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Abstract

Every Henselian field of residue characteristic 0 admits a truncation-closed em-
bedding in a field of generalised power series (possibly, with a factor set). As corol-
laries we obtain the Ax-Kochen-Ershov theorem and an extension of Mourgues’
and Ressayre’s theorem: every ordered field which is Henselian in its natural val-
uation has an integer part. We also give some results for the mixed and the finite
characteristic cases.
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1 Introduction

Given an ordered fieldK, an integer part(or I.P. for short) ofK is a subringR⊆ K

containing 1 and such that for everyx∈ K there exists a uniquer ∈ R with |r −x| < 1.
For instance,Z is the unique I.P. of any subfield ofR. Other ordered fields may have
many I.P.s, or none at all.

A field of generalised power seriesk((Γ)) over an ordered fieldk ⊆ R has a stan-
dard I.P.

R :=

{

∑
γ<0

aγ t
γ +n : n∈ Z

}
.

In [1] Mourgues and Ressayre proved that every real closed field K has an I.P..
They proved it by finding a truncation-closed embedding ofK in a power series field
k((Γ)). The I.P. ofK is given by the intersection ofK with the standard I.P. ofk((Γ)).

S. Kuhlmann suggested that their proof can be adapted, and their results extended,
to Henselian fields. Namely, any ordered field, which is Henselian in its natural val-
uation, has an integer part. We will prove among other thingsher conjecture (Corol-
lary 6.3); however, we will have to introduce factor sets into the definition of power
series in order to find the truncation-closed embedding.

Let K be a Henselian valued field, with residue fieldk and value groupΓ. If
chark = 0, we will construct a truncation-closed embedding ofK in k((Γ, f )) (for
some factor setf ) (Theorem 6.1 and Corollary 6.2). In particular, ifK is an or-
dered field which is Henselian in its natural valuation, thiswill prove the conjecture
by S. Kuhlmann, in the same way as Mourgues and Ressayre proved their theorem.

In his celebrated paper [2], Kaplansky proved that every field of residue charac-
teristic 0 has some embedding in a power series field. We will prove Theorem 6.1
proceeding in a manner parallel to his: we start with a subfield F0 := k(Γ, f ) of K, and
a truncation-closed embeddingφ0 : F0 → k((Γ, f )). Then, we extendφ0 to a truncation-
closed embeddingφ of all K. The construction of the extension is done step-by-step.
At each step, we assume that we have already defined a truncation-closed embedding
φi from some subfieldFi in k((Γ, f )), and we extendφi to a larger fieldFi+1. There
are two cases:
The algebraic case.If Fi is not algebraically closed inK, we defineFi+1 to be the
Henselisation ofFi insideK. There is a unique extensionφi+1 of φi to Fi+1. Moreover,
since chark = 0, Fi+1 coincides with the relative algebraic closure ofFi insideK.
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The transcendental case.If Fi is algebraically closed inK, we defineFi+1 := Fi(x),
for somex ∈ K \Fi ; then, we choose a suitablex′ ∈ k((Γ, f )) such that the field em-
beddingφi+1 extendingφi and sendingx to x′ preserves the valuation.

In both cases, Theorem 5.16 ensures thatφi+1 is truncation-closed (if we choose
x′ wisely in the transcendental case). Moreover, if trdeg

(
K/k(Γ, f )

)
≤ ℵ for some

uncountable cardinalℵ, then it is possible to chooseφ in such a way that the length of
z is less thanℵ for everyz in the image ofφ (Theorem 7.12).

Until now, we have only considered valued fields of residue characteristic 0. If
charK = p, things get more complicated, mainly because in the above construction
it is no longer true that the Henselisation ofFi is equal to its relative algebraic clo-
sure. However, ifK (and henceFi) satisfies Kaplansky’s Hypothesis A, the maximal
immediate algebraic extension ofFi is uniquely determined, and in the algebraic case
we can defineFi+1 to be such extension, andφi+1 accordingly. Proposition 9.11 en-
sures thatφi+1 is truncation-closed. Hence, we can conclude that ifK is algebraically
maximal and satisfies Kaplansky’s Hypothesis A, then there is a truncation-closed em-
beddingφ : K → k((Γ, f )) (cf. Theorem 9.12 and the paragraph following it). Again,
if trdeg

(
K/k(Γ, f )

)
< ℵ for some uncountable cardinalℵ, then the length of the

elements in the image ofφ can be bounded byℵ (Theorem 9.14).
It remains to consider the case of mixed characteristic. Here, we need some ad-

ditional hypotheses onK (beside being Henselian). The most important is thatK

is finitely ramified (for instance, ifv(chark) is the minimum positive element ofΓ).

Under these assumptions, we will prove thatK can be embedded in
◦
K((Λ,m)) in a

truncation-closed way, whereΛ is a certain quotient ofΓ and
◦
K is a certain field asso-

ciated toK (see§10).
On Conway’s field of Surreal numbers, there is a so-called simplicity relation [3].

Under this relation, one can define the initial subsets ofNo and initial embeddings in
No, in the same way as Mourgues and Ressayre defined truncation-closed subsets and
embeddings fork((Γ)) starting from the relation “being an initial segment of”. We
prove that ifK is an ordered field, Henselian in its natural valuation, thena necessary
and sufficient condition forK to have an initial embedding inNo is that its value group
Γ has a initial embedding inNo, and there exists a cross-sectionΓ → K? (Lemma 8.3
and Theorem 8.4).

The last section contains some easy counter-examples to some natural conjectures
the unwary reader might conceive. S. Boughattas [4] gave some examples of val-
ued field that do not admit integer parts (and hence truncation-closed embeddings).
We give, among other things, a simplified version of his example (with regard to the
non-existence of truncation-closed embeddings). For a more refined kind of counter-
examples, see [5].

Finally, I wish to thank professors Salma and Franz-Viktor Kuhlmann for their help
in conceiving this article, writing it down and correcting it, and for the many fruitful
conversations we had and suggestions they offered me on these and related topics, and,
last but not last, for inviting me to Saskatoon. Professor Alessandro Berarducci also
helped and encouraged me in writing this paper.

2 Mourgues’ and Ressayre’s theorem

Here are some of the basic definitions and theorems of generalvaluation theory (see
for instance [6, 7, 2]).



2 MOURGUES’ AND RESSAYRE’S THEOREM 4

Definition 2.1. A valued fieldK is a field K together with a surjective homomor-
phismv : K? → Γ (thevaluation) into some linearly ordered Abelian groupΓ (thevalue
group) such that

v(x+y) ≥ min{v(x),v(y)} .

The valuation is extended to allK, settingv(0) = ∞ (where∞ is an element outsideγ
such that∞ > γ for everyγ ∈ Γ).
The valuation ringO is the ring{x∈ K : v(x) ≥ 0}. Its only maximal ideal is the set
of infinitesimal elementsM := {x∈ K : v(x) > 0}. Theresidue fieldk is the quotient
O/M . Givenx∈ O, x̄∈ k is its residue.

We will also use the small-o and big-O notation:x = O(y) iff v(x) ≥ v(y), x = o(y)
iff v(x) > v(y). If v(x) > 0 theny = O(x2) implies thaty = o(x). We will also write
x� y iff v(x) < v(y).

Definition 2.2 (Henselian). A valued field isHenselianiff for each p ∈ O[X] and
a∈ O with p(a) = 0 andṗ(a) 6= 0, there exists anb∈ O such thatp(b) = 0 andb̄ = ā.

If K is a valued field, it is possible to extend its valuation toK[x] in many different
ways. Unless specified otherwise, we will always use the following definition:

v
( n

∑
i=0

aiX
i ) := min{v(ai)} ,

called theGauss extension.

Definition 2.3. Let K ⊆ F be valued fields,p(X) ∈ K[X] be a monic polynomial, and
x∈ F. We will write HK(p,x) (or H(p,x) if it is clear which field we are talking about)
iff v(p) = 0, v(x) ≥ 0, p(x) = 0 andv(ṗ(x)) = 0.

Note that, by definition,K is Henselian iff for everyF containing it and for every
p(X) ∈ K[X] andx∈ F, H(p,x) impliesx∈ K.

The following lemma gives a few equivalent characterisations of Henselianity. On
the one hand, they will be used in the discussion; on the otherhand, they justify in part
the importance of this concept in the study of valued fields.

Lemma 2.4. Let K := (K,v) be a valued field. If F/K is a purely inseparable field
extension, then v has only one extension to F.

Moreover, the following are equivalent:

1. K is Henselian.

2. Let p∈ O[X] with deg(p) > 0 and a∈ O such thatṗ(a) 6= 0. If v(p(a)) >
2v(ṗ(a)) then there exists b∈ O such that p(b) = 0 andb̄ = ā.

3. Let p,q, r ∈ O[X], with degq > 0, q monic. Suppose thatq, r are non-zero, rel-
atively prime polynomials ofk[X] and p = qr. Then, there exist q?, r? ∈ O[X]
such thatq? = q, r? = r and f = q?r?.

4. If
p(X) := Xn +an−1Xn−1 +an−2Xn−2 + · · ·+a0 ∈ O[X],

with an−1 6= 0, a0 = . . . = an−2 = 0, then p(X) has a root b∈O with b = −an−1.

5. v has only one extension to every algebraic extension ofK.
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6. v has only one extension to every separable extension ofK.

For the proof, together with more equivalent forms of Henselianity, see [8].

Definition 2.5. An extensionK ⊆ F of valued fields isimmediateiff K andF have the
same value group and residue field. IfK has two extensionsF1 andF2, ananalytic
embeddingof F1 in F2 overK is a homomorphism of valued fieldsφ : F1 → F2 such
thatφ�K = id. Such a homomorphismφ is ananalytic isomorphism(overK) iff it is
also an isomorphism of fields.

Definition 2.6 (Henselisation).TheHenselisationKH of K is the extension ofK such
that:

1. KH is Henselian

2. If K ⊆ F and F is Henselian, then there exists a unique analytic embedding
φ : KH → F overK.

The Henselisation ofK always exists, it is unique (up to analytic isomorphisms
overK), and it is an algebraic immediate extension ofK.

Definition 2.7 (Power series).Let k be a field,Γ be an linearly ordered Abelian group.
The field of generalised power seriesk((Γ)) is the set of formal series

∑
i<n

ait
γi ,

where theai ∈ k are non-zero,n is an ordinal number, and
(
γi

)
i<n is a strictly increasing

sequence of elements ofΓ. Every element ofk((Γ)) can also be written as

x := ∑
γ∈Γ

aγ t
γ .

Thesupportof x, in symbols suppx, is the set ofγ ∈ Γ such thataγ 6= 0. Such anx is an
element ofk((Γ)) iff its support is a well-founded subset ofΓ. Thelengthof x, `(x), is
the order type of the support ofx; namely,x = ∑i<`(x) aitγi .

Sum and multiplication onk((Γ)) are defined by Cauchy sum and product, namely

∑
γ∈Γ

aγ t
γ · ∑

λ∈Γ
bλ tλ := ∑

γ ,λ∈Γ
aγbλ tγ+λ .(1)

k((Γ)) is a field, with a valuation defined by

vx := min(suppx).

k(Γ) is the subfield ofk((Γ)) generated byk ∪{ tγ : γ ∈ Γ}.

Our main concern will be the study of Henselian fields and their embeddings in
fields of generalised power series.

Definition 2.8. A cross-section is a group homomorphisms: Γ→K? such thatv(sγ) =
γ for everyγ ∈ Γ.

(1)The fact that the multiplication is well defined onk((Γ)), and thatk((Γ)) is actually a field, is a theorem
by Hahn, later extended by B.H. Neumann to division rings.
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k((Γ)) has a canonical cross-section given bysγ := tγ . Later, we will see that it
is useful to introduce factor sets into the definition of power series fields and cross-
sections.

If k is an ordered field,k((Γ)) inherits the order via the rule
∑γ∈Γ aγ tγ > 0 iff aµ > 0, whereµ := v(x).

On the other hand, on every ordered fieldK is defined the natural valuation: the
value ofx∈ K? is its Archimedean equivalence class:y∼ x iff there existsn∈ N? such
that| y

n| < |x| < |ny|.

Definition 2.9. Let x := ∑i<naitγi ∈ k((Γ)). An initial segmentof x is an element of
k((Γ)) of the form∑i<maitγi ∈ k((Γ)) for somem≤ n.

A subsetS⊆ k((Γ)) is truncation-closediff for every x∈ S, every initial segment
of x is also inS.

An embedding of a valued fieldK in k((Γ)) is truncation-closed iff its image is
truncation-closed.

We are now ready to state a generalisation Mourgues’ and Ressayre’s theorem.

Theorem 2.10. LetK be an ordered field, with natural valuation v, value groupΓ and
residue fieldk. Assume thatK is Henselian, and that there is a cross-section s: Γ→K?.
Then, there is a truncation-closed analytic embeddingφ fromK to k((Γ)).

SinceK is Henselian and its residue field has characteristic 0, there exists an em-
beddingι : k → K such thatv(ιx) ≥ 0 andιx = x. If we fix such an embeddingι , we
will simply say thatK contains its residue fieldk, and writex instead ofιx.

Then we can findφ as in Theorem 2.10 such thatφ(x) = x for everyx ∈ k and
φ(sγ) = tγ for everyγ ∈ Γ.

From Theorem 2.10, reasoning exactly as in [1], we can deducethat every ordered
field satisfying the hypothesis of the theorem has an integerpart. With Corollary 6.2,
we will generalise the theorem, and drop the hypothesis thatK has a cross-section
(retaining only the fact that it is Henselian). More precisely, Kaplansky proved that
any such fieldK admits a section with some factor setf ; we will show thatK has a
truncation-closed embedding ink((Γ, f )).

Note that Theorem 2.10 is already a generalisation of Mourgues’ and Ressayre’s
Theorem, since every real closed field is Henselian and has a cross-section.

In this discussion, all groups are Abelian, and all orders are linear (or total), unless
explicitly said otherwise.

