutativity,

$$
\left(a \otimes 1_{B}+1_{A} \otimes b\right)^{2}+I=\left(\varepsilon_{A} \otimes 1_{B}\right)\left(a \otimes 1_{B}+1_{A} \otimes b\right)+I
$$

in $\left(A \otimes_{\kappa} B\right)_{2}$. This implies the first equality in (iii) for $A \otimes_{\kappa} B$. The second is proved similarly, showing that $A \otimes_{\kappa} B$ is a κ-structure. There are canonical morphisms $\iota: A \rightarrow$ $A \otimes_{\kappa} B, \iota^{\prime}: B \rightarrow A \otimes_{\kappa} B$ with respect to which $A \otimes_{\kappa} B$ is the coproduct of A and B in the category of κ-structures (in the sense of e.g. [Ln, Ch. I, §7]). One has $A \cong A \otimes_{\kappa} \kappa$ and $B \cong \kappa \otimes_{\kappa} B$ via these morphisms.

Next we construct free objects in this category. Let Γ be an abelian group. We define $\kappa[\Gamma]$ to be the quotient of $\operatorname{Tens}\left(\kappa_{1} \oplus \Gamma\right)$ by the homogeneous ideal generated by all elements $\varepsilon \otimes \gamma-\gamma \otimes \gamma$, where $\gamma \in \Gamma$. Replacing γ by $\varepsilon+\gamma$ one sees that this ideal also contains $\gamma \otimes \varepsilon-\gamma \otimes \gamma$. The obvious embedding $\kappa_{1} \hookrightarrow \kappa_{1} \oplus \Gamma$ induces a graded ring homomorphism $\kappa \rightarrow \kappa[\Gamma]$. Then $\kappa[\Gamma]$ is a κ-structure satisfying the following universal property (which follows from the universal property of the tensor algebra):

For every κ-structure B and an abelian group homomorphism $\theta: \Gamma \rightarrow B_{1}$ there exists a unique morphism $\kappa[\Gamma] \rightarrow B$ extending θ.

Given a κ-structure A, we call $A[\Gamma]=A \otimes_{\kappa} \kappa[\Gamma]$ the extension of A by Γ. When $A=\kappa$ it coincides with our previous notation. This extends Serre's construction mentioned in [Mi, p. 323]. We identify $(A[\Gamma])_{1}=A_{1} \oplus \Gamma$. Let $\iota: A \rightarrow A[\Gamma]$ be the canonical morphism.

Lemma 1.2: Let $\varphi: A \rightarrow B$ be a morphism of κ-structures and let $\theta: \Gamma \rightarrow B_{1}$ be a homomorphism of abelian groups. There exists a unique morphism $A[\Gamma] \rightarrow B$ extending θ which commutes with φ and ι.

Proof: The universal property of $\kappa[\Gamma]$ yields a unique morphism $\kappa[\Gamma] \rightarrow B$ extending θ. Now use the fact that the tensor product is a coproduct.

Corollary 1.3: Given a κ-structure A and abelian groups Γ_{1}, Γ_{2} one has $\left(A\left[\Gamma_{1}\right]\right)\left[\Gamma_{2}\right] \cong$ $A\left[\Gamma_{1} \oplus \Gamma_{2}\right]$.

Example 1.4: Let A be a κ-structure and let Γ be a cyclic group with generator γ. For every $i \geq 1$, we have $\gamma^{i}=\varepsilon_{A}^{i-1} \gamma$ in $A[\Gamma]$, by (iii) of Definition 1.1. It follows that $(A[\Gamma])_{r}=A_{r} \oplus\left(A_{r-1} \otimes_{\mathbb{Z}} \Gamma\right)$ for $r \geq 1$.

2. The functor $K_{*}^{M}(F) / S$

Let F be a field and let S be a subgroup of F^{\times}. For $r \geq 0$ let $\left(F^{\times} / S\right)^{\otimes r}=\left(F^{\times} / S\right) \otimes_{\mathbb{Z}}$ $\cdots \otimes_{\mathbb{Z}}\left(F^{\times} / S\right)(r$ times $)$. Let $\operatorname{St}_{F, r}(S)$ be the subgroup of $\left(F^{\times} / S\right)^{\otimes r}$ generated by all elements $a_{1} S \otimes \cdots \otimes a_{r} S$ such that $1 \in a_{i} S+a_{j} S$ for some $i \neq j$. Generalizing standard terminology, we call such elements Steinberg elements. Let

$$
K_{r}^{M}(F) / S=\left(F^{\times} / S\right)^{\otimes r} / \operatorname{St}_{F, r}(S)
$$

In particular, $K_{0}^{M}(F) / S=\mathbb{Z}$ and $K_{1}^{M}(F) / S=F^{\times} / S$. For $0 \leq t$ one has $\operatorname{St}_{F, r}(S) \otimes_{\mathbb{Z}}$ $\left(F^{\times} / S\right)^{\otimes t} \subseteq \operatorname{St}_{F, r+t}(S)$ and $\left(F^{\times} / S\right)^{\otimes t} \otimes_{\mathbb{Z}} \operatorname{St}_{F, r}(S) \subseteq \operatorname{St}_{F, r+t}(S)$. Therefore

$$
K_{*}^{M}(F) / S=\bigoplus_{r=0}^{\infty} K_{r}^{M}(F) / S
$$

is a graded ring respect to the multiplication induced by the tensor product. We call it the Milnor K-ring of F modulo S. Given $a_{1}, \ldots, a_{r} \in F^{\times}$we denote the image of $a_{1} S \otimes \cdots \otimes a_{r} S$ in $K_{r}^{M}(F) / S$ by $\left\{a_{1}, \ldots, a_{r}\right\}_{S}$.

When $S=\{1\}$ we obtain the classical Milnor K-ring $K_{*}^{M}(F)=\bigoplus_{r=0}^{\infty} K_{r}^{M}(F)$ of F as in [Mi]. In this case we write as usual $\left\{a_{1}, \ldots, a_{n}\right\}$ for $\left\{a_{1}, \ldots, a_{n}\right\}_{S}$. In general, we have graded ring homomorphisms $\operatorname{Tens}\left(F^{\times} / S\right) \rightarrow K_{*}^{M}(F) / S$ and $K_{*}^{M}(F) \rightarrow K_{*}^{M}(F) / S$.

Next we define a graded ring homomorphism $\kappa \rightarrow K_{*}^{M}(F) / S$ by setting $\varepsilon \mapsto-S \in$ F^{\times} / S. Since the identities $\{a, a\}_{S}=\{-1, a\}_{S}=\{a,-1\}_{S}$ of Definition 1.1(iii) are wellknown to hold when $S=\{1\}[\mathrm{Mi}, \S 1]$, they also hold in $K_{*}^{M}(F) / S$. Hence $K_{*}^{M}(F) / S$ is a κ-structure.

