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1 Introduction

This paper is an extended version of the talk given by Miguel Olalla at the International Conference on
Valuation Theory in El Escorial in July 2011. Its purpose is to provide an introduction to our joint paper
[7] without grinding through all of its technical details. We refer the reader to [7] for details and proofs;
only a few proofs are given in the present paper.

Notation. Throughout this paper, we will use the following notation:
(R,m, k) a local noetherian domain
K = QF (R) its field of fractions
Rν a valuation ring dominating R
ν|K : K∗ � Γ the restriction of ν to K.

R̂ the m−adic completion of R.

The ring R̂ is local and its maximal ideal is mR̂. Our overall goal is to study extensions ν̂ of ν to
R̂.

∗Partially supported by MTM2010-19298 and FEDER.
†This author is grateful for the hospitality of the RIMS in Kyoto, where a part of this project was completed.
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The ring R̂ is not in general an integral domain, so we can only hope to extend ν to a pseudo-
valuation ν̂ of R̂. Let P be the support of ν̂, that is, the prime ideal which is mapped by ν̂ to ∞.

That means precisely that we want to extend ν to a valuation ν̂− of the quotient R̂
P .

Such extensions ν̂− exists for some minimal prime ideals P of R̂.
We shall see that ν determines a unique minimal prime P of R̂ when R is excellent.
The purpose of our work [7] is to give a systematic description of all such extensions ν̂−, assuming

that R is excellent.
Let

Γ ↪→ Γ̂ (1)

be an extension of ordered groups of the same rank.
Let (0) = ∆r $ ∆r−1 $ · · · $ ∆0 = Γ be the isolated subgroups of Γ

and (0) = ∆̂r $ ∆̂r−1 $ · · · $ ∆̂0 = Γ̂ the isolated subgroups of Γ̂,
so that the inclusion (1) induces inclusions

∆` ↪→ ∆̂` and (2)

∆`

∆`+1
↪→ ∆̂`

∆̂`+1

. (3)

Let G ↪→ Ĝ be an extension of graded algebras without zero divisors, such that G is graded by Γ+ and

Ĝ by Γ̂+.

Definition 1.1 We say that the extension G ↪→ Ĝ is scalewise birational if for any x ∈ Ĝ and
` ∈ {1, . . . , r} such that ord x ∈ ∆̂` there exists y ∈ G such that ord y ∈ ∆` and xy ∈ G.

Of course, scalewise birational implies birational and also that Γ̂ = Γ. The main conjecture stated in [7]

is the following:

Conjecture 1.1 There exists an ideal H of R̂ with H ∩R = (0) and a valuation ν̂−, centered at R̂
H and

having the following property:

The graded algebra grν̂−
R̂
H is a scalewise birational extension of grνR.

In §9 we prove some partial results towards Conjecture 1.1 in the special case when R is essentially of
finite type over a field. More precisely, we reduce Conjecture 1.1 to two other conjectures. Unfortunately,
the latter two conjectures remain open so far.

Acknowledgements

We acknowledge an early precursor [5] of this work by W. Heinzer and J. Sally, as well as two more recent
papers [2], [3] by S. D. Cutkosky, S. El Hitti and L. Ghezzi.

2 Rank one valuations

Keep the above notation. Assume that rk ν = 1. Then the value group Γ is archimedian.

Let Φ = ν(R \ {0}). For β ∈ Φ let

Pβ = {x ∈ R/ν(x) ≥ β}
P+
β = {x ∈ R/ν(x) > β}

We now define the main object of study of this section. Let

H :=
⋂
β∈Φ

(PβR̂). (4)
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Remark 2.1 Since the formal completion homomorphism R→ R̂ is faithfully flat,

PβR̂ ∩R = Pβ for all β ∈ Φ. (5)

Taking the intersection over all β ∈ Φ, we obtain H ∩R = (0).

In other words, we have a natural inclusion R ↪→ R̂
H .

Example 2.1 Let R = k[u, v](u,v). Then R̂ = k[[u, v]]. Consider an element

w = u−
∞∑
i=1

civ
i ∈ R̂, where ci ∈ k∗,

transcendental over k(u, v).

