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Abstract

Every Henselian field of residue characteristic 0 admits a truncation-closed em-
bedding in a field of generalised power series (possibly, with a factor set). As corol-
laries we obtain the Ax-Kochen-Ershov theorem and an extension of Mourgues’
and Ressayre’s theorem: every ordered field which is Henselian in its natural val-
uation has an integer part. We also give some results for the mixed and the finite
characteristic cases.
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1 Introduction

Given an ordered fiel&, aninteger part(or I.P. for short) ofK is a subringR C K
containing 1 and such that for every K there exists a uniquee Rwith |r — x| < 1.
For instanceZ is the unique I.P. of any subfield &. Other ordered fields may have
many |.P.s, or none at all.

A field of generalised power seri&$(I")) over an ordered field C R has a stan-
dard I.P.

R:{ XaytVJrn:neZ}.
y<0

In [1] Mourgues and Ressayre proved that every real closéd Kehas an I.P..
They proved it by finding a truncation-closed embeddin&dh a power series field
k((I")). The I.P. ofK is given by the intersection & with the standard I.P. d€((I")).

S. Kuhlmann suggested that their proof can be adapted, airddisults extended,
to Henselian fields. Namely, any ordered field, which is Heasen its natural val-
uation, has an integer part. We will prove among other thimgsconjecture (Corol-
lary 6.3); however, we will have to introduce factor set®ittie definition of power
series in order to find the truncation-closed embedding.

Let K be a Henselian valued field, with residue fidddand value groug . If
chark = 0, we will construct a truncation-closed embeddingkoin k((I", 7)) (for
some factor sef) (Theorem 6.1 and Corollary 6.2). In particular,f is an or-
dered field which is Henselian in its natural valuation, thifl prove the conjecture
by S. Kuhlmann, in the same way as Mourgues and Ressayreduttosie theorem.

In his celebrated paper [2], Kaplansky proved that everyl ftglresidue charac-
teristic 0 has some embedding in a power series field. We wiNg Theorem 6.1
proceeding in a manner parallel to his: we start with a subfigl=Kk(I", /) of K, and
atruncation-closed embeddigg: Fo — k((I", £ )). Then, we extengy to a truncation-
closed embedding of all K. The construction of the extension is done step-by-step.
At each step, we assume that we have already defined a temcitised embedding
@ from some subfield; in k((I', f)), and we extendy to a larger fieldFj;,. There
are two cases:

The algebraic case.If F; is not algebraically closed i, we defineF;,; to be the
Henselisation oF; insideK. There is a unique extensign, 1 of @ to Fi1. Moreover,
since chak = 0, [F;1 coincides with the relative algebraic closurdipinsideK.
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The transcendental caself F; is algebraically closed if, we defineF; 1 := Fj(x),
for somex € K\ F;; then, we choose a suitabtee k((I, £)) such that the field em-
beddingg.1 extendingg and sending to X' preserves the valuation.

In both cases, Theorem 5.16 ensures that is truncation-closed (if we choose
X wisely in the transcendental case). Moreover, if trdégk (I, #)) < O for some
uncountable cardinal, then it is possible to chooggin such a way that the length of
zis less thart] for everyzin the image ofp (Theorem 7.12).

Until now, we have only considered valued fields of residuaratteristic 0. If
charK = p, things get more complicated, mainly because in the abowustaation
it is no longer true that the Henselisationdfis equal to its relative algebraic clo-
sure. However, ifK (and hencéF;) satisfies Kaplansky’s Hypothesis A, the maximal
immediate algebraic extension Bf is uniquely determined, and in the algebraic case
we can definéfi_; to be such extension, amgl, 1 accordingly. Proposition 9.11 en-
sures thatg. 1 is truncation-closed. Hence, we can conclude th&t i§ algebraically
maximal and satisfies Kaplansky’s Hypothesis A, then theeetiuncation-closed em-
beddingg : K — k((I',f)) (cf. Theorem 9.12 and the paragraph following it). Again,
if trdeg(K/k(I",f)) < O for some uncountable cardinal, then the length of the
elements in the image @f can be bounded by (Theorem 9.14).

It remains to consider the case of mixed characteristic.eHee need some ad-
ditional hypotheses oK (beside being Henselian). The most important is tKat
is finitely ramified (for instance, i¥(chark) is the minimum positive element &7).

Under these assumptions, we will prove tlkaican be embedded iI%((/\,m)) in a

truncation-closed way, wherkis a certain quotient df andK is a certain field asso-
ciated toK (see§10).

On Conway’s field of Surreal numbers, there is a so-calleghktity relation [3].
Under this relation, one can define the initial subsetSl@find initial embeddings in
No, in the same way as Mourgues and Ressayre defined truncdtieed subsets and
embeddings fok((I")) starting from the relation “being an initial segment of”. We
prove that ifK is an ordered field, Henselian in its natural valuation, therecessary
and sufficient condition foK to have an initial embedding Mo is that its value group
I" has a initial embedding iNo, and there exists a cross-sectior- K* (Lemma 8.3
and Theorem 8.4).

The last section contains some easy counter-examples t® Isatural conjectures
the unwary reader might conceive. S. Boughattas [4] gaveesexamples of val-
ued field that do not admit integer parts (and hence truncatiosed embeddings).
We give, among other things, a simplified version of his exanfwith regard to the
non-existence of truncation-closed embeddings). For @mefined kind of counter-
examples, see [5].

Finally, I wish to thank professors Salma and Franz-ViktahkKnann for their help
in conceiving this article, writing it down and correctirty and for the many fruitful
conversations we had and suggestions they offered me amdinéselated topics, and,
last but not last, for inviting me to Saskatoon. Professars8andro Berarducci also
helped and encouraged me in writing this paper.

2 Mourgues’ and Ressayre’s theorem

Here are some of the basic definitions and theorems of gevedtadtion theory (see
for instance [6, 7, 2]).
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Definition 2.1. A valued fieldK is a field K together with a surjective homomor-
phismv: K* — I (thevaluation into some linearly ordered Abelian grolifthevalue
group) such that

V(x+y) = min{v(x),v(y) } .

The valuation is extended to &, settingv(0) = « (wherec is an element outsidg
such thato > y for everyy e I).
The valuation ringZ is the ring{x € K : v(x) > 0}. Its only maximal ideal is the set
of infinitesimal elements# := {x € K: v(x) > 0}. Theresidue fielk is the quotient
O/ . Givenx e 0, X € K is its residue.

We will also use the small-o and big-O notation= O(y) iff v(X) > v(y), x=o(y)
iff v(x) > v(y). If v(x) > 0 theny = O(x?) implies thaty = o(x). We will also write
x> yiff v(x) < v(y).
Definition 2.2 (Henselian). A valued field isHenselianiff for each p € ¢[X] and

ac 0 with p(a) = 0 andp(a) # 0, there exists ah € ¢ such thaip(b) =0 andb=a.

If Kis a valued field, it is possible to extend its valuatiorki] in many different
ways. Unless specified otherwise, we will always use thefotig definition:

v(_zﬁoaexi) = min{v(a)},

called theGauss extension

Definition 2.3. Let K C F be valued fieldsp(X) € K[X] be a monic polynomial, and
x € F. We will write Hg (p,X) (or H(p,x) if itis clear which field we are talking about)
iff v(p) =0, v(x) >0, p(x) =0 andv(p(x)) = 0.

Note that, by definitionK is Henselian iff for everyf containing it and for every
p(X) € K[X] andx € F, H(p,x) impliesx € K.

The following lemma gives a few equivalent characterisatiof Henselianity. On
the one hand, they will be used in the discussion; on the didwed, they justify in part
the importance of this concept in the study of valued fields.

Lemma 2.4. LetK := (K,v) be a valued field. If FK is a purely inseparable field
extension, then v has only one extension to F.
Moreover, the following are equivalent:

1. Kis Henselian.

2. Let pe ¢[X] with degp) > 0 and ac & such thatp(a) # 0. If v(p(a)) >
2v(p(a)) then there exists B ¢ such that §b) = 0andb = a.

3. Let pg,r € [X], with degg > 0, g monic. Suppose thatt are non-zero, rel-
atively prime polynomials df[X] andp = ar. Then, there exist'gr* € ¢[X]
such thaig =q,r* =rand f = g*r*.

4. If
p(X) == X"+ a,_1X" T+ ag X" 2+ +ag € O[X],

witha,1#0,3 =... =a, 2 =0, then gX) has aroot bc & withb = —a, 7.

5. v has only one extension to every algebraic extensiét of



2 MOURGUES’ AND RESSAYRE’S THEOREM 5

6. v has only one extension to every separable extensign of
For the proof, together with more equivalent forms of Helasety, see [8].

Definition 2.5. An extensiorK C F of valued fields iSmmediatdff K andF have the
same value group and residue field.Kifhas two extensiong; andF,, ananalytic
embeddingf F1 in F, overK is a homomorphism of valued fields: F; — [F, such
that @[k = id. Such a homomorphism is ananalytic isomorphisntoverK) iff it is
also an isomorphism of fields.

Definition 2.6 (Henselisation). TheHenselisatiork" of K is the extension oK such
that:

1. KM is Henselian

2. If KCF andF is Henselian, then there exists a unique analytic embedding
¢:KH - Foverk.

The Henselisation oK always exists, it is unique (up to analytic isomorphisms
overK), and it is an algebraic immediate extensiorkof

Definition 2.7 (Power series).Letk be afieldI” be an linearly ordered Abelian group.
The field of generalised power seriegI")) is the set of formal series

> at,

i<n

where they; € k are non-zerapis an ordinal number, ar‘(dA)i<n is a strictly increasing
sequence of elements bf Every element ok((I")) can also be written as

— y
X:i= Zayt .
yE

Thesupportof x, in symbols supp, is the set of € I such thaty, # 0. Such arxis an
element ok ((I")) iff its support is a well-founded subset bf Thelengthof x, £(x), is
the order type of the support &f namely.x= 3y ath.

Sum and multiplication ok ((I")) are defined by Cauchy sum and product, namely

Zayty- Y btti= F abtrA W
ye el y,Aelr

k((I")) is a field, with a valuation defined by
VX := min(suppx).
k(I) is the subfield ok ((I")) generated bk U {tY:y el }.

Our main concern will be the study of Henselian fields andrtbeibeddings in
fields of generalised power series.

Definition 2.8. A cross-section is a group homomorphisni” — K* such thav(sy) =
yforeveryyer.

(MThe fact that the multiplication is well defined &f(I")), and thak ((I)) is actually a field, is a theorem
by Hahn, later extended by B.H. Neumann to division rings.
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k((I")) has a canonical cross-section givendpy=1tY. Later, we will see that it
is useful to introduce factor sets into the definition of poweries fields and cross-
sections.

If k is an ordered field((I")) inherits the order via the rule
S yer aty > 0iff a, > 0, wherey = v(x).

On the other hand, on every ordered fi&lds defined the natural valuation: the
value ofx € K* is its Archimedean equivalence clagss x iff there existan € N* such
that| 2| < x| < [ny.

Definition 2.9. Letx:= S;_,at" € k((I')). An initial segmentof x is an element of
k((T)) of the formS; mait¥ € k((I")) for somem < n.

A subsetSC k((I)) is truncation-closediff for every x € S every initial segment
of xis also inS.

An embedding of a valued fielt in k((I')) is truncation-closed iff its image is
truncation-closed.

We are now ready to state a generalisation Mourgues’ ancaless theorem.

Theorem 2.10. LetK be an ordered field, with natural valuation v, value grdupnd
residue fielk. Assume thaK is Henselian, and that there is a cross-sectiofl s- K*.
Then, there is a truncation-closed analytic embeddprfeom K to k((I")).

SinceK is Henselian and its residue field has characteristic Oethgists an em-
bedding! : k — K such that/(i1x) > 0 andix = x. If we fix such an embedding we
will simply say thatK contains its residue field, and writex instead ofi x.

Then we can findp as in Theorem 2.10 such th@fx) = x for everyx € k and
@o(sy) =tY for everyyeT.

From Theorem 2.10, reasoning exactly as in [1], we can dethatevery ordered
field satisfying the hypothesis of the theorem has an intpger With Corollary 6.2,
we will generalise the theorem, and drop the hypothesislkhhfis a cross-section
(retaining only the fact that it is Henselian). More prebis&aplansky proved that
any such fieldK admits a section with some factor getwe will show thatK has a
truncation-closed embeddingkd(I", £ )).