Proposition 2.1: For positive integers m, r and for $S=\left(F^{\times}\right)^{m}$ we have $K_{r}^{M}(F) / S=$ $K_{r}^{M}(F) / m$.

Proof: There is an obvious graded ring homomorphism $\varphi: K_{r}^{M}(F) / m \rightarrow K_{r}^{M}(F) / S$ which commutes with the canonical projections from $\left(F^{\times}\right)^{\otimes r}$. Conversely, suppose $a_{1}, \ldots, a_{r} \in$ F^{\times}and $a_{1} S \otimes \cdots \otimes a_{r} S \in \operatorname{St}_{F, r}(S)$, i.e., $1=a_{i} \alpha^{m}+a_{j} \beta^{m}$ for some $i<j$ and $\alpha, \beta \in F^{\times}$. Then

$$
\left\{a_{1}, \ldots, a_{r}\right\} \in\left\{a_{1}, \ldots, a_{i} \alpha^{m}, \ldots, a_{j} \beta^{m}, \ldots, a_{r}\right\}+m K_{r}^{M}(F)=m K_{r}^{M}(F)
$$

We obtain a projection $\psi: K_{r}^{M}(F) / S \rightarrow K_{r}^{M}(F) / m$ which also commutes with the projections from $\left(F^{\times}\right)^{\otimes r}$. Thus φ and ψ are converse maps, whence isomorphisms.

We consider the class of all pairs (F, S) where F is a field and $S \leq F^{\times}$as category, in which morphisms $(F, S) \rightarrow\left(F_{1}, S_{1}\right)$ are pairs of compatible embeddings $F \hookrightarrow F_{1}$, $S \hookrightarrow S_{1}$. For such a pair and for $r \geq 0$ we have a group homomorphism $\left(F^{\times} / S\right)^{\otimes r} \rightarrow$ $\left(F_{1}^{\times} / S_{1}\right)^{\otimes r}$ mapping $\operatorname{St}_{F, r}(S)$ to $\operatorname{St}_{F_{1}, r}\left(S_{1}\right)$. It therefore induces a κ-structure morphism Res: $K_{*}^{M}(F) / S \rightarrow K_{*}^{M}\left(F_{1}\right) / S_{1}$, which we call the restriction morphism. The map $(F, S) \mapsto K_{*}^{M}(F) / S$ is thus a covariant functor from the category of pairs (F, S) to the category of κ-structures.

A topology on a field F is called a ring topology if the addition and multiplication maps $F \times F \rightarrow F$ are continuous. We will need:

Proposition 2.2: Let \mathcal{T} be a ring topology on a field F_{1} and let F be a subfield of F_{1} which is \mathcal{T}-dense in F_{1}. Let S be a subgroup of F^{\times}and let S_{1} be a \mathcal{T}-open subgroup of F_{1}^{\times} containing S. Then Res: $K_{*}^{M}(F) / S \rightarrow K_{*}^{M}\left(F_{1}\right) / S_{1}$ is an epimorphism. When $S=F \cap S_{1}$, it is an isomorphism.

Proof: For every $a \in F_{1}^{\times}$we have $F \cap a S_{1} \neq \emptyset$ by the density assumption. Hence the natural homomorphism $F^{\times} / S \rightarrow F_{1}^{\times} / S_{1}$ is surjective. Consequently, so is Res: $K_{*}^{M}(F) / S \rightarrow$ $K_{*}^{M}\left(F_{1}\right) / S_{1}$.

Suppose that $S=F \cap S_{1}$. For each r the induced map $\left(F^{\times} / S\right)^{\otimes r} \rightarrow\left(F_{1}^{\times} / S_{1}\right)^{\otimes r}$ is an isomorphism. Therefore the injectivity of Res would follow by a snake lemma argument once we show that the induced map $\operatorname{St}_{F, r}(S) \rightarrow \operatorname{St}_{F_{1}, r}\left(S_{1}\right)$ is surjective. To this end we take a generator $a_{1} S_{1} \otimes \cdots \otimes a_{r} S_{1} \in \operatorname{St}_{F_{1}, r}\left(S_{1}\right)$, where $a_{1}, \ldots, a_{r} \in F_{1}^{\times}$and $1 \in a_{i} S_{1}+a_{j} S_{1}$ for some distinct i, j. By continuity, there exist nonempty \mathcal{T}-open subsets V, W of S_{1} such that $a_{i} V+a_{j} W \subseteq S_{1}$. Using the density assumption we find $x_{1}, \ldots, x_{r} \in F$ with $x_{i} \in a_{i} V, x_{j} \in a_{j} W$, and $x_{l} \in a_{l} S_{1}$ for all $l \neq i, j$. Then $x_{i}+x_{j} \in S_{1} \cap F=S$, so $x_{1} S \otimes \cdots \otimes x_{r} S \in \operatorname{St}_{F, r}(S)$. Furthermore, $x_{1} S \otimes \cdots \otimes x_{r} S$ maps to $a_{1} S_{1} \otimes \cdots \otimes a_{r} S_{1}$ under the homomorphism above, as required.

3. Orderings

Let again F be a field, and let S be a subgroup of F^{\times}. Following standard terminology (see, e.g., [NSW, p. 191]), we call the map Bock $_{F, S}: F^{\times} / S \rightarrow K_{2}^{M}(F) / S,\{x\}_{S} \mapsto$ $\{x\}_{S}^{2}=\{x,-1\}_{S}$, the Bockstein operator of the subgroup S of F. It is clearly a group homomorphism.

Lemma 3.1: If $\operatorname{Bock}_{F, S}$ is injective then S is additively closed.
Proof: It suffices to show that $1+S \subseteq S$. To this end take $s \in S$. Then

$$
\operatorname{Bock}_{F, S}\left(\{1+s\}_{S}\right)=\{1+s,-1\}_{S}=\{1+s,-s\}_{S}=0
$$

By the injectivity, $\{1+s\}_{S}=0$, so $1+s \in S$.
By an ordering on F we mean an additively closed subgroup P of F^{\times}such that $F^{\times}=P \uplus-P$. Recall that a ring is reduced if it has no nilpotent elements $\neq 0$. The following fact is a variant of [BaT, I, Th. (3.1)].

Proposition 3.2: The following conditions are equivalent:
(a) $K_{*}^{M}(F) / S \cong \kappa$ as κ-structures;
(b) $F^{\times}=S \cup-S$ and $K_{*}^{M}(F) / S$ is reduced;
(c) $F^{\times}=S \cup-S$ and $\{-1,-1\}_{S} \neq 0$;
(d) S is an ordering on F.