The important ingredients in the proof of Mourgues’ and Ressayre’s Theorem are
the following lemmata. In their formulation, I will assume thatk is a real closed field,
andΓ is a divisible group. The first is attributed to F. Delon:

Lemma 2.11. LetF be a subfield ofk((Γ)) such thatk ⊆F and v(F) = Γ; if F is closed
under truncation then so is̃F, the real closure ofF insidek((Γ)).

Lemma 2.12. Let F be a truncation-closed subfield ofk((Γ)) and y∈ k((Γ)) be such
that every proper initial segment of y belongs toF. ThenF(y) is also truncation-closed.

The two lemmata imply that ifSis a truncation-closed subfield ofk((Γ)) containing
k(Γ), then the field generated bySand its real closure are also truncation-closed.

Definition 2.13. A valued field isalgebraically maximaliff it has no proper immediate
algebraic extension.
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Every algebraically maximal field is also Henselian (since the Henselisation of a
field is an algebraic immediate extension). However, the converse is not true; in gen-
eral, a valued field could have more than one non-isomorphic maximal algebraic im-
mediate extensions. We will see presently a sufficient condition for the converse to
hold.

Definition 2.14 (Finitely ramified). Let F be a valued field, with value groupΓ and
residue fieldf. F is finitely ramified iff

• eitherf has characteristic 0,

• or charF = 0, charf = p > 0 and there are only finitely manyγ ∈ Γ between 0
andv(p).

F has ramification index 1 iff charf = p andv(p) is the minimum positive element of
Γ.

For instance, the fields ofp-adic numbers have ramification index 1, and their finite
algebraic extensions are finitely ramified.

Lemma 2.15. Let F be a finitely ramified valued field, andK be an immediate exten-
sion ofF. Then for every n∈ N? and x∈ K? there exists b∈ F such that v(x−b) >
v(x)+v(n).

Proof. Let c,d∈F such thatv(x) = v(c), andv
(

x
c −d

)
> 0. If charf = 0, thenv(n) = 0,

andb := cd satisfies the conclusion.
If charf = p> 0, let 1 be the minimum ofΓ. Let k∈ N such thatk > v(n) (it exists,

becauseF is finitely ramified). Defineb0,b1, . . . ∈ F as follows:

b0 = cd,

bn+1 such thatv(x−bn) < v(x−bn+1).

Then,b := bk satisfies the conclusion. �

The following lemma is [9, Corollary A.3.20]. For the reader’s convenience, we
will repeat its proof.

Lemma 2.16. LetF be a finitely ramified valued field. ThenF is algebraically maximal
iff it is Henselian.

Proof. The only if direction is trivial. Suppose thatK is an algebraic immediate exten-
sion ofF, and letx∈ K.

Let n > 0 ∈ N be the degree ofx over F, andc ∈ F be the trace ofx over F. We
have to prove thatx∈ F.

SinceF is finitely ramified, its characteristic is 0, thusc
n is a well defined element

of F. By substitutingx with x− c
n, we can assume that the trace ofx is 0. If for

contradictionx 6= 0, Proposition 2.15 implies that we can findb∈F such thatv(x−b) >
v(x)+v(n). Therefore,v(x) = v(b) and

v(x−b) > v(b)+v(n). (*)

Let x = x1, . . . ,xn be the conjugates ofx overF. Lemma 2.4 implies thatv(b− xi) =
v(b−x), i = 1, . . . ,n. Moreover,∑i(xi −b) = nb. Therefore,

v(n)+v(b) = v(nb) ≥ min{v(xi −b), i = 1, . . . ,n} = v(x−b),

in contradiction with (*). �
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Finally, if you know what it means, note that a Henselian finitely ramified field is
defectless [10, Lemma 2.9]. The importance of Lemma 2.16 in our discussion stems
from the following lemma, which is proved in [11] and [10, Proposition 4.10 A].

Lemma 2.17. Let F be a valued field which is algebraically maximal. LetLi i =
1,2 be two immediate extensions ofF, and xi ∈ Li \F. Suppose that for every y∈ F

v(x1− y) = v(x2− y). Then, there is an analytic isomorphism overF betweenF(x1)
andF(x2) sending x1 to x2.

We will repeat the proof given in [11], mainly because it is short and elegant, but
also because the lemma is not explicitly stated in the paper.An alternative proof can
be made using [2, Theorem 2].

Proof. It suffices to prove the following:

Claim 1. For everyp∈ F[X], v
(

p(x1)
)

= v
(

p(x2)
)
.

The proof is by induction onn := degp. For n = 0 there is nothing to prove, for
n = 1 it is the hypothesis.

Inductive step: the claim is true for every polynomial of degree less thann. We
have to prove it forp of degreen. If p is reducible, sayp = qq′, then the conclusion
follows from the inductive hypothesis applied toq andq′. Otherwise,p is irreducible,
and w.l.o.g. we can takep monic.

For convenience, callx := x1. If x∈ F, the conclusion follows immediately. Thus
we can assume thatx /∈ F.

Let V be theF-linear subspace ofL1 generated by 1,x, . . . ,xn−1:

V := F⊕xF+ · · ·+xn−1F.

For everyg ∈ F[X], perform Euclid’s division, obtainingg = sp+ r, with degr < n.
Definer =: gmodp, the remainder ofg (modulop). Note thatr ∈V for every remainder
r.

Let V := F[X]/(p). V as aF-linear space is canonically isomorphic toV, therefore
we can restrict to it the valuationv of L1. This restriction is a valuation of vector spaces,
but not necessarily of fields. Moreover,V is an algebraic extension ofK.

Note thatV andV carry two different multiplication: the one onV has co-domain
L1, but respects the valuation, the one onV has co-domainV itself, but does not respect
the valuation. Here we use the multiplication onV.

If v(ghmodp) = v(g) + v(h) for everyg,h ∈ V, then the multiplication onV re-
spects the valuation, i.e.(V,v) is a valued field, extendingF and contained inL1.
Therefore, it is an immediate algebraic extension ofF. However,F is algebraically
maximal, so eitherx∈ F or degp = 1, a contradiction in both cases.

Otherwise, there existg,h ∈ V such thatgh= ps+ r, with degr < n, andv(r) 6=
v(g)+v(h). Consequently

v(ps(x)) = min{v(gh(x)), v(r(x))} ,

so
v(p(x1) = min{v(g(x1))+v(h(x1)), v(r(x1))}−v(s(x1)).

But the degree ofg,h, r are less thann, hence also the degree ofs is less thann, so, by
inductive hypothesis,v(g(x1)) = v(g(x2)), and the same forh, r,s. Therefore,

v(p(x2)) = min{v(g(x1))+v(h(x1)), v(r(x1))}−v(s(x1)) = v(p(x1)). �
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Definition 2.18. • For us, asequence
(
xi

)
i∈I in a setS is a function from some

ordered setI without maximum intoS. I will usually be either a limit ordinal or
a subset (without maximum) ofΓ.

• A sequence
(
xi

)
i∈I in a valued fieldF is pseudo-Cauchyiff for every k> j > i ∈ I

v(xk−x j) > v(x j −xi).

• A sequence
(
xi

)
i∈I is convergingto x ∈ F iff for every j > i ∈ I v(x j − x) >

v(xi −x).(2)

• A valued fieldF is pseudo-completeiff every pseudo-Cauchy sequence inF con-
verges to somex∈ F.

Note that a pseudo-Cauchy sequence may converge to many different elements,
and that every converging sequence is pseudo-Cauchy. The following is a theorem by
Kaplansky [2].

Lemma 2.19. k((Γ)) is pseudo-complete. Every pseudo-complete valued field is Henselian.
A valued field is pseudo-complete iff it is maximal (namely, it has no proper immediate
extensions).

We will also need the following well known fact.

Lemma 2.20. LetF be a valued field, with value groupΓ and residue fieldf.
F is real closed iff it is Henselian,Γ is divisible andf is real closed. Ifcharf = 0,

thenF is algebraically closed iff it is Henselian,Γ is divisible, andf is algebraically
closed.

2.1 Proof of Theorem 2.10

For this proof, we will use the following notations.

Notation 2.21. • FH is the Henselisation of a valued fieldF.

• L̃ is the real closure of an ordered fieldL.

• Γ̃ is the divisible hull of a given ordered Abelian groupΓ, with the ordered
induced byΓ.

• k is the residue field ofK, and in general given a valued fieldF, f is its residue
field.

• Given a fieldk and a groupΓ, k((Γ)) is the field of generalised power series in
the formal variablet. Note thatt is infinitesimal and satisfiesv(tγ) = γ.

• Every ordered fieldK is endowed with the natural valuationv.

Let F ⊆ K such that:

• k(Γ) ⊆ F

(2)To avoid confusion with the convergence in topological sense (for the valuation topology), we should
say that

(
xi

)
i∈I pseudo-converges tox. Every sequence converging topologically tox is eventually pseudo-

converging tox, but not conversely. However, we will not be using sequencesconverging topologically,
hence there is no risk of confusion.
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• There is a maximal (i.e. non extensible) truncation-closedembedding
φ : F → k((Γ)) which is the identity onk(Γ).

We have to prove thatF = K. W.l.o.g., we can suppose thatφ is the identity.

Proposition 2.22. F is Henselian.

Proof. k̃((Γ̃)) is real closed since it is Henselian. LetF̃ be the real closure ofF, taken
insidek̃((Γ̃)). Its residue field is̃k, and the value group is̃Γ.

The embedding ofk in K and the cross-sections from Γ into K can be extended in
a unique way to an embedding ofk̃ and a cross-section from̃Γ into F respectively. In
fact, givenγ ∈ Γ̃, there existsn∈ N such thatnγ ∈ Γ. Defines(γ) := s(nγ)1/n.

Therefore Lemma 2.11 implies thatF̃ is truncation-closed.

Claim 1. FH is equal tõF∩k((Γ)).

Fist, we prove thatFH ⊆ F̃∩ k((Γ)). k((Γ)) is Henselian and containsF, hence
FH ⊆ k((Γ)). Moreover,FH is algebraic overF, and, being a subset ofk((Γ)), it is also
ordered, soFH ⊆ F̃.

Now, we prove the reverse inclusion.F̃∩ k((Γ)) is a field, and it is and algebraic
immediate extension ofF. Therefore, by Lemma 2.16, it is contained inFH.

The claim implies thatFH is a truncation-closed subfield ofk((Γ)). Moreover,FH

is a subfield ofK, sinceK is Henselian. Hence, by maximality ofφ , FH = F. �

Definition 2.23. Let H be an extension ofF. Giveny∈ H, define

I(y,F) := {v(y−a) : a∈ F} .

Proposition 2.24. F = K.

Proof. If not, letx∈K\F. By the previous proposition,F is Henselian. Letx′ ∈ k((Γ))
of minimal length in the same cut asx overF. For everyγ ∈ I(x,F) choose ayγ ∈ F

such thatv(x− yγ) = γ. The sequence(yγ) is converging tox, therefore it is pseudo-
Cauchy, hence, by Lemma 2.19, it has a pseudo-limit ink((Γ)). Definex′ ∈ k((Γ)) to
be a pseudo-limit of(yγ) in k((Γ)) of minimal length.

Claim 1. For everyy∈ F, v(x−y) = v(x′−y).

In fact, for everyγ ∈ I(x,F), v(x− yγ) = v(x′ − yγ). Moreover, ifγ := v(x− y),
we can findλ ∈ Λ such thatλ > γ. Writing x− y = (x− yλ ) + (yλ − y), we obtain
v(y−yλ ) = γ, and writing the same forx′ we obtain the claim.

We can then apply Lemma 2.17 withL1 := K andL2 := k((Γ)), and obtainψ an
analytic isomorphism overF betweenF(x) andF(x′). Consequently,ψ is an isomor-
phism of ordered fields. Finally, Lemma 2.12 implies thatF(x′) is truncation-closed,
contradicting the maximality ofφ . �

3 Generalisations

We will now try to generalise Theorem 2.10. We will drop the hypothesis thatK is
ordered, and take any valued fieldK. We need to distinguish three cases:

characteristic 0: BothK and its residue fieldk have characteristic 0;

characteristic p: BothK andk have characteristicp > 0;
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mixed characteristic: K has characteristic 0, whilek has characteristicp > 0.

These are all the possible cases for a valued field. In the equal characteristic cases,
we will try to embedK in a field of generalised power series. However, we cannot
expect thatK can be embeddedk((Γ)), not even if we drop the requirement that the
embedding should be truncation-closed; the main obstacle is the fact thatK could
be missing a cross-section. We shall see how to overcome thisobstacle, introducing
sections with a factor set, and power series field “twisted” by a factor set.

Additional difficulties arise in the characteristicp case: we shall see that further
hypotheses are needed.

In the mixed characteristic case, under suitable hypotheses, we will be able to de-
compose the valuation onK into a valuation of characteristic 0 and a valuation with
value groupZ, and embedK in a field of power series over a field of Witt vectors.

To prove these results, first we need to define factor sets and study their properties.
Then, we will generalise Lemmata 2.11 and 2.12.

4 Factor sets and power series

Definition 4.1. Let A andB be two Abelian groups. A 2co-cycle(or co-cycle for short,
since we will consider only 2 co-cycles) is a map

f : A×A→ B

satisfying the following conditions:

1. f (α,β ) = f (β ,α).

2. f (0,0) = f (0,α) = f (α,0) = 0.

3. f (α,β + γ)f (β ,γ) = f (α +β ,γ)f (α,β ).

Definition 4.2 (Section). Given a valued fieldK, a sectionis a maps : Γ → K? such
that

s(0) = 1

v(sα) = α

for everyα ∈ Γ.

Proposition 4.3. Given a section s, the mapf : Γ×Γ → K? defined by

f (α,β ) :=
sα sβ

s(α +β )

is a 2 co-cycle. Moreover, s is a group homomorphism ifff = 1.

Proof.

f (α,β + γ)f (β ,γ) =
sα sβ sγ

s(α +β + γ)
= f (α +β ,γ)f (α,β ). �

We could also add to the definition of 2 co-cycle the axiom

4. f (−α,α) = 1,
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and to the definition of section the corresponding axiom

s(−α) = (sα)−1.