Consider the injective map ϕ : k[u, v](u,v) → k[[t]] which sends v to t and u to
∞∑
i=1

cit
i.

Let ν be the valuation induced from the t-adic valuation of k[[t]] via ϕ.

The value group of ν is Z. For each β ∈ N, Pβ =

(
vβ , u−

β−1∑
i=1

civ
i

)
.

Thus H = (w).

Theorem 2.1 1. The ideal H is a prime ideal of R̂.

2. The valuation ν extends uniquely to a valuation ν̂−, centered at R̂
H .

Proof: Let x̄ ∈ R̂
H \ {0}. Pick a representative x of x̄ in R̂, so that x̄ = x mod H. Since x∈/H, we have

x∈/PαR̂ for some α ∈ Φ.

Lemma 2.1 (See [15], Appendix 5, lemma 3) Let ν be a valuation of rank one centered in a local
noetherian domain (R,M, k). Let

Φ = ν(R \ (0)) ⊂ Γ.

Then Φ contains no infinite bounded sequences.

Proof: An infinite ascending sequence α1 < α2 < . . . in Φ, bounded above by an element β ∈ Φ, would
give rise to an infinite descending chain of ideals in R

Pβ . Thus it is sufficient to prove that R
Pβ has finite

length.
Let δ := ν(M) ≡ min(Φ \ {0}). Since Φ is archimedian, there exists n ∈ N such that β ≤ nδ.

Then Mn ⊂ Pβ , so that there is a surjective map R
Mn � R

Pβ . Thus R
Pβ has finite length, as desired. �

By Lemma 2.1, the set {β ∈ Φ | β < α} is finite. Hence there exists a unique β ∈ Φ such that

x ∈ PβR̂ \ P+
β R̂. (6)

Note that β depends only on x̄, but not on the choice of the representative x. Define the function

ν̂− : R̂H \ {0} → Φ by
ν̂−(x̄) = β. (7)

By (5), if x ∈ R \ {0} then
ν̂−(x) = ν(x). (8)

It is obvious that
ν̂−(x+ y) ≥ min{ν̂−(x), ν̂−(y)} (9)

ν̂−(xy) ≥ ν̂−(x) + ν̂−(y) (10)

for all x, y ∈ R̂
H . The point of the next lemma is to show that R̂

H is a domain and that ν̂− is, in fact, a
valuation (i.e. that the inequality (10) is, in fact, an equality).
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Lemma 2.2 For any non-zero x̄, ȳ ∈ R̂
H , we have x̄ȳ 6= 0 and ν̂−(x̄ȳ) = ν̂−(x̄) + ν̂−(ȳ).

Proof: Let α = ν̂−(x̄), β = ν̂−(ȳ). Let x and y be representatives in R̂ of x̄ and ȳ, respectively. We have
MPα ⊂ P+

α , so that

Pα
P+
α

∼=
Pα

P+
α +MPα

∼=
Pα
P+
α
⊗R k ∼=

Pα
P+
α
⊗R

R̂

MR̂
∼=

PαR̂
(P+

α +MPα)R̂
∼=
PαR̂
P+
α R̂

, (11)

and similarly for β. By (11) there exist z ∈ Pα, w ∈ Pβ , such that z ≡ x mod P+
α R̂ and w ≡ y mod P+

β R̂.
Then

xy ≡ zw mod P+
α+βR̂. (12)

Since ν is a valuation, ν(zw) = α + β, so that zw ∈ Pα+β \ P+
α+β . By (5) and (12), this proves that

xy ∈ Pα+βR̂ \ P+
α+βR̂. Thus xy∈/H (hence x̄ȳ 6= 0 in R̂

H ) and ν̂−(x̄ȳ) = α+ β, as desired. �

By Lemma 2.2, H is a prime ideal of R̂. By (9) and Lemma 2.2, ν̂− is a valuation, centered at R̂
H .