Note that Theorem 2.10 is already a generalisation of Masgand Ressayre’s
Theorem, since every real closed field is Henselian and hessa-section.

In this discussion, all groups are Abelian, and all ordeediaear (or total), unless
explicitly said otherwise.

The important ingredients in the proof of Mourgues’ and Rgsss Theorem are
the following lemmata. In their formulation, | will assunteatk is a real closed field,
andr is a divisible group. The first is attributed to F. Delon:

Lemma 2.11. Let[F be a subfield ok((")) such thak C IF and ) =I'; if ' is closed
under truncation then so iB, the real closure oF insidek((I")).

Lemma 2.12. LetF be a truncation-closed subfield k(")) and ye k((I")) be such
that every proper initial segment of y belong&toThenF (y) is also truncation-closed.

The two lemmata imply that is a truncation-closed subfield kf(I")) containing
k(I), then the field generated I8and its real closure are also truncation-closed.

Definition 2.13. A valued field isalgebraically maximaiff it has no proper immediate
algebraic extension.
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Every algebraically maximal field is also Henselian (sirfoe Henselisation of a
field is an algebraic immediate extension). However, thesewe is not true; in gen-
eral, a valued field could have more than one non-isomorphiimmal algebraic im-
mediate extensions. We will see presently a sufficient ¢camdfor the converse to
hold.

Definition 2.14 (Finitely ramified). Let F be a valued field, with value groupand
residue field. F is finitely ramified iff

e eitherf has characteristic O,

e or chaff = 0, chaf = p > 0 and there are only finitely manyc I' between 0
andv(p).

F has ramification index 1 iff chér= p andv(p) is the minimum positive element of
r.

For instance, the fields gfadic numbers have ramification index 1, and their finite
algebraic extensions are finitely ramified.

Lemma 2.15. LetF be a finitely ramified valued field, arid be an immediate exten-
sion of F. Then for every & N* and xe K* there exists k& F such that yx—b) >
V(X) 4+ v(n).

Proof. Letc,d € F such that/(x) = v(c), andv(% —d) > 0. If charf =0, thenv(n) =0,
andb := cd satisfies the conclusion.

If charf = p> 0, let 1 be the minimum df. Letk € N such thak > v(n) (it exists,
becausd is finitely ramified). Defindog, by, ... € I as follows:

bp = cd,
bnt1 such thaw(x —b,) < v(X—bpi1).

Then,b := by satisfies the conclusion. O

The following lemma is [9, Corollary A.3.20]. For the readeronvenience, we
will repeat its proof.

Lemma 2.16. LetF be a finitely ramified valued field. Th&is algebraically maximal
iff it is Henselian.

Proof. The only if direction is trivial. Suppose th&tis an algebraic immediate exten-
sion of F, and letx € K.

Letn > 0 € N be the degree of overF, andc € I be the trace ok overF. We
have to prove that € IF.

SinceF is finitely ramified, its characteristic is 0, thiisis a well defined element
of F. By substitutingx with x— &, we can assume that the tracesois 0. If for
contradictiorx # 0, Proposition 2.15 implies that we can fing F such thav(x—b) >
v(X) +v(n). Thereforey(x) = v(b) and

V(x—b) > v(b) +v(n). *)

Let x = xg,...,%, be the conjugates of overF. Lemma 2.4 implies that(b—x;) =
v(b—x),i=1,...,n. Moreover,5;(x —b) = nb. Therefore,

v(n) +v(b) = v(nb) > min{v(x;—b), i=1,...,n} =v(x—b),

in contradiction with (*). O
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Finally, if you know what it means, note that a Henselian @lyitramified field is
defectless [10, Lemma 2.9]. The importance of Lemma 2.1@indiscussion stems
from the following lemma, which is proved in [11] and [10, Position 4.10 A].

Lemma 2.17. Let F be a valued field which is algebraically maximal. Lgti =
1,2 be two immediate extensionsIgfand x € L; \ F. Suppose that for everyg/F
V(X1 —Y) = V(X2 —Y). Then, there is an analytic isomorphism o#betweerF(x;)
andF(x2) sending x to X.

We will repeat the proof given in [11], mainly because it i®ghand elegant, but
also because the lemma is not explicitly stated in the papemlternative proof can
be made using [2, Theorem 2].

Proof. It suffices to prove the following:
Claim 1. For everyp € F[X], v(p(x1)) = v(p(x2)).

The proof is by induction om := degp. Forn = 0 there is nothing to prove, for
n=1itis the hypothesis.

Inductive step: the claim is true for every polynomial of cemgyless tham. We
have to prove it forp of degreen. If pis reducible, sayp = qd, then the conclusion
follows from the inductive hypothesis appliedd@andq’. Otherwise p is irreducible,
and w.l.o.g. we can takp monic.

For convenience, cal:=x;. If x € F, the conclusion follows immediately. Thus
we can assume thatg F.

LetV be theF-linear subspace df; generated by X, ... x"1:

V:=F®XF+- - +x"1F.

For everyg € F[X], perform Euclid’s division, obtaining = sp+r, with degr < n.
Definer =: gmodp, the remainder of (modulop). Note that €V for every remainder
r.

LetV:=F[X]/(p). V as aF-linear space is canonically isomorphicMotherefore
we can restrict to it the valuationof IL;. This restriction is a valuation of vector spaces,
but not necessarily of fields. Moreovéf,is an algebraic extension &.

Note thatv andV carry two different multiplication: the one dh has co-domain
IL1, but respects the valuation, the onelbhas co-domailV itself, but does not respect
the valuation. Here we use the multiplication\dn

If v(ghmodp) = v(g) + v(h) for everyg,h € V, then the multiplication ofV re-
spects the valuation, i.e(V,v) is a valued field, extendinj and contained irL;.
Therefore, it is an immediate algebraic extensiorFofHowever,F is algebraically
maximal, so eithex € F or degp = 1, a contradiction in both cases.

Otherwise, there exigy,h € V such thaigh = ps+r, with deg < n, andv(r) #
v(g) + v(h). Consequently

v(ps(x)) = min{v(gh(x)), v(r(x)) },

so
v(p(x1) = min{v(g(x1)) +v(h(x1)), V(r(x1)) } — vV(s(x1))-

But the degree of, h,r are less than, hence also the degree is less tham, so, by
inductive hypothesisi(g(x1)) = v(g(x2)), and the same fdm, r,s. Therefore,

V(p(x2)) = min{v(g(x1)) +V(h(x1)), V(r(x1)) } —=V(s(x1)) = V(p(x1)). O
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Definition 2.18. e For us, asequence(xi)i€| in a setSis a function from some
ordered sel without maximum intdS. | will usually be either a limit ordinal or
a subset (without maximum) of.

e Asequencéx),_, in avalued field" is pseudo-Cauchiff for every k> j > i €|
V(Xic — Xj) > V(Xj —%i).

e A sequence(x)
v(x —x).2

ic| Is convergingto x € F iff for every j > i €1 v(X; —-X) >

¢ Avalued fieldF is pseudo-completd every pseudo-Cauchy sequenceicon-
verges to somgc F.

Note that a pseudo-Cauchy sequence may converge to maryediffelements,
and that every converging sequence is pseudo-Cauchy. Tiowifgg is a theorem by
Kaplansky [2].

Lemma 2.19. K(IN)) is pseudo-complete. Every pseudo-complete valued fieleriséfian.
A valued field is pseudo-complete iff it is maximal (namehas no proper immediate
extensions).

We will also need the following well known fact.

Lemma 2.20. LetF be a valued field, with value groupand residue field.

IF is real closed iff it is Henseliar, is divisible andf is real closed. Iicharf = 0,
thenF is algebraically closed iff it is Henseliam, is divisible, andf is algebraically
closed.

2.1 Proof of Theorem 2.10
For this proof, we will use the following notations.
Notation 2.21. ¢ " is the Henselisation of a valued figkd

e L is the real closure of an ordered fidld

e [ is the divisible hull of a given ordered Abelian grolip with the ordered
induced byl".

e k is the residue field oK, and in general given a valued fieRj f is its residue
field.

e Given afieldk and a groug', k((I")) is the field of generalised power series in
the formal variableé. Note that is infinitesimal and satisfiegtY) = y.

e Every ordered fieldK is endowed with the natural valuation
LetF C K such that:
e k(MCF

@To avoid confusion with the convergence in topological seffier the valuation topology), we should
say that(xi)i6| pseudo-converges to Every sequence converging topologicallyxts eventually pseudo-
converging tox, but not conversely. However, we will not be using sequercgwerging topologically,
hence there is no risk of confusion.
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e There is a maximal (i.e. non extensible) truncation-clasathedding
@:F —Kk((I")) which is the identity ork(I").

We have to prove that = K. W.l.0.g., we can suppose thais the identity.
Proposition 2.22. F is Henselian.

Proof. k((T)) is real closed since it is Henselian. Llébe the real closure d, taken
insidek ((I")). Its residue field i&, and the value group is.

The embedding df in K and the cross-sectigfrom I' into K can be extended in
a unigue way to an embedding lofand a cross-section frominto F respectively. In
fact, giveny € I, there exist® € N such thany € . Defines(y) := s(ny)¥".

Therefore Lemma 2.11 implies thEtis truncation-closed.
Claim1. FH is equal toF Nk((I")).

Fist, we prove thaF" C Fnk((I")). k((F)) is Henselian and contairs hence
FH C k((I")). MoreoverFH is algebraic oveF, and, being a subset kf(I")), itis also
ordered, s&H C F. N

Now, we prove the reverse inclusiofi.Nk((")) is a field, and it is and algebraic
immediate extension &. Therefore, by Lemma 2.16, it is containedfi.

The claim implies thaFH is a truncation-closed subfield kf(")). Moreover,F"
is a subfield ofk, sinceK is Henselian. Hence, by maximality gf F™ = F. O

Definition 2.23. Let H be an extension df. Giveny € H, define
I(y,F):={v(y—a):acF}.
Proposition 2.24. F = K.

Proof. If not, letx € K\ F. By the previous propositioff, is Henselian. Lex’ € k((I))
of minimal length in the same cut asoverF. For everyy € I(x,IF) choose &y, € F
such thatv(x—yy) = y. The sequencegyy) is converging ta, therefore it is pseudo-
Cauchy, hence, by Lemma 2.19, it has a pseudo-lintit(iiir )). Definex' € k((I")) to
be a pseudo-limit ofy,) in k((I")) of minimal length.

Claim1. For everyy € F, v(x—y) = V(X —Y).

In fact, for everyy € I(x,FF), v(x—yy) = V(X' —yy). Moreover, ify:=v(x—y),
we can findA € A such thatA > y. Writing x—y = (x—Vy,) + (Ya —Y), we obtain
v(y—Y,) =y, and writing the same fot we obtain the claim.

We can then apply Lemma 2.17 with := K andL; :=k((I')), and obtainy an
analytic isomorphism oveF betweenF(x) andF(x'). Consequentlyyp is an isomor-
phism of ordered fields. Finally, Lemma 2.12 implies tfi&x’) is truncation-closed,
contradicting the maximality af. O

3 Generalisations

We will now try to generalise Theorem 2.10. We will drop thepbthesis thaK is
ordered, and take any valued fiétd We need to distinguish three cases:

characteristic 0: BothK and its residue fiel#t have characteristic O;

characteristic p: BothK andk have characteristip > 0;
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mixed characteristic: K has characteristic 0, whilehas characteristip > 0.

These are all the possible cases for a valued field. In thel ejasacteristic cases,
we will try to embedK in a field of generalised power series. However, we cannot
expect thatk can be embeddeki((I")), not even if we drop the requirement that the
embedding should be truncation-closed; the main obstacthe fact thatk could

be missing a cross-section. We shall see how to overcomelisisicle, introducing
sections with a factor set, and power series field “twistgdalfactor set.

Additional difficulties arise in the characteristircase: we shall see that further
hypotheses are needed.

In the mixed characteristic case, under suitable hypothege will be able to de-
compose the valuation dX into a valuation of characteristic 0 and a valuation with
value groupZ, and embed in a field of power series over a field of Witt vectors.