These additional axioms would not restrict significantly our use of 2 co-cycles and
sections, but they do simplify the computations.

The following definition is taken from homological algebra.

Definition 4.4. With the notation of Proposition 4.3,f := ds, theco-boundaryof s.

Definition 4.5 (Factor set). Let K be a valued field containing its residue fieldk. A
factor setf is a 2 co-cycle whose image is contained ink?. If s : Γ → K? is a section
and ds is a factor set, we will say thats is agood section, or a section with factor setf .

Definition 4.6 (Power series).Given a 2 co-cyclef : Γ×Γ → k?, the field of gener-
alised power seriesk((Γ, f )) with factor setf is the set of formal series

∑
i<n

ait
γi ,

with ai ∈ k?, n an ordinal number and
(
γi

)
i<n a strictly increasing sequence of elements

of Γ. Sum and multiplication are defined formally, with the condition

tα tβ = f (α,β )tα+β .

The axioms onf assure that the multiplication is associative and commutative. k((Γ, f ))
is actually a field, with valuation given by

v
(
∑
i<n

ait
γi
)

:= γ0,

value groupΓ, residue fieldk and canonical sections(γ) := tγ . With this definition,s
is a good section, with factor setf .

k(Γ, f ) is the subfield ofk((Γ, f )) generated byk ∪{ tγ : γ ∈ Γ} .

If we do not specify a factor setf , we will always mean thatf is the constant map 1
(agreeing with the notationk((Γ))). Similar definitions can be given fork only a ring,
or Γ only an ordered semi-group.

The following are well-known facts.

Lemma 4.7. • If k is a ring andΓ an ordered semi-group, thenk((Γ, f )) is a ring.

• k((Γ, f )) is a field iffΓ is actually a group andk is a field. In this case,k((Γ, f ))
is maximal, hence it is Henselian.

• An ordering onk induces an ordering onk((Γ, f )). With this ordering,k((Γ, f ))
is a real closed field iffk is a real closed field andΓ is divisible.

• k((Γ, f )) is algebraically closed iffk is algebraically closed andΓ is divisible.

In the sequel, we will try to embed in a truncation-closed waya Henselian fieldK
of equal characteristic ink((Γ, f )), for a suitablef .

First, we need to embedk in K.
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Lemma 4.8 (Kaplansky). Let K be a valued field, with residue fieldk and valuation
ring O. Suppose thatK has the same characteristic ask and it is Henselian and
perfect. Then, there is a field embeddingι : k → O such thatιa = a for every a∈ k.

Assume now thatf0 is a subfield ofk, andι0 : f0 →O is a field embedding such that
ι0a = a for every a∈ f0. Then,ι0 can be extended to a field embeddingι : k → O such
that ιa = a for every a∈ k.

Proof. In the first case, letf ⊆ k be a subfield ofk with a maximal embeddingι : f →O.
f exists, because the same prime field is in bothk andK. In the second case, letf ⊆ k
be a subfield ofk containingf0, with a maximal embeddingι : f → O extendingι0.

W.l.o.g., we can suppose thatι is the identity.
Suppose for contradiction that there existsa∈ k \ f, and leth := f(a) ⊆ k.
If a is transcendental overf, let x be any element ofK such thatx = a.
If a is algebraic, we can reduce to the case when eitherh/f is purely inseparable,

or it is separable.
In the inseparable case,apd

⊆ h for somed > 0. Let x ∈ K such thatxpd
= a

(it exists, becauseK is perfect).
In the separable case, letq(X) ∈ f[X] be the minimum polynomial ofa. It is a

separable polynomial, hence, by Hensel’s lemma, there existsx∈O such thatq(x) = 0
andx = a.

In all three cases, we can extendι to h(a) by fixing f and sendinga to x, a contra-
diction. �

If we fix once and for all an embeddingι : k → K, we will say thatK containsk
and takeι the identity. Moreover, by saying thatK containsk, we imply that we are in
the equal characteristic case.

Now, we give some sufficient conditions for the existence of agood section.

Definition 4.9. Let K be a valued field, with value groupΓ and residue fieldk. The
characteristic exponentof K is either 1 if chark = 0, or p if chark = p > 0. A good
sections : Γ → K is p-goodiff it satisfies the following conditions for everyγ ∈ Γ:

1. s(−γ) = s(γ)−1;

2. s(pγ) = (sγ)p, wherep is the characteristic exponent ofK.

Note that the second condition is empty if chark = 0.

The following lemma is a slightly improved version of Lemma 13 in [2].

Lemma 4.10. LetK be a valued field, containing its residue fieldk. Suppose thatK is
Henselian and perfect. LetΓ be its value group, and p be its characteristic exponent.
Then, there exists a p-good section s: Γ → K? (with some factor setf ).

Assume now thatΘ is a subgroup ofΓ, and s0 : Θ → K? is a map such that, for
everyα,β ∈ Θ,

1. v(s0α) = α;

2. ds0(α,β ) ∈ k?;

3. s0(pα) = (s0α)p and s0(−α) = (s0α)−1, where p is the characteristic exponent
of K.

Then, there exists a p-good section s: Γ → K? extending s0. If s0 satisfies only 1) and
2), then it can be extended to a good section s.
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Proof. In the first case, defineΘ := {0}, ands0(0) := 1. Let R := Z/p∞ ⊂ Q. K is
perfect, henceK? and Γ are in a natural wayR-modules. LetB ⊆ Γ be a maximal
subset ofΓ which isQ-linearly independent overΘ. For everyλ ∈ B, choosexλ ∈ K

such thatv(xλ ) = λ . Let ϒ ⊆ Γ be theR-submodule ofΓ generated byΘ∪B. For every
γ = θ + r1λ1 + · · ·+ rnλn ∈ ϒ, define

sγ := (s0θ)xr1
λ1
· · ·xrn

λn
.

Let Λ be aR-submodule ofΓ containingϒ and admitting a maximalp-good sections
extending the one onϒ. If, for contradiction,Λ 6= Γ, let γ ∈ Γ\Λ. There existsn∈ N?

such that(p,n) = 1 andnγ ∈ Λ; let m be the smallest suchn. Let y := s(mγ), and let
z∈ K? such thatv(z) = γ. Let w := y/zm. Hence,v(w) = 0. Leta = w∈ k?.

By Hensel’s lemma, there existsx∈ O such thatxm = w/a. Definesγ := zx.
For everyα ∈ Λ+Rγ, choose a representation

α = λ + rγ,

for somer ∈ R andλ ∈ Λ, such that the representation chosen forpα is pλ + prγ and
the one for−α is −λ − rγ. We can extends to Λ+Rγ by defining

s(α) := sλ · (sγ)r .

It is easy to verify that, modulok?, s(α) is independent from the chosen representation
of α, namely the extension ofs is a good section, and thats is actuallyp-good if s0 is,
and we reached a contradiction. �

5 Extending subfields of k((Γ))

We will now studyk((Γ, f )) more in detail. In this section,k is a field,Γ an ordered
group,f : Γ×Γ → k? is a 2 co-cycle, andK := k((Γ, f )) is the field of generalised
power series with factor setf .

Notation 5.1. • x E y means thatx is an initial segment ofy.

• x/y iff x is aproper initial segment ofy.

• supp(x) is thesupportof x.

(K,E) is atree: namely, it satisfies the following definition.

Definition 5.2 (Tree). A structure(T,/) is atree iff the following conditions are satis-
fied:

• It is a partial order.

• It is well-founded.

• Every non-empty subset ofT has a greatest lower bound (inT).

• For everya∈ T, the setP(a) := {y∈ K : y/x} is linearly ordered.

Therefore, we can do induction on/. As usual, with abuse of notation we will say
thatT is a tree.
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Remark5.3. Every treeT has a minimum, theroot of the tree. Moreover, every chain
bounded above has a least upper bound (inT).

Proof. The g.l.b. ofT itself is the root. Given a chainC, the g.l.b. of the set of the
upper bounds ofC is the l.u.b. ofC. �

Note that 0 is the root ofK. Moreover, the following stronger condition holds
for K:

Remark5.4. Any upper bound of a chainC in K without a maximum is a pseudo-limit
of C, and conversely. Therefore, every chain inK has a l.u.b..

Definition 5.5. GivenA⊆ T, we will write A � x iff for every y/ x there existsz∈ A
such thaty E z.

Remark5.6. If R⊆ T is truncation-closed,A ⊆ R and A � x, thenR∪ {x} is also
truncation-closed.

Remark5.7. If x∈ T, thenP(x) � x.

Remark5.8. Let x∈ K andA � x. If c∈ k andγ ∈ Γ, thenctγA � ctγx.

Remark5.9. If x,y,z∈ K, y E x, supp(y) < γ andv(z−x) ≥ γ, theny E z.

First, we will show how to perform some computations inK. The following facts
are well known.

Lemma 5.10. Let x,y∈ K, A := supp(x) and B:= supp(y). Then,

1) supp(x+y) ⊆ A∪B.

2) The support of xy is contained in the subgroup ofΓ generated by A∪B.

3) If x 6= 0, then the support of1/x is contained in the subgroup generated by A.

Let a0, . . . ,an−1 ∈ K, with Ai := supp(ai),

p(X) := Xn +an−1Xn−1 + · · ·+a0 ∈ K[X],

and x∈ K such that p(x) = 0. Let Λ be the subgroup ofΓ generated by A1∪ . . .∪An,
andΛ̃ be its divisible hull.

4) supp(x) is contained iñΛ.

5) If H(p,x), thensupp(x) is contained inΛ (see Definition 2.3).

Proof. The first two assertions can be proved by direct computation.

3) Let Θ be the subgroup generated byA, f ′ be restriction off to Θ×Θ, andL :=
k((Θ, f ′)). SinceL is a field andx∈ L, 1/x ∈ L, proving the assertion.

4) Define:

• Γ̃ be the divisible hull ofΓ.

• k̃ andK̃ be the algebraic closures ofk andK respectively.

• s̃ : Γ̃ → K̃? be some good extension ofs (it exists by Lemma 4.10).

• f̃ : Γ̃× Γ̃ → k̃? be the co-boundary of̃s.



5 EXTENDING SUBFIELDS OFK((Γ)) 16

• f ′ : Λ̃× Λ̃ → k̃? be the restriction of̃f.

Define also:
M := k̃((Γ̃, f̃ )) ⊇ K

L := k̃((Λ̃, f ′)) ⊆ M

F := K∩L.

They all are maximal, and the tree-structures onK, F, andL are the ones induced by
M. Moreover,L is algebraically closed, hence it containsx, proving that the support of
x is contained iñΛ.

If f = 1, a similar method proves that the coefficients (of the powerseries represen-
tation) of x are in the algebraic closure of the field generated by the coefficients of
theai .

5) This assertion too can be done by direct computation, but we prefer a different,
computations-free, approach.
Let f ′ be the restriction off to Λ×Λ. SinceL := k((Λ, f ′)) is maximal, it is Henselian.
Moreover,p(X) ∈ L[X] andHL(p,x), hencex∈ L, proving the conclusion. �

For related computations about the coefficients of an element of k((Γ)), see for
instance [12, Theorem 6.1].

The following proposition is a version for valued fields of the implicit function
theorem.

Proposition 5.11. Let F be a valued field,O be its valuation ring, p(X) ∈ O[X],
a,b∈ O with δ := v(a− b) > 0. Assume that p(a) = 0 and v(ṗ(a)) = α < ∞. If
δ > α, then v(p(b)) = α +δ . In particular, if v(ṗ(a)) = 0, then v(p(b)) = δ .

If q(X) ∈ O[X] is a polynomial such that q(b) = 0 and γ := v(p− q) > α, then
δ +α = v(q(a)) ≥ γ.

Proof. Sincev(p) ≥ 0,

p(b) = p(a)+ ṗ(a)(b−a)+O((b−a)2) = ṗ(a)(b−a)+O((b−a)2).

Moreover,v(b−a) > v(ṗ(a)) implies thatO((b−a)2) = o(ṗ(a)(b−a)), hence

v(p(b)) = v(ṗ(a)(b−a)) = α +δ .

v(p−q)> α implies thatv(q̇(b))= α, so, exchangingpandq, we getv(q(a)) = α +δ .
Finally, let pi andqi be the coefficients ofp(X) andq(X) respectively. Then,

v(p(b)) = v(p(b)−q(b)) ≥ min{v(pi −qi)+ iv(b)} ≥ v(p−q) = γ. �

Lemma 5.12 (Ostrowski). If
(
xi

)
i∈I is a pseudo-Cauchy sequence in some valued field

F and p(X) ∈ F[X], then
(
p(xi)

)
i∈I is eventually pseudo-Cauchy. If moreover

(
xi

)
i∈I

converges to x, then
(
p(xi)

)
i∈I converges to p(x).

Proof. See for instance [13, Lemma 9 Chapter 2]. �

Hence, if
(
xi

)
i∈I is pseudo-Cauchy sequence inF, andp(X) ∈ F[X], there are two

cases: either
v
(

p(ai)
)

= v
(

p(a j)
)

(5.1)
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for all sufficiently largei, j ∈ I , or

v
(

p(ai)
)

< v
(

p(a j)
)

(5.2)

for all sufficiently largei < j ∈ I .

Definition 5.13 (Type of a sequence).A pseudo-Cauchy sequence
(
xi

)
i∈I in F is of

transcendental type(with respect toF) iff (5.1) holds for every polynomialp(X) ∈
F[X]. If, on the other hand, (5.2) holds for at least one polynomial p(X), we say that(
xi

)
i∈I is of algebraic type.

The distinction plays a fundamental role in [2].

Proposition 5.14. If H is an extension ofF with the same value group, letI(y,F) be as
in Definition 2.23. Then,

1. I(y,H) is an initial segment ofΓ.

2. If H is an immediate extension ofF, thenI(y,F) has no maximum. In this case,
if y ∈ H\F, then there is a pseudo-Cauchy sequence

(
xi

)
i∈I in F converging to y

and without pseudo-limit inF.