To complete the proof of Theorem 2.1, it remains to prove the uniqueness of ν̂−. Let x, x̄, the element
α ∈ Φ and

z ∈ Pα \ P+
α (13)

be as in the proof of Lemma 2.2. Then there exist

u1, . . . , un ∈ P+
α and

v1, . . . , vn ∈ R̂ (14)

such that x = z +
n∑
i=1

uivi. Letting v̄i := vi mod H, we obtain x̄ = z̄ +
n∑
i=1

ūiv̄i in R̂
H . Therefore, by

(13)–(14), for any extension of ν to a valuation ν̂′−, centered at R̂
H , we have

ν̂′−(x̄) = α = ν̂−(x̄), (15)

as desired. This completes the proof of Theorem 2.1. �

Definition 2.1 The ideal H is called the implicit prime ideal of R̂, associated to ν. When dealing
with more than one ring at a time, we will sometimes write H(R, ν) for H.

Remark 2.2 We have the following natural isomorphisms of graded algebras:

grνR
∼= grν̂−

R̂
H

Gν ∼= Gν̂− .

We will now study the behaviour of H under local blowings up of R with respect to ν and, more
generally, under local homomorphisms.

Let π : (R,m) → (R′,m′) be a local homomorphism of local noetherian domains. Assume that ν
extends to a rank one valuation ν′ : K ′ \ {0} → Γ′, where Γ ⊂ Γ′.

The homomorphism π induces a local homomorphism π̂ : R̂ → R̂′ of formal completions. Let
Φ′ = ν′(R′ \ {0}). For β ∈ Φ′, let P ′β denote the ν′-ideal of Rν′ of value β, as above. Let H ′ = H(R′, ν′).

Lemma 2.3 Let β ∈ Φ. Then (
P ′βR̂′

)
∩ R̂ = PβR̂. (16)

Corollary 2.1 We have
H ′ ∩ R̂ = H.

In other words, the implicit ideals behave well under blowings up.
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Corollary 2.2 We have
ht H ′ ≥ ht H. (17)

In particular,

dim
R̂′

H ′
≤ dim

R̂

H
. (18)

It may well happen that the inequalities in (17) and (18) are strict. The possibility of strict inequalities
in Corollary 2.2 is related to the existence of subanalytic functions, which are not analytic. We illustrate
this statement by an example in which ht H < ht H ′.

Example 2.2 Let k be a field and let

R = k[x, y, z](x,y,z),
R′ = k[x′, y′, z′](x′,y′,z′),

where x′ = x, y′ = y
x and z′ = z. We have K = k(x, y, z), R̂ = k[[x, y, z]], R̂′ = k[[x′, y′, z′]]. Let t1, t2 be

auxiliary variables and let
∞∑
i=1

cit
i
1 (with ci ∈ k) be an element of k[[t1]], transcendental over k(t1). Let θ

denote the valuation, centered at k[[t1, t2]], defined by θ(t1) = 1, θ(t2) =
√

2 (the value group of θ is the
additive subgroup of R, generated by 1 and

√
2). Let ι : R′ ↪→ k[[t1, t2]] denote the injective map defined

by ι(x′) = t2, ι(y′) = t1, ι(z′) =
∞∑
i=1

cit
i
1. Let ν denote the restriction of θ to K, where we view K as a

subfield of k((t1, t2)) via ι. Let Φ = ν(R \ {0}); Φ′ = ν(R′ \ {0}). For β ∈ Φ′, P ′β is generated by all the

monomials of the form x′
α
y′
γ

such that
√

2α+ γ ≥ β, together with z′ −
i∑

j=1

cjy
′j, where i is the greatest

non-negative integer such that i < β.

Let w′ := z′ −
∞∑
i=1

ciy
′i. Then H ′ = (w′), but H = H ′ ∩ R̂ = (0), so that ht H = 0 < 1 = ht H ′.

3 Introduction to the general case

Keep the above notation. Let r = rk ν.

Let
Γ = ∆0 % · · · % ∆r−1 % ∆r = (0)

be the isolated subgroups of Γ and

(0) = P0 $ P1 j · · · j Pr−1 j Pr = m

the prime ν-ideals of R.