To prove these results, first we need to define factor setstady their properties.
Then, we will generalise Lemmata 2.11 and 2.12.

4 Factor sets and power series

Definition 4.1. Let AandB be two Abelian groups. A 2o-cycle(or co-cycle for short,
since we will consider only 2 co-cycles) is a map

fiAxA—B
satisfying the following conditions:

1. f(a,B) =£(B,a).

2. £(0,0)=f(0,a) = f(a,0) = 0.

3. f(a,B+Y)f(B.y)=f(a+B,y)f(a,B).

Definition 4.2 (Section). Given a valued fieldK, a sectionis a maps: ' — K* such

that
s0)=1

v(sa) =a
for everya €T.

Proposition 4.3. Given a section s, the map: ' x ' — K* defined by

f@p)= s
is a 2 co-cycle. Moreover, s is a group homomorphisr #f 1.
Proof.
F@ BV BN = s =S (a+ By (@B, 0

We could also add to the definition of 2 co-cycle the axiom

4. f(—a,a) =1,
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and to the definition of section the corresponding axiom

These additional axioms would not restrict significantly oge of 2 co-cycles and
sections, but they do simplify the computations.
The following definition is taken from homological algebra.

Definition 4.4. With the notation of Proposition 4.3,:= ds, theco-boundaryof s.

Definition 4.5 (Factor set). Let K be a valued field containing its residue fiédd A
factor setf is a 2 co-cycle whose image is containeckin If s: ' — K* is a section
and dsis a factor set, we will say thatis agood sectionor a section with factor sgt

Definition 4.6 (Power series).Given a 2 co-cyclg : T x I — k*, the field of gener-
alised power serids((I", /) with factor setf is the set of formal series

at,

with & € k*, nan ordinal number an(iﬁ)kn a strictly increasing sequence of elements
of . Sum and multiplication are defined formally, with the cdiufi

9P = f(a,B)to*h.

The axioms orf assure that the multiplication is associative and comnwvetat ((I", £ ))
is actually a field, with valuation given by

V(Z ath) :=y,

i<n
value group’, residue fielk and canonical sectios(y) :=tY. With this definition,s

is a good section, with factor sgt
k(I,f) is the subfield ok ((I, f)) generated bk U{tY:yeT }.

If we do not specify a factor s¢t we will always mean thaf is the constant map 1
(agreeing with the notatiok((I"))). Similar definitions can be given féronly a ring,
orI" only an ordered semi-group.

The following are well-known facts.

Lemma4.7. e Ifkisaring andl an ordered semi-group, théx{(I", /)) is aring.

e k((T',f))is afield iffl is actually a group andk is a field. In this casek((T", 7))
is maximal, hence it is Henselian.

e Anordering ork induces an ordering ok((I', £)). With this orderingk ((I', f))
is a real closed field ifk is a real closed field and is divisible.

e k((I',f)) is algebraically closed ifk is algebraically closed anfi is divisible.

In the sequel, we will try to embed in a truncation-closed &dyenselian fieldk
of equal characteristic ik((I", /)), for a suitablef.
First, we need to embddin K.
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Lemma 4.8 (Kaplansky). LetKK be a valued field, with residue fiekdand valuation
ring ¢. Suppose thakK has the same characteristic &sand it is Henselian and
perfect. Then, there is a field embedding — & such thaffa = a for every ac k.

Assume now thdy is a subfield ok, andig : fo — ¢ is a field embedding such that
Toa = a for every ac fp. Then,ig can be extended to a field embedding — & such
thatTa = a for every ac k.

Proof. In the first case, l€tC k be a subfield ok with a maximal embedding: f — &.
f exists, because the same prime field is in BondKK. In the second case, IELC k
be a subfield ok containingfo, with a maximal embedding: f — & extendingig.

W.l.o.g., we can suppose thais the identity.

Suppose for contradiction that there exists k \ f, and leth :=f(a) C k.

If ais transcendental ovéyletx be any element dK such thak = a.

If ais algebraic, we can reduce to the case when ehilieis purely inseparable,
or it is separable.

In the inseparable case\,pd C h for somed > 0. Letx e K such that™ = a
(it exists, becausK is perfect).

In the separable case, IgtX) < f[X] be the minimum polynomial o&. It is a
separable polynomial, hence, by Hensel's lemma, therésexis & such thaty(x) =0
andx = a.

In all three cases, we can extentb h(a) by fixing f and sending to x, a contra-
diction. O

If we fix once and for all an embedding k — K, we will say thatK containsk
and takea the identity. Moreover, by saying thit containsk, we imply that we are in
the equal characteristic case.

Now, we give some sufficient conditions for the existence gbad section.

Definition 4.9. Let K be a valued field, with value grodp and residue fielsk. The
characteristic exponertdf K is either 1 if chak = 0, or p if chark = p> 0. A good
sections: I' — K is p-goodiff it satisfies the following conditions for everye I':

Ls(-y)=sy
2. s(py) = (sy)P, wherep is the characteristic exponent &t
Note that the second condition is empty if ckat 0.
The following lemma is a slightly improved version of Lemntit [2].

Lemma 4.10. LetK be a valued field, containing its residue fi@ldSuppose thaK is
Henselian and perfect. L&t be its value group, and p be its characteristic exponent.
Then, there exists a p-good sections— K* (with some factor sef).

Assume now thad is a subgroup of , and g : © — K* is a map such that, for
everya,3 € ©,

1. (soa) =a;
2. dso(a,B) € k*;

3. 9(pa) = (s0a)P and $(—a) = (s0a) %, where p is the characteristic exponent
of K.

Then, there exists a p-good section's— K* extending . If sp satisfies only 1) and
2), then it can be extended to a good section s.
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Proof. In the first case, defin® := {0}, ands(0) := 1. LetR:=Z/p> C Q. K is
perfect, henc&™* andl" are in a natural wayr-modules. LetB C I' be a maximal
subset of” which isQ-linearly independent ove®. For everyA € B, choosex, € K
such that/(x, ) = A. LetY'C T be theR-submodule of generated b@®UB. For every
Y=0+r1A1+--+1A, €Y, define

sy:= (soé))x;\l1 X

Let A be aR-submodule of” containingY and admitting a maximab-good sectiors
extending the one oW If, for contradiction A # T, lety € ' \ A. There exist® € N*
such that(p,n) = 1 andny € A; let m be the smallest sual Lety := s(my), and let
ze K* such thaw(z) = y. Letw:=Y/z". Hencey(w) = 0. Leta=W € k*.

By Hensel's lemma, there existss ¢ such thak™ = w/a. Definesy := zx

For everya € A+ Ry, choose a representation

oa=A+ry,

for somer € RandA € A, such that the representation chosengdaris pA + pry and
the one for—a is —A —ry. We can extendto A + Ry by defining

s(a):=sA-(sy)".

It is easy to verify that, modulk*, s(a) is independent from the chosen representation
of a, namely the extension a&fis a good section, and thats actuallyp-good if 5 is,
and we reached a contradiction. O

5 Extending subfields of k((I"))

We will now studyk((T", £)) more in detail. In this sectiork is a field,I" an ordered
group,f : I xI — k* is a 2 co-cycle, an®K := k((I",f)) is the field of generalised
power series with factor s¢t

Notation 5.1. e X Jymeans thax is an initial segment oy.
o x«yiff xis aproperinitial segment ofy.
e supfx) is thesupportof x.
(K, Q) is atree namely, it satisfies the following definition.

Definition 5.2 (Tree). A structure(T, <) is atreeiff the following conditions are satis-
fied:

e |tis a partial order.

e |tis well-founded.

e Every non-empty subset df has a greatest lower bound {in.

e Foreveryae T, the set#(a) .= {y € K:y«ax} is linearly ordered.

Therefore, we can do induction en As usual, with abuse of notation we will say
thatT is a tree.
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Remark5.3. Every treeT has a minimum, theoot of the tree. Moreover, every chain
bounded above has a least upper bound fin

Proof. The g.l.b. ofT itself is the root. Given a chai@, the g.l.b. of the set of the
upper bounds ot is the l.u.b. ofC. |

Note that O is the root oK. Moreover, the following stronger condition holds
for K:

Remarks.4. Any upper bound of a chai@ in K without a maximum is a pseudo-limit
of C, and conversely. Therefore, every chairkirhas a l.u.b..

Definition 5.5. GivenA C T, we will write A > X iff for every y<x there existz € A
such thay <z

Remark5.6. If RC T is truncation-closedA C R and A > x, thenRU {x} is also
truncation-closed.

Remarks.7. If xe T, thenZ(x) > x.
Remarks.8. Letxe K andA»> x. If ce k andy e I, thenct’A > ct¥x.
Remarks.9. If x,y,z€ K, y < x, supgdy) < yandv(z—Xx) >y, theny <z

First, we will show how to perform some computationdkin The following facts
are well known.

Lemma 5.10. Let xy € K, A:= supfx) and B:= supgy). Then,
1) supgx+y) C AUB.
2) The support of xy is contained in the subgroup gjenerated by A/B.
3) If x+£ 0, then the support df/xis contained in the subgroup generated by A.
Leta,...,an-1 € K, with A := supga),
p(X) == X"+an_ 1 X"t fag € K[X],

and xeK such that x) = 0. LetA be the subgroup df generated by AU...UA,,
andA be its divisible hull.

4) supgx) is contained in\.
5) If H(p,x), thensupgx) is contained iM\ (see Definition 2.3).

Proof. The first two assertions can be proved by direct computation.

3) Let® be the subgroup generated Byf’ be restriction off to © x ©, andLL :=
k((©,f")). SinceL is a field andk € L, 1/x € L, proving the assertion.

4) Define:

e T be the divisible hull of .

e k andK be the algebraic closures bfandK respectively.

e §:T — K* be some good extension sfit exists by Lemma 4.10).
e f:T xT — k* be the co-boundary Gt
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e f':AxA— k* be the restriction of.

Define also: .
M:=k((F.f)) 2K
L:=Kk((A,f") CM
F:=KnL.

They all are maximal, and the tree-structureskgr¥, andLL are the ones induced by
M. Moreover L is algebraically closed, hence it containgroving that the support of
X is contained im\.

If £ =1, a similar method proves that the coefficients (of the posegies represen-

tation) of x are in the algebraic closure of the field generated by thefictmefts of
theg;.

5) This assertion too can be done by direct computation, leuprefer a different,
computations-free, approach.

Let ' be the restriction of to A x A. SincellL :=k((A, f)) is maximal, it is Henselian.
Moreover,p(X) € L[X] andHg,(p, ), hencex € L, proving the conclusion. O

For related computations about the coefficients of an elemik((I)), see for
instance [12, Theorem 6.1].

The following proposition is a version for valued fields otthmplicit function
theorem.

Proposition 5.11. Let F be a valued fieldZ be its valuation ring, pX) € J[X],
a,be & with 6 :==v(a—b) > 0. Assume that (@) =0 and (p(a)) = a < c. If
0 > o, then\p(b)) = a +d. In particular, if v(p(a)) =0, then \(p(b)) = d.

If q(X) € ¢[X] is a polynomial such that(®) =0 andy:=v(p—q) > a, then
5+a=v(g(a)>y.

Proof. Sincev(p) > 0,
p(b) = p(a) + p(a)(b—a) + O((b—a)°) = p(a)(b—a) + O((b—a)?).
Moreover,v(b—a) > v(p(a)) implies thatO((b—a)?) = o(p(a) (b—a)), hence

v(p(b) = v(p(a) (b—a)) = a +o.

v(p—q) > a implies that(q(b)) = a, so, exchanging andqg, we getv(q(a)) = a + 9.
Finally, let p; andg; be the coefficients gb(X) andq(X) respectively. Then,

v(p(b)) =v(p(b) —q(b)) = min{v(pi—g)+iv(b) } >v(p—q)=y. [

Lemma 5.12 (Ostrowski). If (Xi)iel is a pseudo-Cauchy sequence in some valued field
F and gX) € F[X], then(p(x));, is eventually pseudo-Cauchy. If moreovar), ,
converges to x, the(p(x)),_, converges to {x).

