
VALUED FIELDS WITH FINITELY MANY DEFECT
EXTENSIONS OF PRIME DEGREE

F.-V. KUHLMANN

Abstract. We prove that a valued field of positive characteristic p that has only
finitely many distinct Artin-Schreier extensions (which is a property of infinite
NTP2 fields) is dense in its perfect hull. As a consequence, it is a deeply ramified
field and has p-divisible value group and perfect residue field. Further, we prove
a partial analogue for valued fields of mixed characteristic and observe an open
problem about 1-units in this setting. Finally, we fill a gap that occurred in a proof
in an earlier paper in which we first introduced a classification of Artin-Schreier
defect extensions.

1. Introduction

It is shown in [4, Theorem 3.1] that an infinite field of positive characteristic that
is definable in an NTP2 theory has only finitely many Artin-Schreier extensions.
NTP2 is a large class of first order theories (“without the tree property of the
second kind”) defined by S. Shelah generalizing simple and NIP theories. Algebraic
examples of NTP2 structures are given by ultraproducts of p-adic fields and certain
valued difference fields. For the precise definition (which we will not need in this
paper) and for further examples, we refer the reader to [4].

In [4, Proposition 3.2] it is shown that the value group of a valued field of charac-
teristic p > 0 which has only finitely many Artin-Schreier extensions is p-divisible. In
this note, assuming throughout that the valuation is nontrivial, we prove a stronger
result, namely, that such a field is dense in its perfect hull. For a valued field of
characteristic p > 0, this is equivalent to being a deeply ramified field in the sense of
[7]. The density also implies that the value group is p-divisible and the residue field
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is perfect. By Theorem 2.1 in Section 2.1, every deeply ramified field of positive
characteristic is a semitame field, which we shall define now.

Take a valued field (K, v) of arbitrary characteristic. Its value group will be
denoted by vK, and its residue field by Kv. Accordingly, the value of an element
a ∈ K will be denoted by va, and its residue by av. We say that (K, v) is semitame
if either charKv = 0, or charKv = p > 0 and the following two axioms hold:

(DRst) the value group vK is p-divisible,

(DRvr) the homomorphism

OKc/pOKc 3 x 7→ xp ∈ OKc/pOKc

is surjective, where OKc denotes the valuation ring of the completion Kc of (K, v).
Note that this condition implies that the residue field Kv is perfect.

The following result will be proven in Section 3.2:

Theorem 1.1. Take a valued field (K, v) of characteristic p > 0. If K admits only
finitely many distinct Artin-Schreier extensions, then (K, v) is a semitame field.

Corollary 1.2. A nontrivially valued field of positive characteristic that is definable
in an NTP2 theory is a semitame field.

We will prove Theorem 1.1 by showing that if (K, v) is not dense in its perfect
hull, then it admits infinitely many distinct Artin-Schreier extensions; see Proposi-
tion 3.4. However, we will show more than this. We are interested in Galois defect
extensions of degree p a prime. These are immediate Galois extensions (L|K, v)
of degree p of valued fields for which v has a unique extension from K to L (in this
case we must have that p = charKv). Here, (L|K, v) denotes an extension L|K of
fields with v a valuation on L and K endowed with its restriction; the extension is
said to be immediate if the canonical embeddings of vK in vL and of Kv in Lv
are onto. For more details on the defect see Section 2.4, and for further background,
see [3, 9, 11].

In [3] a classification of Galois defect extensions E = (L|K, v) of prime degree p
is given as follows. We show that the set

Σσ :=

{
v

(
σf − f
f

)∣∣∣∣ f ∈ L×}
is independent of the choice of a generator σ of Gal (L|K), and we denote it by ΣE .
We say that E has independent defect if

ΣE = {α ∈ vK | α > HE}

for some proper convex subgroup HE of vK; otherwise we say that E has dependent
defect. If vK is archimedean ordered, or in other words, (K, v) is of rank 1, then
HE can only be equal to {0}.

In Section 3.2, we will prove:
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Theorem 1.3. Take a valued field (K, v) of characteristic p > 0. If it admits
an Artin-Schreier extension with dependent defect, then it admits infinitely many
distinct Artin-Schreier extensions with dependent defect.

In [11] the classification was originally introduced only for valued fields of pos-
itive characteristic. An Artin-Schreier defect extension (L|K, v) was said to have
dependent defect if in a certain way it depends on immediate purely inseparable
extensions of degree p which do not lie in the completion of (K, v). It was then
shown in Section 4.2 of [11] that an Artin-Schreier extension has dependent defect
if it is obtained from such a purely inseparable defect extension by a certain trans-
formation of an inseparable minimal polynomial which makes it separable. We will
describe this transformation in Section 3.1 and use it for the proof of Theorem 1.3.

In [3] we have made the above more precise by showing that every Artin-Schreier
extension with dependent defect can be obtained by such a transformation. It is
also shown that the new definition of the classification given in [3] is compatible
with the one given in [11].

The new definition of the classification became necessary in order to generalize the
original definition to the case of valued fields (K, v) of characteristic 0 with residue
field Kv of positive characteristic p (mixed characteristic), where we cannot rely
on nontrivial purely inseparable extensions. We will now present a partial analogue
of Theorem 1.3 in the mixed characteristic case. To avoid a number of technical
details in the present paper, we will restrict our scope to valued fields (K, v) of rank
1. We will also assume that K contains a primitive p-th root of unity. We then
consider Kummer defect extensions of degree p, that is, Galois defect extensions of
(K, v) generated by some η /∈ K such that ηp ∈ K. Because such extensions are
immediate, we can show that we can assume η to be a 1-unit, i.e., v(η − 1) > 0
(and thus, vη = 0); see Section 2.7.