Proof: $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$: \quad Immediate.
$(\mathrm{c}) \Rightarrow(\mathrm{d})$: By Lemma 3.1 and the assumptions, S is additively closed. The rest is clear.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$: We first show that $\operatorname{St}_{F, r}(S)$ is trivial for all $r \geq 2$. Indeed, take $a_{1}, \ldots, a_{r} \in F^{\times}$ with $1 \in a_{i} S+a_{j} S$ for some distinct $1 \leq i, j \leq r$. If a_{i}, a_{j} were both in $-S$ then we would get $-1 \in S+S \subseteq S$, a contradiction. Hence at least one of a_{i}, a_{j} must be in S. It follows that $a_{1} S \otimes \cdots \otimes a_{r} S=1$ in $\left(F^{\times} / S\right)^{\otimes r}$, as claimed.

Consequently, $K_{*}^{M}(F) / S=\operatorname{Tens}\left(F^{\times} / S\right) \cong \operatorname{Tens}(\{ \pm 1\})=\kappa$ as graded rings. Further, this is a κ-structure isomorphism.

A preordering on F is an additively closed subgroup S of F^{\times}containing $\left(F^{\times}\right)^{2}$ but not -1 . Preorderings can be characterized K-theoretically as follows.

Proposition 3.3: Suppose that $\left(F^{\times}\right)^{2} \leq S<F^{\times}$. The following conditions are equivalent:
(a) S is a preordering on F;
(b) $\mathrm{Bock}_{F, S}$ is injective.

Proof: $(\mathrm{a}) \Rightarrow(\mathrm{b}): \quad$ Let $x \in F^{\times}$satisfy $\{x\}_{S}^{2}=0$ and let P be an ordering on F containing S. Then $\{x\}_{P}^{2}=0$, and since $K_{*}^{M}(F) / P \cong \kappa$ is reduced (Proposition 3.2), $\{x\}_{P}=0$, i.e., $x \in P$. Being a preordering, S is the intersection of all the orderings P containing it [Lm, Th. 1.6]. Consequently, $x \in S$, as desired.
$(\mathrm{b}) \Rightarrow(\mathrm{a})$: In light of Lemma 3.1, S is additively closed. By assumption, there exists $x \in F^{\times} \backslash S$. By the injectivity, $\{x,-1\}_{S} \neq 0$. Hence $-1 \notin S$, so S is a preordering.

4. The cyclic case

Using the K-theoretic analysis of orderings obtained in the previous section, we can now completely describe $K_{*}^{M}(F) / S$ when F^{\times} / S is a finite cyclic group.

Theorem 4.1: Let F be a field and let S be a subgroup of F^{\times}such that F^{\times} / S is finite and cyclic. Then one of following holds:
(a) $K_{r}^{M}(F) / S=0$ for all $r \geq 2$;
(b) $\left(F^{\times}: S\right)=2 m$ with m odd, and there exists a unique ordering P on F containing S, and furthermore, Res: $K_{*}^{M}(F) / S \rightarrow K_{*}^{M}(F) / P(\cong \kappa)$ is an isomorphism in all degrees $r \geq 2$.

Proof: Let $p_{1}^{d_{1}} \cdots p_{n}^{d_{n}}$ be the primary decomposition of $\left(F^{\times}: S\right)$. For each $1 \leq i \leq n$ choose $a_{i} \in F^{\times}$such that the coset $\left\{a_{i}\right\}_{S}$ generates the p_{i}-primary part of F^{\times} / S. Let $a=a_{1} \cdots a_{n}$. Then the coset $\{a\}_{S}$ generates F^{\times} / S, and one has $\{a, a\}_{S}=\{a,-1\}_{S}=$ $\sum_{i=1}^{n}\left\{a_{i},-1\right\}_{S}$.

Assume that (a) does not hold, i.e., $K_{r}^{M}(F) / S \neq 0$ for some $r \geq 2$. Since the canonical map $\left(F^{\times} / S\right)^{r} \rightarrow K_{r}^{M}(F) / S$ is multi-linear, $\{a, \ldots, a\}_{S}$ generates $K_{r}^{M}(F) / S$. Hence $\{a, \ldots, a\}_{S} \neq 0$, and therefore $\{a, a\}_{S} \neq 0$. It follows that $\left\{a_{i},-1\right\}_{S} \neq 0$ for some $1 \leq i \leq n$. We obtain that the orders of $\left\{a_{i},-1\right\}_{S}$ and of $\{-1\}_{S}$ are precisely 2 . Furthermore, $p_{i}^{d_{i}}\left\{a_{i},-1\right\}_{S}=0$, so we must have $p_{i}=2$. Therefore $2^{d_{i}-1}\left\{a_{i}\right\}_{S}=\{-1\}_{S}$,
and we get

$$
2^{d_{i}-1}\left\{a_{i},-1\right\}_{S}=2^{d_{i}-1}\left\{a_{i}, a_{i}\right\}_{S}=\left\{a_{i},-1\right\}_{S} \neq 0
$$

This implies that $d_{i}=1$. Consequently, $\left(F^{\times}: S\right)=2 m$, with m odd.
Let P be the unique subgroup of F^{\times}of index 2 which contains S. Then P / S is cyclic of order m, and is generated by $\left\{a^{2}\right\}_{S}$. Since $\{-1\}_{S}$ has order 2 in F^{\times} / S, it is not in P / S. Therefore $F^{\times}=P \cup-P$.

Next we claim that $1+P \subseteq P$. Indeed, suppose that $x \in P$. In particular, $x \neq-1$. Take s, t with $-x \in a^{s} S$ and $1+x \in a^{t} S$. Then

$$
0=\{-x, 1+x\}_{S}=\left\{a^{s}, a^{t}\right\}_{S}=s t\{a, a\}_{S}
$$

Now $-x \notin P$, so s is odd. But $\{a, a\}_{S}=\{a,-1\}_{S}$ has order 2. It follows that t must be even, i.e., $1+x \in P$. Conclude that P is additively closed, whence an ordering.

Finally, for every r the functorial map $K_{r}^{M}(F) / S \rightarrow K_{r}^{M}(F) / P$ is clearly surjective. When $2 \leq r$ the group $K_{r}^{M}(F) / S$ is generated by $\{a, a, \ldots, a\}_{S}=\{a,-1, \ldots,-1\}_{S}$, whence has order at most 2. By Proposition 3.2, $K_{r}^{M}(F) / P$ has order 2. Consequently, the above map is an isomorphism, and (b) holds.