Proof. See for instance [13, Lemma 9 Chapter 2]. |

Hence, if(x;). , is pseudo-Cauchy sequencefinandp(X) € F[X], there are two

cases: either

i€l

v(p(a)) =v(p(aj)) (5.1)
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for all sufficiently large, j € I, or

v(p(a)) < v(p(a)) (52)
for all sufficiently largel < j €1.

Definition 5.13 (Type of a sequence)A pseudo-Cauchy sequen@&:)iel in F is of
transcendental typéwith respect taF) iff (5.1) holds for every polynomiap(X) €
F[X]. If, on the other hand, (5.2) holds for at least one polyndmiX), we say that
(x),, is of algebraic type

The distinction plays a fundamental role in [2].

Proposition 5.14. If H is an extension df with the same value group, Iy, F) be as
in Definition 2.23. Then,

1. I(y,H) is an initial segment of .

2. If His an immediate extension Bf thenl(y,F) has no maximum. In this case,
if y € H\F, then there is a pseudo-Cauchy sequeﬁxp)qel in F converging toy
and without pseudo-limit iff.

Proof. If ye F, then [y,F) =T, and the conclusions are obvious. Otherwyse H \ F.

1) Leta =v(y—a) € l(y,F), andB < a €. Letb € F such thatv(a—b) = S (it
exists, becausE has the same value group$. Sincey—b= (y—a)+ (a—b),
v(y—b)=B.

2) Suppose, for contradiction, thefx —y) is the maximum of {y,F) =T. Letac
F such thatv(x —y) = v(a). Letb e FF such thatv(b) =0 andXY = b. Then,
v(x— (y+ab)) > v(a) = v(x—Yy), a contradiction.

Choose for every € I (y,F) x, € F such thaw(y—xy) =y. The sequenc(exy)

. ) yel(y,F)
satisfies the conclusion. O

Proposition 5.15. LetF be a valued fieldF is algebraically maximal iff every pseudo-
Cauchy sequenci), , in IF of algebraic type has a pseudo-linin ).

Proof. <) Suppose that, for contradictio(nzq)iel is a pseudo-Cauchy sequence of
algebraic type without pseudo-limit i [2, Theorem 3] implies there exists an imme-
diate algebraic extensidnof F where(xi)iel has a pseudo-limit. Henck,is a proper
extension offf, contradicting the fact thd is algebraically maximal.

=) Suppose not. LeE be an immediate algebraic extension®fx € E\ F, and
p(X) € F[X] be the minimum polynomial of. Proposition 5.14 implies that there is a
sequence{xi)i€| in F converging tax and without limit inlF, and Lemma 5.12 implies

that (p(x)),, converges to 0. Thereforéx ), , is of algebraic type. O
The following Theorem is a generalisation of Lemmata 2.1d 242.

Theorem 5.16. Let SC K be a truncation-closed subsetléf Then, the following sets
are also truncation-closed:

1. The group generated by S.
2. Thering generated by S.
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3. The field generated by S.
4. The Henselisation of the field generated by S.
In particular, if F C K is truncation-closed, then alsg” is truncation-closed.

The proof of the theorem is in subsection 5.1.

Let IF be a subfield oiK, andIL be the relative algebraic closure BfinsideK. If
chark = 0, thenLL coincides with the Henselisation Bf Otherwise, it will in general
be bigger. Later, we will prove that i is truncation-closed, then al§ois truncation-
closed, under the condition that the factor sepigood (namely, that the canonical
section orK is p-good).

Corollary 5.17. LetF be a truncation-closed subfield &f, and (Xi)iel be a pseudo-
Cauchy sequence iR without pseudo-limit irf. Then, there exists & K which is a
pseudo-limit of(x),_, and such thaF (x) is also truncation-closed.

If (Xi)iel is of transcendental type and y is any pseudo-limit hisome extension
L of F), then there is an analytic isomorphism betwé&wx) and F(y) overF and
sending x toy.

Proof. By Theorem 5.16, it suffices to find a pseudo-limisuch thatF U {x} is
truncation-closed. Denotgx; —Xj) i < j by yi. Letx € K be some pseudo-limit
of (x),, (it exists, becaus& is maximal),y; € K be the truncation ok at ;. yi <y;

iff i < j; letx be the l.u.b. offyi),_, (with respect to the orde!).
Claim1. xis a pseudo-limit ofx;), ;.

V(X—Xi) = ¥, V(X—Vi) > ¥, hencev(x; — X) > ¥, proving the claim.
Claim2. y; € IF for everyi € 1.

In fact,v(xi — Vi) > v and suppi < ¥, thusy; < x;. BesidesF is truncation-closed,
andx; € F, thereforey; € FF.

Finally, FU {x} is truncation-closed, proving the first part of the corgllar

The second part of the corollary is [2, Theorem 2]. O

5.1 Proof of Theorem 5.16

We will make use of ideas from surreal numbers [14]. Asseriias obvious. Note
that an arbitrary union of truncation-closed subsets is iitial. Therefore, for every
RCKk((T',f)), we can definghe maximal truncation-closed subsetRf namely the
union of all truncation-closed subsetskf

Ring: Letxye K. We will write

x=" at"

i<n
y= z bjt)‘i

j<m

for some ordinal numbers, n, with thea; andb; all different from 0. Givem' < n, X
will be the truncation ok atn:
Xl = 2 aity|7
i<n/

and similarly fory'.
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Let R be the maximal truncation-closed subset of the ring geedray S By
Assertion 1Ris a subgroup oK. Letx y € R By definition of product,

suppxy) € {a+bj:i<nj<m}.
If zaxythere exist? < nandm’ < msuch that

3 := Yy + Ay = min(supp(xy) \ SUpHz) ) = V(xy—2).

Therefore,

x=X)y-y)= 3 aibj £ (i, At A
m<j<m

Letw:=xy— (x—X)(y—Y) =xy +Xy—Xy. Hence,
vV(Xy—w) =90

andz < w.

Remark 5.6 implies that for the second assertion it suffioeshbw thatR > xy.
This can be done by induction: we can suppose that we havegthe claim for every
(X,¥) such thak™<I x, ¥ 'y, and at least one of the inequalities is strict. Howewas
a sum of products of this kind, hence Assertion 1 implies hatR and consequently
Assertion 2.

Field: Letus prove Assertion 3. L&be the maximal truncation-closed subset of the
field generated b By Assertion 2R is a subring ofK. By Remark 5.6, it is enough
to prove that if O£ x € R, then there existd C R such thatA > 1/x. The construction

of Ais done inductively.

Claim5.18 We can reduce to the case whér) = 0.

In fact, letb := apt¥ be the leading term ok. Let z:=x/b. Note thatb € R,
RU{Y/b} is initial (and therefore Assertion 2 implies that € R), andv(z) = 0. If we
can findA C Rsuch thatA > 1/z then, by Remark 5.8A > x, and$A C R, proving the
assertion.

So, we can suppose thatx) = 0. Lety := 1/x. Start with Oc A. Suppose that we
have already constructeds A and let 0 X <x. We add toA the element

a = w (5.3)
X

By induction onx, /¥ € R, and therefora@’ € R. v(x) = 0, hencev(xX') = 0.
v(y—a) =v(1+ (X —=x)a—Xy) —v(X) =v(x—X) +v(y—a) —v(X) = v(x—X) + v(y—a).

The support of is a subset of the group generated by guppTherefore, ify’ <y, then
there existd € Nandy, ...,y € supfx) such that

yi+---+y = min(supp(y) \ supp(y)) = v(y—Y).

It suffices to prove the following
Claim5.19 For everyi <| there isa € A such that

viy—a) >y +--- 4y
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By induction oni, we can suppose we have already foar@l A such that
vy—a) =yt o
Let X be the truncation af at y;, and leta’ as defined in Equation (5.3). Then,
viy—a) =v(y—a)+V(x—X) > (i + -+ Y1) + 1,

proving the claim. If we apply the claim io= |, we gety’ < a, proving Assertion 3.
Here is an examplex = 1—t, with £ = 1. Consequently = 1, andx' —x ='t.
The elements i\ are given by the sequence

ap=0
ani1 = 1+tan7

i.e.an=1+t+t2+-.-+t" and
Ve=1+t+t 4.

Henselisation:  For Assertion 4, leF be the maximal truncation-closed subset of the
Henselisation of the field generated 8yBy Assertion 3F is a subfield oK. We have
to prove that it is Henselian.

Definition 5.20. Let p,q € K[X], p= Si<paX', g= Fi<mbiX', degp=n. q < piff
m < n and there exists< n such that; = b; for everyi > |, while b <g.

(K[x], <) is a well-founded partial order, therefore we can do indwctn it.
Let p[X] € F[X] andb € K. | remind thatH(p,b) means thaip(X) is monic,
v(p) =0, v(b) >0, p(b) =0 andv(p(b)) = 0. We have to prove that H (p,b), then
b € . SinceF is maximal initial, it suffices to prove tht> b.

We will proceed by induction op. Assume that

X,
p

p(X) =ag+aX + - +an_1 X"+ X"

Let A be the group generated by sipp) U- - - Usupfa,). Then, supfb) C A. Let
c<b, and

3 :=v(b—c) = min(supgb) \ supgc)).

Therefored = y1+---+y for somey € supfa;;). Since we can suppose théat> 0®),
there exist O< y € suppam such thaky > supfb) for somem k € N.
Leta’ be the truncation ddy, aty (namely,a <ay, andv(a —an) = y), and

q(X) = p(X) + (& —am)X™ = X"+ an_1 X"+ A X" 4 aX M

Then,q<p andv(q— p) = y. By Hensel's lemma, there existse K such that
v(b—d) > 0 andq(d) = 0. H(q,b) is true, therefore, by inductive hypothesiss F.
Moreover, Proposition 5.11 implies th&d — b) > .

Now proceed using Newton’s algorithm and define

do:=d

., P(d)
G =9 )
to findd; € F such thaw(d; —b) > iy. Thereforey(dyx.1 —b) > ky, soc < dk, 1, proving
thatFF > b.

()As opposed t@ = 0.
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Proposition 5.21. Letchark = p > 0. Suppose that,® € K. Then ab iff bP<aP. In
general, if
a=y ayt,
yE

then
aP =3 a, e t?, (5.4)
Y

where G := £(v,y) f(y,2y)---f(v,(p—1)y) € k.

The factor sef is calledp-good ifc, = 1 for everyy e I'.

Proof. The first assertion is an immediate consequence of the seg@ndBy defini-
tion,
aP = (Z aycyt?) - (z aycytY)
Y y

ptimes

Hence, the/-monomial ofaP is

(ap)y;: Z ayl.‘.ayptyl...tyl): Z ayl"'aypf(yl,---#p)ty. (5.5)
it Fr=y it Fro=y

where
th.. .t
f(yl7 ~~7Vp) tyl+ “+Vp
Therefore,
a= Zaef(y7ay)tpy+ z ayl...aypf(y]_’.”’yp)tleF'“JFVp’ (56)
ye V1, M)EMP\A

=(5.4)

whereA is the diagonal of P. We have to show that the second summand in the
previous expression is 0. Fix..., ¥, € [ not all equal to each other, say

ni=...=W
Vn1+1: e = Vn1+n2
yn1+...+nk71+1: P yp,

with ny+--- + g = pandya,, Yny+n,, - - -, ¥p all distinct. The monomial

Qy anf(Vlv LR yp)ty1+-~-+yp

appears in equation (5.6) as many times as the number of Waig@buting p objects
amongk boxes of capacityy, . .., Nk respectively. The latter is equal to

QO

=1

However,k > 1 and all then; are non-zero, thus £ n; < p. Moreover,p is prime,
hencep | m, and the conclusion follows.
An alternative proof:
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1. Using the formuldx+y)P = xP +yP, prove equation (5.4) in the case s(apis
finite.

2. Forthe general case, observe that in equation (5.5) dilitenumber of mono-
mials ofais involved and apply the above particular case. |

An immediate consequence of the previous proposition isaf@ving lemma.

Lemma 5.22. Suppose thathark = p > 0. Let[F be a truncation-closed subfield of
K, andF :={aeK:aP e F}. ThenF is also truncation-closed.