Proof. If y∈F, then I(y,F) = Γ, and the conclusions are obvious. Otherwise,y∈H\F.

1) Let α = v(y− a) ∈ I(y,F), andβ < α ∈ Γ. Let b ∈ F such thatv(a− b) = β (it
exists, becauseF has the same value group asH). Sincey−b = (y−a)+ (a−b),
v(y−b) = β .

2) Suppose, for contradiction, thatv(x− y) is the maximum of I(y,F) = Γ. Let a ∈

F such thatv(x− y) = v(a). Let b ∈ F such thatv(b) = 0 and x−y
a = b. Then,

v
(
x− (y+ab)

)
> v(a) = v(x−y), a contradiction.

Choose for everyγ ∈ I(y,F) xγ ∈ F such thatv(y−xγ) = γ. The sequence
(
xγ

)
γ∈I(y,F)

satisfies the conclusion. �

Proposition 5.15. LetF be a valued field.F is algebraically maximal iff every pseudo-
Cauchy sequence

(
xi

)
i∈I in F of algebraic type has a pseudo-limit(in F).

Proof. ⇐) Suppose that, for contradiction,
(
xi

)
i∈I is a pseudo-Cauchy sequence of

algebraic type without pseudo-limit inF. [2, Theorem 3] implies there exists an imme-
diate algebraic extensionL of F where

(
xi

)
i∈I has a pseudo-limit. Hence,L is a proper

extension ofF, contradicting the fact thatF is algebraically maximal.

⇒) Suppose not. LetE be an immediate algebraic extension ofF, x ∈ E \F, and
p(X) ∈ F[X] be the minimum polynomial ofx. Proposition 5.14 implies that there is a
sequence

(
xi

)
i∈I in F converging tox and without limit inF, and Lemma 5.12 implies

that
(
p(xi)

)
i∈I converges to 0. Therefore,

(
xi

)
i∈I is of algebraic type. �

The following Theorem is a generalisation of Lemmata 2.11 and 2.12.

Theorem 5.16.Let S⊆ K be a truncation-closed subset ofK. Then, the following sets
are also truncation-closed:

1. The group generated by S.

2. The ring generated by S.
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3. The field generated by S.

4. The Henselisation of the field generated by S.

In particular, if F ⊆ K is truncation-closed, then alsoFH is truncation-closed.

The proof of the theorem is in subsection 5.1.
Let F be a subfield ofK, andL be the relative algebraic closure ofF insideK. If

chark = 0, thenL coincides with the Henselisation ofF. Otherwise, it will in general
be bigger. Later, we will prove that ifF is truncation-closed, then alsoL is truncation-
closed, under the condition that the factor set isp-good (namely, that the canonical
section onK is p-good).

Corollary 5.17. Let F be a truncation-closed subfield ofK, and
(
xi

)
i∈I be a pseudo-

Cauchy sequence inF without pseudo-limit inF. Then, there exists x∈ K which is a
pseudo-limit of

(
xi

)
i∈I and such thatF(x) is also truncation-closed.

If
(
xi

)
i∈I is of transcendental type and y is any pseudo-limit of it(in some extension

L of F), then there is an analytic isomorphism betweenF(x) and F(y) over F and
sending x to y.

Proof. By Theorem 5.16, it suffices to find a pseudo-limitx such thatF ∪ {x} is
truncation-closed. Denotev(xi − x j) i < j by γi . Let x ∈ K be some pseudo-limit
of

(
xi

)
i∈I (it exists, becauseK is maximal),yi ∈ K be the truncation ofx at γi . yi E y j

iff i < j; let x be the l.u.b. of
(
yi

)
i∈I (with respect to the orderE).

Claim 1. x is a pseudo-limit of
(
xi

)
i∈I .

v(x−xi) = γi , v(x−yi) ≥ γi , hencev(xi −x) ≥ γi , proving the claim.

Claim 2. yi ∈ F for everyi ∈ I .

In fact,v(xi −yi)≥ γi and suppyi < γi , thusyi E xi . Besides,F is truncation-closed,
andxi ∈ F, thereforeyi ∈ F.

Finally, F∪{x} is truncation-closed, proving the first part of the corollary.
The second part of the corollary is [2, Theorem 2]. �

5.1 Proof of Theorem 5.16

We will make use of ideas from surreal numbers [14]. Assertion 1 is obvious. Note
that an arbitrary union of truncation-closed subsets is also initial. Therefore, for every
R⊆ k((Γ, f )), we can definethe maximal truncation-closed subset ofR, namely the
union of all truncation-closed subsets ofR.

Ring: Let x,y∈ K. We will write

x = ∑
i<n

ait
γi

y = ∑
j<m

b j t
λi

for some ordinal numbersm,n, with theai andb j all different from 0. Givenn′ < n, x′

will be the truncation ofx atn:
x′ = ∑

i<n′
ait

γi ,

and similarly fory′.
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Let R be the maximal truncation-closed subset of the ring generated by S. By
Assertion 1,R is a subgroup ofK. Let x,y∈ R. By definition of product,

supp(xy) ⊆
{

ai +b j : i < n, j < m
}

.

If z/xy there existn′ < n andm′ < m such that

δ := γn′ +λm′ = min
(
supp(xy)\supp(z)

)
= v(xy−z).

Therefore,
(x−x′)(y−y′) = ∑

n′≤i<n
m′≤ j<m

aib j f (γi ,λ j)t
γi+λ j .

Let w := xy− (x−x′)(y−y′) = xy′ +x′y−x′y′. Hence,

v(xy−w) = δ

andzE w.
Remark 5.6 implies that for the second assertion it suffices to show thatR � xy.

This can be done by induction: we can suppose that we have proved the claim for every
(x̃, ỹ) such that ˜x E x, ỹ E y, and at least one of the inequalities is strict. However,w is
a sum of products of this kind, hence Assertion 1 implies thatw∈ R and consequently
Assertion 2.

Field: Let us prove Assertion 3. LetRbe the maximal truncation-closed subset of the
field generated byS. By Assertion 2,R is a subring ofK. By Remark 5.6, it is enough
to prove that if 06= x∈ R, then there existsA⊆ R such thatA � 1/x. The construction
of A is done inductively.

Claim 5.18. We can reduce to the case whenv(x) = 0.

In fact, let b := a0tγ0 be the leading term ofx. Let z := x/b. Note thatb ∈ R,
R∪{1/b} is initial (and therefore Assertion 2 implies that1/b ∈ R), andv(z) = 0. If we
can findA⊆ Rsuch thatA� 1/z, then, by Remark 5.8,1bA� x, and1

bA⊆ R, proving the
assertion.

So, we can suppose thatv(x) = 0. Lety := 1/x. Start with 0∈ A. Suppose that we
have already constructeda∈ A and let 06= x′ /x. We add toA the element

a′ :=
1+(x′−x)a

x′
. (5.3)

By induction onx, 1/x′ ∈ R, and thereforea′ ∈ R. v(x) = 0, hencev(x′) = 0.

v(y−a′)= v
(
1+(x′−x)a−x′y

)
−v(x′)= v(x−x′)+v(y−a)−v(x′)= v(x−x′)+v(y−a).

The support ofy is a subset of the group generated by supp(x). Therefore, ify′ /y, then
there existsl ∈ N andγ1, . . . ,γl ∈ supp(x) such that

γ1 + · · ·+ γl = min
(
supp(y)\supp(y′)

)
= v(y−y′).

It suffices to prove the following

Claim 5.19. For everyi ≤ l there isa∈ A such that

v(y−a) ≥ γ1 + · · ·+ γi .
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By induction oni, we can suppose we have already founda∈ A such that

v(y−a) ≥ γ1 + · · ·+ γi−1.

Let x′ be the truncation ofx at γi , and leta′ as defined in Equation (5.3). Then,

v(y−a′) = v(y−a)+v(x−x′) ≥ (γ1 + · · ·+ γi−1)+ γi ,

proving the claim. If we apply the claim toi = l , we gety′ E a, proving Assertion 3.
Here is an example:x = 1− t, with f = 1. Consequently,x′ = 1, andx′− x = t.

The elements inA are given by the sequence

a0 = 0

an+1 = 1+ tan,

i.e. an = 1+ t + t2 + · · ·+ tn, and

1/t = 1+ t + t2 + · · · .

Henselisation: For Assertion 4, letF be the maximal truncation-closed subset of the
Henselisation of the field generated byS. By Assertion 3,F is a subfield ofK. We have
to prove that it is Henselian.

Definition 5.20. Let p,q ∈ K[X], p = ∑i≤naiXi , q = ∑i≤mbiXi , degp = n. q E p iff
m≤ n and there existsl ≤ n such thatai = bi for everyi > l , while bl /al .

(K[x],E) is a well-founded partial order, therefore we can do induction on it.
Let p[X] ∈ F[X] and b ∈ K. I remind thatH(p,b) means thatp(X) is monic,

v(p) = 0, v(b) ≥ 0, p(b) = 0 andv(ṗ(b)) = 0. We have to prove that ifH(p,b), then
b∈ F. SinceF is maximal initial, it suffices to prove thatF � b.

We will proceed by induction onp. Assume that

p(X) = a0 +a1X + · · ·+an−1Xn−1 +Xn.

Let Λ be the group generated by supp(a0)∪·· ·∪supp(an). Then, supp(b)⊆ Λ. Let
c/b, and

δ := v(b−c) = min
(
supp(b)\supp(c)

)
.

Therefore,δ = γ1+ · · ·+γl for someγi ∈ supp(a j i ). Since we can suppose thatδ > 0(3),
there exist 0< γ ∈ suppam such thatkγ > supp(b) for somem,k∈ N.

Let a′ be the truncation ofam at γ (namely,a′ /am andv(a′−am) = γ), and

q(X) := p(X)+(a′−am)Xm = Xn +an−1Xn−1 + · · ·+am+1Xm+1 +a′Xm+ · · · .

Then, q / p and v(q− p) = γ. By Hensel’s lemma, there existsd ∈ K such that
v(b−d) > 0 andq(d) = 0. H(q,b) is true, therefore, by inductive hypothesis,d ∈ F.
Moreover, Proposition 5.11 implies thatv(d−b) ≥ γ.

Now proceed using Newton’s algorithm and define

d0 := d

di+1 := di −
p(di)

ṗ(di)

to finddi ∈F such thatv(di −b)≥ iγ. Therefore,v(dk+1−b) > kγ, socE dk+1, proving
thatF � b.

(3)As opposed toδ = 0.
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Proposition 5.21. Let chark = p > 0. Suppose that a,b∈ K. Then a/b iff bp /ap. In
general, if

a = ∑
γ∈Γ

aγ tγ ,

then
ap = ∑

γ
aγ

pcγ t pγ , (5.4)

where cγ := f (γ,γ) f (γ,2γ) · · · f (γ,(p−1)γ) ∈ k.

The factor setf is calledp-good ifcγ = 1 for everyγ ∈ Γ.

Proof. The first assertion is an immediate consequence of the secondone. By defini-
tion,

ap =
(
∑
γ

aγ cγ tγ )
· · ·

(
∑
γ

aγ cγ tγ )

︸ ︷︷ ︸
p times

Hence, theγ-monomial ofap is
(
ap)

γ := ∑
γ1+···+γp=γ

aγ1 · · ·aγp tγ1 · · · tγp = ∑
γ1+···+γp=γ

aγ1 · · ·aγp f (γ1, . . . ,γp)t
γ , (5.5)

where

f (γ1, . . . ,γp) :=
tγ1 · · ·tγp

tγ1+···+γp
.

Therefore,

a = ∑
γ∈Γ

ap
γ f (γ, . . . ,γ)t pγ

︸ ︷︷ ︸
=(5.4)

+ ∑
(γ1,...,γi)∈Γp\∆

aγ1 · · ·aγp f (γ1, . . . ,γp)t
γ1+···+γp, (5.6)

where∆ is the diagonal ofΓp. We have to show that the second summand in the
previous expression is 0. Fixγ1 . . . ,γp ∈ Γ not all equal to each other, say

γ1= . . . = γn1

γn1+1= . . . = γn1+n2

. . .
γn1+···+nk−1+1= . . . = γp,

with n1 + · · ·+nk = p andγn1,γn1+n2, . . . ,γp all distinct. The monomial

aγ1 · · ·aγp f (γ1, . . . ,γp)t
γ1+···+γp

appears in equation (5.6) as many times as the number of ways of distributingp objects
amongk boxes of capacityn1, . . . ,nk respectively. The latter is equal to

m :=

(
p
n1

)(
p−n1

n2

)
· · ·

(
p−n1−·· ·−nk−1

nk

)

︸ ︷︷ ︸
=1

.

However,k > 1 and all theni are non-zero, thus 1≤ n1 < p. Moreover,p is prime,
hencep | m, and the conclusion follows.

An alternative proof:
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1. Using the formula(x+y)p = xp+yp, prove equation (5.4) in the case supp(a) is
finite.

2. For the general case, observe that in equation (5.5) only afinite number of mono-
mials ofa is involved and apply the above particular case. �

An immediate consequence of the previous proposition is thefollowing lemma.

Lemma 5.22. Suppose thatchark = p > 0. Let F be a truncation-closed subfield of
K, andF̃ := {a∈ K : ap ∈ F}. Then,̃F is also truncation-closed.

6 Truncation-closed embeddings in characteristic 0

We are now ready to state and prove the embedding theorem in characteristic 0. LetK
be a valued field, with value groupΓ and residue fieldk of characteristic 0. Assume
thatK contains its residue field, and that there exists a good sections : Γ →K?; let f be
its factor set. Note that ifK is Henselian, these two assumptions hold, by Lemmata 4.8
and 4.10.
Let k((Γ, f )) be the field of generalised power series with factor setf , ands′ : Γ →
k((Γ, f )) be its canonical section. Note also thatk(Γ, f ) is a common subfield of
k((Γ, f )) and ofK.

Theorem 6.1. With the above notation, ifK is Henselian, then it has a truncation-
closed analytic embeddingφ in k((Γ, f )), which is overk and commutes with s,s′,
namely s′ ◦φ = s.