For the uniqueness part of (b), assume that $S \leq P^{\prime}<F^{\times}$is another ordering on F. Then $4\left|\left(F^{\times}: P \cap P^{\prime}\right)\right|\left(F^{\times}: S\right)=2 m$, contrary to the fact that m is odd.

Corollary 4.2: Let S be a subgroup of F^{\times}with F^{\times} / S cyclic of prime power order. Then either $K_{r}^{M}(F) / S=0$ for all $r \geq 2$, or S is an ordering (whence $K_{*}^{M}(F) / S \cong \kappa$).

As mentioned in the introduction, Theorem 4.1 generalizes the well-known fact that $K_{2}^{M}(F)=0$ for a finite field $F\left(\left[\mathrm{Mi}\right.\right.$, Example 1.5], [FV, Ch. IX, Prop. 1.3]). Indeed, F^{\times} is cyclic $[\mathrm{Ln}, \mathrm{Ch} . \mathrm{VII}, \S 5, \mathrm{Th} .11]$ and since char $F>0$, there are no orderings on F.

5. S-compatible valuations

Recall that a (Krull) valuation on a field F is a group homomorphism v from F^{\times}into an ordered abelian group (Γ, \leq) such that $v(x+y) \geq \min \{v(x), v(y)\}$ for all $x, y \in F$ with $x \neq-y$. One defines $v(0)$ to be a formal value $+\infty$ which is strictly larger than every value in Γ. Let O_{v} be the valuation ring of v, and \mathfrak{m}_{v} its maximal ideal. Thus $x \in F$ lies in O_{v} (resp., \mathfrak{m}_{v}) if and only if $v(x) \geq 0$ (resp., $v(x)>0$). Let O_{v}^{\times}be the unit group of O_{v}, let $G_{v}=1+\mathfrak{m}_{v}$ be the group of principal units of v, let $\bar{F}_{v}=O_{v} / \mathfrak{m}_{v}$ be the residue field of v, and $\pi_{v}: O_{v} \rightarrow \bar{F}_{v}, a \mapsto \bar{a}$, the canonical projection.

Let S a subgroup of F^{\times}. Its push-down $\bar{S}_{v}=\pi_{v}\left(S \cap O_{v}^{\times}\right)$under v is a subgroup of \bar{F}_{v}^{\times}. The maps v and π_{v} induce short exact sequences of abelian groups:

$$
\begin{equation*}
1 \rightarrow S \cap O_{v}^{\times} \rightarrow S \xrightarrow{v} v(S) \rightarrow 0 \quad, \quad 1 \rightarrow S \cap G_{v} \rightarrow S \cap O_{v}^{\times} \xrightarrow{\pi_{v}} \bar{S}_{v} \rightarrow 1 . \tag{5.1}
\end{equation*}
$$

In particular, this holds for $S=F^{\times}$. The snake lemma therefore gives rise to canonical exact sequences

$$
\begin{align*}
1 & \rightarrow O_{v}^{\times} /\left(S \cap O_{v}^{\times}\right) \rightarrow F^{\times} / S \xrightarrow{v^{*}} v\left(F^{\times}\right) / v(S) \rightarrow 0 \tag{5.2}\\
1 & \rightarrow G_{v} /\left(S \cap G_{v}\right) \rightarrow O_{v}^{\times} /\left(S \cap O_{v}^{\times}\right) \xrightarrow{\pi_{v}^{*}} \bar{F}_{v}^{\times} / \bar{S}_{v} \rightarrow 1 . \tag{5.3}
\end{align*}
$$

Following [AEJ], we say that the valuation v is S-compatible if $G_{v} \leq S$ (when $S=\left(F^{\times}\right)^{p}$ for p prime and char $\bar{F}_{v} \neq p$, this is a weak form of Hensel's lemma [Wd, Prop. 1.2]). Then the sequences (5.2)-(5.3) combine to a single canonical short exact sequence

$$
\begin{equation*}
1 \rightarrow \bar{F}_{v}^{\times} / \bar{S}_{v} \xrightarrow{\eta} F^{\times} / S \xrightarrow{v^{*}} v\left(F^{\times}\right) / v(S) \rightarrow 0 \tag{5.4}
\end{equation*}
$$

where for $a \in O_{v}^{\times}$with residue \bar{a} we set $\eta\left(\{\bar{a}\}_{\bar{S}_{v}}\right)=\{a\}_{S}$.
We will be interested in situations where (5.2) splits. For example, this is so in the following cases:
(1) $\quad v\left(F^{\times}\right) \cong \mathbb{Z}$ and $S=\{1\}$. Then a section of v^{*} corresponds to a choice of a uniformizer for v.
(2) $\left(F^{\times}\right)^{p} \leq S$ for some prime number p. In fact, then F^{\times} / S and $v\left(F^{\times}\right) / v(S)$ are free \mathbb{Z} / p-modules.
(3) $\left(F^{\times}\right)^{q} \leq S \leq\left(F^{\times}\right)^{q} O_{v}^{\times}$, where $q=p^{s}$ is a prime power. Indeed, the group $v\left(F^{\times}\right)$ is torsion-free, whence a flat \mathbb{Z}-module. Therefore $v\left(F^{\times}\right) / v(S)=v\left(F^{\times}\right) / q$ is a flat \mathbb{Z} / q module. Since \mathbb{Z} / q is a nilpotent local ring, it is a consequence of the Nakayama lemma [Ma, 3.G] that $v\left(F^{\times}\right) / q$ is a free \mathbb{Z} / q-module.

We now obtain a connection between valuations and extensions of κ-structures, in the sense of $\S 1$.

Theorem 5.1: Let F be a field and let S be a subgroup of F^{\times}. Every section of (5.2) induces canonically an epimorphism of κ-structures

$$
K_{*}^{M}(F) / S \longrightarrow\left(K_{*}^{M}\left(\bar{F}_{v}\right) / \bar{S}_{v}\right)\left[v\left(F^{\times}\right) / v(S)\right] .
$$

Moreover, this morphism is injective if and only if v is S-compatible.
Proof: Let $\theta: v\left(F^{\times}\right) / v(S) \rightarrow F^{\times} / S$ be a section of v^{*}. Take $S \leq \Delta \leq F^{\times}$with $\Delta / S=$ $\operatorname{Im}(\theta)$. Then $F^{\times} / S=\left(S O_{v}^{\times} / S\right) \times(\Delta / S)$. Thus every $x \in F^{\times}$can be written as $x=a b$ with $a \in O_{v}^{\times}$and $b \in \Delta$. We set $\bar{a}=\pi_{v}(a)$ and write $[v(b)]_{S}$ for the coset of $v(b)$ in $v\left(F^{\times}\right) / v(S)$. We obtain a well-defined group epimorphism

$$
\begin{equation*}
F^{\times} / S \rightarrow\left(\bar{F}_{v}^{\times} / \bar{S}_{v}\right) \oplus\left(v\left(F^{\times}\right) / v(S)\right) \quad, \quad\{x\}_{S} \mapsto\{\bar{a}\}_{\bar{S}_{v}}+[v(b)]_{S} \tag{5.5}
\end{equation*}
$$