6 Truncation-closed embeddings in characteristic 0

We are now ready to state and prove the embedding theorenaiiaatkristic 0. LeK

be a valued field, with value group and residue fiel¢k of characteristic 0. Assume
thatK contains its residue field, and that there exists a goodsestic — K*; let f be

its factor set. Note that iK is Henselian, these two assumptions hold, by Lemmata 4.8
and 4.10.

Letk((T,f)) be the field of generalised power series with factorfseinds : I —
k((T',f)) be its canonical section. Note also thdl,f) is a common subfield of
k((T',f)) and ofK.

Theorem 6.1. With the above notation, KK is Henselian, then it has a truncation-
closed analytic embedding in k((I,f)), which is overk and commutes with, s,
namely So @ =s.

Proof. Let @ be a maximal truncation-closed analytic embedding of a sladfi C K
in k((I,f)) overk(l',f). W.L.o.g., ¢ is the identity. Theorem 5.16 implies thAtis
Henselian, and Lemma 2.16 implies that it is algebraicakyimal.

Suppose, for contradiction, thBt£ K. Letx € K\ F. Proposition 5.14 implies that
there exists a sequen@a)i€| in F converging tax and without pseudo-limit if¥.

SinceF is algebraically maximal, by Proposition 5.](5q)i  Is of transcendental
type. Corollary 5.17 implies that there existsc k((I', 1)) such thatX' is a pseudo-
limit of (Xi)iel andF(x) is truncation-closed and analytically isomorphidix) over
IF, a contradiction. O

Corollary 6.2. LetK be a Henselian field such thaharkK = chark = 0. Then,K has
a truncation-closed embeddinglktd(l", / )) for some factor sef.

Proof. We have proved that every such field contains its residuedigicadmits a good
section with some factor s¢t Apply Theorem 6.1. O

Corollary 6.3. If K is an ordered Henselian field, théR has a truncation-closed
embedding irk((I", )) for some factor sef. Consequently, every ordered Henselian
K has integer part.

Proof. Every such field contains its residue field and admits a gootiosewith some
factor setf. Therefore, the first part of the corollary follows immedigtfrom Theo-
rem 6.1.

For the second part, we can reason as in [1]. O
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Proposition 6.4. Assume thaK is Henselian and contairls (but not thatchark = 0).
Suppose that its value group is the integers. TH&mhas a truncation-closed analyti-
cally embeddingp in k((Z)), which is ovek and commutes with s.

Proof. Since the value group &, we can find a cross-sectien Z — k*. Moreover,
the completiol) of k(Z) is k((Z)) and containd. Finally, any subfield ok((Z))
containingk|t] is truncation-closed. O

7 Field families and subfields of ~ k((I")) of bounded length

Before examining Henselian fields of finite and mixed chanastic, we will study
further the truncation-closed subfieldskdiI")).

Letk be a field,l be an Abelian ordered group, aid := {ye Tl :y>0}. Fix
once and for all a 2-co-cycle: ' x N — k*.

7.1 Field families

ForeveryACT andyeT, defineA+y:={a+y: a € A} and[A] to be the semigroup
generated byA (namely, the set of finite sums of elements fréjn Let A be a family
of subsets of .

Definition 7.1. 2 is afield-familyin I" if
1. EveryA e 2 is well-ordered.
2. Foreveryy €T, the singletor{y} is in 2.
. ForeveryA Be A, AUBc 2.

3

4. ForAc2andBC A Be Xl

5. ForeveryAc 2 andyel,A+ye X,
6

. ForeveryAe A suchthaR C 't [A] € 2.

k((2,f))isthe subsetdf((I, f)) of power series with support . Field families
were introduced by Rayner [15].

Lemma 7.2. If A is a field family inl", thenk((%,f)) is a Henselian subfield of
k((F.f))-

The proof is a modification of the one given in [15].

Proof.
suppx+y) C supgx) Usupdy) and
supp(xy) € SUpf(X) + SUpMY).

Thus,k((,f)) is aring.

If v(x) =0, then, by B.H. Neumann’s lemma, supf) C [supgx)], hencek((2L,f))
is a field.

Let p(X) € k((A,£))[X], xe k((T',£)) such thaw(p) = 0, v(x) > 0, p(x) = 0 and
v(p(x)) = 0. We have to show thate k((2A,1)).

)As a metric space
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Define supfp(X)) as the union of the supports of the coefficientsp(X). Let
Q:= [supp(p(X))] € A, and< be the set ok; € k((I")) such that supf) € Q, and
0<Vv(x—X) e TU{w}. Define a partial order off, x; < X;j, to meanv(x —X) <
V(Xj —X). Any chain in¥ has an upper bound if, for if {x; :i € | } is a chain, and, for
everyi € |, yi 1= v(x —X), then we can defing:= 5, a,t*, wherea, = a&” if A<y

for somei € | (wherex; = 5, af\i)t’\), anda, = 0 otherwise. Note that supp C Q by
construction. It is then clear thgte <.
By Zorn’s lemma¥ has a maximal element, sgy. If yo # X, let

. P(yo)
7=V o)
Theny; € T, andv(y1 —X) > V(Yo —X), contradicting the maximality ofp. O

7.2 Examples
721 k((T,f))e

The family of all well-ordered subsets &f is a field-family (by B.H. Neumann’s
lemma). IFACT is well-ordered, @A) is the order-type of.

We remind that an epsilon number is an ordiaaluch thaiw® = ¢ (ordinal expo-
nentiation).

Lemma 7.3. Let ¢ be an epsilon number ariil be the family of well-ordered subsets
of I' of order-type less thaa. Then2l is a field-family.

In this casek (2, f)) is denoted bk ((T", £))e. ®

Proof. The only difficult point is 6. However, [16] prove thatC I''* is well-ordered,
then q[A]) < w®*®, and this concludes the proof. 0

Corollary 7.4. If € is an epsilon number, thet((T",  ))¢ is a Henselian field.

7.2.2 Algebraically closed fields

The following is a well-known fact.

Lemma 7.5. LetK be a valued field, with value groupand residue fieldk. Assume
that chatk = 0. Then,K is algebraically closed iff it is Henseliatk, is algebraically
closed and is divisible.

Let k be an algebraically closed field, amdbe either chak if it is > 0, or 1
otherwise. Suppose thatis a p-good factor set. Leff be the divisible hull of".

Define2 to be the family of well-ordered subsetslotontained in some subset of
the form 1 r
iU
d keN P

asd varies inN*. 2 is a field family. For the following theorem we need some facts
that we will prove later.

®)The usual definition ok((I,f))e, e.g. in [7], is only fore a cardinal number, and asks that the car-
dinality of the support is less or equal o | hope that the present lemma justifies our departure from that
convention.
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Theorem 7.6 (Rayner). K(2)) defined as above is an algebraically closed field.

k((2()) is a Henselian valued field, with algebraically closed resifleld and di-
visible value group. If chde =0, k((2()) is algebraically closed, by Lemma 7.5. If
chark = p, the conclusion is immediate from Lemma 9.9 and Proposfi8n

7.3 Ax-Kochen-Ershov theorem
Let OO be an uncountable cardinal number.

Definition 7.7 (O-pseudo-complete) Let K be a valued fieldK is [1-pseudo-complete
iff every pseudo-Cauchy sequence of length strictly leas th has a pseudo-limit in
K.(©)

Remark7.8. LetK be avalued field. IK is O-saturated (in the sense of model theory),
then it isO-pseudo-complete.

Remark7.9. k((I',f))g is O-pseudo-complete.

Remark7.1Q Let &, be then®™ epsilon number, fon an ordinal, and] an uncountable
cardinal number. Thergg = 0.

Proposition 7.11. Let m be an ordinal numbelf a truncation-closed subfield of
K((T',))e, and (xi)iel a pseudo-Cauchy sequencéfinThen, there exists&k ((I', £ ) ) ey,1
which is a pseudo-limit o(xi)i€| and such thaF(x) is a truncation-closed subfield of
KT f)) e

If (X‘)iel is of transcendental type and y is any pseudo-limit fhisome extension
L of F), then there is an analytic isomorphism frd{x) to IF(y) overFF and sending x
toy.

Proof. Definexas in Corollary 5.17. Sinceis a supremum of a sequencekifil", £ )) ¢y,
its length is less thagy, 1. HenceF(x) CK((I,£))en.+-
The second part is the same as in Corollary 5.17. d

If F C K is afield extension, trde{g(/F) is the transcendence degreekobverF.

Theorem 7.12. LetKK be a Henselian valued field with residue fi&ldf characteristic
0 and value group . Suppose thak containsk and that there is a section:§ — K*
with factor setf. LetOd be an uncountable cardinal number such that
trdeg(K/k(T",f)) <O.

1. There is a truncation-closed embeddindgkoin k((I',  ))o, preserving the sec-
tion.

2. If moreoverK is (0-pseudo-complete, then every such embedding is onto.

The second assertion is a classical theorem by Ax, KocherEasitbv (see for
instance [17, 18, 19, 7, 20]).

Proof. Let (Ci)i<D be a transcendence basisI§fk(I", f). DefineKg := k(I f),
Kn :=Ko(ci ;i <n). Then,K = KH. Define, by induction om, a truncation-closed
embeddingg : KH — K((T',£))e,.

If nis a limit ordinal, theng, = U, @.

®)Note that the definition ofl-pseudo-complete is different from the one given in [17] (rehihey ask
that the length of the sequence is exaélly The reason is apparent in the following discussion.
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If n=m-+1, apply Proposition 7.11 to extemns, to @,.

¢ is the embedding we were looking for.

For the second part, suppose for contradiction, that, oredave embedded
in a truncation-closed way iR((T"', f))o, x € k((I',#))o \ K is of minimal length.
Therefore,x is a pseudo-limit of the sequentﬁ&i)iel of its proper initial segments.
However, the length of such a sequence is less [[Ih,c";hnence(xi)iel has a pseudo-limit
yin K. Moreoverx <y, contradicting the fact th& is truncation-closed. |

There is a kind of converse to Theorem 7.12.

Lemma 7.13. Let k be a field of characteristi®, K a Henselian valued field with
residue fieldk and value groud”, and 0 an uncountable cardinal number. Assume
thatK containsk, and lets ' — K* be a good section wittis= 7. If K is 0-pseudo-
complete, then there is an analytic embeddin&k @™, /))o in K overk(l', ) and
preserving the section.

Proof. The proof is fairly routine: we will build the embedding inctively. k(I', )
is a common subfield of botK andk((I", f))g. Let ¢ be a maximal (namely, non-
extendable) embedding from a truncation-closed subKedd k((I", £ ))g containing
k(I',#) in K. We have to prove th& =k((I', 7 ))o.

Suppose not, and assume tlgats the identity. F is Henselian, otherwise, using
Corollary 7.4 and Theorem 5.16, we could extapdo the Henselisation df. Let
xe k((I',#))o \ F of minimal length; define(xi)i<a to be the sequence of truncations
of x; sincex ¢ I, a is a limit ordinal and(xi)i<a has no pseudo-limit ifi. Obviously,

a <0 and(x),;_, isinF and converges te. SinceK is 0-pseudo-completexi), _,,

has also a pseudo-limit € K. F is of residue characteristic 0 and Henselian, therefore
Lemma 2.16 implies that it is algebraically maximal. By Rusjion 5.15,(x;)i<a is

of transcendental type. [2, Theorem 2] implies th&t) is analytically isomorphic to
F(X') overF, a contradiction. O

Using the same proof, Theorem 7.12 can be strengthened ifoltbering way.
With the same hypothesis df, let k < 0 be some epsilon number, &y be a sub-
field of K containingk(I, /), and @ be a truncation-closed embedding frdify in
k((I,f))« (analytic and ovek(l", f)). Then, there is a truncation-closed embedding
@of Kink((I',f))n extendingg.

Similarly, in Lemma 7.13 we can also suppose to have afeldntainingk (T, 1),
and an analytic isomorphisigiy from a truncation-closed subfield kf(I", £ ))g in F
overk(l', ). Then there exists an embeddiggof k((I",))n in K extendingyo and
preserving the section.

Note that the use of the factor getlid not add any additional difficulty to the proofs (except the
notational burden of, for instance, writihg(T", £ )) instead ok ((I"))).

N. Alling [21] proved that if0 is a regular cardinal, such thgi_5 2¢ <O, andl’
is the ordered divisible Abelian group which is saturatedi@fpower], thenR((I"))g
(resp.C((I"))p) is the real closed (algebraically closed) field, which isisgted and of
power[].