We need some more preparation. Take an extension (L|K, v) and a ∈ L. We
define:

v(a−K) := {v(a− c) | c ∈ K} ;

for details on this set, see Section 2.2. For α in the divisible hull ṽK of the value
group vK, we will write v(a −K) < α if v(a − c) < α for all c ∈ K, and similarly
for “≤” in place of “<”. We write

v(a−K) <|α

if v(a−K) < α and v(a−K) is bounded away from α in ṽK, i.e., there is β ∈ ṽK
such that v(a−K) ≤ β < α.

A Kummer defect extension of degree p generated by a 1-unit η as above always
satisfies

(1.1) v(η −K) <
vp

p− 1
,

see Section 2.7. In the case of archimedean value groups (where HE cn only be equal
to {0}), the definition we have given for the extension to have dependent defect is
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equivalent to the condition that v(η −K) <| vp
p−1 (see our discussion at the end of

Section 2.7).
Note that in [3] in place of v(η −K) a more flexible invariant dist (η,K) is used

for our work with defect extensions. We will give its definition in Section 2.3 to
enable the reader to relate the results in [3] and [11] to those in the present paper.

In view of Theorem 1.3 it seems reasonable to conjecture that if (K, v) admits a
Kummer extension with dependent defect, then it admits infinitely many distinct
Kummer extensions with dependent defect. By [3, part 2) of Theorem 1.5], this
would imply that if (K, v) admits only finitely many Kummer defect extensions,
then it is semitame, in perfect analogy to the equal positive characteristic case.
However, so far we have only been able to prove a weaker result. We will say that
a Kummer defect extension as above has super-dependent defect if

(1.2) v(η −K) <| vp
p
.

Theorem 1.4. Take a valued field (K, v) of mixed characteristic and rank 1 which
contains a primitive p-th root of unity. If it admits a Kummer extension of de-
gree p with super-dependent defect, then it admits infinitely many distinct Kummer
extensions of degree p with super-dependent defect.

This leads us to the following
Open questions: Does the above theorem also hold with dependent defect in place
of super-dependent defect? What is (possibly) special about a Kummer extension
with dependent defect that is not super-dependent?

We have observed in earlier work already that the threshold vp
p

plays a certain role

when dealing with 1-units in mixed characteristic (see [12, Corollary 2.11 d)]), but
it is not yet sufficiently understood what exactly this role is.

In the last section of this paper we extend our study of Artin-Schreier extensions
of valued fields in order to fill a gap that occurred in the proof of Lemma 2.31 of
[11], which gives a criterion for such extensions to have nontrivial defect.

For general background on valuation theory, we refer the reader to [5, 6, 13, 14].

2. Preliminaries

2.1. Deeply ramified and semitame fields. For a field K of characteristic p > 0
we denote by K1/p∞ the perfect hull of K. Further, we set Kp = {ap | a ∈ K} and
K1/p = {a1/p | a ∈ K}; then Kp is a subfield of K, and K1/p|K is a field extension
which is trivial if and only if K is perfect.

In [3], the following is proven:

Theorem 2.1. Take a nontrivially valued field (K, v) of characteristic p > 0. Then
the following statements are equivalent:
a) (K, v) is a semitame field,
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b) (K, v) is a deeply ramified field,
c) (K, v) satisfies (DRvr),
d) the completion of (K, v) is perfect,
e) (K, v) is dense in its perfect hull, i.e., K1/p∞ ⊂ Kc,
f) Kp is dense in (K, v).

Here, the property “dense” refers to the topology induced by the valuation.

See [3] for more details and the connection of semitame and deeply ramified fields
with the classification of defect extensions.

2.2. The set v(a −K). Take a totally ordered set (T,<). For a nonempty subset
S of T and an element t ∈ T we will write S < t if s < t for every s ∈ S. A set
S ⊆ T is called an initial segment of T if for each s ∈ S every t < s also lies in S.
Similarly, S ⊆ T is called a final segment of T if for each s ∈ S every t > s also
lies in S.

If (T,<) is an ordered abelian group, n ∈ N, α ∈ T , and S is an initial segment
of T , then

nS + α := {nβ + α | β ∈ S}
is an initial segment of nT .

Take a valued field extension (K(a)|K, v). We will now collect various properties
of the sets v(a−K) and v(a−K) ∩ vK.

Proposition 2.2. Take a valued field extension (K(a)|K, v).

1) If (K(a)|K, v) is immediate, then v(a−K) has no largest element.

2) If v(a−K) has no largest element, then v(a−K) ⊆ vK.

3) The set v(a−K) ∩ vK is an initial segment of vK.

4) The set v(a−K) \ (v(a−K) ∩ vK) has at most one element.

5) For every c, d ∈ K,

v(da+ c−K) = v(a−K) + vd .

6) If a, b are elements in some valued field extension of (K, v) such that v(a− b) >
v(a−K), then v(a− c) = v(b− c) for all c ∈ K and v(a−K) = v(b−K).