This abelian group epimorphism uniquely extends to a graded ring epimorphism

$$
\lambda: \operatorname{Tens}\left(F^{\times} / S\right) \rightarrow\left(K_{*}^{M}\left(\bar{F}_{v}\right) / \bar{S}_{v}\right)\left[v\left(F^{\times}\right) / v(S)\right]
$$

We claim that λ is trivial on $\operatorname{St}_{F, r}(S)$ for all r. It suffices to show that $\lambda\left(\{x\}_{S} \otimes\right.$ $\left.\{y\}_{S}\right)=0$ when $x, y \in F^{\times}$and $1 \in x S+y S$. We may assume that $1=x+y$. Write $x=a b$ and $y=c d$, with $a, c \in O_{v}^{\times}$and $b, d \in \Delta$. Then

$$
\begin{aligned}
\lambda(x S \otimes y S) & =\left(\{\bar{a}\}_{\bar{S}_{v}}+[v(b)]_{S}\right) \cdot\left(\{\bar{c}\}_{\bar{S}_{v}}+[v(d)]_{S}\right) \\
& =\{\bar{a}, \bar{c}\}_{\bar{S}_{v}}+\left(\{\bar{a}\}_{\bar{S}_{v}} \cdot[v(d)]_{S}-\{\bar{c}\}_{\bar{S}_{v}} \cdot[v(b)]_{S}\right)+[v(b)]_{S} \cdot[v(d)]_{S} .
\end{aligned}
$$

To show that this expression vanishes we distinguish between four cases:
Case I: $x \in G_{v}$. Here we can take $a=x$ and $b=1$. Then $\{\bar{a}\}_{\bar{S}_{v}}=0$ and $[v(b)]_{S}=0$, so the assertion is clear.

Case II: $x \in \mathfrak{m}_{v}$. Then $y \in G_{v}$, so we can take $c=y$ and $d=1$. Hence $\{\bar{c}\}_{\bar{S}_{v}}=0$ and $[v(d)]_{S}=0$, and we are done again.

Case III: $x \in O_{v}^{\times} \backslash G_{v}$. Then $y=1-x \in O_{v}^{\times}$, so we can take $a=x, b=1, c=y$, and $d=1$. Hence $\lambda(x S \otimes y S)=\{\bar{x}, \overline{1-x}\}_{\bar{S}_{v}}=0$ once again.

Case IV: $x^{-1} \in \mathfrak{m}_{v}$. For any a, b as above, $y=a\left(x^{-1}-1\right) \cdot b$, with $a\left(x^{-1}-1\right) \in$ O_{v}^{\times}. Thus we may take $c=a\left(x^{-1}-1\right)$ and $d=b$. Then $\{\bar{c}\}_{\bar{S}_{v}}=\{-\bar{a}\}_{\bar{S}_{v}}$. Further, $\{\bar{a}\}_{\bar{S}_{v}}-\{-\bar{a}\}_{\bar{S}_{v}}=\{-\overline{1}\}_{\bar{S}_{v}}$ and $\{\bar{a},-\bar{a}\}_{\bar{S}_{v}}=0$. It follows that

$$
\lambda(x S \otimes y S)=\{-\overline{1}\}_{\bar{S}_{v}} \cdot[v(b)]_{S}+[v(b)]_{S} \cdot[v(b)]_{S}=0
$$

using property (iii) of Definition 1.1.
This proves the claim. Consequently, λ induces an epimorphism of κ-structures

$$
\bar{\lambda}: K_{*}^{M}(F) / S \longrightarrow\left(K_{*}^{M}\left(\bar{F}_{v}\right) / \bar{S}_{v}\right)\left[v\left(F^{\times}\right) / v(S)\right]
$$

as desired.
For the second assertion of the theorem, suppose that v is S-compatible. Then (5.4) is exact. The abelian group monomorphism η of (5.4) induces a morphism Tens $\left(\bar{F}_{v}^{\times} / \bar{S}_{v}\right) \rightarrow$ $\operatorname{Tens}\left(F^{\times} / S\right)$ of graded rings. Since $G_{v} \leq S$, it maps $\operatorname{St}_{\bar{F}_{v}, r}\left(\bar{S}_{v}\right)$ into $\operatorname{St}_{F, r}(S)$ for every $r \geq 1$. Hence it induces a κ-structure morphism $K_{*}^{M}\left(\bar{F}_{v}\right) / \bar{S}_{v} \rightarrow K_{*}^{M}(F) / S$. By the universal property of extensions (Lemma 1.2), there exists a unique κ-structure morphism $\bar{\nu}$ which extends the section θ and for which the following diagram commutes (where ι is the canonical morphism as in $\S 1$):

In degree $1, \bar{\nu}$ coincides with the isomorphism $\eta \oplus \theta$. Hence it is surjective in all degrees. By construction, $\bar{\lambda}$ is given in degree 1 by the map (5.5). It follows that $\bar{\lambda} \circ \bar{\nu}=\operatorname{id} \operatorname{in}$ degree 1, and therefore in all degrees. This proves that $\bar{\nu}$ is injective. Therefore both $\bar{\nu}$ and $\bar{\lambda}$ are isomorphisms.

Conversely, suppose that $\bar{\lambda}$ is an isomorphism. Its definition in degree 1 shows that it maps $G_{v} S / S$ trivially. Hence $G_{v} \leq S$, as required.

Remark 5.2: When v is a discrete valuation and $S=\{1\}$, the first part of Theorem 5.1 is due to Bass and Tate [BaT, I, Prop. 4.3]. They also prove its second part when (F, v) is a complete discretely valued field with positive residue characteristic prime to m and when $S=\left(F^{\times}\right)^{m}$ [BaT, I, Cor. 4.7]. Note that in the latter case v is S-compatible by Hensel's lemma. Wadsworth [Wd, §2] proves Theorem 5.1 for any valued field (F, v) when $S=\left(F^{\times}\right)^{q} G_{v}$ and q is a prime power.