8 Surreal numbers

Let K be an ordered Henselian field. In this section, we will ingede the existence
of an initial embedding fronK in No, the field of surreal numbefdo. The results
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stated here will not be used in the rest of the article. Tleegif you are not interested
in surreal numbers, you can skip it (if you do not know whatealrnumbers are, you
should read [14]).

Definition 8.1. Let a,b be surreal numbers is simplerthanb, in symbolsa < b, iff
there exists sets of surreal numbers’ andR,R suchtha. C L', RCR, L' <R,
a={L|R}andb={L'|R}.

A subsetS C No is initial iff for every b € Sand everya € No such thaa < b,
acsS

Itis easy to see the(tNo, j) is a tree. The fundamental relation between the linear
order< and the partial order onNo is that in every<-convex subs& SC No there
is a=<-minimum.

OnNois also defined a power-series structure; more precisielys isomorphic to
the ordered fieldR((No)) (the group of exponents Mo itself). The image ok € No
under the canonical cross-section is denoted with (therefore w := w? is infinite).

Remark8.2. If x <y e Nothenw* < oV.

Proof. If x={xt | xR} is the canonical representationotthen
w":{o,erL:r>OeR|szR:s>OeR}7

and similarly fory. Butx <y, thereforex <y for everyx < x, sorw* is an option in
the formula fora. O

Lemma 8.3. LetK be an arbitrary initial subfield oNo. Then,K is also truncation-
closed, and therefore admits a cross-sectiwith respect to its natural valuation)v

Moreover, its value group is also initial. Finally, K contains its residue field as
an initial subfield.

Proof. The first assertion is obvious. Lgtc I', and lety’ < y. We have to prove that
y €. Sety = —v(a) for somea € K. Write the normal form o&

a=agw'+---

Then,wY < a, thereforew! € K. By Remark 8.20wY €K, hencey €T, and we have
proved thaf is initial.

The valuation orK is the natural valuation, therefore the residue field, in a
canonical way, a subfield &, and every subfield oR is initial. We have to prove
thatk C K. Letae k. Then, there exists € K such thatx = a+ €, with v(g) > 0.
Consequentlya < x, soa € K. O

Theorem 8.4. LetK be an ordered field, v be its natural valuatidnthe residue field
andrl the value group. Assume that:

e Kis Henselian
e [ has an initial embedding iNo as an ordered group.
¢ K admits a cross-section.
Then, there is an initial embedding Kfin No as an ordered field.

The previous theorem is also a consequence of Theorem 2d&ther with [3,
Theorem 18].

(MNamely, ifa<be S ce Noanda<c<b,thence S
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8.1 Proof of Theorem 8.4

Any ordered fieldF is endowed with its natural valuation. In this proﬁ‘fwill denote
its real closure. Proceed as in the proof of Theorem 2.1Qe#adsof Lemmata 2.11
and 2.12, we will use the following two lemmata, proved in][22

Lemma 8.5. LetF be an initial subfield oNo. ThenF is also initial.

Lemma 8.6. Let S be an initial subset Mo. Then, the field generated by S is also
initial.

The initial embedding oF in No induces in a canonical way an initial embedding
of k((I")). LetF C K such that:

o k(I CF.

e There is a maximal initial embeddingof F.
We have to prove th& = F. W.l.0.g., we can suppose thais the identity.
Lemma 8.7. IF is Henselian.

Proof. Lemma 8.5 implies thaF is an initial subfield. MoreovedfH = Fnk((I)).
ButF andk((I")) are both initial, s&™ is. O

Lemma 8.8. F = K.

Proof. If not, letx € K\ FF. By the previous propositiorf, is Henselian. Lex’ in No
be the simplest element satisfying the same cut ager IF (it exists by definition of
No). ThereforeF U {X } is an initial subset oNo. Lemma 8.6 implies thdf(x) is an
initial subfield ofNo, contradicting the maximality ap. O

9 Additive polynomials and power series fields

In this section, we will study the finite characteristic case
When we will say group, we will always mean Abelian group (sslspecified
otherwise). Let

¢ k be a perfect field of characteristic> 0, andk its algebraic closuré®

e I be an ordereg-divisible Abelian group, and its divisible hull;

e f:T xT —k* be ap-good 2-co-cycle, andl: I x I — k an extension of toT;
o K:=k((T',f)), andK :=k((T,)) be the corresponding power series fields.

Definition 9.1. Let F be a field of characteristip > 0. An additive polynomials
a polynomialq(X) € F[X] such thatg(x+y) = q(x) + q(y) for everyx andy in the
algebraic closure df.

A p-polynomialis a polynomial of the forng(X) — ¢, wherec is a constant term and
g(X) is an additive polynomial (cf. [23]).

An additive polynomial is of the formragX +a;XP +--- + axP".

®p-closure is also enough.
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9.1 Artin-Schreier polynomials

Fix d € N* andb € k*. Letq:= p%, andk[X] 5 q(X) := X% —bX. Note thaig(X) is an
additive polynomial. B
We wish to study the solutions K of the equation

q(X)=a (9.1)

with a € K; more precisely, we will give the power series expansiorese solutions.

Remark9.2 Letx be a solution (irfK) of (9.1). Theny € K is a solution of (9.1) iff
X—Y s a solution ofg(X) = 0.

Let A :=Z/p~ = { p—’r‘n ‘nezZ,me N} andF = k((A\)) be the power series field
with coefficient ink, exponents i\, factor set 1, and where we us@stead ot©).

Proposition 9.3. A solution inF of the equation X= bX%+s is
f(sb) = i]bl+q+q2+q3+"-+Q"‘lsQ”.<1°> (9.2)
n=

A solution of ¢X) =s is

) Sqn
e ) e (12)
g (s b):= n;) STV Ta—— L (9.3)
A solution of ¢X) =stis
g (shb) = i pfatye tya Yl (12) (9.4)
n=1

The proof is by direct computation, using Proposition 5.%le can see that the
coefficients ofy™ are ink, and their exponents are i

Let .# be the ideal of infinitesimal elements B. For a fixedb € k, g™ (s; b)
defines an analytic function from# into itself, which we will denote with the same
name.

Remark9.4. If ze K is purely infinite (namely, sugp< 0), theng(z b) converges,
hence it defines a function af

Proof. Given a sequenday, by, ... € k, let

92) =) bnijl‘.

neN*

We need to show that if€ K is purely infinite, therx:= g(z) is a well defined element
of K. Namely, we have to check that

1. VA €T there are only finitely mangn, y) € N* x suppz such thath = q—’ﬁ, and

®)Namely, the elements @ are formal sumg . a,s” with well-ordered support.
(19The 0-term of the summation &
(1The 0-term of the summation §%.
(12)The first term of the summation k=74
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2. suppis well-ordered.

We will prove only the second point (the first is done in a simivay). Assume, for
contradiction, that there exists an infinite sequehce A > A3 > --- € suppx. Then,
for everyi € N*, there existy; € suppz andn; € N* such thatA; = G¥IT' Since supp
andN~* are well-founded, after taking a subsequence, we can astang < ...
andn; < ny.... Since all they are negative, this is a contradiction. O

By direct computation, it is now easy to see that:
e if v(a) > 0, a solution of Equation (9.1) 3" (a; b);
e if ais purely infinite, a solution ig~(a; b);
e if ack, a solution is a certain elemety € K.
Hence, in general a solution of Equation (9.1) is
-~ T ~
g (ayt;b)+co+ Z)g*(ayty; b) € k((—5./))-
y< y> P
In particular, a solution of the equation

X9=X+a (9.5)

0 o]

- y;) Z (at")Ve" 4 co— y;)n;(aytvw”, (9.6)

wherecy € K is a solution ofX% = X + ag.

Note also that ifv(a) > 0, then(X% — bX — a)(0) = a, which is infinitesimal, and
v(q(x)) = v(b) = 0 for everyx, thus the existence of an infinitesimal solutioa K is
also implied by Hensel’s lemma.

Everyx € K can be written uniquely as=x~ +xo+x*, wherex™ is purely infinite,
Xo € k, andv(x") > 0. Therefore, if we defing*(y) := g*(y; 1), (9.6) becomes =
g (a)+cot+gt(ah).

Hence, the support of any solutiarof Equation (9.5) is contained in

U Supa” )U{O}U L a"suppa®).

n
n>1 q n>0

Givenme N, define

m

(@) = —n ;Zb ayty Eb(aﬁ)qn,

ZOatV ' = ( a )V
y<

Note thatg!, andg* are additive functions.

(9.7)

HMB

Lemma 9.5. Letac K, x as in Equatior(9.6). If v(a) > 0O, then
{g"(b)+gn(@a—b):bta,0<meN}>x
If a is purely infinite, then

{g +gma b) b<a0<meN}>x



9 ADDITIVE POLYNOMIALS AND POWER SERIES FIELDS 31

Proof. Assumev(a) > 0. Lety<xxanda :=v(y—x). Then,a = g™ 1A for somem>1
and 0< A € supfa). Letb be the truncation catA (namelyb<aandv(b—a) =A)
and

z:=g"(b) +gh(a—b).

It remains to show that(z—x) > a.

x—z=g"(a)-g"(b)—gh(a-b) = (g" —gh)a-b)=- 3 T (at")*.

n=my>xA

Thereforey(x—2z) > g™ > g™ 1A =a.
If ais purely infinite, lety<x anda := v(y—x). Then,a = ﬁ for somem> 2
and 0> A € supfa). Defineb to be the truncation i atA, and

2:= g (b) +gm(a—b).

Thenv(x—2) > & > ﬁ =a. O
Hypothesis A.Let K be a valued field; be its value group anklits residue field, with
chak = p. If p=0, the hypothesis is vacuous.fgf> 0, then

1. Any polynomial of the form

X"+, 1 XP" by XP o+ agx+ b,
with coefficients irk has a root irk.
2. T =prl.

Kaplansky introduced the Hypothesis A in [2], and G. Whaple$24] proved
that a fieldk of characteristiqp > 0 satisfies the condition A-1 iff it has no algebraic
extension of degree divisible ly(cf. also [25] for an elementary proof of this fact).

Theorem 9.6 (Kaplansky!?). LetK be a valued field[ be its value group and its
residue field, wittthark = p. K is maximal iff it contains a pseudo-limit for each of its
pseudo-convergent sequences.

If Kis maximalk is perfect, and” = pI', thenK is perfect.

If k and I satisfy Hypothesis A, then the maximal immediate exterisiohK is
uniquely determined up to analytic isomorphism o¥erMoreover,L is perfect and
isomorphic tok((I', £)) for some factor sef.

LetF andTF’ be two maximal extensions &f, with the same value grouf and
residue field. If f andA satisfy Hypothesis A, and if every elemertt loés an ff' root
for every n, ther® andF’ are analytically isomorphic oveK.

If charK = chark, thenK is isomorphic to a subfield of a power series field.

An immediate consequence of Lemma 9.5 is the following dangl

Corollary 9.7. Assume thaK := k((I', f)) satisfies Kaplansky’s Hypothesis A. [Fet
be a truncation-closed subfield Bf.
Fix g a power of p, and |€E be the smallest perfect subfieldi®icontainingF and
such that every equation of the forni % X + a, with a inE, has a solution irE.
Then,E is also truncation-closed.

(13)see [2] and [13, Chapter 7]
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Sketch of proofLet S be the maximal truncation-closed subsetiof Then, Sis a
perfect subfield oK containingF. Suppose, for contradiction, that Sis of minimal
length such that, ik is the solution ofX9 = X + a given by (9.6), thenx¢ S. Since
x=g (a”)+co+g"(a), we can assume w.l.o.g. that eitleer=a~ ora=at. We
will deal with the case = a~ (the other one is similar). By minimality @ g~ (b) € S
for everyb<a. Moreover,g,,(a—b) € Sfor everyme N and evenb € S, sinceg,, is
a finite sum. Hence, by Lemma 93 X, contradicting the maximality d&.

Note thatE is built by successive extensions by purely inseparableehs and
roots of polynomials of the forrX9 — X —a. |

The following lemma is a consequence of Ostrowski's theof@mrheorem 2
pag. 236].