Proof. Let φ be a maximal truncation-closed analytic embedding of a subfield F ⊆ K

in k((Γ, f )) over k(Γ, f ). W.l.o.g.,φ is the identity. Theorem 5.16 implies thatF is
Henselian, and Lemma 2.16 implies that it is algebraically maximal.

Suppose, for contradiction, thatF 6= K. Letx∈K\F. Proposition 5.14 implies that
there exists a sequence

(
xi

)
i∈I in F converging tox and without pseudo-limit inF.

SinceF is algebraically maximal, by Proposition 5.15,
(
xi

)
i∈I is of transcendental

type. Corollary 5.17 implies that there existsx′ ∈ k((Γ, f )) such thatx′ is a pseudo-
limit of

(
xi

)
i∈I andF(x′) is truncation-closed and analytically isomorphic toF(x) over

F, a contradiction. �

Corollary 6.2. LetK be a Henselian field such thatcharK = chark = 0. Then,K has
a truncation-closed embedding ink((Γ, f )) for some factor setf .

Proof. We have proved that every such field contains its residue fieldand admits a good
section with some factor setf . Apply Theorem 6.1. �

Corollary 6.3. If K is an ordered Henselian field, thenK has a truncation-closed
embedding ink((Γ, f )) for some factor setf . Consequently, every ordered Henselian
K has integer part.

Proof. Every such field contains its residue field and admits a good section with some
factor setf . Therefore, the first part of the corollary follows immediately from Theo-
rem 6.1.

For the second part, we can reason as in [1]. �
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Proposition 6.4. Assume thatK is Henselian and containsk (but not thatchark = 0).
Suppose that its value group is the integers. Then,K has a truncation-closed analyti-
cally embeddingφ in k((Z)), which is overk and commutes with s,s′.

Proof. Since the value group isZ, we can find a cross-sections : Z → k?. Moreover,
the completion(4) of k(Z) is k((Z)) and containsK. Finally, any subfield ofk((Z))
containingk[t] is truncation-closed. �

7 Field families and subfields of k((Γ)) of bounded length

Before examining Henselian fields of finite and mixed characteristic, we will study
further the truncation-closed subfields ofk((Γ)).

Let k be a field,Γ be an Abelian ordered group, andΓ+ := {γ ∈ Γ : γ ≥ 0}. Fix
once and for all a 2-co-cyclef : Γ×Γ → k?.

7.1 Field families

For everyA⊆Γ andγ ∈Γ, defineA+γ := {α + γ : α ∈ A} and[A] to be the semigroup
generated byA (namely, the set of finite sums of elements fromA). Let A be a family
of subsets ofΓ.

Definition 7.1. A is afield-familyin Γ if

1. EveryA∈ A is well-ordered.

2. For everyγ ∈ Γ, the singleton{γ} is in A.

3. For everyA,B∈ A, A∪B∈ A.

4. ForA∈ A andB⊆ A, B∈ A.

5. For everyA∈ A andγ ∈ Γ, A+ γ ∈ A,

6. For everyA∈ A such thatA⊆ Γ+, [A] ∈ A.

k((A, f )) is the subset ofk((Γ, f )) of power series with support inA. Field families
were introduced by Rayner [15].

Lemma 7.2. If A is a field family inΓ, then k((A, f )) is a Henselian subfield of
k((Γ, f )).

The proof is a modification of the one given in [15].

Proof.
supp(x+y) ⊆ supp(x)∪supp(y) and

supp(xy) ⊆ supp(x)+supp(y).

Thus,k((A, f )) is a ring.
If v(x)= 0, then, by B.H. Neumann’s lemma, supp(1/x)⊆ [supp(x)], hencek((A, f ))

is a field.
Let p(X) ∈ k((A, f ))[X], x∈ k((Γ, f )) such thatv(p) = 0, v(x) ≥ 0, p(x) = 0 and

v
(

ṗ(x)
)

= 0. We have to show thatx∈ k((A, f )).

(4)As a metric space
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Define supp
(

p(X)
)

as the union of the supports of the coefficients ofp(X). Let
Q := [supp

(
p(X)

)
] ∈ A, andT be the set ofxi ∈ k((Γ)) such that supp(xi) ⊆ Q, and

0 < v(xi − x) ∈ Γ∪ {∞}. Define a partial order onT, xi < x j , to meanv(xi − x) <
v(x j −x). Any chain inT has an upper bound inT, for if {xi : i ∈ I } is a chain, and, for

everyi ∈ I , γi := v(xi −x), then we can definey := ∑λ aλ tλ , whereaλ = a(i)
λ if λ < γi

for somei ∈ I (wherexi = ∑λ a(i)
λ tλ ), andaλ = 0 otherwise. Note that supp(y) ⊆ Q by

construction. It is then clear thaty∈ T.
By Zorn’s lemma,T has a maximal element, sayy0. If y0 6= x, let

y1 := y0−
p(y0)

ṗ(y0)
.

Theny1 ∈ T, andv(y1−x) > v(y0−x), contradicting the maximality ofy0. �

7.2 Examples

7.2.1 k((Γ, f ))ε

The family of all well-ordered subsets ofΓ is a field-family (by B.H. Neumann’s
lemma). IfA⊆ Γ is well-ordered, o(A) is the order-type ofA.

We remind that an epsilon number is an ordinalε such thatωε = ε (ordinal expo-
nentiation).

Lemma 7.3. Let ε be an epsilon number andA be the family of well-ordered subsets
of Γ of order-type less thanε. Then,A is a field-family.

In this case,k((A, f )) is denoted byk((Γ, f ))ε . (5)

Proof. The only difficult point is 6. However, [16] prove that ifA⊆Γ+ is well-ordered,
then o([A]) ≤ ωω o(A), and this concludes the proof. �

Corollary 7.4. If ε is an epsilon number, thenk((Γ, f ))ε is a Henselian field.

7.2.2 Algebraically closed fields

The following is a well-known fact.

Lemma 7.5. Let K be a valued field, with value groupΓ and residue fieldk. Assume
that chark = 0. Then,K is algebraically closed iff it is Henselian,k is algebraically
closed andΓ is divisible.

Let k be an algebraically closed field, andp be either chark if it is > 0, or 1
otherwise. Suppose thatf is a p-good factor set. Let̃Γ be the divisible hull ofΓ.

DefineA to be the family of well-ordered subsets ofΓ̃ contained in some subset of
the form

1
d

⋃

k∈N

Γ
pk ,

asd varies inN?. A is a field family. For the following theorem we need some facts
that we will prove later.

(5)The usual definition ofk((Γ, f ))ε , e.g. in [7], is only forε a cardinal number, and asks that the car-
dinality of the support is less or equal toε. I hope that the present lemma justifies our departure from that
convention.
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Theorem 7.6 (Rayner). k((A)) defined as above is an algebraically closed field.

k((A)) is a Henselian valued field, with algebraically closed residue field and di-
visible value group. If chark = 0, k((A)) is algebraically closed, by Lemma 7.5. If
chark = p, the conclusion is immediate from Lemma 9.9 and Proposition9.3.

7.3 Ax-Kochen-Ershov theorem

Let ℵ be an uncountable cardinal number.

Definition 7.7 (ℵ-pseudo-complete).LetK be a valued field.K is ℵ-pseudo-complete
iff every pseudo-Cauchy sequence of length strictly less thanℵ has a pseudo-limit in
K.(6)

Remark7.8. Let K be a valued field. IfK is ℵ-saturated (in the sense of model theory),
then it isℵ-pseudo-complete.

Remark7.9. k((Γ, f ))ℵ is ℵ-pseudo-complete.

Remark7.10. Let εn be thenth epsilon number, forn an ordinal, andℵ an uncountable
cardinal number. Then,εℵ = ℵ.

Proposition 7.11. Let m be an ordinal number,F a truncation-closed subfield of
k((Γ, f ))εm and

(
xi

)
i∈I a pseudo-Cauchy sequence inF. Then, there exists x∈ k((Γ, f ))εm+1

which is a pseudo-limit of
(
xi

)
i∈I and such thatF(x) is a truncation-closed subfield of

k((Γ, f ))εm+1.
If

(
xi

)
i∈I is of transcendental type and y is any pseudo-limit of it(in some extension

L of F), then there is an analytic isomorphism fromF(x) to F(y) overF and sending x
to y.

Proof. Definexas in Corollary 5.17. Sincex is a supremum of a sequence ink((Γ, f ))εm,
its length is less thanεm+1. Hence,F(x) ⊆ k((Γ, f ))εm+1.

The second part is the same as in Corollary 5.17. �

If F ⊆ K is a field extension, trdeg
(
K/F

)
is the transcendence degree ofK overF .

Theorem 7.12.LetK be a Henselian valued field with residue fieldk of characteristic
0 and value groupΓ. Suppose thatK containsk and that there is a section s: Γ → K?

with factor setf . Letℵ be an uncountable cardinal number such that
trdeg

(
K/k(Γ, f )

)
≤ ℵ.

1. There is a truncation-closed embedding ofK in k((Γ, f ))ℵ, preserving the sec-
tion.

2. If moreoverK is ℵ-pseudo-complete, then every such embedding is onto.

The second assertion is a classical theorem by Ax, Kochen andErshov (see for
instance [17, 18, 19, 7, 20]).

Proof. Let
(
ci

)
i<ℵ be a transcendence basis ofK/k(Γ, f ). Define K0 := k(Γ, f ),

Kn := K0(ci : i < n). Then,K = KH
ℵ. Define, by induction onn, a truncation-closed

embeddingφn : KH
n → k((Γ, f ))εn.

If n is a limit ordinal, thenφn =
⋃

i<n φi .

(6)Note that the definition ofℵ-pseudo-complete is different from the one given in [17] (where they ask
that the length of the sequence is exactlyℵ). The reason is apparent in the following discussion.
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If n = m+1, apply Proposition 7.11 to extendφm to φn.
φℵ is the embedding we were looking for.
For the second part, suppose for contradiction, that, once we have embeddedK

in a truncation-closed way ink((Γ, f ))ℵ, x ∈ k((Γ, f ))ℵ \K is of minimal length.
Therefore,x is a pseudo-limit of the sequence

(
xi

)
i∈I of its proper initial segments.

However, the length of such a sequence is less thanℵ, hence
(
xi

)
i∈I has a pseudo-limit

y in K. Moreoverx E y, contradicting the fact thatK is truncation-closed. �

There is a kind of converse to Theorem 7.12.

Lemma 7.13. Let k be a field of characteristic0, K a Henselian valued field with
residue fieldk and value groupΓ, and ℵ an uncountable cardinal number. Assume
thatK containsk, and let s: Γ → K? be a good section withds= f . If K is ℵ-pseudo-
complete, then there is an analytic embedding ofk((Γ, f ))ℵ in K over k(Γ, f ) and
preserving the section.

Proof. The proof is fairly routine: we will build the embedding inductively. k(Γ, f )
is a common subfield of bothK andk((Γ, f ))ℵ. Let ψ be a maximal (namely, non-
extendable) embedding from a truncation-closed subfieldF of k((Γ, f ))ℵ containing
k(Γ, f ) in K. We have to prove thatF = k((Γ, f ))ℵ.

Suppose not, and assume thatψ is the identity. F is Henselian, otherwise, using
Corollary 7.4 and Theorem 5.16, we could extendψ to the Henselisation ofF. Let
x∈ k((Γ, f ))ℵ \F of minimal length; define

(
xi

)
i<α to be the sequence of truncations

of x; sincex /∈ F, α is a limit ordinal and
(
xi

)
i<α has no pseudo-limit inF. Obviously,

α < ℵ and
(
xi

)
i<α is in F and converges tox. SinceK is ℵ-pseudo-complete,

(
xi

)
i<α

has also a pseudo-limitx′ ∈ K. F is of residue characteristic 0 and Henselian, therefore
Lemma 2.16 implies that it is algebraically maximal. By Proposition 5.15,

(
xi

)
i<α is

of transcendental type. [2, Theorem 2] implies thatF(x) is analytically isomorphic to
F(x′) overF, a contradiction. �

Using the same proof, Theorem 7.12 can be strengthened in thefollowing way.
With the same hypothesis onK, let κ < ℵ be some epsilon number, letK0 be a sub-
field of K containingk(Γ, f ), andφ0 be a truncation-closed embedding fromK0 in
k((Γ, f ))κ (analytic and overk(Γ, f )). Then, there is a truncation-closed embedding
φ of K in k((Γ, f ))ℵ extendingφ0.

Similarly, in Lemma 7.13 we can also suppose to have a fieldF containingk(Γ, f ),
and an analytic isomorphismψ0 from a truncation-closed subfield ofk((Γ, f ))ℵ in F

overk(Γ, f ). Then there exists an embeddingψ of k((Γ, f ))ℵ in K extendingψ0 and
preserving the section.
Note that the use of the factor setf did not add any additional difficulty to the proofs (except the
notational burden of, for instance, writingk((Γ, f )) instead ofk((Γ))).

N. Alling [21] proved that ifℵ is a regular cardinal, such that∑κ<ℵ 2κ ≤ ℵ, andΓ
is the ordered divisible Abelian group which is saturated and of powerℵ, thenR((Γ))ℵ
(resp.C((Γ))ℵ) is the real closed (algebraically closed) field, which is saturated and of
powerℵ.

8 Surreal numbers

Let K be an ordered Henselian field. In this section, we will investigate the existence
of an initial embedding fromK in No, the field of surreal numbersNo. The results
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stated here will not be used in the rest of the article. Therefore, if you are not interested
in surreal numbers, you can skip it (if you do not know what surreal numbers are, you
should read [14]).

Definition 8.1. Let a,b be surreal numbers.a is simplerthanb, in symbolsa� b, iff
there exists sets of surreal numbersL,L′ andR,R′ such thatL ⊆ L′, R⊆ R′, L′ < R′,
a = {L | R} andb = {L′ | R′ }.

A subsetS⊆ No is initial iff for every b ∈ S and everya ∈ No such thata � b ,
a∈ S.