Proof. 1): This follows from [8, Theorem 1].

2): Take c ∈ K; we wish to show that v(a− c) ∈ vK. By assumption there is d ∈ K
such that v(a−d) > v(a− c). Hence v(a− c) = min{v(a− c), v(a−d)} = v(c−d) ∈
vK.

3): Take α ∈ v(a − K) ∩ vK and β ∈ vK such that β < α. Choose b, c ∈ K
with vb = β and v(a − c) = α. Then c − b ∈ K and vb = min{v(a − c), vb} =
v(a− (c− b)) ∈ v(a−K).

4): Assume that v(a − c), v(a − d) ∈ v(a − K) \ (v(a − K) ∩ vK). If they were
distinct, say v(a − d) > v(a − c), then as in the proof of 2) we would obtain that
v(a− c) ∈ vK, contradiction.
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5): This follows from the equalities v(a + c − K) = v(a − K) and v(da − K) =
v(a−K) + vd, which are straightforward to prove.

6): For all c ∈ K, from v(a − b) > v(a − c) we obtain that v(a − c) = v(b − c) as
in the proof of 2); hence v(a− c) ∈ v(b−K) and v(b− c) ∈ v(a−K), which shows
that v(a−K) = v(b−K). �

We will mostly work with immediate extensions, in which case we have that
v(a − K) ⊆ vK(a) = vK for every element a /∈ K in the extension. However,
several of our results hold more generally for extensions that are not necessarily
immediate. Some of them, such as the following one, remain true when the set
v(a−K) is replaced by v(a−K) ∩ vK.

Lemma 2.3. Take a valued field extension (K(a)|K, v). Take α ∈ v(a − K) and
assume that d ∈ K is such that

(2.1) α + vd > v(a−K)

(note that d always exists when v(a − K) is bounded by some element from vK).
Then the sets

v(a−K)− vdn , n ∈ N ,
are pairwise distinct.

Proof. Since α ∈ v(a−K) and α+ vd > v(a−K), we know that vd > 0. Take any
natural numbers m < n. Then

α−mvd ≥ α + vd− nvd > v(a−K)− nvd ,

which shows that α −mvd /∈ v(a −K) − nvd = v(a −K) − vdn. But α −mvd ∈
v(a−K)−mvd = v(a−K)− vdm, so the two sets are distinct. �

2.3. Distances. Take again a totally ordered set (T,<). A pair (ΛL,ΛR) of subsets
of T is called a cut in T if ΛL is an initial segment of T and ΛR = T \ ΛL; it then
follows that ΛR is a final segment of T . To compare cuts in (T,<) we will use the
lower cut sets comparison. That is, for two cuts Λ1 = (ΛL

1 ,Λ
R
1 ), Λ2 = (ΛL

2 ,Λ
R
2 ) in T

we will write Λ1 < Λ2 if ΛL
1  ΛL

2 , and Λ1 ≤ Λ2 if ΛL
1 ⊆ ΛL

2 . This defines a linear
order on the set of all cuts in T .

For a given subset S of T we define S+ to be the cut (ΛL,ΛR) in T such that ΛL

is the least initial segment containing S, that is,

S+ := ({t ∈ T | ∃ s ∈ S : t ≤ s} , {t ∈ T | t > S}) .

Likewise, we denote by S− the cut (ΛL,ΛR) in T such that ΛL is the largest initial
segment disjoint from S, i.e.,

S− := ({t ∈ T | t < S} , {t ∈ T | ∃ s ∈ S : t ≥ s}) .

For s ∈ T , we set

s+ := {s}+ and s− := {s}− .
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We note that

(2.2) S+ ≤ s− ⇔ S < s and S+ < s− ⇔ ∃ t ∈ T : S ≤ t < s .

Indeed, S+ ≤ s− means that the smallest initial segment of T containing S is a
subset of the initial segment {t ∈ T | t < s}, and this is equivalent to S < s.
Likewise, S+ < s− means that the smallest initial segment of T containing S is a
proper subset of {t ∈ T | t < s}, and as both are initial segments, this is equivalent
to the existence of some t ∈ T such that S ≤ t.

We embed T in the linearly ordered set of all cuts in T by identifying each s ∈ T
with s−.

The set v(a−K) ∩ vK is an initial segment of vK and thus the lower cut set of
a cut in vK. However, in order to be able to compare v(a−K) with v(a−L) when
L|K is algebraic, it is more convenient to work with the cut v(a − K) induces in

the divisible hull ṽK of vK. Indeed, ṽK is equal to the value group of the algebraic

closure Kac of K, and if L|K is algebraic, then Kac = Lac and therefore, ṽK = ṽL.
Hence we define:

dist (a,K) := (v(a−K) ∩ ṽK)+ in the divisible hull ṽK of vK .

We call this cut the distance of z from K. The distance replaces the use of
suprema in the case of non-archimedean value groups, which are not contained in
R.

Lemma 2.4. Let the situation be as above and assume that v(a − K) ⊆ ṽK.

Take some α ∈ ṽK. Then dist (a,K) ≤ α− is equivalent to v(a − K) < α, and
dist (a,K) < α− is equivalent to v(a−K) <|α.