Lemma 9.8. LetF be a Henselian valued field, with residue characteristic p. Let
H be an immediate algebraic extensiorlfo$uch that n= [H : F] is finite. Then, n is
a power of p.

Lemma 9.9. LetF be a valued field with residue fieldand value groug". Assume
that:

1. F is Henselian, perfect and of characteristic>0.
2. k is algebraically closed.
3. I is divisible.
4. Every polynomial X— X —a € F[X] has a solution irfF.
Then,IF is algebraically closed.
Proof. The proof proceeds as in [15]. Note that Condition 4 is edeivao
4’. Every polynomial X — X —a € F[X] hasall solutions inF.

LetLL be a finite extension &, andn := [ : F]. We must prove that=1. W.l.o.g.,
L/F is normal, and sincE is perfect, it is a Galois extension, with Galois grdBplL
must be an immediate extensionfand Lemma 9.8 implies that= pK. If, by absurd,
k > 0, thenG contains a normal subgroutp of powerp*~1 [26, Corollary 6.6]. Lef.’
be the fixed field oH: it is a Galois extension df of degreep. By [26, Theorem 6.4],
any such extension is generated by a zerg®f- X — a for somea € F, which, by 4’,
is already inF, a contradiction. O

Lemma 9.10. Assume thak is algebraically closed and is divisible. LetF is a
truncation-closed subfield &f((I", £ )) containingk (T, £ ), andE be its algebraic clo-
sure(insidek ((I', £ ))). ThenkE is also truncation-closed.

Proof. Lemma 9.9 implies thaE is the closure of the Henselisation Bfunder so-
lutions of equationsXP = X + a, hence Corollary 9.7 implies th& is truncation-
closed. O

Proposition 9.11. LetH be a truncation-closed subfieldlof(I", /)) containingk (T, 7 ),
andE C k((I', f)) be its relative algebraic closure. Thel,is also truncation-closed.
MoreoverE is algebraically maximal.
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Proof. Let k be the algebraic closure &f, I be the divisible hull of. Extend the
p-good co-cyclef to ap-good co-cycle

FiFxT — k(9

LetE((F f)) be the correspondlng power series fidldye the field generated 1y, k
andrl ink((T, f)) andL be its algebraic closure (embeddedifr, f))) To simplify
the notation, we will assume thﬁt_ 1, and drop it. Lemma 9.10 implies thatis
truncation-closed. MoreoveF, = k(()) NL. Therefore[ is truncation-closed.

Let F be an immediate algebraic extensionffE is Henselian (since it is a rela-
tively algebraically closed subfield of the Henselian fie{d))), so, by the uniqueness
extension property of Henselian fields, there exists a wna&mubedding oF in L an-
alytic overE. We have to prove thdf = E. It is enough to show thdf C k((I")).
Suppose not. Let e F\ k((I")) of minimal length. We can chood&such that(x) is
minimal.

Therefore, for every<x, eitherE(y) is not immediate algebraic ové, ory € E
(otherwise, (E(y),y) would satisfy the same condition 4&,x), contradicting the
minimality of £(x)).

Suppose that every<xis in E. In this case, we must have thék) is a succes-
sor ordinal (otherwisex € k((I'))). Hencex = y+ayt¥, for a uniquey<x such that
supgy) < y. However,E(x) is an immediate extension &, thusy € I anda, € k,
whencex € k((I")), a contradiction.

Therefore, there exisgsax such thatE(y) is not an immediate algebraic extension
of E. Choosey to be of minimal length. Howevet, is a truncation-closed subfield
of k((F)), andx € L, soy € L, hencey is algebraic ovef£. We conclude thak(y)
is not an immediate extension Bf thusy ¢ k((I")). Again, the length off must be a
successor ordinal (otherwisge k((I')), because alt<y are ink((I')) by minimality
of £(y)). Hence)y = z+a,t”, for a uniquez<y such that supfz) < y. ye r, ay € k
and, by minimality,z € E. However,v(x—2z) = v(x—y) =y, thusy € . Moreover,
(%) = ay, thusay € k. Therefore[E(y) is an immediate extension &f and we have
a contradiction. O

For a (relatively) long time | tried to prove Proposition 9.directly, and failed,
until I saw that | could enlarge the original field to L, prove the lemma for it, and
then restrict back tél. This kind of “enlargement” trick is quite useful, and | use i
also in other places.

F. Delon gives an example of a maximal valued fidldand a subfieldE such
thatE is relatively algebraically closed i, andM/E is immediate, and y€k is not
algebraically maximal [27, Example 1.12 pag. 14]. Hence sitmewhat lengthy proof
of the second part of Proposition 9.11 is really needed, aadaze a phenomenon
peculiar to truncation-closed subfields, which | think aess further investigation.

Moreover, | think that a direct proof of Proposition 9.11 webgive a better insight
of the structure of algebraically maximal fields, in the samag as Lemma 9.9 clarifies
the structure of algebraically closed fields.

Theorem 9.12. LetF be an algebraically closed valued field of characteristic- 9,

k be its residue field an@ be its value group. Then, for every embeddinds af F
and p-good section:d” — [F*, there is an analytic truncation-closed embeddind of
ink((T",f)) overk and commuting with s, wheye:= ds.

(147 exists by Lemma 4.10.
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Note that there is always at least one embeddirigarid onep-good sectiors.

Proof. Proceed as in the proof of Theorem 6.1, using Lemma 9.10&dsté Theo-
rem 5.16. (]

An additional problem in finite characteristic is that a addieldF (even a Henselian
one) may have many non-isomorphic maximal algebraic imatedixtensions. How-
ever, if F satisfies Kaplansky’s Hypothesis A, then it has only one sexdknsion.
Therefore, using Proposition 9.11 and [2, Theorem 5], tlewipus theorem can be
extended to algebraically maximal valued fields satisfiflaglansky’s Hypothesis A.

9.2 Subfields of k((I")) of bounded length in finite characteristic.

Lemma 9.13. If I" is divisible andk is algebraically closed, thek((I',f))¢ is alge-
braically closed.
In general k((T", f))¢ is algebraically maximal.

Proof. CallF :=k((I, f))e. Corollary 7.4 implies thaf is a Henselian field.

If T is divisible andk algebraically closed, propositions 5.21 and 9.3 imply that
IF is also perfect and closed under solutions of polynomids- X — c, therefore, by
Lemma 9.9, it is algebraically closed.

For the general case, suppose for contradictionEhatsome immediate extension
of F, p(X) € F[X] is monic irreducible, ana € [E is some root ofp(X). Sincel :=
K((T,f))e is algebraically closed, all roots qf(X) are inL. Lety € L be one of
these rootsF is Henselian, thereforB(y) is analytically isomorphic td (x) over F
(Lemma 2.4), hence they are both proper immediate extensidn

Lety= 3 o at¥, wherea < ¢, andayt” be the first monomial not ifi: therefore,
eithera, ¢ k, ory ¢ I'. Letzbe the truncation oj at y.

y=z+at’+o(t).

However,z € F, henceF (y) cannot be an immediate extensionfofbecause iy ¢ k
it would extend the residue field, yf¢ I the value group). |

Putting together Lemma 9.13 and Proposition 9.11, one aacepd as in the proof
of Theorem 7.12 and prove the following analogue of Theoretd ih the finite char-
acteristic case.

Theorem 9.14. Letchark > 0, andFF be an algebraically maximal valued field. As-
sume thafF contains its residue field and that there is a p-good section s from its
value groupl” into F*, with £ := ds. Assume moreover th&tsatisfies Kaplansky’s
Hypothesis A. Lefl be an uncountable cardinal such thatdeg(F/k(I,f)) < O.
Then,

1. There exists a truncation-closed embedding of k((I', £ ))o.

2. If moreovelF is (-pseudo-complete, then every such embedding is onto.

10 The mixed characteristic case

We will now treat the case of fields of mixed characteristio. particular, we will
re-prove the Ax-Kochen isomorphism theorem for formadadic fields.
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10.1 Decomposition of valuations

Letl be an Abelian ordered grouf),C I be aconvexsubgroup of", A be the quotient
/A, andp : T — A be the corresponding projection. Note that the ordering on
induces an ordering: on A\, and with this ordering\ is also an ordered group.

Lets: A — T be a map such thggs=idy, andm=ds: T xI' — A be is co-
boundary (namelyn(a, ) = sa + sB —s(a + 3)). Define/A xA as the set of pairs
(A, d) with sum twisted bym:

()‘75) +m()\/76/) = ()\ +/\/7 6+6,+m()\a)\/))a
and lexicographic order.

Lemma 10.1. The map

(A,0)—sA+9
is an isomorphism of ordered groups.
Proof.
D(A,0) + Pn(A,0 ) =sA+SA' + 0+ =s(A+A)+mA,A )+ 5+ =
=®p(A+A" MA,A)+540) =Pn((A,3) +m(7A',0")).
Moreover,®, preserves the order becawssgreserves the order. O

In the future, we will be interested in the case whErbas a minimum positive
element 1, and\ is the subgroup generated by 1. The concepts and notatighssof
section are taken from [10, ¥

Let K be a valued field with value grodp and residue fieldt.

Letv: K* — A be the compositiop ov; it is a valuation, theoarseningof v. Its
valuation ring is

0 :={xeK:vx>0}={xeK:vx>A},
its maximal ideal is
M ={xeK:Ux>0}={xeK:vx>A},
and its residue field i := &/./. Note that
620242 M.

If X+ .4 € K, defineV(x+.#) := v(x). Itis easy to check thatdoes not depend
on the choice ok, takes values ith and is a valuation with residue fiekd

Lemma 10.2. (K,v) is Henselian iff botH{K, V) and(lo<,§)/) are Henselian.

(15) Except that Kochen defindg (")) as the set of formal sums whose support have cardinality less or
equal tod, while we impose that the order type (or equivalently, thalicedity) of the support is strictly
less thari].

Similarly, Kochen defines th& is (J-pseudo-complete iff every pseudo-converging sequencengtt ]
has a pseudo-limit, while we ask that the length is stricthg fdhar].
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Fix a cross-sectiom: A — K* (if such a cross-section exi€t®). DefineK ((A,m))
as the set of formal sums
a th
AL
AeN
with multiplication defined by

t9tP = ni(m(a, B) )t *~.

Define the valuations :12((/\, m))* — A andv: Iz((/\, m))* — T by

V(S ath) =2

AEN

V(Y ath) =s(Ao) +V(@y,),
AeN

whereAg is the minimum of the support.

Lemma 10.3. There is a cross-section:i” — IZ((/\7 m))*.
Proof. As we said beford; is isomorphic to\ x A via ®,. We can suppose thédt,
is the identity. Giver(A,8) € A xmA, define
r(A,0) = m(d)th.
Thus,
r(A,0)r(A",8") =t"A n(8)m(&') =
= A m(m(A,A)) () r(8') =P A (3 + &'+ m(A,A)).
Moreover,

r((A,8)+m(A,8)) =r(A+A",8+8 +mA,A")) =" 11(54 8 +m(A,A)).
O

Remark10.4 The mapA — K((A,m))* sendingA to t* is a section with factor set
Tom.

Lets : A — I be another sectiomy be its co-boundary, anfl .= s— . Since
pf =0, the image off is contained in the kernel @, which isA.

Remarkl0.5
fa+fB—f(a+B)=m(a,B)—m(a,B).

Proof. The differential operator d is linear, hencé ¢ ds—ds =m—m. O

Lemma 10.6. The map¥ : IZ((/\m)) — |2((/\,FT’()) that fixesK and sends* into
n(fA)t is an isomorphism of valued fiel@with respect to the valuation v, where t

is the canonical section &((A,n))), and preserves the tree structure.

(18)For instance, i\ = Z.
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Proof.
v(Wh) =v(r(fANY) = F(A) +9A =sh =v(th),
thereforeW preserves the valuation.
It remains to prove thab(totP) = Y(t%)W(th).
W(ttP) = Wt P am(a,B)) =t P r(m(a,B) + f(a +B)).

WO WEP) =t tPr(ta)m(B) =t P r(ml(a,B) + fa + £B).
Remark 10.5 implies the conclusion. O
We have proved thaot(((/\, m)) does not depend on the particular choice of the

sections; equivalently, it does not depend on the particular coeytlibut only on its
equivalence class in EXiA, A).