REMARK 5.3: The epimorphism of Theorem 5.1 is functorial in the following sense: suppose that $\left(F_{1}, v_{1}\right)$ is a valued field extension of (F, v), that $S \leq F^{\times}, S_{1} \leq F_{1}^{\times}, S \leq S_{1}$, and that there exist homomorphic sections θ, θ_{1} of the projections $v^{*}: F^{\times} / S \rightarrow v\left(F^{\times}\right) / v(S)$, $v_{1}^{*}: F_{1}^{\times} / S_{1} \rightarrow v_{1}\left(F_{1}^{\times}\right) / v_{1}\left(S_{1}\right)$ induced by v, v_{1}, respectively. Moreover, suppose that the following square commutes:

Then the epimorphisms given in Theorem 5.2 and the restriction morphisms induce a square:

This square commutes in degree 1 , hence in all degrees.
REmARK 5.4: There are partially converse results to Theorem 5.1. Namely, if $S=$ $\left(F^{\times}\right)^{p}$ for a prime number p and if $K_{*}^{M}(F) / S$ is an extension of some κ-structure by $(\mathbb{Z} / p)^{d}$ then (apart from some well-understood exceptional cases) F is equipped with an S-compatible valuation v with $v\left(F^{\times}\right) / p v\left(F^{\times}\right) \cong(\mathbb{Z} / p)^{d}$. Indeed, this follows from results of Arason, Elman, Hwang, Jacob, and Ware ([J], [Wr], [AEJ], [HJ]); see [E2] for a K theoretic formulation of this line of results.

6. A vanishing theorem

Recall that a valuation v on F induces a ring topology \mathcal{T}_{v} on F, with basis consisting of all sets $a+b O_{v}$, where $a, b \in F$ and $b \neq 0$. For $0<\gamma \in v\left(F^{\times}\right)$the set

$$
W_{\gamma}=\left\{x \in F^{\times} \mid v(1-x) \geq \gamma\right\}
$$

is a \mathcal{T}_{v}-open subgroup of $G_{v}=1+\mathfrak{m}_{v}$.
Lemma 6.1: Let v be a valuation on the field F. Let S be a subgroup of F^{\times}such that $G_{v} /\left(S \cap G_{v}\right)$ is a finitely generated group. Then there exists $0<\gamma \in v\left(F^{\times}\right)$such that:
(i) $S G_{v}=S W_{\gamma}$;
(ii) if char $\bar{F}_{v}=p$ then $1+p O_{v} \leq W_{\gamma}$.

Proof: We choose $a_{1}, \ldots, a_{n} \in \mathfrak{m}_{v}$ such that the cosets of $1-a_{i}, i=1, \ldots, n$, generate $G_{v} /\left(S \cap G_{v}\right)$. Hence $\left(1-a_{i}\right) S, i=1, \ldots, n$, generate $S G_{v} / S$. Take any $0<\gamma \leq$ $\min \left\{v\left(a_{1}\right), \ldots, v\left(a_{n}\right)\right\}$. Then $1-a_{i} \in W_{\gamma}, i=1, \ldots, n$. Combined with $W_{\gamma} \leq G_{v}$, this shows that $S W_{\gamma} / S=S G_{v} / S$. When char $\bar{F}_{v}=p$ we take

$$
\gamma=\min \left\{v(p), v\left(a_{1}\right), \ldots, v\left(a_{n}\right)\right\} .
$$

One says that the valuation v on F has rank 1 if $v\left(F^{\times}\right)$embeds in \mathbb{R} as an ordered abelian group.

Theorem 6.2: Let v be a valuation of rank 1 on the field F. Let S be a \mathcal{T}_{v}-open subgroup of F^{\times}such that F^{\times} / S is finitely generated and $F^{\times}=S G_{v}$. Then $K_{r}^{M}(F) / S=0$ for all $r \geq 2$.

Proof: It suffices to show that $a S \otimes b S \in \mathrm{St}_{F, 2}(S)$ for $a, b \in G_{v}$. Suppose that this is not the case. In particular, $a, b \notin S$. Lemma 6.1 yields $0<\gamma \in v\left(F^{\times}\right)$such that $F^{\times}=S G_{v}=S W_{\gamma}$.

We define inductively a sequence $c_{1}, c_{2}, \ldots \in G_{v}$ such that for each i,

$$
1-c_{i} \in(1-b)\left(1-W_{\gamma}\right)^{i-1} \quad, \quad a S \otimes b c_{i}^{-1} S \in \operatorname{St}_{F, 2}(S)
$$

We can take $c_{1}=b$. Next suppose that c_{i} has already been constructed. Since $a S \otimes b S \notin$ $\operatorname{St}_{F, 2}(S)$ we have $c_{i} \neq 1$. We choose $y_{i} \in S$ such that $a /\left(1-c_{i}^{-1}\right) \in y_{i} W_{\gamma}$. As $a \notin S$ and
$y_{i} \in S$, we may define $c_{i+1}=c_{i}\left(1-y_{i}^{-1} a\right)$. Since $c_{i} \in G_{v}$ we have $y_{i}^{-1} a \in\left(1-c_{i}^{-1}\right) W_{\gamma} \subseteq \mathfrak{m}_{v}$. Hence $c_{i+1} \in G_{v}$. Now

$$
\frac{1-c_{i+1}}{1-c_{i}}=1-\frac{y_{i}^{-1} a}{1-c_{i}^{-1}} \in 1-W_{\gamma}
$$

so by the induction hypothesis, $1-c_{i+1} \in(1-b)\left(1-W_{\gamma}\right)^{i}$. Furthermore,

$$
\begin{aligned}
a S \otimes b c_{i+1}^{-1} S & =a S \otimes b c_{i}^{-1} S-a S \otimes\left(1-y_{i}^{-1} a\right) S \\
& =a S \otimes b c_{i}^{-1} S-y_{i}^{-1} a S \otimes\left(1-y_{i}^{-1} a\right) S \in \operatorname{St}_{F, 2}(S)
\end{aligned}
$$

This completes the inductive construction.
Since v has rank 1 , the sets $\left(1-W_{\gamma}\right)^{s}, s=1,2,3, \ldots$, form a local basis for \mathcal{T}_{v} at 0 . As $b \neq 1$, the set $(1-b)^{-1}(1-S)$ is a \mathcal{T}_{v}-open neighborhood of 0 . Hence there exists a positive integer t such that $\left(1-W_{\gamma}\right)^{t} \subseteq(1-b)^{-1}(1-S)$. Then $1-c_{t+1} \in(1-b)\left(1-W_{\gamma}\right)^{t} \subseteq 1-S$, so $c_{t+1} \in S$. We conclude that $a S \otimes b S=a S \otimes b c_{t+1}^{-1} S \in \operatorname{St}_{F, 2}(S)$, a contradiction.