It is easy to see that
(
No,�

)
is a tree. The fundamental relation between the linear

order< and the partial order� onNo is that in every<-convex subset(7) S⊆ No there
is a�-minimum.

OnNo is also defined a power-series structure; more precisely,No is isomorphic to
the ordered fieldR((No)) (the group of exponents isNo itself). The image ofx∈ No
under the canonical cross-section is denoted withω−x (therefore,ω := ω1 is infinite).

Remark8.2. If x� y∈ No thenωx � ωy.

Proof. If x = {xL | xR} is the canonical representation ofx, then

ωx = {0, rωxL
: r > 0∈ R | sωxR

: s> 0∈ R},

and similarly fory. But x� y, thereforex′ ≺ y for everyx′ ≺ x, sorωx′ is an option in
the formula forωy. �

Lemma 8.3. Let K be an arbitrary initial subfield ofNo. Then,K is also truncation-
closed, and therefore admits a cross-section(with respect to its natural valuation v).

Moreover, its value groupΓ is also initial. Finally,K contains its residue field as
an initial subfield.

Proof. The first assertion is obvious. Letγ ∈ Γ, and letγ ′ ≺ γ. We have to prove that
γ ′ ∈ Γ. Setγ = −v(a) for somea∈ K. Write the normal form ofa

a = a0ωγ + · · ·

Then,ωγ � a, thereforeωγ ∈ K. By Remark 8.2,ωγ ′ ∈ K, henceγ ′ ∈ Γ, and we have
proved thatΓ is initial.

The valuation onK is the natural valuation, therefore the residue fieldk is, in a
canonical way, a subfield ofR, and every subfield ofR is initial. We have to prove
that k ⊆ K. Let a ∈ k. Then, there existsx ∈ K such thatx = a+ ε, with v(ε) > 0.
Consequently,a� x, soa∈ K. �

Theorem 8.4. Let K be an ordered field, v be its natural valuation,k the residue field
andΓ the value group. Assume that:

• K is Henselian

• Γ has an initial embedding inNo as an ordered group.

• K admits a cross-section.

Then, there is an initial embedding ofK in No as an ordered field.

The previous theorem is also a consequence of Theorem 2.10, together with [3,
Theorem 18].

(7)Namely, ifa < b∈ S, c∈ No anda≤ c≤ b, thenc∈ S.
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8.1 Proof of Theorem 8.4

Any ordered fieldF is endowed with its natural valuation. In this proof,F̃ will denote
its real closure. Proceed as in the proof of Theorem 2.10. Instead of Lemmata 2.11
and 2.12, we will use the following two lemmata, proved in [22].

Lemma 8.5. LetF be an initial subfield ofNo. ThenF̃ is also initial.

Lemma 8.6. Let S be an initial subset ofNo. Then, the field generated by S is also
initial.

The initial embedding ofΓ in No induces in a canonical way an initial embedding
of k((Γ)). Let F ⊆ K such that:

• k(Γ) ⊆ F.

• There is a maximal initial embeddingφ of F.

We have to prove thatK = F. W.l.o.g., we can suppose thatφ is the identity.

Lemma 8.7. F is Henselian.

Proof. Lemma 8.5 implies that̃F is an initial subfield. Moreover,FH = F̃∩ k((Γ)).
But F̃ andk((Γ)) are both initial, soFH is. �

Lemma 8.8. F = K.

Proof. If not, let x∈ K\F. By the previous proposition,F is Henselian. Letx′ in No
be the simplest element satisfying the same cut asx over F (it exists by definition of
No). Therefore,F∪{x′ } is an initial subset ofNo. Lemma 8.6 implies thatF(x) is an
initial subfield ofNo, contradicting the maximality ofφ . �

9 Additive polynomials and power series fields

In this section, we will study the finite characteristic case.
When we will say group, we will always mean Abelian group (unless specified

otherwise). Let

• k be a perfect field of characteristicp > 0, andk̃ its algebraic closure;(8)

• Γ be an orderedp-divisible Abelian group, and̃Γ its divisible hull;

• f : Γ×Γ → k? be ap-good 2-co-cycle, and̃f : Γ̃× Γ̃ → k̃ an extension off to Γ̃;

• K := k((Γ, f )), andK̃ := k̃((Γ̃, f̃ )) be the corresponding power series fields.

Definition 9.1. Let F be a field of characteristicp > 0. An additive polynomialis
a polynomialq(X) ∈ F[X] such thatq(x+ y) = q(x) + q(y) for everyx andy in the
algebraic closure ofF.
A p-polynomialis a polynomial of the formq(X)− c, wherec is a constant term and
q(X) is an additive polynomial (cf. [23]).

An additive polynomial is of the forma0X +a1Xp + · · ·+anXPn
.

(8)p-closure is also enough.
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9.1 Artin-Schreier polynomials

Fix d ∈ N? andb∈ k?. Let q := pd, andk[X] 3 q(X) := Xq−bX. Note thatq(X) is an
additive polynomial.

We wish to study the solutions iñK of the equation

q(X) = a (9.1)

with a∈ K; more precisely, we will give the power series expansion of these solutions.

Remark9.2. Let x be a solution (iñK) of (9.1). Then,y∈ K̃ is a solution of (9.1) iff
x−y is a solution ofq(X) = 0.

Let Λ := Z/p∞ =
{

n
pm : n∈ Z,m∈ N

}
andF = k((Λ)) be the power series field

with coefficient ink, exponents inΛ, factor set 1, and where we uses instead oft(9).

Proposition 9.3. A solution inF of the equation X= bXq +s is

f (s; b) :=
∞

∑
n=0

b1+q+q2+q3+···+qn−1
sqn

.(10) (9.2)

A solution of q(X) = s is

g+(s; b) := −
∞

∑
n=0

sqn

b1+q+q2+q3+···+qn .(11) (9.3)

A solution of q(X) = s−1 is

g−(s−1; b) :=
∞

∑
n=1

b1/q+1/q2+1/q3+···+1/qn−1
s−1/qn

.(12) (9.4)

The proof is by direct computation, using Proposition 5.21.We can see that the
coefficients ofg± are ink, and their exponents are inΛ.

Let M be the ideal of infinitesimal elements ofK. For a fixedb ∈ k, g+(s; b)
defines an analytic function fromM into itself, which we will denote with the same
name.

Remark9.4. If z∈ K is purely infinite (namely, suppz< 0), theng−(z; b) converges,
hence it defines a function ofz.

Proof. Given a sequenceb1,b2, . . . ∈ k̃, let

g(z) := ∑
n∈N?

bnz
1

qn .

We need to show that ifz∈ K̃ is purely infinite, thenx := g(z) is a well defined element
of K̃. Namely, we have to check that

1. ∀λ ∈ Γ̃ there are only finitely many(n,γ) ∈ N? ×suppz such thatλ = γ
qn , and

(9)Namely, the elements ofF are formal sums∑γ∈Λ aγ sγ with well-ordered support.
(10)The 0-term of the summation iss.
(11)The 0-term of the summation iss/b.
(12)The first term of the summation isbs1/q.
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2. suppx is well-ordered.

We will prove only the second point (the first is done in a similar way). Assume, for
contradiction, that there exists an infinite sequenceλ1 > λ2 > λ3 > · · · ∈ suppx. Then,
for every i ∈ N?, there existsγi ∈ suppz andni ∈ N? such thatλi = γi

qni . Since suppz
andN? are well-founded, after taking a subsequence, we can assumethat γ1 ≤ γ2 . . .
andn1 ≤ n2 . . . . Since all theγi are negative, this is a contradiction. �

By direct computation, it is now easy to see that:

• if v(a) > 0, a solution of Equation (9.1) isg+(a; b);

• if a is purely infinite, a solution isg−(a; b);

• if a∈ k, a solution is a certain elementc0 ∈ k̃.

Hence, in general a solution of Equation (9.1) is

∑
γ<0

g−(aγ t
γ ; b)+c0 + ∑

γ>0
g+(aγ t

γ ; b) ∈ k̃((
Γ
p∞ , f̃ )).

In particular, a solution of the equation

Xq = X +a (9.5)

is

x := ∑
γ<0

∞

∑
n=1

(aγ t
γ)

1/qn
+c0− ∑

γ>0

∞

∑
n=0

(aγ t
γ)qn

, (9.6)

wherec0 ∈ k̃ is a solution ofXq = X +a0.
Note also that ifv(a) > 0, then(Xq−bX−a)(0) = a, which is infinitesimal, and

v(q̇(x)) = v(b) = 0 for everyx, thus the existence of an infinitesimal solutionx∈ K is
also implied by Hensel’s lemma.

Everyx∈K can be written uniquely asx= x−+x0+x+, wherex− is purely infinite,
x0 ∈ k, andv(x+) > 0. Therefore, if we defineg±(y) := g±(y;1), (9.6) becomesx =
g−(a−)+c0 +g+(a+).

Hence, the support of any solutionx of Equation (9.5) is contained in

⋃

n≥1

supp(a−)

qn ∪̇{0}∪̇
⋃

n≥0

qnsupp(a+).

Givenm∈ N, define

g+
m(a) := −

m

∑
n=0

∑
γ>0

(aγ t
γ)qn

= −
m

∑
n=0

(a+)qn
,

g−m(a) :=
m

∑
n=1

∑
γ<0

(aγ t
γ)

1/qn
=

m

∑
n=1

(a−)
1/qn

.

(9.7)

Note thatg±m andg± are additive functions.

Lemma 9.5. Let a∈ K, x as in Equation(9.6). If v(a) > 0, then
{

g+(b)+g+
m(a−b) : b/a,0≤ m∈ N

}
� x

If a is purely infinite, then
{

g−(b)+g−m(a−b) : b/a,0≤ m∈ N
}

� x
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Proof. Assumev(a) > 0. Lety/x andα := v(y−x). Then,α = qm−1λ for somem≥ 1
and 0< λ ∈ supp(a). Let b be the truncation ofa atλ (namely,b/a andv(b−a) = λ )
and

z := g+(b)+g+
m(a−b).

It remains to show thatv(z−x) > α.

x−z= g+(a)−g+(b)−g+
m(a−b) = (g+ −g+

m)(a−b) = − ∑
n≥m

∑
γ≥λ

(aγ t
γ)qn

.

Therefore,v(x−z) ≥ qmλ > qm−1λ = α.
If a is purely infinite, lety/ x andα := v(y− x). Then,α = λ

qm−1 for somem≥ 2

and 0> λ ∈ supp(a). Defineb to be the truncation ofa at λ , and

z := g−(b)+g−m(a−b).

Then,v(x−z) ≥ λ
qm > λ

qm−1 = α. �

Hypothesis A.Let K be a valued field,Γ be its value group andk its residue field, with
chark = p. If p = 0, the hypothesis is vacuous. Ifp > 0, then

1. Any polynomial of the form

Xpn
+an−1Xpn−1

+ · · ·+a1Xp +a0x+b,

with coefficients ink has a root ink.

2. Γ = pΓ.

Kaplansky introduced the Hypothesis A in [2], and G. Whaples in [24] proved
that a fieldk of characteristicp > 0 satisfies the condition A-1 iff it has no algebraic
extension of degree divisible byp (cf. also [25] for an elementary proof of this fact).

Theorem 9.6 (Kaplansky(13)). Let K be a valued field,Γ be its value group andk its
residue field, withchark = p. K is maximal iff it contains a pseudo-limit for each of its
pseudo-convergent sequences.

If K is maximal,k is perfect, andΓ = pΓ, thenK is perfect.
If k and Γ satisfy Hypothesis A, then the maximal immediate extensionL of K is

uniquely determined up to analytic isomorphism overK. Moreover,L is perfect and
isomorphic tok((Γ, f )) for some factor setf .

Let F and F′ be two maximal extensions ofK, with the same value groupΛ and
residue fieldf. If f andΛ satisfy Hypothesis A, and if every element off has an nth root
for every n, thenF andF′ are analytically isomorphic overK.

If charK = chark, thenK is isomorphic to a subfield of a power series field.

An immediate consequence of Lemma 9.5 is the following corollary.

Corollary 9.7. Assume thatK := k((Γ, f )) satisfies Kaplansky’s Hypothesis A. LetF

be a truncation-closed subfield ofK.
Fix q a power of p, and letE be the smallest perfect subfield ofK containingF and

such that every equation of the form Xq = X +a, with a inE, has a solution inE.
Then,E is also truncation-closed.

(13)See [2] and [13, Chapter 7]



9 ADDITIVE POLYNOMIALS AND POWER SERIES FIELDS 32

Sketch of proof.Let S be the maximal truncation-closed subset ofE. Then, S is a
perfect subfield ofK containingF. Suppose, for contradiction, thata∈ S is of minimal
length such that, ifx is the solution ofXq = X + a given by (9.6), thenx /∈ S. Since
x = g−(a−)+ c0 +g+(a+), we can assume w.l.o.g. that eithera = a− or a = a+. We
will deal with the casea= a− (the other one is similar). By minimality ofa, g−(b) ∈ S
for everyb/a. Moreover,g−m(a−b) ∈ S for everym∈ N and everyb∈ S, sinceg−m is
a finite sum. Hence, by Lemma 9.5,S� x, contradicting the maximality ofS.

Note thatE is built by successive extensions by purely inseparable elements and
roots of polynomials of the formXq−X−a. �

The following lemma is a consequence of Ostrowski’s theorem[6, Theorem 2
pag. 236].

Lemma 9.8. Let F be a Henselian valued field, with residue characteristic p> 0. Let
H be an immediate algebraic extension ofF such that n:= [H : F] is finite. Then, n is
a power of p.

Lemma 9.9. Let F be a valued field with residue fieldk and value groupΓ. Assume
that:

1. F is Henselian, perfect and of characteristic p> 0.

2. k is algebraically closed.

3. Γ is divisible.

4. Every polynomial Xp−X−a∈ F[X] has a solution inF.

Then,F is algebraically closed.

Proof. The proof proceeds as in [15]. Note that Condition 4 is equivalent to

4’. Every polynomial Xp−X−a∈ F[X] hasall solutions inF.