Proof. We have:

dist (a,K) ≤ α− ⇔ v(a−K) ∩ ṽK < α

⇔ v(a−K) < α ,

where the first equivalence holds by (2.2) and the second equivalence holds since

v(a−K) ⊆ ṽK. Similarly,

dist (a,K) < α− ⇔ ∃ β ∈ ṽK : v(a−K) ∩ ṽK ≤ β < α

⇔ ∃ β ∈ ṽK : v(a−K) ≤ β < α ⇔ v(a−K) <|α .

�
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2.4. The fundamental equality and the defect. Take an extension (L|K, v) of
valued fields such that the extension of v from K to L is unique. Assume that
charKv = p > 0. Then

(2.3) [L : K] = pν · (vL : vK)[Lv : Kv] ,

where by the Lemma of Ostrowski ν is a nonnegative integer (see [13, Théorème 2,
p. 236] or [14, Corollary to Theorem 25, p. 78]). The factor d(L|K, v) = pν is called
the defect of the extension (L|K, v).

2.5. Criteria for defect extensions.

Lemma 2.5. Take an extension (K(a)|K, v) of valued fields of degree p = char(Kv)
and such that the extension of v from K to K(a) is unique. If v(a − K) has no
maximal element, then (K(a)|K, v) is immediate with defect p.

Proof. By [11, part (1) of Theorem 2.21], (K(a)|K, v) is immediate. As the extension
of v from K to K(a) is assumed to be unique, it follows that the defect is equal to
the degree of the extension. �

Lemma 2.6. Assume that (K(a)|K, v) is a normal extension of prime degree p.

1) If Kh is some henselization of (K, v) and a /∈ Kh, then the extension of v from
K to K(a) is unique.

2) Assume that (K, v) is of rank 1. If v(a − K) has no maximal element and is
bounded in vK, then (K(a)|K, v) is immediate and has defect p.

Proof. 1): Since K(a)|K is normal and of degree p, it is linearly disjoint from every
other algebraic extension L over K in which it is not contained. This is seen as
follows. If K(a)|K is inseparable, then it is purely inseparable, and so is L(a)|L;
hence the latter extension can only be of degree 1 or p. If K(a)|K is separable,
then it is Galois with a Galois group of order p. Then also L(a)|L is Galois. As
restriction embeds its Galois group in that of K(a)|K, again the degree of L(a)|L
can only be 1 or p.

Since a /∈ Kh by assumption, from what we have just shown we see that K(a)
must be linearly disjoint from Kh over K, which by [1, Lemma 2.1] implies our
assertion.

2): Since (K, v) is of rank 1, K lies dense in its henselization Kh. By assumption,
v(a − K) is bounded in vK, which implies that a /∈ Kh and thus by part 1),
the extension of v from K to K(a) is unique. Now our assertion follows from
Lemma 2.5. �
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2.6. Artin-Schreier extensions of valued fields. Throughout this section, we
let K be a field of characteristic p > 0. Recall that L|K is called an Artin-Schreier
extension if it is generated by a root of a polynomial of the form Xp−X − b with
b ∈ K. Note that every Artin-Schreier extension of K is a Galois extension of degree
p, and vice versa. We call ϑ an Artin-Schreier generator of an Artin–Schreier
extension L|K if L = K(ϑ) with ϑp − ϑ ∈ K.

Lemma 2.7. Assume that ϑ is an Artin-Schreier generator of an Artin–Schreier
extension L|K. Then ϑ′ is another Artin-Schreier generator of L|K if and only if
ϑ′ = iϑ+ c for some i ∈ Fp and c ∈ K.

Proof. If ϑ and ϑ′ are roots of the same polynomial Xp−X− b, then ϑ−ϑ′ is a root
of Xp−X, whose roots are exactly the elements of Fp . Hence, ϑ+ i, i ∈ Fp , are all
roots of Xp−X − b. Pick a nontrivial σ ∈ GalL|K. We then have that σϑ− ϑ = j
for some j ∈ F×p .

If ϑ′ is another Artin-Schreier generator of L|K such that σϑ− ϑ = j = σϑ′ − ϑ′,
then we have σ(ϑ − ϑ′) = ϑ − ϑ′. Since σ is a generator of GalL|K ' Z/pZ, it
follows that τ(ϑ− ϑ′) = ϑ− ϑ′ for all τ ∈ GalL|K, that is, ϑ− ϑ′ ∈ K.

If ϑ′ is another Artin-Schreier generator of L|K and σϑ′ − ϑ′ = j′ ∈ F×p , then
there is some i ∈ F×p such that ij = j′. Since σi = i, we then have that σiϑ− iϑ =
i(σϑ − ϑ) = ij = j′. Then by what we have shown before, ϑ′ = iϑ + c for some
c ∈ K.

Conversely, if ϑ is an Artin-Schreier generator of L|K and if i ∈ F×p and c ∈ K,
then (iϑ + c)p − (iϑ + c) = i(ϑp − ϑ) + cp − c ∈ K. But iϑ + c cannot lie in K,
so K(iϑ + c) = L since [L : K] is a prime. This shows that also iϑ + c is an
Artin-Schreier generator of L|K. �

Corollary 2.8. Let (L|K, v) be an Artin-Schreier extension of valued fields. Then
v(ϑ −K) is independent of the choice of the Artin-Schreier generator ϑ of the ex-
tension, so it is an invariant of the extension.