7. Wild valuations of rank 1

In this section we study $K_{*}^{M}(F)$ when F is a field of characteristic 0 equipped with a valuation v with char $\bar{F}_{v}=p>0$. First we assume that v is a discrete valuation. Thus $\mathfrak{m}_{v}=a O_{v}$ for some $a \in \mathfrak{m}_{v}$. For $i \geq 1$ the map $1+\mathfrak{m}_{v}^{i} \rightarrow \bar{F}_{v}, 1+a^{i} b \mapsto \pi_{v}(b)$, is a group homomorphism with kernel $1+\mathfrak{m}_{v}^{i+1}$.

Lemma 7.1: Let $(E, u) /(F, v)$ be an extension of discrete valued fields with the same value group and residue field. Then:
(a) $\left(1+\mathfrak{m}_{u}^{i}\right) /\left(1+\mathfrak{m}_{v}^{i}\right) \cong E^{\times} / F^{\times}$canonically for all $i \geq 1$;
(b) for every \mathcal{T}_{u}-open subgroup S of E^{\times}one has $E^{\times}=F^{\times} S$.

Proof: (a) For $i=1$ this follows from the exact sequences (5.2)-(5.3) (for the subgroup F^{\times}of $\left.E^{\times}\right)$. For $1 \leq i$ the preceding remark gives a commutative diagram with exact rows:

The snake lemma gives rise to a canonical isomorphism

$$
\left(1+\mathfrak{m}_{u}^{i+1}\right) /\left(1+\mathfrak{m}_{v}^{i+1}\right) \xrightarrow{\sim}\left(1+\mathfrak{m}_{u}^{i}\right) /\left(1+\mathfrak{m}_{v}^{i}\right),
$$

so we are done by induction.
(b) Since u is discrete, the subgroups $1+\mathfrak{m}_{u}^{i}, i=1,2,3, \ldots$, form a local basis for \mathcal{T}_{u} at 1. Hence there exists i with $1+\mathfrak{m}_{u}^{i} \leq S$. By (a), $E^{\times}=F^{\times}\left(1+\mathfrak{m}_{u}^{i}\right)$, so $E^{\times}=F^{\times} S$.

Now let p be a prime number and let $q=p^{d}$ be a p-power, $d \geq 1$.
Proposition 7.2: Let v be a discrete valuation on a field F such that char $F=0$ and char $\bar{F}_{v}=p$. Let (E, u) be the completion of (F, v) and let $S=\left(F^{\times}\right)^{q}\left(1+q^{2} \mathfrak{m}_{v}\right)$. Then Res: $K_{*}^{M}(F) / S \rightarrow K_{*}^{M}(E) / q$ is an isomorphism.

Proof: By the Hensel-Rychlik lemma [FV, Ch. II, (1.3), Cor. 2], $1+q^{2} \mathfrak{m}_{u} \leq\left(E^{\times}\right)^{q}$. In particular, $\left(E^{\times}\right)^{q}$ is \mathcal{T}_{u}-open in E. By Lemma $7.1(\mathrm{~b}), E^{\times}=F^{\times}\left(1+q \mathfrak{m}_{u}\right)$. Hence $\left(E^{\times}\right)^{q}=\left(F^{\times}\right)^{q}\left(1+q^{2} \mathfrak{m}_{u}\right)$. It follows that $F \cap\left(E^{\times}\right)^{q}=\left(F^{\times}\right)^{q}\left(1+q^{2} \mathfrak{m}_{v}\right)=S$.

Since F is \mathcal{T}_{u}-dense in E, the assertion now follows from Proposition 2.2.
Note that here the field E is a complete discrete valued field of characteristic 0 and finite residue field of characteristic p. Therefore it is a finite extension of \mathbb{Q}_{p}. For a detailed analysis of the Milnor K-ring of such fields we refer to [FV, Ch. IX].

The following theorem extends arguments of Pop, which are implicit in the proof of [P, Kor. 2.7]. In Theorem 7.4 below we use it in conjunction with Theorem 6.2 to compute the functor $K_{*}^{M}(F) / S$ in another mixed characteristic situation.

Theorem 7.3: Let v be a valuation of rank 1 on a field F such that char $F=0$ and char $\bar{F}_{v}=p$. Suppose that $F^{\times} /\left(F^{\times}\right)^{p}\left(1+p \mathfrak{m}_{v}\right)$ is finite. Then either:
(a) $v\left(F^{\times}\right)$is discrete and \bar{F}_{v} is finite; or
(b) $v\left(F^{\times}\right)$is p-divisible and \bar{F}_{v} is perfect.

Proof: Let $S=\left(F^{\times}\right)^{p}\left(1+p \mathfrak{m}_{v}\right)$. We break the argument into five steps.
Part I: \bar{F}_{v} is perfect. Indeed, $\bar{S}_{v}=\left(\bar{F}_{v}^{\times}\right)^{p}$. By the exact sequences (5.2)-(5.3), $\bar{F}_{v}^{\times} /\left(\bar{F}_{v}^{\times}\right)^{p}$ is finite. Since char $\bar{F}_{v}=p$, this quotient must be trivial [E3, Cor. 1.6], as desired.

Part II: $S \cap G_{v}=G_{v}^{p}\left(1+p \mathfrak{m}_{v}\right)$. Consider the commutative diagram of exponentiations by p :

Since char $\bar{F}_{v}=p$, the right vertical map is injective. By the snake lemma, $\left(O_{v}^{\times}\right)^{p} \cap G_{v}=$ G_{v}^{p}. Hence also $\left(F^{\times}\right)^{p} \cap G_{v}=G_{v}^{p}$. Since $1+p \mathfrak{m}_{v} \leq G_{v}$ we obtain

$$
S \cap G_{v}=\left(\left(F^{\times}\right)^{p} \cap G_{v}\right)\left(1+p \mathfrak{m}_{v}\right)=G_{v}^{p}\left(1+p \mathfrak{m}_{v}\right)
$$

Part III: $S \cap G_{v} \subseteq(1-S)\left(1+p \mathfrak{m}_{v}\right)$. Recall that $p \left\lvert\,\binom{ p}{i}\right.$ for $i=1, \ldots, p-1$. Hence for every $a \in \mathfrak{m}_{v}$ we have

$$
(1-a)^{p} \in 1-a^{p}+p \mathfrak{m}_{v}=\left(1-a^{p}\right)\left(1+p \mathfrak{m}_{v}\right) \subseteq(1-S)\left(1+p \mathfrak{m}_{v}\right)
$$