For a prime ideal P in R, κ(P ) will denote the residue field RP
PRP

.
Let

(0) = m0 $ m1 $ · · · $ mr = mν

be the prime ideals of the valuation ring Rν .

By definitions, our valuation ν is a composition of r rank one valuations ν = ν1 ◦ ν2 · · · ◦ νr, where

ν` is a valuation of the field κ(m`−1), centered at
(Rν)m`
m`−1

.

3.1 Local blowings up and trees

We consider extensions R→ R′ of local rings, that is, injective morphisms such that R′ is an R-algebra
essentially of finite type and m′ ∩ R = m. We suppose that both R and R′ are contained in a fixed
valuation ring Rν .

Such extensions form a direct system {R′}.
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We will assume that
lim
−→
R′

R′ = Rν . (19)

Definition 3.1 A tree of R′-algebras is a direct system {S′} of rings, indexed by the directed set {R′},
where S′ is an R′-algebra. Note that we do not require the maps in the direct system {S′} to be injective.
A morphism {S′} → {T ′} of trees is the datum of a map of R′-algebras S′ → T ′ for each R′ commuting
with the tree morphisms for each map R′ → R′′.

Lemma 3.1 Let R→ R′ be an extension of local rings. We have:
1) The ideal N := mR̂⊗R 1 + 1⊗R m′ is maximal in the R-algebra R̂⊗R R′.
2) The natural map of completions R̂→ R̂′ is injective.

Definition 3.2 Let {S′} be a tree of R′-algebras. For each S′, let I ′ be an ideal of S′. We say that {I ′}
is a tree of ideals if for any arrow bS′S′′ : S

′ → S′′ in our direct system, we have b−1
S′S′′I

′′ = I ′. We
have the obvious notion of inclusion of trees of ideals. In particular, we may speak about chains of trees
of ideals.

Example 3.1 • The maximal ideals of the local rings of our system {R′} form a tree of ideals.

• For any non-negative element β ∈ Γ, the valuation ideals P ′β ⊂ R′ of value β form a tree of ideals
of {R′}.

• Similarly, the i-th prime valuation ideals P ′i ⊂ R′ form a tree.

• If rk ν = r, the prime valuation ideals P ′i give rise to a chain

P ′0 = (0) $ P ′1 ⊆ · · · ⊆ P ′r = m′ (20)

of trees of prime ideals of {R′}.

Taking the limit in (20), we obtain a chain

(0) = m0 $ m1 $ · · · $ mr = mν (21)

of prime ideals of the valuation ring Rν .
For each 1 ≤ ` ≤ r one has the equality

lim
−→
R′

R′

P ′`
=
Rν
m`

.

Then specifying the valuation ν is equivalent to specifying valuations ν0, ν1, . . . , νr, where ν0 is the
trivial valuation of K and, for 1 ≤ ` ≤ r, ν` is a valuation of the residue field kν`−1

= κ(m`−1), centered

at the local ring lim
−→

R′
P ′
`

P ′`−1R
′
P ′
`

=
(Rν)m`
m`−1

and taking its values in the totally ordered group ∆`−1

∆`
.

We have the following natural generalization of Conjecture 1.1:

Conjecture 3.1 Assume that dim R′ = dim R for all R′ ∈ T . Then there exists a tree of prime ideals

H ′ of R̂′ with H ′ ∩R′ = (0) and a valuation ν̂−, centered at lim
→

R̂′

H′ and having the following property:

For any R′ ∈ T the graded algebra grν̂−
R̂′

H′ is a scalewise birational extension of grνR
′.

4 Implicit ideals

From now on we fix a valuation ring Rν dominating R. A local homomorphisms R′ → R′′ of local domains
dominated by Rν will be called a ν-extension of local domains. Fix a tree T = {R′} of noetherian local
R−subalgebras of Rν having the following property: “for each ring R′ ∈ T , all the birational ν-extensions
of R′ belong to T ”.
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Moreover, we assume that QF (Rν) equals lim
−→
R′

K ′, where K ′ = QF (R′).