Proof. Take two Artin-Schreier generators ϑ, ϑ′ of L|K. By Lemma 2.7 we can write
ϑ′ = iϑ + c for some i ∈ F×p and c ∈ K. Since vi = 0 for every valuation, it follows
from assertion 5) of Proposition 2.2 that v(ϑ′ −K) = v(ϑ−K). �

Proposition 2.9. Assume that (K(η)|K, v) is a purely inseparable extension and
(K(ϑ)|K, v) is an Artin-Schreier extension of valued fields. Then K(η, ϑ)|K(ϑ) is
purely inseparable and so the extension of v from K(ϑ) to K(η, ϑ) is unique. If

(2.4) v(η − ϑ) > v(ϑ−K) ,

then the extension of v from K to K(ϑ) is unique. If in addition, (K(η)|K, v) is
immediate, then (K(ϑ)|K, v) is immediate with defect p.

Proof. Assume that (2.4) holds. Then ϑ /∈ Kh since otherwise it would follow
from Theorem 2 of [10] that K(η)|K is not purely inseparable, contradicting our
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assumption. Now our first assertion follows from part 1) of Lemma 2.6. By part 6)
of Proposition 2.2, (2.4) also implies that v(ϑ−K) = v(η −K).

Now assume in addition that (K(η)|K, v) is immediate. Then by part 1) of Propo-
sition 2.2, v(ϑ − K) = v(η − K) has no maximal element. Therefore, our second
assertion follows from Lemma 2.5. �

2.7. Kummer extensions of prime degree of valued fields. Take a valued
field (K, v) of mixed characteristic, that is, charK = 0 while charKv = p > 0.
We consider Kummer extensions of degree p. Such an extension is generated by an
element η such that ηp ∈ K. If (K(η)|K, v) is immediate, then it can be assumed
that η and hence also ηp is a 1-unit, i.e., v(η − 1) > 0. Indeed, since (K(η)|K, v) is
immediate, we have that vη ∈ vK(η) = vK, so there is c ∈ K such that vc = −vη.
Then vηc = 0, and since ηcv ∈ K(η)v = Kv, there is d ∈ K such that dv = (ηcv)−1.
Then v(ηcd) = 0 and (ηcd)v = 1. Hence ηcd is a 1-unit. Furthermore, K(ηcd) =
K(η) and (ηcd)p = ηpcpdp ∈ K. Thus we can replace η by ηcd and assume from the
start that η is a 1-unit.

The next proposition follows from [3, Corollary 3.6 and Proposition 3.7]:

Proposition 2.10. Take a valued field of mixed characteristic and a Kummer defect
extension as detailed above. Then the distance dist (η,K) does not depend on the
choice of the generator η of the extension (K(η)|K, v) as long as it is a 1-unit and
satisfies ηp ∈ K. Moreover,

(2.5) 0 < dist (η,K) ≤
(

vp

p− 1

)−
.

Under the above conditions, the Kummer extension is immediate, hence we have
that v(η−K) ⊆ vK. From the definition of the distance it then follows that v(η−K)
is the intersection of the lower cut set of dist (η,K) with vK, hence the distance
determines uniquely the set v(η − K), showing that this set does not depend on
the choice of the generator η. Moreover, from Lemma 2.4 we obtain that inequality
(1.1) holds.

In [3, Proposition 3.7] we show that a Kummer extension (K(η)|K, v), where η is
a 1-unit with ηp ∈ K, has dependent defect if and only if

dist (a,K) =
vp

p− 1
+ H− ,

for some proper convex subgroup H of ṽK. If (K, v) has rank 1, then ṽK is
archimedean ordered and therefore H = {0}. In this case, the above equation
just becomes

dist (η,K) <

(
vp

p− 1

)−
.

In view of Lemma 2.4, this translates to v(η − K) < | vp
p−1 , as mentioned in the

Introduction.
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2.8. Differences of p-th powers in mixed characteristic.

Lemma 2.11. Take η and a to be two elements of some valued field of characteristic
0 with residue field characteristic p > 0. If

(2.6) v(η − a) <
vp

p− 1
+ vη ,

then

(2.7) v(ηp − ap) = pv(η − a) .

Proof. Let ζ be a primitive p-th root of unity. We have that

ηp − ap =

p∏
i=1

(ζ iη − a) =

p∏
i=1

(ζ iη − η + η − a) .

Using the well known fact that

v(ζ i − 1) =
vp

p− 1

(see e.g. the proof of Lemma 2.9 of [12]) and our assumption, we obtain that

v(ζ i − 1) + vη =
vp

p− 1
+ vη > v(η − a) .

Hence we have that

v(ζ iη − a) = v(ζ iη − η + η − a) = min{v(ζ i − 1) + vη, v(η − a)} = v(η − a) ,

which yields equation (2.7). �

3. The case of valued fields of characteristic p > 0

3.1. A basic transformation. We describe a transformation that was introduced
in [11]. Take a valued field (K, v) of characteristic p > 0 and a (not necessarily
immediate) purely inseparable extension (K(η)|K, v) of degree p of valued fields
such that ηp ∈ K and that v(η−K) is bounded from above by an element in vK(η)
(and hence also by an element in vK). We are starting with the minimal polynomial
Y p − ηp of η over K and turn it into the separable polynomial

(3.1) Y p − dp−1Y − ηp ,
where d 6= 0. Setting Y = dX and then dividing the resulting polynomial by dp, we
transform this polynomial into the Artin-Schreier polynomial

(3.2) Xp −X − ηp

dp
.