Thus $G_{v}^{p} \subseteq(1-S)\left(1+p \mathfrak{m}_{v}\right)$. Now use Part II.
Part IV: $v\left(F^{\times}\right)$is either discrete or p-divisible. In view of the structure of the ordered group \mathbb{R}, it suffices to find $0<\gamma \in v\left(F^{\times}\right)$such that for every $b \in F$ with $0<v(b)<\gamma$ one has $v(b) \in p v\left(F^{\times}\right)$. Since F^{\times} / S is finite, the sequences (5.2)-(5.3) imply that so is $G_{v} /\left(S \cap G_{v}\right)$. Hence we may take γ as in Lemma 6.1. By property (i) of W_{γ}, and since $W_{\gamma} \leq G_{v}$ we have $1-b \in G_{v}=\left(S W_{\gamma}\right) \cap G_{v}=\left(S \cap G_{v}\right) W_{\gamma}$. It therefore follows from part III and from property (ii) of W_{γ} that $1-b \in(1-S) W_{\gamma}$. So choose $s \in S$ with $1-b \in(1-s) W_{\gamma}$. As $W_{\gamma} \leq G_{v}$ we get $1-s \in G_{v}$. Hence

$$
v(b-s)=v\left(\frac{b-s}{1-s}\right)=v\left(1-\frac{1-b}{1-s}\right) \geq \gamma
$$

Since $v(b)<\gamma$, necessarily $v(b)=v(s) \in v(S)=p v\left(F^{\times}\right)$, as desired.
Part V: When $v\left(F^{\times}\right)$is discrete, \bar{F}_{v} is finite. As we have observed, in this case $G_{v} /\left(1+\mathfrak{m}_{v}^{2}\right)=\left(1+\mathfrak{m}_{v}\right) /\left(1+\mathfrak{m}_{v}^{2}\right) \cong \bar{F}_{v}$. Using again that $p \left\lvert\,\binom{ p}{i}\right.$ for $1 \leq i \leq p-1$, we get $G_{v}^{p}\left(1+p \mathfrak{m}_{v}\right) \leq 1+\mathfrak{m}_{v}^{2}$. In light of Part II, this gives rise to a group epimorphism $G_{v} /\left(S \cap G_{v}\right) \rightarrow \bar{F}_{v}$. We have already noted that $G_{v} /\left(S \cap G_{v}\right)$ is finite. Conclude that so is \bar{F}_{v}.

Theorem 7.4: Let v be a valuation of rank 1 on a field F such that char $F=0$ and char $\bar{F}_{v}=p$. Let $S=\left(F^{\times}\right)^{q}\left(1+q^{2} \mathfrak{m}_{v}\right)$ and suppose that $\left(F^{\times}: S\right)<\infty$. Then one of the following holds:
(a) $v\left(F^{\times}\right)$is discrete, \bar{F}_{v} is finite, and $K_{*}^{M}(F) / S \cong K_{*}^{M}(E) / q$ for the completion E of F with respect to v;
(b) $v\left(F^{\times}\right)$is p-divisible and $K_{r}^{M}(F) / S=0$ for all $r \geq 2$.

Proof: We have $v(S)=q v\left(F^{\times}\right)$and $\bar{S}_{v}=\left(\bar{F}_{v}^{\times}\right)^{q}$. Since $\left(F^{\times}\right)^{q}\left(1+q^{2} \mathfrak{m}_{v}\right) \leq\left(F^{\times}\right)^{p}\left(1+p \mathfrak{m}_{v}\right)$, the finiteness assumption implies that $\left(F^{\times}:\left(F^{\times}\right)^{p}\left(1+p \mathfrak{m}_{v}\right)\right)<\infty$. By Theorem 7.3, one of the following cases occurs:

CASE (I): $v\left(F^{\times}\right)$is discrete and \bar{F}_{v} is finite. Then we apply Proposition 7.2.
CASE (II): $\quad v\left(F^{\times}\right)$is p-divisible and \bar{F}_{v} is perfect. Then $v(S)=v\left(F^{\times}\right)$and $\bar{S}_{v}=\bar{F}_{v}^{\times}$. The exact sequences (5.2)-(5.3) therefore show that $F^{\times}=S G_{v}$. Since S is \mathcal{T}_{v}-open in F, Theorem 6.2 implies that $K_{r}^{M}(F) / S=0$ for $r \geq 2$.

References

[AEJ] J.K. Arason, R. Elman and B. Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987), 449-467.
[BaT] H. Bass and J. Tate, The Milnor ring of a global field, In: H. Bass (Ed.): Algebraic K-Theory, Battelle Institute Conference 1972, Part II, Lect. Notes Math. 342 (1973), 349-446.
[BK] E. Becker and E. Köpping, Reduzierte quadratische Formen und Semiordnungen reeller Körper, Abh. Math. Sem. Hamburg 46 (1977), 143-177.
[E1] I. Efrat, Finitely generated pro-p Galois groups of p-henselian fields, J. Pure Appl. Algebra 138 (1999), 215-228.
[E2] I. Efrat, Construction of valuations from K-theory, Math. Research Letters 6 (1999), 335-344.
[E3] I. Efrat, Demuškin fields with valuations, Math. Z. 243 (2003), 333-353.
[FV] I.B. Fesenko and S.V. Vostokov, Local Fields and their Extensions - A Constructive Approach, AMS, Providence, Rhode Island 1993.
[HJ] Y.S. Hwang and B. Jacob, Brauer group analogues of results relating the Witt ring to valuations and Galois theory, Canad. J. math. 47 (1995), 527-543.
[J] B. Jacob, On the structure of pythagorean fields, J. Algebra 68 (1981), 247-267.
[K] B. Kahn, La conjecture de Milnor (d'aprés V. Voevodsky), Sém. Bourbaki 1996/97, Astérisque 245 (1997), 379-418.
[Lm] T.Y. Lam, Orderings, valuations and quadratic forms, Conf. Board of the mathematical sciences 52, AMS 1983.
[Ln] S. Lang, Algebra, Addison-Wesley Publishing Company, Reading, Massachusetts 1984.
[Ma] H. Matsumura, Commutative Algebra, Benjamin/Cummings Publishing Company, Reading, Massachusetts 1980
[Mi] J. Milnor, Algebraic K-theory and quadratic forms, Invent. math. 9 (1970), 318-344.
[NSW] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number Fields, Springer, Berlin-Heidelberg 2000.
[P] F. Pop, Galoissche Kennzeichnung p-adisch abgeschlossener Körper, J. reine angew. Math. 392 (1988), 145-175.
[Wd] A.R. Wadsworth, p-Henselian fields: K-theory, Galois cohomology, and graded Witt rings, Pac. J. Math. 105 (1983), 473-496.
[Wr] R. Ware, Valuation rings and rigid elements in fields, Canad. J. Math. 33 (1981), 1338-1355.