Let L be a finite extension ofF, andn := [L : F]. We must prove thatn= 1. W.l.o.g.,
L/F is normal, and sinceF is perfect, it is a Galois extension, with Galois groupG. L

must be an immediate extension ofF, and Lemma 9.8 implies thatn= pk. If, by absurd,
k > 0, thenG contains a normal subgroupH of powerpk−1 [26, Corollary 6.6]. LetL′

be the fixed field ofH: it is a Galois extension ofF of degreep. By [26, Theorem 6.4],
any such extension is generated by a zero ofXp−X−a for somea∈ F, which, by 4’,
is already inF, a contradiction. �

Lemma 9.10. Assume thatk is algebraically closed andΓ is divisible. LetF is a
truncation-closed subfield ofk((Γ, f )) containingk(Γ, f ), andE be its algebraic clo-
sure(insidek((Γ, f ))). ThenE is also truncation-closed.

Proof. Lemma 9.9 implies thatE is the closure of the Henselisation ofF under so-
lutions of equationsXp = X + a, hence Corollary 9.7 implies thatE is truncation-
closed. �

Proposition 9.11.LetH be a truncation-closed subfield ofk((Γ, f )) containingk(Γ, f ),
andE ⊆ k((Γ, f )) be its relative algebraic closure. Then,E is also truncation-closed.

Moreover,E is algebraically maximal.
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Proof. Let k̃ be the algebraic closure ofk, Γ̃ be the divisible hull ofΓ. Extend the
p-good co-cyclef to a p-good co-cycle

f̃ : Γ̃× Γ̃ → k?.(14)

Let k̃((Γ̃, f̃ )) be the corresponding power series field,L be the field generated byH, k̃
andΓ̃ in k̃((Γ̃, f̃ )) andL̃ be its algebraic closure (embedded ink̃((Γ̃, f̃ ))). To simplify

the notation, we will assume thatf̃ = 1, and drop it. Lemma 9.10 implies thatL̃ is
truncation-closed. Moreover,E = k((Γ))∩ L̃. Therefore,E is truncation-closed.

Let F be an immediate algebraic extension ofE. E is Henselian (since it is a rela-
tively algebraically closed subfield of the Henselian fieldk((Γ))), so, by the uniqueness
extension property of Henselian fields, there exists a unique embedding ofF in L̃ an-
alytic overE. We have to prove thatF = E. It is enough to show thatF ⊆ k((Γ)).
Suppose not. Letx∈ F\k((Γ)) of minimal length. We can chooseF such that̀ (x) is
minimal.

Therefore, for everyy/ x, eitherE(y) is not immediate algebraic overE, or y∈ E

(otherwise,
(
E(y),y

)
would satisfy the same condition as

(
F,x

)
, contradicting the

minimality of `(x)).
Suppose that everyy/ x is in E. In this case, we must have that`(x) is a succes-

sor ordinal (otherwise,x ∈ k((Γ))). Hence,x = y+ aγ tγ , for a uniquey/ x such that
supp(y) < γ. However,E(x) is an immediate extension ofE, thusγ ∈ Γ andaγ ∈ k,
whencex∈ k((Γ)), a contradiction.

Therefore, there existsy/x such thatE(y) is not an immediate algebraic extension
of E. Choosey to be of minimal length. However,̃L is a truncation-closed subfield
of k̃((Γ̃)), andx ∈ L̃, soy ∈ L̃, hencey is algebraic overE. We conclude thatE(y)
is not an immediate extension ofE, thusy /∈ k((Γ)). Again, the length ofy must be a
successor ordinal (otherwise,y∈ k((Γ)), because allz/y are ink((Γ)) by minimality
of `(y)). Hence,y = z+ aγ tγ , for a uniquez/ y such that supp(z) < γ. γ ∈ Γ̃, aγ ∈ k̃
and, by minimality,z∈ E. However,v(x− z) = v(x− y) = γ, thusγ ∈ Γ. Moreover,(

x−z
tγ

)
= aγ , thusaγ ∈ k. Therefore,E(y) is an immediate extension ofE, and we have

a contradiction. �

For a (relatively) long time I tried to prove Proposition 9.11 directly, and failed,
until I saw that I could enlarge the original fieldH to L, prove the lemma for it, and
then restrict back toH. This kind of “enlargement” trick is quite useful, and I use it
also in other places.

F. Delon gives an example of a maximal valued fieldM and a subfieldE such
thatE is relatively algebraically closed inM, andM/E is immediate, and yetE is not
algebraically maximal [27, Example 1.12 pag. 14]. Hence, the somewhat lengthy proof
of the second part of Proposition 9.11 is really needed, and we face a phenomenon
peculiar to truncation-closed subfields, which I think deserves further investigation.

Moreover, I think that a direct proof of Proposition 9.11 would give a better insight
of the structure of algebraically maximal fields, in the sameway as Lemma 9.9 clarifies
the structure of algebraically closed fields.

Theorem 9.12. Let F be an algebraically closed valued field of characteristic p> 0,
k be its residue field andΓ be its value group. Then, for every embedding ofk in F

and p-good section s: Γ → F?, there is an analytic truncation-closed embedding ofF

in k((Γ, f )) overk and commuting with s, wheref := ds.

(14)f̃ exists by Lemma 4.10.
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Note that there is always at least one embedding ofk and onep-good sections.

Proof. Proceed as in the proof of Theorem 6.1, using Lemma 9.10 instead of Theo-
rem 5.16. �

An additional problem in finite characteristic is that a valued fieldF (even a Henselian
one) may have many non-isomorphic maximal algebraic immediate extensions. How-
ever, if F satisfies Kaplansky’s Hypothesis A, then it has only one suchextension.
Therefore, using Proposition 9.11 and [2, Theorem 5], the previous theorem can be
extended to algebraically maximal valued fields satisfyingKaplansky’s Hypothesis A.

9.2 Subfields of k((Γ)) of bounded length in finite characteristic.

Lemma 9.13. If Γ is divisible andk is algebraically closed, thenk((Γ, f ))ε is alge-
braically closed.

In general,k((Γ, f ))ε is algebraically maximal.

Proof. Call F := k((Γ, f ))ε . Corollary 7.4 implies thatF is a Henselian field.
If Γ is divisible andk algebraically closed, propositions 5.21 and 9.3 imply that

F is also perfect and closed under solutions of polynomialsXp−X− c, therefore, by
Lemma 9.9, it is algebraically closed.

For the general case, suppose for contradiction thatE is some immediate extension
of F, p(X) ∈ F[X] is monic irreducible, andx ∈ E is some root ofp(X). SinceL :=
k̃((Γ̃, f̃))ε is algebraically closed, all roots ofp(X) are in L. Let y ∈ L be one of
these roots.F is Henselian, thereforeF(y) is analytically isomorphic toF(x) over F

(Lemma 2.4), hence they are both proper immediate extensions ofF.
Let y = ∑i<α aitγi , whereα < ε, andaγ tγ be the first monomial not inF: therefore,

eitheraγ /∈ k, or γ /∈ Γ. Let z be the truncation ofy at γ:

y = z+aγ t
γ +o(tγ).

However,z∈ F, henceF(y) cannot be an immediate extension ofF (because ifaγ /∈ k
it would extend the residue field, ifγ /∈ Γ the value group). �

Putting together Lemma 9.13 and Proposition 9.11, one can proceed as in the proof
of Theorem 7.12 and prove the following analogue of Theorem 7.12 in the finite char-
acteristic case.

Theorem 9.14. Let chark > 0, andF be an algebraically maximal valued field. As-
sume thatF contains its residue fieldk and that there is a p-good section s from its
value groupΓ into F?, with f := ds. Assume moreover thatF satisfies Kaplansky’s
Hypothesis A. Letℵ be an uncountable cardinal such thattrdeg

(
F/k(Γ, f )

)
≤ ℵ.

Then,

1. There exists a truncation-closed embedding ofF in k((Γ, f ))ℵ.

2. If moreoverF is ℵ-pseudo-complete, then every such embedding is onto.

10 The mixed characteristic case

We will now treat the case of fields of mixed characteristic. In particular, we will
re-prove the Ax-Kochen isomorphism theorem for formallyp-adic fields.
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10.1 Decomposition of valuations

Let Γ be an Abelian ordered group,∆ ⊆ Γ be aconvexsubgroup ofΓ, Λ be the quotient
Γ/∆, andρ : Γ → Λ be the corresponding projection. Note that the ordering onΓ
induces an ordering< on Λ, and with this orderingΛ is also an ordered group.

Let s : Λ → Γ be a map such thatρs = idΛ, andm = ds : Γ× Γ → ∆ be is co-
boundary (namely,m(α,β ) = sα +sβ −s(α + β )). DefineΛ×m ∆ as the set of pairs
(λ ,δ ) with sum twisted bym:

(λ ,δ )+m(λ ′,δ ′) =
(

λ +λ ′, δ +δ ′ +m(λ ,λ ′)
)
,

and lexicographic order.

Lemma 10.1. The map
Φm :Λ×m∆ → Γ

(λ ,δ ) 7→ sλ +δ

is an isomorphism of ordered groups.

Proof.

Φm(λ ,δ )+Φm(λ ′,δ ′) = sλ +sλ ′ +δ +δ ′ = s(λ +λ ′)+m(λ ,λ ′)+δ +δ ′ =

= Φm
(

λ +λ ′,m(λ ,λ ′)+δ +δ ′
)

= Φm
(
(λ ,δ )+m(λ ′,δ ′)

)
.

Moreover,Φm preserves the order becausespreserves the order. �

In the future, we will be interested in the case whereΓ has a minimum positive
element 1, and∆ is the subgroup generated by 1. The concepts and notations ofthis
section are taken from [10, 7].(15)

Let K be a valued field with value groupΓ, and residue fieldk.
Let v̇ : K? → Λ be the compositionρ ◦v; it is a valuation, thecoarseningof v. Its

valuation ring is

Ȯ := {x∈ K : v̇x≥ 0} = {x∈ K : vx≥ ∆} ,

its maximal ideal is

Ṁ := {x∈ K : v̇x> 0} = {x∈ K : vx> ∆} ,

and its residue field is
◦
K := Ȯ/Ṁ . Note that

Ȯ ⊇ O ⊇ M ⊇ Ṁ .

If x+Ṁ ∈
◦
K, define

◦
v(x+Ṁ ) := v(x). It is easy to check that

◦
v does not depend

on the choice ofx, takes values in∆ and is a valuation with residue fieldk.

Lemma 10.2. (K,v) is Henselian iff both(K, v̇) and(
◦
K,

◦
v) are Henselian.

(15) Except that Kochen definesk((Γ))ℵ as the set of formal sums whose support have cardinality less or
equal toℵ, while we impose that the order type (or equivalently, the cardinality) of the support is strictly
less thanℵ.
Similarly, Kochen defines thatK is ℵ-pseudo-complete iff every pseudo-converging sequence of lengthℵ
has a pseudo-limit, while we ask that the length is strictly less thanℵ.
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Fix a cross-sectionπ : ∆ →
◦
K? (if such a cross-section exists(16)). Define

◦
K((Λ,m))

as the set of formal sums

∑
λ∈Λ

aλ tλ ,

with multiplication defined by

tα tβ = π
(
m(α,β )

)
tα+β .

Define the valuations ˙v :
◦
K((Λ,m))? → Λ andv :

◦
K((Λ,m))? → Γ by

v̇
(

∑
λ∈Λ

aλ tλ )
= λ0

v
(

∑
λ∈Λ

aλ tλ )
= s(λ0)+

◦
v(aλ0

),

whereλ0 is the minimum of the support.

Lemma 10.3. There is a cross-section r: Γ →
◦
K((Λ,m))?.

Proof. As we said before,Γ is isomorphic toΛ×m∆ via Φm. We can suppose thatΦm

is the identity. Given(λ ,δ ) ∈ Λ×m∆, define

r(λ ,δ ) := π(δ )tλ .

Thus,

r(λ ,δ )r(λ ′,δ ′) = tλ tλ ′
π(δ )π(δ ′) =

= tλ+λ ′
π
(
m(λ ,λ ′)

)
π(δ )π(δ ′) = tλ+λ ′

π
(

δ +δ ′ +m(λ ,λ ′)
)
.

Moreover,

r
(
(λ ,δ )+m(λ ′,δ ′)

)
= r

(
λ +λ ′,δ +δ ′ +m(λ ,λ ′)

)
= tλ+λ ′

π
(

δ +δ ′ +m(λ ,λ ′)
)
.
�

Remark10.4. The mapΛ →
◦
K((Λ,m))? sendingλ to tλ is a section with factor set

π ◦m.

Let s′ : Λ → Γ be another section,m′ be its co-boundary, andf := s− s′. Since
ρ f = 0, the image off is contained in the kernel ofρ , which is∆.

Remark10.5.
f α + f β − f (α +β ) = m(α,β )−m′(α,β ).

Proof. The differential operator d is linear, hence df = ds−ds′ = m−m′. �

Lemma 10.6. The mapΨ :
◦
K((Λ,m)) →

◦
K((Λ,m′)) that fixes

◦
K and sends tλ into

π( f λ )t ′λ is an isomorphism of valued fields(with respect to the valuation v, where t′

is the canonical section of
◦
K((Λ,m′))), and preserves the tree structure.

(16)For instance, if∆ = Z.
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Proof.
v
(

Ψ(tλ )
)

= v
(

π( f λ )t ′λ
)

= f (λ )+s′λ = sλ = v(tλ ),

thereforeΨ preserves the valuation.
It remains to prove thatΨ(tα tβ ) = Ψ(tα)Ψ(tβ ).

Ψ(tα tβ ) = Ψ
(
tα+β πm(α,β )

)
= t ′α+β π

(
m(α,β )+ f (α +β )

)
.

Ψ(tα)Ψ(tβ ) = t ′α t ′β π( f α)π( f β ) = t ′α+β π
(
m′(α,β )+ f α + f β

)
.

Remark 10.5 implies the conclusion. �

We have proved that
◦
K((Λ,m)) does not depend on the particular choice of the

sections; equivalently, it does not depend on the particular co-cycle m, but only on its
equivalence class in Ext1(Λ,∆).