We will define a chain of 2r + 1 prime ideals

H0 ⊂ H1 ⊂ · · · ⊂ H2r = H2r+1 = mR̂,

satisfying H2` ∩R = H2`+1 ∩R = P` for 0 ≤ ` ≤ r.
We will show that these ideals Hi behave well under blowings up, that is, H ′i ∩ R̂ = Hi.

4.1 Odd implicit ideals

Definition 4.1 Let 0 ≤ ` < r. We define our main object of study, the (2` + 1)-st implicit prime ideal
H2`+1 ⊂ R̂, by

H2`+1 =
⋂
β∈∆`

((
lim
−→
R′

P ′βR̂′
)⋂

R̂

)
, (22)

where R′ ranges over T . We put H2r+1 = mR̂.

We think of (22) as a tree equation: if we replace R by any other R′′ ∈ T in (22), it defines the
corresponding ideal H ′′2`+1 ⊂ R̂′′.

Example 4.1 Let R = k[x, y, z](x,y,z).
Let ν be the valuation with value group Γ = Z2

lex, defined as follows.

Take a transcendental power series
∞∑
j=1

cju
j in a variable u over k.

Consider the homomorphism R ↪→ k[[u, v]] which sends x to v, y to u and z to
∞∑
j=1

cju
j.

Consider the valuation ν, centered at k[[u, v]], defined by ν(v) = (0, 1) and ν(u) = (1, 0); its
restriction to R will also be denoted by ν, by abuse of notation.

We have ν(x) = (0, 1), ν(y) = (1, 0) and ν(z) = (1, 0).
Given β = (a, b) ∈ Z2

lex, we have

Pβ = xb
(
ya, z − c1y − · · · − ca−1y

a−1
)
.

Then ⋂
β∈(0)⊕Z

(
PβR̂

)
= (y, z) and

⋂
β∈Γ=∆0

(
PβR̂

)
=

z − ∞∑
j=1

cjy
j

 .

It is not hard to show that

H1 =

z − ∞∑
j=1

cjy
j

 R̂ and

H3 = (y, z)R̂.

An extension ν̂ of ν has value group Γ̂ = Z3
lex and is defined by ν̂(x) = (0, 0, 1), ν̂(y) = (0, 1, 0)

and

ν̂

z − ∞∑
j=1

cjy
j

 = (1, 0, 0).

The ideal H1 is the prime valuation ideal corresponding to the isolated subgroup (0)⊕ Z2
lex of Γ̂ and H3

is the one corresponding to (0)⊕ (0)⊕ Z.

The prime ideal H := H1 and the valuation ν̂−, induced by ν̂ on R̂
H (that is, the valuation centered

at R̂
H with which ν̂ is composed) satisfy the conclusion of Conjecture 1.1.
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Example 4.2 Let S =
k[x,y](x,y)

(y2−x2−x3) . There are two distinct valuations centered in (x, y).

Let ai ∈ k, i ≥ 2 be such thaty + x+
∑
i≥2

aix
i


︸ ︷︷ ︸

y − x−∑
i≥2

aix
i


︸ ︷︷ ︸

= y2 − x2 − x3.

f g

We shall denote by ν+ the rank one discrete valuation defined by

ν+(x) = ν+(y) = 1,

ν+(y + x) = 2,

ν+

y + x+

b−1∑
i≥2

aix
i

 = b.

Now let R =
k[x,y,z](x,y,z)
(y2−x2−x3) . Let Γ = Z2

lex.

Let ν be the composite valuation of the (z)-adic one with ν+.
The point of this example is to show that

H∗2`+1 =
⋂
β∈∆`

PβR̂

does not work as the definition of the (2`+ 1)-st implicit prime ideal because the resulting ideal H∗2`+1 is
not prime.

Indeed, as P(a,0) = (za), we have

H∗1 =
⋂

(a,b)∈Z2

P(a,b)R̂ = (0).

Clearly f, g∈/H∗1 = (0), but f · g = (0), so the ideal H∗1 is not prime.

In fact we have H1 = (f) and H3 = (z, f).