Under the condition that vd is large enough, the following lemma describes the
behaviour of the set v(η−K) when η is replaced by roots of these two polynomials.
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Lemma 3.1. Take d ∈ K such that

(3.3) vdp−1 > pv(η −K)− vη .
Let ϑ̃d be a root of the polynomial (3.1). Then

(3.4) ϑd :=
ϑ̃d
d

is a root of (3.2) and K(ϑd)|K is an Artin-Schreier extension with a unique extension
of v from K to K(ϑd). Furthermore, we have that

(3.5) v(ϑ̃d −K) = v(η −K) ,

(3.6) v
(η
d
− ϑd

)
> v(ϑd −K) ,

and

(3.7) v(ϑd −K) = v(η −K)− vd .

Proof. Once we prove that

(3.8) v(η − ϑ̃d) > v(η −K) ,

we obtain equation (3.5) by part 6) of Proposition 2.2, which in turn implies equa-
tion (3.7) by part 5) of Proposition 2.2. Further, again using part 5) of Proposi-
tion 2.2 again, we obtain

v
(η
d
− ϑd

)
= v(η − ϑ̃d)− vd > v(η −K)− vd = v(ϑ̃d −K)− vd = v(ϑd −K) ,

which proves (3.6). Hence we will now prove (3.8). We compute:

(3.9) (η − ϑ̃d)p = ηp − ϑ̃pd = ηp − ηp − dp−1ϑ̃d = −dp−1ϑ̃d .

We set Y = dX to obtain that ϑd is a root of the polynomial dpXp− dp−1dX − ηp
and hence also of the Artin-Schreier polynomial (3.2).

Since vη ∈ v(η −K), from (3.3) we obtain:

(p− 1)vd = vdp−1 > pvη − vη = (p− 1)vη ,

so that

v
ηp

dp
= p(vη − vd) < 0 .

Hence we have that vϑd < 0 and consequently, vϑpd = pvϑd < vϑd and

pv
η

d
= v

ηp

dp
= min{vϑpd, vϑd} = vϑpd = pvϑd ,

which yields that
vϑ̃d = vd+ vϑd = vη .

From this together with (3.3) and (3.9) we obtain:

v(η − ϑ̃d) =
1

p
v(dp−1ϑ̃d) =

1

p
(vdp−1 + vη) > v(η −K) ,
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as desired.

It remains to prove that K(ϑd)|K is nontrivial (and hence an Artin-Schreier ex-
tension), and that the extension of v from K to K(ϑd) is unique. Since v(η − K)
is bounded from above in vK by assumption, the same holds for v(η − K) − vd
which by (3.7) is equal to v(ϑd−K). This implies in particular that ϑd /∈ K, so the
extension K(ϑd)|K is nontrivial. Since η is purely inseparable over K by assump-
tion, the same holds for η/d. Thus our assertion follows from (3.6) together with
Proposition 2.9, where we replace η by η/d and ϑ by ϑd . �

3.2. Proof of Theorems 1.1 and 1.3. Throughout, let (K, v) be a valued field of
characteristic p > 0. First, we prove:

if K admits only finitely many distinct Artin-Schreier extensions, then (K, v) is a
semitame field,

which is the assertion of Theorem 1.1. Take a purely inseparable (not necessarily
immediate) extension K(η)|K of degree p such that ηp ∈ K and that v(η − K) is
bounded from above by an element in vK. We continue to use the notation “ϑd”
introduced in definition (3.4) of Lemma 3.1.

Proposition 3.2. Assume that α ∈ v(η − K) and d ∈ K are such that α + vd >
v(η − K) (that is, (2.1) holds for η in place of a) and vdp−1 > pv(η − K) − vη
(that is, (3.3) holds). Then with the notation from Lemma 3.1, the Artin-Schreier
extensions

K(ϑdn)|K , n ∈ N ,
are pairwise distinct, and the extensions of v from K to K(ϑdn) are unique for all
n ∈ N.

Proof. It follows from Lemma 3.1 that for each n ∈ N, K(ϑdn)|K is an Artin-Schreier
extension and the extension of v from K to all K(ϑdn) is unique. From Lemma 2.3 we
infer that the sets v(ϑdn −K) = v(η−K)− vdn are distinct. Thus by Corollary 2.8,
the extensions K(ϑdn)|K are distinct. �

Lemma 3.3. If the perfect hull of K does not lie in the completion of (K, v), then
(K, v) admits a purely inseparable extension K(η)|K of degree p such that v(η−K)
is bounded from above by an element in vK.