For the rest of this section, assume that there is an emizpaddik in K, and a
cross-sectiom : ' — K* such that [p = .

Lemma 10.7. The map t A — K*, t :=r o, is a section with factor seto m.
Proof. ris a group homomorphism coinciding withon A, hence
dt =d(ros) =ro(ds)=mom. O

See Diagram 1.

Diagram 1: Global picture.

e}

K* >%IZ((/\,m))*
l~‘...
r

A >—)>@8M—> T

o]
T |V ‘/V
82 N2
7N

o

K* ) K*

The continuous arrows are group homomorphisms, the dotted onssctiens.

If (K,V) is Henselian and chi;r((/\,m)) =0, Theorem 6.1 implies th& admits
a a truncation-closed embeddiggin IZ((/\,m)), which is analytic (with respect to
the valuationv) and overlz and preserves the cross-sectionlf moreoverd is an
uncountable cardinal such that trc(é@/}z(/\, m)) < O, then we can suppose that the

image of¢ is contained iriz((A, m))g.
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Lemma 10.8. In the above situationg is analytic also with respect to v. Namely,
v(px) = vx for every xc K.

X

Proof. Letxe K*, A :==vx y:= o It suffices to prove thaty = v(g@y).

vy = 0, hence there exists a (uniquef P%* such thaw(y — z) > 0, and therefore
v(@y— @z) > 0. Thusvy= vz andv(gy) = v(¢z), However,gz = zby hypothesis. [

In conclusion, we have a truncation-closed embedding ofto K((A, m)), which
is analytic with respect to the valuation

10.1.1 Aside

Suppose that we are given, instead of a cross-sectibn— K*, a sectiort : A — K*
such thatt(0) = 1. For every(A,d8) € A xmA =T, definer(sA +9) :=t(A)m(d).
Again, we have =rosandrfp = 1. See Diagram 2.

Diagram 2: Nine elements.

o
] o] V

o* K* A (@

o K —Y > T (b)
P

Uy K* /KA— s A ©)

(i) (ii) (iii)

The diagram is commutative and should be completed with zeros, in suak that its rows
and columns are short exact sequences.

o Up:={xeK*:¥(x—1)>0}.

e The row (a) is split byr.

e If (K,v) is Henselian and perfect, and moreover dhas chanz, thenUl is divisible and
(c) splits.

o (b) splits iff there exists a cross-section

e The column (i) splits.

o 0*=0*-m(D) =~ O*A.

Lemma 10.9.
dtop

- modsop’
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Proof. Giveny,y €T, defineA := py, d := y—sA, and similarlyA’ andd'.

r(sA,d)r(sA’,o') r(sA +0)r(sA’+9) B
F(SA+0+8A+08)  r(s(A+A")+ds(A,A)+6+0)
t(A)TI(8)t(A)11(8') dt(A, 7))

THA A8+ 8 +5(A, A1) (AN
In particular, ifr is a group homomorphism, them & 1, hence tlo p = modsop.
Sincep is surjective, this is true iff i= o ds, and we recover Lemma 10.7.
However, ifr is not a group homomorphism, thert ¢ o m, hence we cannot
apply Theorem 6.1.

10.2 Application to the mixed characteristic case

The results of this subsection are classical theorems bynéachen [7, Theorems 1
and 5].
Let K be a valued field, with value grodpand residue fiel#k. Assume that:

1. chaiK =0, chak = p> 0;
2. K is Henselian;
3. I has a minimum positive element 1 avg) = 1;

4. thereis a cross-section I — K* such that (1) = p.
LetA~Z be the subgroup df generated by 1. Itis a convex subgroup, hehce I' /A
is an ordered Abelian group. The core fi&ldchas characteristic 0 and value grofip

Assume moreover tha#t embeds intK. Letr: A — K* be the map sendinginto p",
ands: [ — A any section.

By the results of§ 10.1,K has a truncation-closed embeddingl%(u(/\, ). If,
moreover,0J is an uncountable cardinal such that tr@ﬂﬁglz(/\,m)) < 0, we can
suppose that the image of such an embedding is contairioé(im m))o. Hence, ifK
is alsod -pseudo-complete, thei is isomorphic tdZ((/\, m))g.

If K is O01-pseudo-complete, thehoﬁ is also [01-pseudo-complete. However, the

value group oK is isomorphic to the integers, hence in this casepseudo-complete
is the same as complete. Moreover, there is only one (up tlytansomorphisms)
complete valued field of mixed characteristic with resideddfk and value groufZ

and satisfying 3, the field of Witt vectors (see [28]). We hagen thaK((A,m)) does

not depend om, thus in this cas& ((A,m)) is uniquely determined bl andTr .
Assume thafK is a non-principal ultra-product of a countable family ofued

Henselian fields with ramification index 1 (see Definition4).1 Then, there is a

cross-sectionm satisfying Assumption 4 (see [7, Proposition 5(b)]). BesidK,v)

is O1-pseudo-complete, and contai;is Suppose that each of the fields in the family
has cardinality< 270, and that the Continuum hypothesis holds (namély, 2 001).

In this case, the cardinality & is 1, thusK is isomorphic taK ((A,m))g, .

All the results in this section could have been done for fipitamified fields (of
mixed characteristic) containing a suitable rooppfnstead than fields with ramifica-
tion index 1.
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11 Examples

Here we will collect some counter-examples. We will not aonrhaximal generality,
only for a sufficiently representative set of easy cases.

We will also give some generalisation of Boughattas’ couat@amples, but only
from the point of view of the (lack of) existence of truncatiolosed embeddings, not
of integer parts.

Definition 11.1. An ordered groupp hasrank 1 iff for everya,B € T there exist®i € N
such that€| < B < n|a|. Equivalently, iff it can be embedded as an ordered subgroup
inR.

Definition 11.2 (Complete). Let F be a valued field with value grodp. A sequence
(>q)iel in I is Cauchyiff for every y € T there exists € | such that for every, j > n
v(xi —Xj) > y. F is completaff every Cauchy sequence ihhas a limit.

Definition 11.3. An extensiorK/F of valued fields isinramifiediff the induced map
between the value groups is an isomorphism, nam@y = v(K).

11.1 Purely inseparable extension

Let ' be a non-trivial ordered Abelian group,a field of characteristip > 0, and
Up,Us,...,U,... i € N algebraically independent elements okie'We will produce a
valued field of characteristip and value group which is Henselian, but admits an
immediate purely inseparable exension.
Define

f:=h(u,uf,...),

F:=f((I))

K :=F(up,uy,...) g]f,

whereF is the algebraic closure d@f. Let (y.)iGN be a strictly increasing sequence of
elements of", and
Xi= z uth.
ieN
We have the following facts:

e The characteristic oK is p, its residue field i« := h(up,us,...) and its value
group isl".

e K is an unramified extension of the maximal fi@#ghence it is Henselian.

e xP €K, butx ¢ K. MoreoverK(x) is an immediate algebraic purely inseparable
extension ofK. Hence K is not algebraically maximal.

e K is Henselian, because it is an algebraic extension of theéliam fieldF.

If I has rank 1K is not complete, because we can tgke» o« asi — oo, and in that
casexis in the completion oK.

If I £ 7Z, itis possible to find a sequen@{)ieN as above and g € I' such that
for everyi e Ny < u. Letx :=x+tH. Then, for every € K

V(x—y) = V(X —y).
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However, there is no isomorphism betwd&(x) andK () fixing K and sending into
X.

Moreover, x is not even ink, the completion ofK. SinceK is Henselian, its
completionK is also Henselian.

Hence K is a field of characteristip and value group that is Henselian, complete
but not inseparably maximal (namely, it has a proper immedarely inseparable
algebraic extension).

Delon observed that if is a separably maximal valued field (namely, it has no
proper immediate separable algebraic extension), thesoitgpletion is algebraically
maximal [29, Corollary6.8].

K has a natural truncation-closed embeddirmgto k((I)). LetL := K(X). There
is no truncation-closed embeddinglofnto k((I')) extending . In fact, if 1’ were such
an embedding, thern< 1’X, butx is not in the image of’, a contradiction. Cf. also
Proposition 6.4.

Examples of valued fields which are Henselian, but admit@rapmediate sepa-
rable algebraic extensions are well known: see for instfidexample 2 pag. 246].

11.2 Boughattas’ counterexample

Definition 11.4 (n-real closed fields). An ordered fieldk is n-real closedif every
polynomialp(X) € k[X] of degree< n admits a zero ifk as soon as it has a zero in the
real closure ok.

In an analogous way, one can defmalgebraically closed fields.

S. Boughattas [4] gave an example af-geal closed field which does not admit an
integer part, anda fortiori, a truncation-closed embedding in a power series field.

We will give an easy generalisation of his counterexampteatgebraically closed
fields, also in characteristip; we will treat the ordered field case and the unordered
one at the same time, because the constructions are vetgrsimi

We will show that the fields we are going to produce are not Ekans, so they do
not contradict our theorem (in fact, they are as far from géilenselian as possible,
given the constraints of beingreal closed).

In [5], F.V. Kuhlmann gives more examples of valued fieldswib weak comple-
ments to the valuation ring (see his article for the definitidn particular, these fields
do not admit a truncation-closed embedding in a power séigks(and they are not
Henselian either).

Let f be eitherQ or the field ofp elements GFp), for some primep.

Given a fieldF, letF be either:

e the real closure df, if F is an ordered field, or
¢ the algebraic closure df, otherwise.

Let FI be then-closure ofF, namely either the-real closure or the-algebraic clo-
sure.

Let I be a divisible ordered Abelian group,:= f((I')) andK be a (real or alge-
braically) closed subfield dt. Let A C ' be the convex hull i of v(K). For every
c € Kchoosey. € T such that, > A and ifc # d, theny, andyy areQ-linearly inde-
pendent oveA (we suppose thdt has been chosen large enough to allow this). Define
¢ :=c+t¥,
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Let
F:=f(c:ceF),
the valued subfield df. generated by the'. Finally, givenn > 0 € N, let FIV c L be
then-closure off.
Remarkl1l.5 Thec are algebraically independent owi&r

Lemma 11.6. FI
1. has residue fielét
2. is not Henselian
3. does not admit a truncation-closed embeddint({fi, £ )) for any f.

Proof. 1) FI" is a subfield ofL, so its residue field is containedfinConversely, every
c € f is infinitesimally near t@’ € F.

2) Leta=1Db' € IF for someb ef. Fixa primeq larger than both the characteristicfof
andn. Let p(X) :=X9—ae F[X], andp(X) := X% —b € f[X] be its residuep(X)
has a simple root ifi, howeverp(X) has no root ifF", hence the latter is not a
Henselian field.

3) Every truncation-closed subfield &, 7)) with residue fieldf containsf. How-
ever, 29is notinF[", therefore the latter does not admit a truncation-closelieein

ding inf((I,£)). 0
We can see that an immediate obstacle to the existence afiatian-closed em-
bedding ofF" in f((T", £)) is thatF" does not contain its residue fiefld

Questionl1.7. Canwe find a valued fiell which contains its residue field, msclosed,
but does not admit a truncation-closed embedding(in, £ ))?

Take a fieldK as before containing LetE := f(F), with F as before. Its residue
field isf; let W be its value group.
Claim11.8 There is no good secticst W — EM,

ConsequentlyE[" does not admit a truncation-closed embedding( (K, 7 )).

In fact, if s were such a section, fig > 0 € N. Let x:=s(1) andy := s(¥/q).
Thereforex = cy? = (cY/9y)d for somec € f. Thus,x”a € El for everyq € N. This
implies thatx ef, contradicting the fact that(x) = 1.

Question11.9 Can we find a valued field which contains its residue field, has a
good section, i1-closed, but still does not admit a truncation-closed erdbegin

f((r.f))?

LetK as above, and
H:=f(t?) (¢ : ce K\ (t2uf)).

Claim11.1Q There is no truncation-closed embedding®t in f((I)) extending the
canonical embedding ft?).
Fixg>0e Nand let
d:=((t+1)") em,
a:=(1+t)YeL.
Then,d = a+o(tQ). Thereforea<d, soac HI". Hence,(1+t)¥e c HI" for every
g € N, a contradiction.
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