Let H := H1 and let ν̂− be the valuation of R̂
H
∼= k[[x, z]] with value group Z2

lex, defined by
ν̂−(x) = (0, 1), ν̂−(z) = (1, 0). then H and ν̂− satisfy the conclusion of Conjecture 1.1.

Despite what one might think from this and the previous example, there are situations when one
cannot take H = H1 in Conjecture 1.1. An explicit example of this are given in [7].

Proposition 4.1 We have H2`+1 ∩R = P`.

Proposition 4.2 The ideals H ′2`+1 behave well under ν-extensions R→ R′ in T :

H2`+1 = H ′2`+1 ∩ R̂.

The main result of [7] is

Theorem 4.1 [Odd implicit ideals] The implicit ideal H2`+1 is prime.

Next, we discuss one of the main notions used in the proof of Theorem 4.1 — that of stable rings in T .
Let the notation be as above. Take an R′ ∈ T and β ∈ ∆`

∆`+1
. Let

Pβ =
{
x ∈ R

∣∣ ν(x) mod ∆`+1 ≥ β
}
. (23)

If
β(`) = min{γ ∈ Φ | β − γ ∈ ∆`+1}

8



(this makes sense because Φ is well ordered, since R is noetherian — see [ZS], Appendix 4, Proposition
2) then Pβ = Pβ(l).

We have the obvious inclusion of ideals

PβR̂ ⊂ PβR̂
′ ∩ R̂. (24)

A useful subtree of T is formed by the `-stable rings, which we now define. An important property of
stable rings, proved in [7], is that the inclusion (24) is an equality whenever R′ is stable.

Definition 4.2 A ring R′ ∈ T (R) is said to be `-stable if the following two conditions hold:
(1) the ring

κ (P ′`)⊗R
(
R′ ⊗R R̂

)
M ′

(25)

is an integral domain and
(2) there do not exist an R′′ ∈ T (R′) and a non-trivial algebraic extension L of κ(P ′`) which embeds

both into κ (P ′`)⊗R
(
R′ ⊗R R̂

)
M ′

and κ(P ′′` ).

We say that R is stable if it is `-stable for each ` ∈ {0, . . . , r}.

Remark 4.1 (1) Rings of the form (25) are a basic object of study in [7]. Another way of looking at the
same ring, which we often use, comes from interchanging the order of tensor product and localization.

Namely, let T ′ denote the image of the multiplicative system
(
R′ ⊗R R̂

)
\M ′ under the natural map

R′ ⊗R R̂→ κ (P ′`)⊗R R̂. Then the ring (25) equals the localization (T ′)−1
(
κ (P ′`)⊗R R̂

)
.

(2) In the special case R′ = R in Definition 4.2, we have

κ (P ′`)⊗R
(
R′ ⊗R R̂

)
M ′

= κ (P`)⊗R R̂.

If, moreover, R
P`

is analytically irreducible then the hypothesis that κ (P`) ⊗R R̂ is a domain holds auto-

matically; in fact, this hypothesis is equivalent to analytic irreducibility of R
P`

.

(3) Consider the special case when R′ is Henselian. Excellent Henselian rings are algebraically
closed inside their formal completions, so both (1) and (2) of Definition 4.2 hold automatically for this
R′. Thus excellent Henselian local rings are always stable.

The existence of stable rings R′ ∈ T is shown in §§7–8 of [7]. More precisely, in [7] parallel theories
(implicit ideals, stability, etc.) are constructed not only for formal completions, but also for henselizations
and for finite local étale extensions. In §7 of [7] we prove the existence of stable rings for henselization.
After that, the existence of stable rings for completion follows as an easy corollary and is proved in §8 of
[7].

The following Proposition justifies the name “stable”.

Proposition 4.3 Fix an integer `, 0 ≤ ` ≤ r. Assume that R′ is `-stable and let R′′ ∈ T (R′). Then R′′

is `-stable.

The next Proposition is a technical result on which much of [7] is based. For β ∈ Γ
∆`+1

, let

Pβ+ =
{
x ∈ R

∣∣ ν(x) mod ∆`+1 > β
}
. (26)

As usual, P ′
β+

will stand for the analogous notion, but with R replaced by R′, etc.