Proof. Assume that the perfect hull K1/p∞ does not lie in the completion Kc of
(K, v), and take an element η̃ ∈ K1/p∞ \ Kc. We may assume that η̃p ∈ Kc (oth-
erwise, we replace η̃ by η̃p

ν
for a suitable ν ≥ 1). Since η̃ /∈ Kc, we have that

v(η̃ − K) is bounded from above by some α ∈ vK and v(η̃p − Kp) = pv(η̃ − K)
is bounded from above by pα. On the other hand, since η̃p ∈ Kc, there is some
b ∈ K such that v(η̃p − b) > pα. We choose η ∈ K1/p such that ηp = b.
Then pv(η̃ − η) = v(η̃p − ηp) = v(η̃p − b) > pα ≥ pv(η̃ − K), which yields that
v(η̃ − η) > v(η̃ − K). From this it follows by part 6) of Proposition 2.2 that
v(η−K) = v(η̃−K), showing that also v(η−K) is bounded from above by α. �
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Since v(η−K) is assumed to be bounded from above by an element in vK, there
is some d ∈ K which satisfies vdp−1 > pv(η −K) − vη. Then the same is true for
every d′ ∈ K with vd′ ≥ vd. Hence α ∈ v(η − K) and d ∈ K can be chosen such
that α+ vd > v(η−K). Thus we can use Lemma 3.3 together with Proposition 3.2
to obtain:

Proposition 3.4. If the perfect hull of K does not lie in the completion of (K, v),
then K admits infinitely many Artin-Schreier extensions.

By the equivalence of assertions a) and e) of Theorem 2.1, this proposition proves
Theorem 1.1.

We will now prove the assertion of Theorem 1.3, which states:

if (K, v) admits an Artin-Schreier extension with dependent defect, then it admits
infinitely many distinct Artin-Schreier extensions with dependent defect.

We assume that (K, v) admits an Artin-Schreier extension with dependent defect,
which means that it must be obtained via the transformation described in Section 3.1
from a purely inseparable defect extension (K(η)|K, v) of degree p. This is only
possible if v(η − K) is bounded from above by an element in vK. Also, since the
extension is of degree p with nontrivial defect, the defect must be p and the extension
must be immediate. Hence by part 1) of Proposition 2.2, v(η −K) has no largest
element and consequently, the same holds for the sets v(η−K)− vdn = v(ϑdn−K).
Therefore, since the extension of v from K to K(ϑdn) is unique by Proposition 3.2,
it follows from Lemma 2.5 that (K(ϑdn)|K, v) is immediate with defect p. As this
extension is obtained from a purely inseparable defect extension of degree p by
the transformation described in Section 3.1, this defect is dependent by definition.
Finally, Proposition 3.2 shows that the extensions K(ϑdn)|K, n ∈ N, are distinct.
This completes our proof.

4. The case of valued fields of mixed characteristic

Throughout this section, we assume that (K, v) is a valued field of rank 1 and
of characteristic 0 with residue field of characteristic p > 0. Further, we assume
that K contains a primitive p-th root of unity, and that (K(η)|K, v) is a Kummer
extension, where η is a 1-unit with ηp ∈ K.

4.1. A basic transformation in the mixed characteristic case. Given d ∈ K,
we transform the minimal polynomial Xp − ηp of η over K into the polynomial

(4.1) fd(X) := Xp + hd(X)− ηp

with

hd(X) :=

p−1∑
i=1

(
p

i

)
dp−iX i .
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Lemma 4.1. Assume that vd < 0 and that

(4.2) v(η −K) <
vp+ (p− 1)vd

p
.

Take ϑ̃d to be a root of the polynomial (4.1). Then

v(η −K) = v(ϑ̃d −K) .

Proof. We compute the value of the coefficients of hd , using our assumption (4.2):

(4.3) v

((
p

i

)
dp−i

)
= vp+ (p− i)vd ≥ vp+ (p− 1)vd > pv(η −K) .

Since 0 = v(η − 1) ∈ v(η − K), this shows that all coefficients of hd have positive

value, while vηp = 0; this forces ϑ̃d to have value 0 by the ultrametric triangle law.
Consequently,

(4.4) vhd(ϑ̃d) > pv(η −K) .

Suppose that there is c ∈ K such that v(ϑ̃d − η) ≤ v(η − c). Combined with our
assumption (4.2), this implies that assumption (2.6) of Lemma 2.11 holds for η and

for ϑ̃d in place of a since vη = 0. Hence by Lemma 2.11 we have that

v(ϑ̃pd − η
p) = pv(ϑ̃d − η) .

Using this together with (4.4) and the fact that ϑ̃pd = ηp + hd(ϑ̃d) by definition of

ϑ̃d, we compute:

v(ϑ̃d − η) =
1

p
v(ϑ̃pd − η

p) =
1

p
v(ηp + hd(ϑ̃d)− ηp)

=
1

p
vhd(ϑ̃d) > v(η −K) ,

contradicting our assumption. This shows that v(ϑ̃d − η) > v(η − c) for all c ∈ K,

whence v(ϑ̃d − η) > v(η − K). Hence by part 6) of Proposition 2.2, v(η − K) =

v(ϑ̃d −K). �

4.2. Proof of Theorem 1.4. We let (K, v) be a valued field of mixed characteristic
and rank 1 which contains a primitive p-th root of unity. We have to prove the
assertion of Theorem 1.4, which states:

If (K, v) admits a Kummer extension of degree p with super-dependent defect, then it
admits infinitely many distinct Kummer extensions of degree p with super-dependent
defect.

We assume that (K(η)|K, v) is a Kummer extension of degree p with super-dependent
defect, and that η is a 1-unit with ηp ∈ K. Since 0 = vη ∈ v(η−K) and v(η−K) does
not contain a maximal element, it must contain positive elements. Since (K(η)|K, v)
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is a super-dependent defect extension, we know that (1.2) holds. Since by assump-
tion, (K, v) is of rank 1 and v(η − K) does not contain a maximal element but is

bounded, vK must be dense in ṽK. Hence there is some d ∈ K such that vd < 0
and

(4.5) v(η −K) <
vp

p
+ 2vd .