For the rest of this section, assume that there is an embedding of
◦
K in K, and a

cross-sectionr : Γ → K? such thatr�∆ = π.

Lemma 10.7. The map t: Λ → K?, t := r ◦s, is a section with factor setπ ◦m.

Proof. r is a group homomorphism coinciding withπ on ∆, hence

dt = d(r ◦s) = r ◦ (ds) = π ◦m. �

See Diagram 1.

Diagram 1: Global picture.
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The continuous arrows are group homomorphisms, the dotted ones aresections.

If (K, v̇) is Henselian and char
◦
K((Λ,m)) = 0, Theorem 6.1 implies thatK admits

a a truncation-closed embeddingφ in
◦
K((Λ,m)), which is analytic (with respect to

the valuation ˙v) and over
◦
K and preserves the cross-sectionr. If moreoverℵ is an

uncountable cardinal such that trdeg
(
K/

◦
K(Λ,m)

)
≤ ℵ, then we can suppose that the

image ofφ is contained in
◦
K((Λ,m))ℵ.
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Lemma 10.8. In the above situation,φ is analytic also with respect to v. Namely,
v(φx) = vx for every x∈ K.

Proof. Let x∈ K?, λ := v̇x, y :=
x

tλ . It suffices to prove thatvy= v(φy).

v̇y= 0, hence there exists a (unique)z∈
◦
K? such that ˙v(y− z) > 0, and therefore

v̇(φy−φz) > 0. Thus,vy= vz, andv(φy) = v(φz), However,φz= zby hypothesis. �

In conclusion, we have a truncation-closed embedding ofK into
◦
K((Λ,m)), which

is analytic with respect to the valuationv.

10.1.1 Aside

Suppose that we are given, instead of a cross-sectionr : Γ → K?, a sectiont : Λ → K?

such thatt(0) = 1. For every(λ ,δ ) ∈ Λ×m ∆ = Γ, definer(sλ + δ ) := t(λ )π(δ ).
Again, we havet = r ◦sandr�∆ = π. See Diagram 2.

Diagram 2: Nine elements.
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v̇ Λ (c)

(i) (ii) (iii)

The diagram is commutative and should be completed with zeros, in such a way that its rows
and columns are short exact sequences.

• U̇1 := {x∈ K? : v̇(x−1) > 0}.

• The row (a) is split byπ.

• If (K, v̇) is Henselian and perfect, and moreover charK = char
◦
K, thenU̇1 is divisible and

(c) splits.

• (b) splits iff there exists a cross-sectionr.

• The column (i) splits.

• Ȯ? = O? ·π(∆) ' O?∆.

Lemma 10.9.

dr =
dt ◦ρ

π ◦ds◦ρ
.
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Proof. Givenγ,γ ′ ∈ Γ, defineλ := ργ, δ := γ −sλ , and similarlyλ ′ andδ ′.

r(sλ ,δ )r(sλ ′,δ ′)

r(sλ +δ +sλ ′ +δ ′)
=

r(sλ +δ )r(sλ ′ +δ ′)

r
(
s(λ +λ ′)+ds(λ ,λ ′)+δ +δ ′

) =

=
t(λ )π(δ )t(λ ′)π(δ ′)

t(λ +λ ′)π
(

δ +δ ′ +s(λ ,λ ′)
) =

dt(λ ,λ ′)

πs(λ ,λ ′)
. �

In particular, ifr is a group homomorphism, then dr = 1, hence dt ◦ρ = π ◦ds◦ρ .
Sinceρ is surjective, this is true iff dt = π ◦ds, and we recover Lemma 10.7.

However, if r is not a group homomorphism, then dt 6= π ◦m, hence we cannot
apply Theorem 6.1.

10.2 Application to the mixed characteristic case

The results of this subsection are classical theorems by Ax and Kochen [7, Theorems 1
and 5].

Let K be a valued field, with value groupΓ and residue fieldk. Assume that:

1. charK = 0, chark = p > 0;

2. K is Henselian;

3. Γ has a minimum positive element 1 andv(p) = 1;

4. there is a cross-sectionr : Γ → K? such thatr(1) = p.

Let ∆'Z be the subgroup ofΓ generated by 1. It is a convex subgroup, henceΛ := Γ/∆

is an ordered Abelian group. The core field
◦
K has characteristic 0 and value group∆.

Assume moreover that
◦
K embeds intoK. Let π : ∆ →

◦
K? be the map sendingn into pn,

ands : Γ → Λ any section.

By the results of§ 10.1, K has a truncation-closed embedding in
◦
K((Λ,m)). If,

moreover,ℵ is an uncountable cardinal such that trdeg
(
K/

◦
K(Λ,m)

)
≤ ℵ, we can

suppose that the image of such an embedding is contained in
◦
K((Λ,m))ℵ. Hence, ifK

is alsoℵ-pseudo-complete, thenK is isomorphic to
◦
K((Λ,m))ℵ.

If K is ℵ1-pseudo-complete, then
◦
K is alsoℵ1-pseudo-complete. However, the

value group of
◦
K is isomorphic to the integers, hence in this caseℵ1-pseudo-complete

is the same as complete. Moreover, there is only one (up to analytic isomorphisms)
complete valued field of mixed characteristic with residue field k and value groupZ

and satisfying 3, the field of Witt vectors (see [28]). We haveseen that
◦
K((Λ,m)) does

not depend onm, thus in this case
◦
K((Λ,m)) is uniquely determined byk andΓ.

Assume thatK is a non-principal ultra-product of a countable family of valued
Henselian fields with ramification index 1 (see Definition 2.14). Then, there is a
cross-sectionr satisfying Assumption 4 (see [7, Proposition 5(b)]). Besides, (K,v)

is ℵ1-pseudo-complete, and contains
◦
K. Suppose that each of the fields in the family

has cardinality≤ 2ℵ0, and that the Continuum hypothesis holds (namely, 2ℵ0 = ℵ1).

In this case, the cardinality ofK is ℵ1, thusK is isomorphic to
◦
K((Λ,m))ℵ1.

All the results in this section could have been done for finitely ramified fields (of
mixed characteristic) containing a suitable root ofp, instead than fields with ramifica-
tion index 1.
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11 Examples

Here we will collect some counter-examples. We will not aim for maximal generality,
only for a sufficiently representative set of easy cases.

We will also give some generalisation of Boughattas’ counter-examples, but only
from the point of view of the (lack of) existence of truncation-closed embeddings, not
of integer parts.

Definition 11.1. An ordered groupΓ hasrank1 iff for everyα,β ∈ Γ there existsn∈N

such that|α
n | < β < n|α|. Equivalently, iff it can be embedded as an ordered subgroup

in R.

Definition 11.2 (Complete). Let F be a valued field with value groupΓ. A sequence(
xi

)
i∈I in F is Cauchyiff for every γ ∈ Γ there existsn∈ I such that for everyi, j > n

v(xi −x j) > γ. F is completeiff every Cauchy sequence inF has a limit.

Definition 11.3. An extensionK/F of valued fields isunramifiediff the induced map
between the value groups is an isomorphism, namelyv(F) = v(K).

11.1 Purely inseparable extension

Let Γ be a non-trivial ordered Abelian group,h a field of characteristicp > 0, and
u0,u1, . . . ,ui , . . . i ∈ N algebraically independent elements overh. We will produce a
valued field of characteristicp and value groupΓ which is Henselian, but admits an
immediate purely inseparable exension.

Define
f := h(up

0,up
1, . . .),

F := f((Γ))

K := F(u0,u1, . . .) ⊆ F̃,

whereF̃ is the algebraic closure ofF. Let
(
γi

)
i∈N

be a strictly increasing sequence of
elements ofΓ, and

x := ∑
i∈N

uit
γi .

We have the following facts:

• The characteristic ofK is p, its residue field isk := h(u0,u1, . . .) and its value
group isΓ.

• K is an unramified extension of the maximal fieldF, hence it is Henselian.

• xp ∈ K, butx /∈ K. Moreover,K(x) is an immediate algebraic purely inseparable
extension ofK. Hence,K is not algebraically maximal.

• K is Henselian, because it is an algebraic extension of the Henselian fieldF.

If Γ has rank 1,K is not complete, because we can takeγi → ∞ asi → ∞, and in that
casex is in the completion ofK.

If Γ 6= Z, it is possible to find a sequence
(
γi

)
i∈N

as above and aµ ∈ Γ such that
for everyi ∈ N γi < µ . Let x′ := x+ tµ . Then, for everyy∈ K

v(x−y) = v(x′−y).
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However, there is no isomorphism betweenK(x) andK(x′) fixing K and sendingx into
x′.

Moreover,x is not even inK̂, the completion ofK. SinceK is Henselian, its
completionK̂ is also Henselian.

Hence,K̂ is a field of characteristicp and value groupΓ that is Henselian, complete
but not inseparably maximal (namely, it has a proper immediate purely inseparable
algebraic extension).

Delon observed that ifH is a separably maximal valued field (namely, it has no
proper immediate separable algebraic extension), then itscompletion is algebraically
maximal [29, Corollary6.8].

K has a natural truncation-closed embeddingι into k((Γ)). Let L := K(x′). There
is no truncation-closed embedding ofL into k((Γ)) extendingι . In fact, if ι ′ were such
an embedding, thenx ≺ ι ′x′, but x is not in the image ofι ′, a contradiction. Cf. also
Proposition 6.4.

Examples of valued fields which are Henselian, but admit proper immediate sepa-
rable algebraic extensions are well known: see for instance[6, Example 2 pag. 246].

11.2 Boughattas’ counterexample

Definition 11.4 (n-real closed fields). An ordered fieldk is n-real closedif every
polynomialp(X) ∈ k[X] of degree≤ n admits a zero ink as soon as it has a zero in the
real closure ofk.

In an analogous way, one can definen-algebraically closed fields.

S. Boughattas [4] gave an example of an-real closed field which does not admit an
integer part, and,a fortiori, a truncation-closed embedding in a power series field.

We will give an easy generalisation of his counterexample ton-algebraically closed
fields, also in characteristicp; we will treat the ordered field case and the unordered
one at the same time, because the constructions are very similar.

We will show that the fields we are going to produce are not Henselian, so they do
not contradict our theorem (in fact, they are as far from being Henselian as possible,
given the constraints of beingn-real closed).

In [5], F.V. Kuhlmann gives more examples of valued fields with no weak comple-
ments to the valuation ring (see his article for the definition). In particular, these fields
do not admit a truncation-closed embedding in a power seriesfield (and they are not
Henselian either).

Let f be eitherQ or the field ofp elements GF(p), for some primep.
Given a fieldF, let F̃ be either:

• the real closure ofF, if F is an ordered field, or

• the algebraic closure ofF, otherwise.

Let F[n] be then-closure ofF, namely either then-real closure or then-algebraic clo-
sure.

Let Γ be a divisible ordered Abelian group,L := f̃((Γ)) andK be a (real or alge-
braically) closed subfield ofL. Let Λ ⊂ Γ be the convex hull inΓ of v(K). For every
c∈ K chooseγc ∈ Γ such thatγc > Λ and if c 6= d, thenγc andγd areQ-linearly inde-
pendent overΛ (we suppose thatΓ has been chosen large enough to allow this). Define
c′ := c+ tγc.
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Let
F := f

(
c′ : c∈ F

)
,

the valued subfield ofL generated by thec′. Finally, givenn > 0∈ N, let F[n] ⊂ L be
then-closure ofF.

Remark11.5. Thec′ are algebraically independent overK.

Lemma 11.6. F[n]

1. has residue field̃f;

2. is not Henselian;

3. does not admit a truncation-closed embedding inf̃((Γ, f )) for anyf .

Proof. 1) F[n] is a subfield ofL, so its residue field is contained inf̃. Conversely, every
c∈ f̃ is infinitesimally near toc′ ∈ F.

2) Let a = b′ ∈ F for someb∈ f̃. Fix a primeq larger than both the characteristic off
andn. Let p(X) := Xq−a∈ F[X], andp(X) := Xq−b∈ f̃[X] be its residue.p(X)

has a simple root iñf, howeverp(X) has no root inF[n], hence the latter is not a
Henselian field.

3) Every truncation-closed subfield off̃((Γ, f )) with residue field̃f contains̃f. How-
ever, 21/q is not inF[n], therefore the latter does not admit a truncation-closed embed-
ding in f̃((Γ, f )). �

We can see that an immediate obstacle to the existence of a truncation-closed em-
bedding ofF[n] in f̃((Γ, f )) is thatF[n] does not contain its residue fieldf̃.

Question11.7. Can we find a valued fieldF which contains its residue field, isn-closed,
but does not admit a truncation-closed embedding inf((Γ, f ))?

Take a fieldK as before containingt. Let E := f̃(F), with F as before. Its residue
field is f̃; let Ψ be its value group.

Claim 11.8. There is no good sections : Ψ → E[n].

Consequently,E[n] does not admit a truncation-closed embedding inf((Ψ, f )).
In fact, if s were such a section, fixq > 0 ∈ N. Let x := s(1) and y := s(1/q).

Therefore,x = cyq = (c1/qy)q for somec ∈ f̃. Thus,x1/q ∈ E[n] for everyq ∈ N. This
implies thatx∈ f̃, contradicting the fact thatv(x) = 1.

Question11.9. Can we find a valued fieldF which contains its residue field, has a
good section, isn-closed, but still does not admit a truncation-closed embedding in
f((Γ, f ))?

Let K as above, and

H := f̃(tQ)
(
c′ : c∈ K\ (tQ ∪ f̃)

)
.

Claim 11.10. There is no truncation-closed embedding ofH[n] in f((Γ)) extending the
canonical embedding of̃f(tQ).

Fix q > 0∈ N and let
d :=

(
(t +1)

1/q
)′
∈ H,

a := (1+ t)1/q ∈ L.

Then,d = a+ o(tQ). Therefore,a/ d, soa∈ H[n]. Hence,(1+ t)1/q ∈ H[n] for every
q∈ N, a contradiction.
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