Proposition 4.4 Assume that R itself is (`+ 1)-stable and let R′ ∈ T (R).

1. For any β ∈ ∆`

∆`+1

P ′
β
R̂′ ∩ R̂ = PβR̂. (27)
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2. For any β ∈ Γ
∆`+1

the natural map

PβR̂
Pβ+R̂

→
P ′
β
R̂′

P ′
β+
R̂′

(28)

is injective.

Corollary 4.1 Take an integer ` ∈ {0, . . . , r − 1} and assume that R is (`+ 1)-stable. Then

H2`+1 =
⋂
β∈∆`

PβR̂. (29)

Proof: By Lemma 4 of Appendix 4 of [15], the ideals Pβ are cofinal among the ideals Pβ for β ∈ ∆`. �

Corollary 4.2 Assume that R is stable. Take an element β ∈ Γ. Then P ′βR̂′ ∩ R̂ = Pβ.

Once Proposition 4.4 and its Corollaries are established, the proof of the primality of the odd implicit
prime ideals proceeds similarly to the case of rank one valuations, with the additional ingredient of
considering the local blowing up R→ R′ along certain ν-ideals.

4.2 Even implicit ideals

Proposition 4.5 There exists a unique minimal prime ideal H2` of P`R̂, contained in H2`+1.

Proof: Since H2`+1∩R = P`, H2`+1 belongs to the fiber of the map Spec R̂→ Spec R over P`. Since R was

assumed to be excellent, S := R̂⊗Rκ(P`) is a regular ring. Hence its localization S̄ := SH2`+1S
∼=

R̂H2`+1

P`R̂H2`+1

is a regular local ring. In particular, S̄ is an integral domain, so (0) is its unique minimal prime ideal.
The set of minimal prime ideals of S̄ is in one-to-one correspondence with the set of minimal primes of
P`, contained in H2`+1, which shows that such a minimal prime H2` is unique, as desired. �

Corollary 4.3 H2` ∩R = P`.

Proposition 4.6 We have H2`−1 ⊂ H2`.

Proposition 4.7 The ideals H ′2` behave well under ν-extensions R→ R′ in T :

H2` = H ′2` ∩ R̂.

5 A clasification of extensions of ν to R̂

Definition 5.1 A chain of trees H̃ ′0 ⊂ H̃ ′1 ⊂ · · · ⊂ H̃ ′2r = m′R̂′ of prime ideals of R̂′ is said to be
admissible if:

1. H ′i ⊂ H̃ ′i.

2. H̃ ′2` ∩R′ = H̃ ′2`+1 ∩R′ = P ′`.

3. ⋂
β∈

(
∆`

∆`+1

)
+

lim
−→
R′

(
P ′
β
R̂′ + H̃ ′2`+1

)
R̂′
H̃′2`+2

∩ R̂ ⊂ H̃2`+1

where P ′
β

denote the preimage in R′ of the ν`+1-ideal of R′

P`
of value greater than or equal to β.
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Theorem 5.1 Specifying the valuation ν̂− is equivalent to specifying the following data (described recur-
sively in i):

(1) An admissible chain of trees H̃ ′0 ⊂ H̃ ′1 ⊂ · · · ⊂ H̃ ′2r = m′R̂′ of prime ideals of R̂′.
(2) For each i, 1 ≤ i ≤ 2r, a valuation ν̂i of kν̂i−1 (ν̂0 is the trivial valuation), whose restriction

to lim
−→
R′

κ(H̃ ′i−1) is centered at the local ring lim
−→
R′

R̂′
H̃′
i

H̃′i−1R̂
′
H̃′
i

.

The data {ν̂i}1≤i≤2r is subject to the following additional condition: if i = 2` is even then rk ν̂i = 1
and ν̂i is an extension of ν` to kν̂i−1 (which is naturally an extension of kν`−1

).

§6 of [7] discusses uniqueness properties of ν̂−. Since the statements of these results are quite technical,
we omit them in the present exposition.
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