Then inequality (4.2) of Lemma 4.1 is satisfied, because

vp

p
+ 2vd <

vp+ (p− 1)vd

p
.

We obtain from Lemma 4.1 that for a root ϑ̃d of the polynomial fd(X) defined in
that lemma,

v(η −K) = v(ϑ̃d −K) .

Now we set X = dY ; dividing the resulting polynomial fd(dY ) by dp, we obtain
the polynomial

gd(Y ) := Y p +

p−1∑
i=2

(
p

i

)
Y i − ηp

dp
.

We observe that

ϑd :=
ϑ̃d
d

is a root of gd(Y ) and that by part 5) of Proposition 2.2,

(4.6) v(ϑd −K) = v(ϑ̃d −K)− vd .
Now we set Y = X − 1, which turns the polynomial gd(Y ) into the polynomial

Xp −
(
ηp

dp
+ 1

)
with root

ηd := ϑd + 1 .

Again by part 5) of Proposition 2.2, we have that

v(ηd −K) = v(ϑd −K) = v(ϑ̃d −K)− vd = v(η −K)− vd 6= v(η −K) ,

where the last inequality holds since vd 6= 0 and v(η−K) is a bounded subset of an
archimedean ordered abelian group. As vd < 0 = vη,

ηpd =
ηp

dp
+ 1

is a 1-unit.

Since vK is dense, there are infinitely many d′ ∈ K with vd′ < 0 that satisfy
(4.5) in place of d. With the same argument as above, we see that v(η−K)− vd 6=
v(η−K)−vd′ if vd 6= vd′. In this way we obtain infinitely many Kummer extensions
(K(ηd)|K, v) with distinct sets v(ηd−K), which by Proposition 2.10 shows that these
extensions are pairwise distinct.
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Since (K(η)|K, v) is a nontrivial immediate extension, part 1) of Proposition 2.2
shows that the set v(η − K) has no maximal element, while being bounded by
assumption. The same is consequently true for the sets v(η−K)−vd = v(ηd−K). As
the rank of (K, v) is assumed to be 1, part 2) of Lemma 2.6 shows that (K(ηd)|K, v)
is immediate and has defect p. Finally, this defect is super-dependent since

v(ηd −K) = v(η −K)− vd <
vp

p
+ 2vd− vd =

vp

p
+ vd .

5. Filling a gap in [11]

In [11, Lemma 2.31] the following is stated:

Lemma 5.1. Assume that charK = p > 0 and (K(ϑ)|K, v) is an Artin-Schreier
extension with Artin-Schreier generator ϑ. If dist (ϑ,K) ≤ 0− and v(ϑ−K) has no
maximal element, then the extension of v from K to K(ϑ) is unique and (K(ϑ)|K, v)
is immediate with defect p.

In the proof it is written: “In [10] we show that the assumption that dist (ϑ,K) <
0 implies that the extension of v from K to K(ϑ) is unique.” Since v(ϑ − K)
has no maximal element, Lemma 2.5 shows that this assertion indeed implies that
(K(ϑ)|K, v) is immediate. In addition, dist (ϑ,K) < ∞ implies that ϑ /∈ K, so the
extension is nontrivial and thus has defect p.

However, the assertion was never proven in [10]. In order to complete the proof
of Lemma 5.1, we will prove it here. As v(ϑ − K) has no maximal element, we

know from part part 2) of Proposition 2.2 that v(a − K) ⊆ vK ⊆ ṽK. Hence by
Lemma 2.4 the assumption dist (ϑ,K) ≤ 0− is equivalent to v(ϑ−K) < 0.

By part 1) of Lemma 2.6, it suffices to prove that ϑ /∈ Kh. Suppose otherwise.
Then by [10, Theorem 1], there are α ∈ vK and a convex subgroup H 6= {0} of vK
such that the coset α+H is cofinal in v(ϑ−K). Since v(ϑ−K) < 0, we must have
that α + H < 0, which yields that −α > H and −α > 0. As α ∈ α + H, there is
some c ∈ K such that v(ϑ− c) ≥ α. Since ϑ− c is also an Artin-Schreier generator
of the extension and v(ϑ− c−K) = v(ϑ−K), we may assume w.l.o.g. that vϑ ≥ α.

Let Xp − X − b with b ∈ K be the minimal polynomial of ϑ over K, and take
d ∈ K with vd = −α. Then by part 5) of Proposition 2.2, H is cofinal in v(dϑ−K).
Further, dϑ is a root of d−pXp − d−1X − b and hence also of

Xp − dp−1X − dpb .
Let η be the root of Xp − dpb. We wish to show that

v(dϑ−K) = v(η −K) .

We compute:

pv(dϑ− η) = v((dϑ)p − ηp) = v(dpϑ+ dpb− dpb) = vdpϑ

≥ −pα + α ≥ −α > H .
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Since H is a convex subgroup of vK, this implies that v(dϑ − η) ≥ −1
p
α > H ,

and as H is cofinal in v(dϑ−K), we obtain:

v(dϑ− η) > v(dϑ−K) .

By construction, K(η)|K is purely inseparable, hence by Theorem 2 of [10], dϑ
cannot lie in the henselization Kh. We have thus shown that ϑ /∈ Kh, as desired.
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